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Analysis of pulsatile shear-thinning flows in rectangular channels
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In this paper, we present an in-depth analysis of pulsatile shear-thinning flows in two-
dimensional channels. The characteristic viscosity was determined based on steady-state
analysis of non-Newtonian flows and was used to nondimensionalize the flow system
by introducing the non-Newtonian Womersley number. Numerical analyses on various
Carreau fluids revealed the existence of master curves related to the amplitude and phase
lag of the flows, where the shape of the master curve is determined by the degree of shear
thinning. Such master curves imply that the competition between viscous and pulsatile time
scales can be described appropriately by using the non-Newtonian Womersley number
proposed in this paper. Furthermore, it is demonstrated that the flow dynamics can be
predicted accurately using precomputed master curves, presenting a method for predicting
shear-thinning pulsatile flow dynamics without explicit transient computations.

DOI: 10.1103/PhysRevFluids.7.123301

I. INTRODUCTION

Various external disturbances, such as oscillations from flow pumps or vibrations from machine
frames, are commonly encountered in chemical processes when solutions are transported through a
series of pipe systems. For example, the frequency and magnitude ranges of industrial slot coating
processes have been presented [1]. The solution transport process is important for the production
of high value-added products, such as batteries and flexible displays. The performance of these
products may be significantly affected by changes in the rheological properties or microstructure of
complex non-Newtonian fluids induced by unpredictable disturbances. Therefore, it is necessary to
gain an in-depth understanding of time-dependent non-Newtonian flows.

Among complex fluids, this paper focused on slurries, which can be considered as a mixture of
dense particles suspended in a solution. Typical industrial slurries, such as cement, coal, and battery
slurries, are high-concentration suspensions. These slurries exhibit strong non-Newtonian behavior
characterized by yield stress, viscoelastic, thixotropic, and shear-thinning behaviors [2–6]. In this
paper, the effect of shear thinning was investigated under transient conditions.

Flows with periodic disturbances, that is, pulsatile flows, have been a topic of interest for several
decades, and numerous experimental and theoretical studies on pulsatile Newtonian flows have been
conducted [7–10]. Particularly, an analytical solution for arbitrary pulsating pressure gradients was
derived using dimensionless parameters [10]. For non-Newtonian fluids, the oscillatory behavior
of blood flow has been studied exclusively using various models, such as the power-law, Cross,
Carreau, and Carreau-Yasuda models [11–14]. Additionally, a number of studies have investigated
the flow enhancements of non-Newtonian pulsatile flows [15–19].

To date, in-depth analyses of pulsatile non-Newtonian systems have been scarce, as most studies
have focused on reporting pressure gradients, velocity, and stress profiles, or have treated the system
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using simplified governing equations under limited conditions through asymptotic analysis [14].
Therefore, in this paper, we revisit the classical pulsatile shear-thinning flow problem and interpret
it from a different perspective.

In this paper, the characteristic viscosity of pulsatile shear-thinning flow was defined and
used to form the non-Newtonian Womersley number, which acts as a key model parameter of
the system of interest. Numerical experiments were conducted using Carreau fluids with various
rheological parameters and frequencies to analyze the effect of each parameter on flow behavior.
Master curves were revealed by plotting the nondimensionalized numerical results with respect to
the non-Newtonian Womersley number. Finally, a method was proposed to predict pulsatile flow
dynamics using master curves without explicit transient computations.

II. PROBLEM FORMULATION

The constitutive equation relating the stress tensor to the strain-rate tensor must be specified
to describe a viscous fluid in motion. Generalized non-Newtonian models are commonly used for
shear-thinning fluids, of which we chose to use the Carreau model in this paper. The constitutive
equation of the Carreau model is expressed as follows:

η(γ̇ ) = η∞ + (η0 − η∞)[1 + (λγ̇ )2](n−1)/2, (1)

where η is the viscosity, γ̇ is the shear rate, and η0, η∞, λ, and n are the model parameters.
Although constant viscosity can characterize a Newtonian fluid, selecting a single viscosity

to represent a non-Newtonian flow is challenging because the flow has varying local viscosities
depending on the local shear rates. Therefore, it is worthwhile to establish a reasonable methodology
for determining the physical quantity of a non-Newtonian flow corresponding to the viscosity of
Newtonian flow, which indicates the magnitude of the fluid’s resistance to deformation. In this
paper, this quantity is referred to as the characteristic viscosity.

