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This article presents a topological data analysis of the Lagrangian orbits occurring
in natural convection flows inside cylindrical containers heated from below. The fluid
motions are calculated via the numerical integration of the mass, momentum, and energy
conservation equations using the Fourier-Chebyshev pseudospectral method. The study
focuses on steady-state flows, and their qualitative properties are described in terms of the
Rayleigh number. The Lagrangian orbits are calculated using the Eulerian velocity fields
and their features are analyzed with Poincaré maps placed at the horizontal central plane
of the cylinder. The qualitative features of the Lagrangian orbits calculated are closely
related to those predicted by Hamiltonian theory, with the phase space being the real space
in our case and considering the Rayleigh number as the driving parameter. The orbits
are embedded in nested tori surfaces for low Rayleigh numbers (Ra = 8 × 103). Some
orbits seem to be dense in the tori and others form sets of points divided into segments
in the Poincaré maps. At larger Rayleigh numbers (Ra = 104, 2 × 105) the orbits form
increasingly complicated structures, including loop islands in the Poincaré maps. Also,
large areas in the maps show irregular or chaotic distributions of points. Topological data
analysis (TDA) was used to define parameters that quantify the geometrical properties of
the points distributions in the Poincaré maps. The number of segments in the sets of points
and the occurrence of holes were determined with the 0- and 1-persistent homologies,
respectively. Pairs of relatively prime numbers are used to characterize quasiperiodic
orbits; the pairs are naturally identified with torus knots. It is found that the ratio of
toroidal to the poloidal number of turns follows a simple rule for each Rayleigh number
explored. The most important advantage of using TDA is the quantification and accurate
identification of topological features found in the Poincaré maps.
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I. INTRODUCTION

Natural convection in containers has been profusely analyzed due to its importance in many
engineering applications like crystal growth and liquid metal batteries. This flow has also been
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looked into as a simple example of complex dynamics due to its inherent nonlinear nature. The
phenomenon can be conceived as a Rayleigh-Bénard type problem where the walls of the container
have a definite influence. Informative and comprehensive reports on the properties of the flow are
now available in the literature [1–4].

Qualitative properties of natural convection in vertical cylinders heated from below as functions
of the Rayleigh (Ra) and Prandtl (Pr) numbers and aspect ratio (A = height/diameter) are now
well established through experimental and numerical simulation. See, for instance, the pioneering
work reported in Refs. [5] and [6]. For an aspect ratio of 1.25 and a Prandtl number of 6.67,
which corresponds to the conditions of interest in this report, the fluid remains motionless for
Ra � 5 × 103. A steady motion is detected for intermediate Rayleigh numbers 5 × 103 � Ra �
106, and a time-dependent flow is found for larger Rayleigh numbers [5]. A detailed numerical
and experimental study of the natural convective flow of water in a cylindrical container. with an
aspect ratio of approximately 1.3 was presented by Núñez et al. [7,8]. In a steady state, the flow is
dominated by a large nonaxisymmetric vortex with a horizontal axis. In a specific vertical plane of
symmetry that contains the cylinder’s symmetry axis, it is found that the azimuthal velocity is zero.
This plane effectively divides the volume into two halves with the same dynamics.

Most studies of natural convection in containers have been made using experimental and nu-
merical Eulerian tools, where velocity and other variables are defined as functions of space and
time. Lagrangian analyses are more scarce, even though they are relevant for understanding mixing
and passive and nonpassive scalar transport in flows [9]. The Lagrangian orbits form structures
that have been previously described in two-dimensional (2D) time-dependent and 3D steady flows
and that have been interpreted in terms of Hamiltonian mechanics and symplectic maps [10]. The
structures include nested tori that become unstable at a critical number of the forcing parameter
to generate Kolmogorov-Arnold-Moser (KAM) tori, island chains around KAM tori (resonance
zones) and chaotic regions around tori and islands [11,12]. The general theory that links Hamiltonian
mechanics and properties of Lagrangian orbits is known as chaotic advection and has seen enormous
development since the early 2000s. The Lagrangian study of convective flows has greatly benefited
from the previously described identification [10].

A Lagrangian analysis of three-dimensional steady natural convective flow in a cubic container
with the Grashof number (Gr) as the driving parameter that is closely related to the present study
has recently been published [13]. For small Gr, the Lagrangian orbits form nested toroidal structures
whose Poincaré maps in the midhorizontal plane show points distributions similar to those found
in the 2D maps of the area preserving Hamiltonian systems. Increasing Gr causes the progres-
sive disintegration of tori into chaotic streamlines following universal Hamiltonian mechanisms
governed by the KAM and Poincaré-Birkhoff theorems [14,15]. It is interesting to observe that a
mechanically generated flow (double lid-driven flow) displays an equivalent topological behavior
[16]. Additionally, it is worth noticing that the orbits of electrically charged particles share some
geometrical properties with the Lagrangian orbits reported in the natural convective flows [17].

In the present study, topological tools were applied to analyze the geometric features of the
Poincaré map defined by the Lagrangian orbits. We integrate the conservation equations with a
spectral method to obtain a highly accurate solution. This is required to obtain reliable results in the
analysis of the Poincaré maps. This point was remarked on by Ravu et al. [18], who showed how the
high accuracy of the numerical method gives qualitatively and quantitatively superior trajectories
that result in more accurate identification of Lagrangian structures. Once the velocity field is
calculated, particle tracking is performed, in which a high-order approximation is implemented
to achieve good precision of trajectories at large times. The points clusters in the Poincaré map are
studied with topological data analysis (TDA). In databases analysis, it is well known that the shape
of data points provides important information on the behavior of the studied phenomenon [19,20].
Currently, TDA has been recognized as a very useful tool for obtaining meaningful information
from sets of points, because it is computationally light and robust to small variations in the data.
This technique has been used to analyze data clouds obtained from a great variety of phenomena,
including climatic behavior [21], chaos detection in time series [22,23], and in other areas [24].
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FIG. 1. Geometry of the cylindrical container.

The idea of studying the properties of flows with topological methods is not new. Early applications
of topology tools to fluid mechanics focused on the study of properties and evolution of vortex
filaments and linked structures interpreted as knots [25,26]. More recently, other topological tools
have been used to expand the scope of applications. A description of tools that have been used
in the analysis of flows can be found in monographs and review papers, for instance, Ref. [27].
Specifically, persistent homology has been used to characterize and detect bifurcations and chaos in
complex systems. An important example of the application of persistent homology concepts is the
study by Kramár et al. [28], they describe the temperature field in Rayleigh-Bénard convection in a
shallow cylindrical container with a small aspect ratio. They concluded that this tool is a robust and
effective method to study periodic dynamics and identify equilibria. A similar study to the present
investigation is reported in Ref. [23]; the authors claim that persistent homologies can be used for
the early detection of bifurcations.

The rest of this paper is organized as follows: Section II describes the physical problem, the
mathematical model, and the numerical methodology. Section III contains examples of applications
of topological data analysis to point clouds in the plane. Section IV describes the main results, and,
finally, Sec. V draws the main conclusions of this work. Given that the persistent homologies have
not been used frequently in flow analysis, we include relevant information in the Appendix and in
Supplemental Material [29]. In these documents, one can find a general and intuitive introduction to
TDA for approximating data clouds with complexes and extracting information by using persistent
homologies. Readers familiar with persistent homology concepts may wish to skip the Appendix and
Supplemental Material [29].

II. PHYSICAL SYSTEM, THEORETICAL MODEL, AND NUMERICAL STRATEGIES

A. Problem formulation

We consider a circular cylindrical container with a height h and diameter D, the aspect ratio of
the cylinder is h/D = 1.25. The computations were made in cylindrical coordinates, with the origin
at the center of the bottom cap. The axis of symmetry of the cylinder corresponds to the z axis
(Fig. 1).

The lower wall of the cylinder is kept at a hot temperature TH , and the upper wall is kept at a low
temperature of TC . The lateral wall is thermally insulated, and the working fluid is an incompressible
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Newtonian fluid with Pr = 6.67 with constant kinematic viscosity ν, thermal diffusivity α, and
volume expansion coefficient β.

B. Mathematical model

The transport equations needed to describe the phenomenon are the conservation of mass,
momentum, and energy. We assume that the temperature difference �T = TH − TC is small and
that the density variation is only present in the buoyancy term (Boussinesq approximation).

This set of equations has been solved in its dimensionless form. The scaling we used was the
most convenient for the numerical solution and includes the following characteristic quantities: The
axial and radial coordinates are expressed in terms of the height (h) of the cylinder, respectively.
The characteristic velocity (uc) is the free-fall velocity, namely uc = √

gβ�T h, where g is the
terrestrial gravity acceleration. The timescale is defined using the characteristic velocity as h/uc. In
dimensionless form, the steady governing equations are written in cylindrical coordinates (r, θ, z)
as follows:

1

r

∂

∂r
(rur ) + 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0, (1)

(�u · ∇)ur − u2
θ

r
= −∂ p

∂r
+

(
Pr

Ra

) 1
2
(

∇2ur − ur

r2
− 2

r2

∂uθ

∂θ

)
, (2)

(�u · ∇)uθ + uθur

r
= −1

r

∂ p

∂θ
+

(
Pr

Ra

) 1
2
(

∇2uθ − uθ

r2
+ 2

r2

∂ur

∂θ

)
, (3)

(�u · ∇)uz = −∂ p

∂z
+

(
Pr

Ra

) 1
2

∇2uz + T, (4)

(�u · ∇)T =
(

1

RaPr

) 1
2

∇2T, (5)

where �u = (ur, uθ , uz ) is the velocity, p is the pressure, and T is the temperature. The differential
operators are

�u · ∇ = ur
∂

∂r
+ uθ

r

∂

∂θ
+ uz

∂

∂z

and

∇2 = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
.

The flow is characterized by two dimensionless parameters, the Rayleigh and Prandtl numbers,
defined by

Ra = gβ�T h3

να
and Pr = ν

α
. (6)

The boundary conditions corresponding to the physical situation of interest are hot and cold walls

T = 1 on z = 0, T = 0 on z = 1, (7)

the insulating boundary at the sidewall

∂T

∂r
= 0 on r = D/2h (8)

and

�u = 0 in all boundaries. (9)
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C. Numerical solution

The numerical integration of the conservation equations is accomplished with a spectral method
[30]. The governing equations were discretized using the Fourier-Galerkin method in the azimuthal
direction and the Chebyshev pseudospectral (or collocation) method for the radial and axial di-
rections [31]. Applying spectral methods, high-order approximation of the partial derivatives is
obtained, and no staggered grids are used. Using the Fourier method, the solution naturally satisfies
the azimuthal periodic boundary conditions. The time derivative is approximated using the second-
order Adams-Bashforth method. Matrix derivatives were calculated with polynomial interpolation
formulas. The explicit nonlinear terms are computed in the physical space and carried into the
Fourier space through a discrete transform. A projection method was used as the pressure-velocity
decoupling strategy. The resulting linear system of equations is solved fast and efficiently by a
diagonalization method. As it will be commented further in the next subsection, the satisfaction
of mass conservation by the velocity field is of particular importance for reliable tracking because
this ensures accurate preservation of the Hamiltonian nature of the Lagrangian trajectories. In the
numerical solution of the convective flow reported here, a velocity divergence error smaller than
10−10 was obtained.

As a validation, the numerical solutions are compared to experimental results in Refs. [7,8].
It was found that the flow simulations quantitatively predict the experiments, and although the
comparison was made using the Eulerian description, e.g., three-dimensional steady velocity fields,
we consider this is strong evidence to suggest that the numerical solutions are correct.

D. Lagrangian tracking

The structure of the flow is visualized with Lagrangian trajectories, which are the lines formed
by subsequent positions of massless, nondiffusive particles whose velocity coincides with that of the
fluid at a particular point. The Lagrangian trajectories are calculated in the steady state, assuming
that the particle velocity is constant according to the following expressions:

uθ = uθ (r, θ, z), ur = ur (r, θ, z), uz = uz(r, θ, z). (10)

The rate of change of the position vector is

ṙ = ur, rθ̇ = uθ , ż = uz. (11)

A fourth-order multidimensional Runge-Kutta method (RK4) was used to solve the problem. The
definition of the initial time t0 is arbitrary, but as described in detail below, the geometrical properties
of the orbits are dependent on the point �x0 where the integration of Eq. (11) starts (initial condition).
The accuracy of Lagrangian tracking is of crucial importance because errors can compromise the
Hamiltonian properties of the orbits. See Refs. [13,18]. In this study, we have paid special attention
to this point. Besides the accurate mass conservation reflected by the small error in the velocity
divergence commented on in the previous subsection, we have used precise interpolation and an
RK4 temporal integration method. The spatial interpolation method is of order nr × nz, where n is
the number of points.

A frequently used tool to describe the geometrical properties of the orbits is the Poincaré maps,
which can be built by choosing a plane and recording the positions where the orbit crosses the plane.
Formally, Poincaré maps can be regarded as maps of a plane on itself [32]. The Poincaré maps are
built with the intercepts of the orbits with the horizontal plane at z = 0.5. To get a full picture of the
dynamics in the volume, it is necessary to use several initial conditions. We considered 22 initial
points to cover a wide region in the plane.

Topological properties of the Lagrangian trajectories represented in the Poincaré map were ana-
lyzed with TDA. A comprehensive guide of topological data analysis can be found in Refs. [33,34].
To make this document self-contained, we provide a brief introduction to TDA in Appendix.
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FIG. 2. Examples of Vietoris-Rips barcodes for three data clouds in R2. Bars for 0-homologies and 1-
homologies appear in red and blue, respectively.

III. EXAMPLES OF TOPOLOGICAL DATA ANALYSIS APPLICATIONS

In this section, we describe three examples of TDA to introduce the details of the methodology.
The point distributions chosen as examples are closely related to the Poincaré maps formed by the
Lagrangian orbits in the convective flow that are described in Sec. IV.

We compute the persistent homology with the TDA package included in the R program [35].
In the output, the barcodes are shown as follows: The 0-homologies (red bars) start at the smallest
radius for the Vietoris-Rips complex considered and stop when the Vietoris-Rips complex of the
corresponding radius is connected. See the Appendix for an intuitive explanation of Vietoris-Rips
complexes, homology, persistent homology, and barcodes. The 1-homologies (blue bars) start at the
radius when the first hole is formed and end when there are no holes in the Vietoris-Rips complex.
Individual bars in the 0-homology are displayed piled up according to the ascending order in the
filtration radius. In the 1-homology, the bars are arranged such that the one that is born first occupies
the uppermost position and subsequent ones are drawn under the previous bar.

Three examples of barcodes are shown in Fig. 2. These examples were chosen for their similarity
with the point clusters found in the Poincaré maps of Sec. IV. We proceed to describe the informa-
tion contained in these examples. Our goal is to illustrate that many geometrical properties of point
clusters can be quantitatively described by the barcodes. The properties described in the following
paragraphs can be more fully understood by looking at the barcodes formation as the Vietoris-Rips
radii grow. This information is in the videos in Supplemental Material [29].

In the first example that corresponds to Fig. 2(a), all red bars (0-homologies) are short and display
small length increments, indicating that the connectivity of the set of points is also increased by
small amounts as the radii grow. An equivalent interpretation is a small increment in radii results
in one or a small number of new 1-simplexes (segments). From this property, we deduce that the
distances between pairs of points are similar, and the points are evenly distributed in the cloud.
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In contrast, there is only one blue bar of a relatively larger length, indicating the presence and
long persistence of a single hole. The line is born at radii slightly larger than the longest red bar.
Combining the two features revealed by the homologies, we infer that the points are arranged in a
loop configuration.

In the second example [Fig. 2(b)], the red bars display small increments up to the one before the
last, where a substantial length increase is observed. The interpretation of this feature is that in most
of the exploration, the connectivity of the points set increases slowly, as in Fig. 2(a). The substantial
size difference between the two uppermost bars indicates that the set is composed of two separate
clusters, and it is only when large enough radii permit the appearance of a segment joining the two
clusters then the last bar dies. The blue bars (1-homology) refer to the formation of 1-holes. We
find three long bars that indicate dominant persistent features of the points distribution. The two
of them that exist for approximately the same range of radii correspond to the holes inside each of
the kidneylike loops. The blue bar on the right corresponds to the hole that is formed between the
loops when segments join points from the two separate clusters. Note that none of the holes persist
for long radii intervals because they fill up as the radii grow. On top of the three bars previously
described, there are also three tiny blue bars that reveal the formation of short-lived 1-holes. These
do not represent persistent features of the point distribution. The remarks given in this paragraph are
further illustrated in Supplemental Material [29].

In the third example, shown in Figure 2(c), consecutive red bars do not show a big increase in
length. Also, the longest red bar indicates that we need a considerably big radius to connect all
the points in the set (close to half the radius necessary for the Vietoris-Rips complex to be the
convex hull). This means that the points are scattered in the data cloud but do not form clusters. The
appearance of small holes with little persistence that are formed and filled after a small radii increase
can be deduced from the shorter blue bars. The longest-lived hole appears at relatively large radii
and shows persistence, indicating that the dots form a large hollowed structure similar to the one
described in Fig. 2(a). The five intermediate-sized blue bars plus the largest indicate that the points
cloud has five small looplike structures arranged around the more persistent hole. It is interesting to
remark that the length of the longest red bar is approximately equal to half the radius at which the
last blue bar dies. This confirms our previous observation that the points are scattered and do not
form definite clusters.

IV. RESULTS

A. General properties of the flow

The results presented in this section were obtained by analyzing the dynamics of a natural
convection flow of a Newtonian fluid with a Prandtl number Pr = 6.67 confined in a cylindrical
container with an aspect ratio of 1.25. We study the Lagrangian orbits in flows with Rayleigh
numbers Ra = 8 × 103, 8 × 104, 2 × 105, and 5 × 105. In all cases studied, the fluid is in a steady
state. As is well established, under the conditions of interest, the fluid is motionless for Rayleigh
numbers less than Rac1 ≈ 7 × 103 and acquires a time-dependent motion for Rayleigh numbers
greater than approximately Rac2 ≈ 106 [5]. In the four cases, the flow is symmetric with respect to
a vertical plane. For this reason, we will only describe the properties in half the volume.

The Lagrangian orbits are defined by mass-less particles moving through the fluid with a local,
instantaneous velocity dictated by the Eulerian velocity field obtained from the numerical solution of
Eqs. (1)–(5). The structure of the Lagrangian orbits in a three-dimensional steady flow in a closed
domain has been identified with Hamiltonian dynamics, and a large body of knowledge on the
subject is now available, see, for instance, Refs. [9–11]. As expected, we have also found the generic
properties explained in the literature, but to give a background to the quantitative analysis proposed
in this study, we include in this section a qualitative description of the structures of the Lagrangian
orbits found in the natural convection flow in a cylindrical container.

Figure 3 shows some examples of Lagrangian orbits for each Rayleigh number studied. Notice
that some of them seem to move along the surfaces of tori. The Lagrangian orbits naturally
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FIG. 3. Lagrangian orbits determined by the flow in one half of the cylinder. Each image shows only
five colored orbits in order to appreciate the internal structure of the flow. (a) Ra = 8 × 103, (b) Ra = 104,
(c) Ra = 2 × 105, and (d) Ra = 5 × 105.

divide the studied region into two parts, on one side the orbits go up and on the other, they go
down.

To study the flow in detail, we use the Poincaré map in the plane perpendicular to the cylinder
axis at midheight. The Poincaré map is a widely used tool to study flows since it allows us to do the
analysis in a dimension one smaller and preserves the properties of the Lagrangian orbits [36]. In
our specific case, the map consists of the collection of points in the trajectories that belong to the
horizontal plane at height z = 0.5. Lagrangian orbits are identified with different colors and each
orbit defines a set of points with the same color in the Poincaré map.

Figure 4 shows the Poincaré maps of the four Rayleigh numbers studied. In each case, the map is
divided into two sides separated by a vertical line. Although the dot distributions in the two regions
are not entirely symmetric, we only analyze the properties of the sets of points on the right side
because each point on the left side is connected to a point on the right side through the orbit which,
naturally defines a bijective function.

In all four cases, the points defined by a Lagrangian orbit in the Poincaré map surround a center
(black points in the images of Fig. 4). The centers were determined by experimentation with a
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(a) (b)

(c) (d)

FIG. 4. Poincaré maps at the horizontal middle plane of the cylinders. The color of the points corresponds to
each of the 22 Lagrangian orbits studied. Note that the black dots are the central trajectories. (a) Ra = 8 × 103,
(b) Ra = 104, (c) Ra = 2 × 105, and (d) Ra = 5 × 105.

precision of 10−3 and their positions in each Rayleigh number studied are c1 =
(0.205371, 0.143111), c2 = (0.21014, 0.146272), c3 = (0.217764, 0.205967), and c4 =
(0.192143, 0.254469).

For the analysis, we took 22 Lagrangian orbits for each Rayleigh number, and the corresponding
starting points were chosen equidistant from the center (including ci) to the vertical radius of the
cylinder. The Poincaré maps in Fig. 4 were obtained from Lagrangian orbits with these initial
conditions.

The centers of the Poincaré maps determine closed Lagrangian orbits (see the internal black
orbit in each of the four cases shown in Fig. 3). Similarly, the sets of points that seem completely
circular in the Poincaré map, determine stream surfaces in the cylinders with the shape of a torus.
The corresponding orbit lives on such a stream surface.

The features observed in the Poincaré maps of the Lagrangian orbits shown in Fig. 4 are closely
related to the points distributions obtained with area preserving Hamiltonian systems. This is a result
of the Hamiltonian structure of the equations of motion.

A summary of the map’s features can be described as follows:
(1) Ra = 8 × 103. The map is composed of sets of points arranged in loops nested around the

common center c1. This is a one-period fixed point because the Lagrangian orbit always returns to
it on the Poincaré map after one turn. In some loops, the points appear to be uniformly distributed,
while in others, the points are grouped forming linear islands (short line segments).

(2) Ra = 104. The 12 innermost sets of points form nested loops, some of them consisting
of linear islands around the fixed point c2. The five middle sets are formed by islands; in two of
them, the islands are organized in clearly defined loops. In the context of dynamical systems, these
structures are known as elliptic and hyperbolic critical point chains. The outermost four sets display
less ordered, scattered points located in the outer part of the region under analysis.
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(3) Ra = 2 × 105. The four sets of points with a smaller average distance to the center (this
parameter is denoted d̄ and is formally defined in the next section) are nested loops arranged around
the point c3 in a similar setting to those observed for smaller Rayleigh numbers. The three clusters
located further away from c3 are divided into two separate looplike structures. The middle three
sets of points define loops (one of them with linear islands) that surround the inner structures.
The 11 exterior sets are formed by scattered points. Observe, however, that one of them forms
not-well-defined loop islands.

(4) Ra = 5 × 105. The first three sets form nested loops around the center c4. The remaining set
of points is randomly distributed and fills the rest of the region. There is one exception where the
set looks organized on closed islands (yellow points).

The point distributions are similar to those found in the analysis of simplectic maps (e.g., the
standard map), with the Rayleigh number being the driving parameter [11,14,37]. In terms of the
nomenclature of Hamiltonian dynamics, we identify the sets of points as follows. The loops are
KAM tori. The sets divided in linear islands correspond to the chains around KAM tori that result
from their break-up due to resonance. Our sets divided into loop islands are called island chains.
The scattered point sets are the points in the chaotic regions around tori and islands.

In the next subsection, we will quantify the geometrical properties of the distribution of points
observed in the Poincaré maps using topological tools, which allow us to uncover properties that
would have been difficult or impossible to discover with the qualitative methodology sketched in the
previous paragraphs. Readers not familiar with TDA can find a brief and intuitive introduction in
the Appendix. See Supplemental Material [29] for examples and illustrations of the processes used
to get the topological properties of the sets of points.

B. Topological data analysis

In this section, we use TDA to study the global structure of the Poincaré maps in Fig. 4. We
divide the Poincaré maps into sets of points corresponding to one individual Lagrangian trajectory;
then we compute the 0- and 1-persistent homologies for each one of these sets. Given a set of points
X in the Poincaré map defined by one of the Lagrangian trajectories, the parameters that we use to
describe the results are the following:

(1) The average distance d of points in X to the center ci (see Fig. 4).
(2) The length of the longest bar in the 0-persistent homology of X barcode, V R0. Observe that

V R0 is the first radius for which the Vietoris-Rips complex of X is connected.
(3) The final bar in the barcode of the 1-persistent homology of X . This bar dies at the first radius

for which the Vietoris-Rips complexes do not have holes.
(4) The number of clusters in which X is divided will be denoted p. Note that as explained in

Fig. 2(b), p − 1 is the number of significant jumps in the lengths of two contiguous bars in the
barcode of the 0-persistent homology of X .

(5) The number of bars in the barcode of the 1-persistent homology of X will be labeled N . This
parameter indicates the number of holes detected.

(6) The sum of all but the last 1-persistent homology bars of X is denoted E . A simple
distribution of points like those in Fig. 2(a), will give E = 0, while increasingly more complex dis-
tributions like Figs. 2(b) and 2(c) in the same figure, give E = 0.034401197 and E = 0.045860959,
respectively.

The information for each of the four Rayleigh numbers analyzed is presented in two separate bar
graphs, one for 0- and another for 1-homology. The bars in the following figure do not correspond to
the barcodes. The color of the bars corresponds to the color of the Lagrangian orbits in the Poincaré
map of Fig. 4. The bars are arranged in ascending order according to the choice of the initial points
of the orbits, and the average distance d is displayed on the left-hand side of each bar.

In the 0-homology graph, each bar is the longest in the 0-persistent homology barcode of a set of
points defined by a Lagrangian trajectory (i.e., the length of a bar, V R0). The number of components
that are separated by significant jumps (p) is displayed on the right-hand side of each bar.
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(a) (b)

FIG. 5. TDA for Ra = 8 × 103. The bars correspond to each of the 22 Poincaré sets of points of the
Lagrangian orbits studied. See Fig. 4(a). The color of the bars matches the color of the sets of points. The
average distance d is shown in the column on the left-hand side. The left panel shows the longest bars (V R0)
of the 0-homology analysis and the number of components in each set of points (p) is indicated at the end of
each bar. The right panel shows the last bars for the 1-homology analysis and the parameters {N , E} are given
on the right-hand side of each bar.

In the 1-homology graph, each bar corresponds to the last bar in the 1-persistent homology
barcode of a point set defined by a Lagrangian trajectory. The number of bars in the 1-persistent
homology barcode and the sum of the length of all but the last one are displayed as {N , E} on
the right-hand side of each bar. It is important to emphasize that N represents the total number of
1-holes, not only the persistent ones; refer to Figs 2(b) and 2(c).

In the following paragraphs, we proceed to spell out the information contained in the two graphs
of the four cases studied. To simplify the description, we start from the lower bars to the upper ones.

Figure 5, Ra = 8 × 103, the graph on the left, which corresponds to 0-homology, indicates that
the average distance d̄ increases monotonically. The graph on the right shows that N = 1 and E = 0
for all sets of points, then they have just one hole, and the points are distributed along simple loops.
Also, we observe that in the 1-homology graph, the Vietoris-Rips radii where the bars die, i.e., where
the final 1-hole is filled, is a monotonously increasing function of d̄ . Assembling the information
from the two graphs, we conclude that the sets of points do not mix with each other. Consequently,
they form nested loops with increasing average distances around the center c1. The bars show that
seven sets with smaller d display similar properties, with evenly separated points forming thin loops.
All sets of points but one in the next seven sets are grouped in clearly separated clusters (linear
islands) as indicated by p > 1 and the bar lengths (V R0). The previous information is consistent
with the fact that the flow is divided into stream surfaces which are nested tori, as suggested in
Fig. 3(a).

The left graph of Figure 6, Ra = 104 indicates that the average distance d of the first 18 sets of
points increases monotonously, and similarly to the previous case, from the two graphs, we conclude
that the first 11 sets of points form nested simple loops around c2. Some of these sets are divided into
linear islands, as indicated by the parameter p > 1 on the 0-homology graph. Also, the graphs show
that d = 0.101278 and d = 0.129062 sets of points (salmon and brown) are divided respectively
into 9 and 10 loop islands. The separation between the islands is given by the length of the bars
in the 0-homology graph. Note that these sets of points are the first cases that we find with E > 0.
Although the first set (salmon) has a larger N , the parameter E is larger for the second set (brown),
indicating that the loop islands are more persistent for the last set, i.e., the brown loop islands are
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(a) (b)

FIG. 6. TDA for Ra = 104. The bars correspond to each of the 22 Poincaré sets of points of the Lagrangian
orbits studied. See Fig. 4(b). The color of the bars matches the color of the sets of points. The average distance
d is shown in the column on the left-hand side. The left panel shows the longest bars (V R0) of the 0-homology
analysis, and the number of components in each set of points (p) is indicated at the end of each bar. The right
panel shows the last bars for the 1-homology analysis and the parameters {N , E} are given on the right-hand
side of each bar.

“thicker” than salmon loop islands. The nonmonotonic d̄ and the Vietoris-Rips radii where the bars
in the 1-homology graph die show that the last four sets of points are mixed, see Fig. 4(b). This is
consistent with the fact that E > 0 for these cases.

The graph in Fig. 7(a) shows that the sets of points are arranged in three different groups. Group
one includes the three sets with the smallest d and E = 0. These sets are nested thin loops around the
center c3 (black dot). The parameters p = 2, N > 1, and the large V R0 indicate that the next three
structures are clearly divided into two separate loop components; these constitute group two. The
properties of these structures are similar to those described in Fig. 2(b).1 The subsequent two bars
with short V R0’s, p = 1 and N = 1, belong to group one because the two sets organize themselves
in thin loops with E = 0 that enclose the structures with smaller d . Their Lagrangian orbits form
nested tori. Group three is characterized by large E , p = 1, and the fact that d̄ is not monotonously
increasing. These properties indicate that the sets of points are scattered and do not form clusters.
Therefore, the corresponding Lagrangian orbits are intertwined and exist in the exterior volume of
the nested tori. This picture is consistent with Figs. 3(c) and 4(c). Case d̄ = 0.198839 features a very
narrow bar where birth and death of the final 1-hole occur almost at the same Vietoris-Rips radii.
This happens because the distribution of points in this set is such that the final hole is small and is not
formed around the center c3. This is clearly shown in video 7, d = 0.198839.avi, in Supplemental
Material [29].

The set of points characterized by d̄ = 0.084672 (green) deserves a separate discussion. The
TDA gives p = 9 and E = 0.00839467, indicating that this set is formed by nine loop islands. A
cursory inspection of Fig. 4(c) would lead to the conclusion that the islands are linear, but a more
careful analysis reveals that the clusters are severely flattened loops. This is illustrated in Fig. 8,
where the points set is redrawn with a zoom to appreciate that the clusters are indeed loop islands.

1The early birth and death of the d̄ = 0.0560259 in the 1-homology graph reflects the fact that the two
kidneylike structures, in this case, do not form a central 1-hole as shown in video 7, d = 0.0560259.avi, in
Supplemental Material [29].

123501-12



TOPOLOGICAL DATA ANALYSIS OF LAGRANGIAN …

(a) (b)

FIG. 7. TDA for Ra = 2 × 105. The bars correspond to each of the 22 Poincaré sets of points of the
Lagrangian orbits studied. See Fig. 4(c). The color of the bars matches the color of the sets of points. The
average distance d is shown in the column on the left-hand side. The left panel shows the longest bars (V R0)
of the 0-homology analysis, and the number of components in each set of points (p) is indicated at the end of
each bar. The right panel shows the last bars for the 1-homology analysis, and the parameters {N , E} are given
on the right-hand side of each bar.

Here it is pertinent to remark that for the three cases previously described, the final bars in the
1-persistent homology correspond to the holes around the centers. For each set, the length of this
bar gives a notion of how significant is the loop around the center ci to characterize the distribution
of dots.

In Figure 9, Ra = 5 × 105 the graphs and the parameters p, N , and E show that there are
two groups of sets of points. The first two sets belonging to the first group are nested thin
loops around the center c4 with small V R0, p = 1, N = 1, and E = 0. The sets of points in the
second group are characterized by large V R0, E > 0, and nonmonotonously increasing d̄ . These
sets have nonuniformly distributed points, and given that p = 1, we conclude that no clusters are
formed. The case d = 0.105527 (yellow dots) comprises three ill-formed loop islands and points
distributed in noneasily recognizable structures. This is shown on the left side of Fig. 10(a). The

FIG. 8. (a) Poincaré map of the set of points with d̄ = 0.084672 for the case Ra = 2 × 105 (green points),
redrawn from Fig. 4(c) to single out this case. (b) Amplification of the lower-right region of the set. The clusters
are clearly loop islands.
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(a) (b)

FIG. 9. TDA for Ra = 5 × 105. The bars correspond to each of the 22 Poincaré sets of points of the
Lagrangian orbits studied. See Fig. 4(d). The color of the bars matches the color of the sets of points. The
average distance d is shown in the column on the left-hand side. The left panel shows the longest bars (V R0)
of the 0-homology analysis, and the number of components in each set of points (p) is indicated at the end of
each bar. The right panel shows the last bars for the 1-homology analysis and the parameters {N , E} are given
on the right-hand side of each bar.

case d̄ = 0.155576 (brown dots) has the largest E detected, indicating that many persistent holes
are formed and filled as the Vietoris-Rips radii grow. Also notice that the 1-homology bar is born
and dies with the smallest Vietoris-Rips radii in the second group. This property implies that in this
set the points are distributed and do not form clusters. See Fig. 10(b).

In contrast to the previous three Rayleigh numbers analyzed, for Ra = 5 × 105, the last bar in
the 1-persistent homology barcode does not correspond to the hole that surrounds the center c4.
An example of this phenomenon is the yellow dots set with d̄ = 0.105527 illustrated in video 9,
d = 0.105527.avi, in Supplemental Material [29].

FIG. 10. Sets of points for Ra = 5 × 105; the center c4 is represented by a black dot in each diagram.
(a) d̄ = 0.105527 (yellow dots) and (b) d̄ = 0.155576 (brown dots).
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FIG. 11. Orbits that form the ribbon corresponding to points set with d̄ = 0.0593613 in Ra = 8 × 103. The
Poincaré map in the midplane (z = 0.5) is shown with black segments. This figure complements part of the
information shown in Figs. 4(a) and 5(a).

C. Geometric properties of Lagrangian orbits

In this section, we take advantage of the information obtained in Section IV B to analyze the
properties of the flow further. We incorporate in the analysis the sequential order of the Lagrangian
orbits intercepts with the midplane, i.e., the order in which the points appear in the Poincaré maps.

Inspection of Figs. 3 and 4 shows that the trajectories that correspond to central points (black
dots in Fig. 4) are, up to our precision, closed orbits. The sets of points in the Poincaré map that
form loops around the center originated from Lagrangian orbits are embedded in toroidal surfaces
(dense irrational frequency2 orbits in KAM tori). Then, nested loops around central points are the
intercepts of nested tori, see Fig. 3. These structures are related to the nested tori described by
Arnol’d-Liouville Theorem for integrable area preserving Hamiltonians [11,38]. Also observed are
orbits corresponding to sets of points that organize themselves in segments (linear islands). The flow
of these orbits is arranged in a regular neighborhood of a torus knot which is contained in a toroidal
surface, such a set resembles a ribbon as illustrated in Fig. 11.

Subsequent visits of the Lagrangian orbit to linear islands determine a turn of the ribbon in
the toroidal direction; then, as explained in Sec. IV B, this is quantified by the parameter p. For
each ribbon, the number of turns in the poloidal direction (q) coincides with the number of linear
islands plus one between two segments visited by the Lagrangian orbit after one turn in the toroidal
direction. We conclude that each ribbon determines an ordered pair (p, q) of two relatively prime
numbers (if p, q are not relative primes, then not all linear islands are visited). These ordered pairs
parametrize the resonances in the break-up of KAM tori. Notice that within the framework of the
present analysis, sets divided into linear islands appear only in the Poincaré maps of the first two
Rayleigh numbers studied. Table I contains the pairs (p, q) obtained in these cases.

2The formal definition of the frequency of an orbit can be found in the literature [11].

123501-15



NÚÑEZ, GONZÁLEZ, AND RAMOS

TABLE I. Pairs (p, q) of the sets divided in linear islands for Ra = 8 × 103 and 8 × 104. The color code
corresponds to the sets shown in Figs. 4(a) and 4(b). Note that (p, q) pairs appear in ascending order with
respect to d̄ .

Ra (p, q)

8 × 103 (12, 1), (61, 5), (38, 3), (13, 1), (93, 7), (41, 3), (50, 3)
104 (31, 4), (70, 9), (86, 11), (63, 8), (151, 19), (91, 11), (48, 5)

Given that the pairs in Table I are relative primes, we find that the ribbons have similar
geometrical properties to torus knots [39]. As noted above, ribbons can be identified with regular
neighborhoods on the surface of the torus around the corresponding torus knots. Then, the sets of
points in the Poincaré map that are divided into linear islands are determined by Lagrangian orbits
that flow around torus knots.

Note that for Ra = 8 × 103, the ratios p/q in Table I are 12.00, 12.20, 12.67, 13.00, 13.28, 13.67,
and 16.67, and for Ra = 104, the ratios p/q are 7.75, 7.78, 7.82, 7.88, 7.95, 8.27, and 9.60. These
sequences can be approximated by the expression

p/q = λ0 + λ1d̄ + λ2d̄2. (12)

The numerical value of the coefficients is given in Table II, and the corresponding plots are shown
in Fig. 12.

As previously observed, for Ra = 104 and Ra = 2 × 105 some sets of points with E > 0 organize
themselves in separated loop clusters (loop islands). On using similar criteria as those described in
the first paragraphs of this section, we can identify the Lagrangian orbits that make up the loop
islands as satellite knots over torus knots [39]. In the context of Hamiltonian dynamics, ribbons are
known as resonances that wind themselves around KAM tori [11,40]. Our calculations show that
the satellite knots found are trivial.

In Sec. IV B, we commented that the points set with d̄ = 0.084672 (green) in the case Ra =
2 × 105 is atypical (see Figs. 7 and 8). According to TDA, p = 9 and E = 0.00839467. Given the
relatively small E , the Lagrangian orbit generating the set in the Poincaré map can be interpreted
as a ribbon. The corresponding analysis yields q = 4 and p/q = 2.25, which is consistent with the
descending trend of this ratio with increasing Rayleigh numbers. The fact that E > 0 opens up the
interpretation that this set is a satellite knot around a torus knot.

V. DISCUSSION AND CONCLUSIONS

A numerical study of the Lagrangian orbits in natural convection flows, together with the
topological data analysis of the Poincaré maps generated by the orbits, is presented. The flows
analyzed are assumed to take place inside a cylinder with an aspect ratio (height/diameter) of 1.25
and filled with a fluid with a Prandtl number of 6.67. We look into four cases of Rayleigh numbers,
Ra = 8 × 103, 8 × 104, 2 × 105, 5 × 105, where the flow is in a steady state. The TDA focused on
the calculation of 0- and 1-persistent homologies. In Sec. IV B, we defined six useful parameters to
classify the sets of points in the Poincaré maps, including the average distance of points set from the
center d̄ and E , the parameter that quantifies the possible formation of holes and their dispersion in
a specific set.

TABLE II. Numerical values of the coefficients in Eq. (12).

Ra λ0 λ1 λ2

8 × 103 12.8564 −40.6555 452.836
104 7.78445 −3.23415 153.934
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FIG. 12. The ratio p/q as a function of the average distance d̄ for (a) Ra = 8 × 103 and (b) Ra = 104. The
color code of the dots corresponds to the sets of points in the Poincaré maps of Figs 4(a) and 4(b). The red lines
are the fits given in Eq. (12).

Although the structures formed by the Lagrangian orbits have been described in the framework of
Hamiltonian mechanics and Lagrangian advection, TDA gives accurate and quantitative information
that facilitates the identification of features of the particular example analyzed that are predicted by
the general theories. Also, this tool is used to find new information on the topological properties of
sets of dots in the Poincaré sections.

For the smallest Rayleigh number (Ra = 8 × 103), the sets of points in the Poincaré map group
themselves in continuous loops and in loops formed by separated p linear islands; these sets are
defined by orbits embedded in nested tori. The linear island sets do not represent periodic orbits,
and symplectic maps theory indicates that they have irrational frequencies [11]. The Lagrangian
trajectory thus defines a dense set of points in the segments forming the loop. These sets were
characterized by the pairs (p, q), which are identified with torus knots, and given the definition of
q, they are related to the way in which the points are distributed in the loop. It is found that p/q is
a quadratic function of d̄ [see Eq. (12)], and then the existence of other (p, q) orbits for a specific
d̄ can be found by interpolation. More complete calculations (not shown in the figure) confirm this
assertion.

As the Rayleigh number is increased (Ra = 104), the linear islands also follow the trend de-
scribed in the previous paragraph, and two different kinds of sets of points appear, loop islands
(resonance zones) and irregularly distributed points (chaotic regions). For these sets, we find that
E increases as the average distance d̄ increases. Examples of orbits with periodic frequency can
be located at the centers of loop islands. The information contained in Table I and condensed in
Eq. (12) suggests that some sets of points in the Poincaré maps that visual inspection indicate are
continuous lines are, in fact, formed by Lagrangian orbits with a relatively large number of clusters
(p).

Interesting phenomena appear for Ra = 2 × 105. Near the center point, two kidneylike separated
structures are formed. Taken separately, each cluster has a small E but, taken as two parts of a
single system, as it should be because they belong to the same set of points, E is substantially larger.
This indicates the formation of the persistent central hole. As explained in Sec. IV C, the set of
points with d̄ = 0.084672 is divided into nine thin loop islands (E > 0), which could be mistakenly
interpreted as linear islands. This example opens up the possible interpretation that some of the
sets classified as linear islands are thin loop islands. Most orbits found for the largest Rayleigh
number analyzed, Ra = 5 × 105, have Poincaré sets of points with large E and are not embedded on
identifiable two-dimensional manifolds with the present tools. It should be emphasized, however,
that the parameters defined give properties of the chaotic sets; specifically, they indicate the absence
of clusters and the formation and persistence of 1-holes.
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The analysis contained in this study was possible because the numerical calculations provided
highly precise data, and the topological data analysis reveals details that would be difficult or
impossible to get with other methods. In particular, the quantification of geometrical properties
of the sets of points in the Poincaré maps was accurately calculated with TDA.

APPENDIX: INTUITIVE INTRODUCTION TO TDA

TDA is a technique that uses simplicial complexes and tools in algebraic topology in order to
extract features of the shape of a data cloud. Here we provide a brief and intuitive introduction
to the necessary mathematical concepts and the general ideas used by TDA. For a more complete
and formal discussion of the concepts, the reader is referred to monographs like Refs. [33,41]. An
accessible introduction with less technical emphasis can be found in Refs. [42,43], and a reference
with a specific focus on data science is Ref. [44]. Since we only analyze point clouds in the plane
and for simplicity, we focus this introduction on the case of two-dimensional data clouds.

1. Approximating points clouds with Vietoris-Rips complexes

In order to analyze the shape of a point cloud with algebraic topology tools, first, it is necessary
to approximate the data with some spaces where we can apply the corresponding tools. Here we
introduce the Vietoris-Rips complexes, a widely used way to approximate data clouds.

We denote by Dr (x) = {y ∈ R2 : ||x − y|| � r} the closed disk of radius r > 0 centered at the
point x. Remember that the convex hull of a set A ⊂ R2 is the smallest convex set that contains A
[41]. In particular, the convex hull of a finite set of points {x1, x2, . . . , x	} ⊂ R2 is a linear segment
if the points are collinear or a filled polygon if they are not.

Suppose that N = {x1, x2, . . . , x	} ⊂ R2 is a point cloud. We denote by

rmin = min
1�i �= j�	

{||xi − x j ||} and rmax = max
1�i �= j�	

{||xi − x j ||},

the smallest and the largest distance between points of N , respectively. Note that if r < rmin
2 , then for

every pair of points xi, x j ∈ N , the intersection Dr (xi ) ∩ Dr (x j ) is empty, and if r � rmax
2 , then for

every pair of points xi, x j ∈ N , Dr (xi ) ∩ Dr (x j ) �= ∅.
Definition A.1 Let r > 0. The Vietoris-Rips complex of radius r of N , is the set Kr (N ) ⊂ R2

that is constructed by the union of the convex hulls of all the subsets A ⊂ N , such that, for all pairs
xi, x j ∈ A, it is satisfied that D r

2
(xi ) ∩ D r

2
(x j ) �= ∅, i.e., ||xi − x j || � r.

Notice that for r < rmin
2 , the Vietoris-Rips complex Kr (N ) is equal to the set N , and for r � rmax

2 ,
Kr (N ) is the convex hull of N . As an easy example, consider N = {(0, 0), (1, 0), (1, 1), (0, 1)}.
Then, for r1 < 1

2 , we have that Kr1 (N ) is equal to N , for 1
2 < r2 < 1√

2
, we have that Kr2 (N ) are the

four lines forming a square, and for 1√
2
� r3, Kr3 (N ) is the filled square with vertices at N .

Since there is no radius r such that the Vietoris-Rips complex Kr (N ) is the one that best
approximates the set N ; then we construct a sequence of complexes as follows: Given two numbers
r0 � rmin

2 and s > 0 such that rmin
2 < r0 + s, we construct the sequence r j := r0 + js with 1 � j � m

and rm−1 < rmax
2 and rm � rmax

2 , then the Vietoris-Rips complexes corresponding to these radii form
a nested sequence that satisfies

N = Kr0 (N ) ⊂ Kr1 (N ) ⊂ Kr2 (N ) ⊂ · · · ⊂ Krm−1 (N ) ⊂ Krm (N ),

where Krm (N ) is the convex hull of N . This nested sequence of complexes is called a Vietoris-Rips
filtration of N . An example is shown in Fig. 13; also, more examples of Vietoris-Rips filtrations are
given in Supplemental Material [29].

2. Homology of spaces

Homology is a tool of algebraic topology that studies the shape of a space X . For every
integer i � 0, there is a homology vector space Hi(X ) with coefficients in the field Z2 of integers

123501-18



TOPOLOGICAL DATA ANALYSIS OF LAGRANGIAN …

FIG. 13. The evolution of the Vietoris-Rips complexes as the radius r increases for a data cloud in R2. The
first one is exactly the data cloud; the remaining are formed by joining convex hulls of some sets of points.

modulo 2. Roughly speaking, the elements in Hi(X ) are the i-holes in X and its dimension
βi(X ) := dim[Hi(X )], is the number of “independent i-holes” in X . The number βi(X ) is called
the ith Betti number of X .

The formal mathematical definition of Hi(X ) is technical and it is not necessary for the purposes
of this paper [41]. Here we only introduce an intuitive idea of the meaning of H0(X ) and H1(X ),
which are the only relevant homologies for sets contained in the plane R2.

A 0-hole in X is one that can be “caught” with copies of the 0-sphere S0 = {x ∈ R : ||x|| = 1} =
{1,−1} contained in X , i.e., unordered pairs p, q of points in X . A pair p, q ∈ X that can be joined
with a curve contained in X , does not catch a 0-hole since p can be moved toward q through such a
curve (the same happens with q). Then, X has as many 0-holes as the number of “independent pairs
of points in X that cannot be joined with a curve,” i.e., β0(X ) is the number of pieces into which X
is divided (the pathwise connected components of X ).

A 1-hole in X is a hole that can be “caught” with copies of the circle S1 = {x ∈ R2 : ||x|| = 1}
contained in X , i.e., closed curves contained in X . A filled closed curve α contained in X , does not
catch a 1-hole since the curve α can be continuously deformed to a point through the fill inside α.
Then X has as many 1-holes as the number of “independent unfilled closed curves contained in X ,”
the 1-Betti number β1(X ).

As an example, we compute the number of 0- and 1-holes in the Vietoris-Rips complexes
K1,K2,K3,K4 in Fig. 13 listed from left to right.

(1) β0(K1) = 31, which is exactly the number of points. β1(K1) = 0 because there are no closed
curves, and therefore, there are no 1-holes.

(2) β0(K2) = 12, in the 12 components, there are points, segments, and unions of triangles with
segments. Again β1(K2) = 0 since there are four closed curves that are triangles, but they are filled.

(3) β0(K3) = 1 because there is only one piece. In this case, β1(K3) = 2 because there are a
quadrilateral and a hexagon that are not filled, i.e., there are two 1-holes.

(4) Clearly β0(K4) = 1 and β1(K4) = 1 for the quadrilateral that is not filled. Notice that this
1-hole in K4 is different from the two 1-holes in K3.

Observe that convex sets are connected and do not have i-holes for all i > 0. Particularly, for
convex sets, the 0- and 1-Betti numbers are 1 and 0, respectively.

3. Persistent homology and barcodes

Suppose that N = {x1, x2, . . . , x	} ⊂ R2 is a data cloud, and

N = Kr0 (N ) ⊂ Kr1 (N ) ⊂ · · · ⊂ Krm (N )

is a Vietoris-Rips filtration of N . The general idea of persistent homology consists of calculating
the homology of each one of the Vietoris-Rips complexes Kr j (N ) with 0 � j � m, and storing the
information on how many of these complexes a hole appears, that is, for how many consecutive
radii each hole persists.
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Suppose that Kri (N ) ⊂ Kr j (N ). We proceed to analyze the behavior of the 0- and 1-holes with
the growth of the radius.

(i) Let τ ∈ H0[Kri (N )], that is, τ represents a separate component of Kri (N ). There are two
options:

(1) τ ∈ H0[Kr j (N )] and therefore, τ is a separate component of Kr j (N ). We say that
τ persists at Kr j (N ).

(2) τ /∈ H0[Kr j (N )]. Then τ is joined with another component, i.e., the 0-hole repre-
sented by τ disappears.

(ii) A closed curve σ ⊂ Kri (N ) is also a closed curve in Kr j (N ). Let σ ∈ H1[Kri (N )], that is, σ

is a closed curve unfilled in Kri (N ). There are two options:
(1) σ ∈ H1[Kr j (N )] and therefore, the closed curve σ is unfilled in Kr j (N ). We say

that σ persists at Kr j (N ).
(2) σ /∈ H1[Kr j (N )]. The closed curve σ is filled in Kri (N ).

Observe that β0[Kr0 (N )] = 	 that is the number of points in N , and β1[Kr0 (N )] = 0 because
there are no 1-holes; Krm (N ) is the convex hull of N ⊂ R2 and therefore β0[Krm (N )] = 1 and
β1[Krm (N )] = 0. Then the first two homologies satisfy: (a) 0-holes are born with the first radius
r0, and die when two or more connected components merge as the radius grows. This statement
applies to all components except for the last one. (b) 1-holes are born for a certain positive value of
the radius and die for a larger value but smaller than rm.

Information obtained from the persistent homology of filtration is displayed in a barcode. Each
bar in the barcode represents an element (σ or τ ) in the homology and corresponds to increasing
values of the filtration radius. In the one-dimensional space of the filtration radius, a bar begins
when the element is born and ends when it dies. The length of a bar is called the persistence of the
element.

Notice that the bars that have a significant persistence, represent holes that appear in the Vietoris-
Rips complexes for many consecutive radii. This means that these holes correspond to real features
in the shape of the data cloud N , see the examples in Sec. III. The Supplemental Material [29]
contains eight videos that show the construction of barcodes for different data clouds.
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