A. Characteristic viscosity

We define the characteristic viscosity as the viscosity of a Newtonian fluid that yields the
same pressure drop as non-Newtonian flow. By applying the Weissenberg-Rabinowitsch-Mooney-
Schofield (WRMS) method, a direct integral relationship between the flow rate and the wall shear
stress can be obtained [20–22]. Then, the Poiseuille equation can be used to relate the pressure drop
of Newtonian flow to that of non-Newtonian flow.

A generalized Newtonian fluid flowing through a two-dimensional rectangular channel with
height 2H was considered. When the flow is assumed to be laminar, isothermal, incompressible,
and fully developed, ignoring entrance and end effects, the integral relationship can be derived
using the WRMS method, as follows:

q = 2H2

τ 2
w

∫ τw

0
γ̇ τ dτ, (2)

where q, τ , and τw are the flow rate per unit width, shear stress, and wall shear stress, respectively.
For constitutive equations wherein γ̇ τ 2 is analytically integrable, such as Carreau and Cross fluids,
q can be expressed in terms of τw in explicit form [21]. In other cases, numerical integration must
be carried out.

The analog of the Poiseuille equation for Newtonian channel flow with viscosity μ can be
expressed as follows:

−d p

dx
= 3μq

2H3
. (3)
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Then, using the characteristic viscosity ηN , the above equation can be expressed as follows:

−d p

dx
= 3ηN q

2H3
. (4)

Next, Eq. (4) is related to the expression

τ (y) = −y
d p

dx
, (5)

and ηN can finally be written as follows:

ηN = 2H2τw

3q
. (6)

Since τw can be computed using Eq. (2), ηN can be easily obtained without solving the partial
differential equation (for example, the Navier-Stokes equation) governing the system.

B. Governing equations and dimensional analysis

The system of interest was the sinusoidal pulsatile channel flow of an incompressible non-
Newtonian fluid under negligible body forces. A rectangular two-dimensional parallel channel has
a height of 2H in the y direction and is considered sufficiently long to assume a fully developed
parallel flow in the x direction. The flow should satisfy the mass balance equation

∇ · u = 0 (7)

and the momentum balance equation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ , (8)

where ρ is the density of the fluid, u is the velocity vector, p is the pressure, and τ is the viscous
stress tensor defined as follows:

τ = 2η(γ̇ )E , (9)

where E = [∇u + (∇u)T ]/2 is the strain-rate tensor. The shear rate is given by γ̇ = √
2E : E .

Under the fully developed condition, Eqs. (7) and (8) can be reduced, respectively, as follows:

∂u

∂x
= 0, (10)

∂u

∂t
= − 1

ρ

∂ p

∂x
+ η

ρ

∂2u

∂y2
, (11)

where u is the x component of the velocity vector u.
Let us examine pressure-driven pulsatile flow, where the time-dependent sinusoidal pressure

gradient with frequency f is specified as follows:

− 1

ρ

∂ p

∂x
= p0 + pA sin 2π f t, (12)

where p0 and pA are the steady and oscillatory components of the pressure gradient, respectively.
To nondimensionalize the governing equation, characteristic time tc and characteristic pressure

(− 1
ρ

∂ p
∂x )c are defined as follows:

tc = ρH2

ηN
, (13)

(
− 1

ρ

∂ p

∂x

)
c

= ηN uavg

ρH2
, (14)
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where uavg is the average velocity in space when the flow is considered to be a Newtonian fluid with
viscosity ηN . Notably, although the current system of interest exhibits time-dependent behavior, our
choice of characteristic viscosity is deduced from steady-state analysis, as discussed in the previous
section. For a given steady pressure gradient, p0, the corresponding uavg can be expressed as

uavg = p0
ρH2

3ηN
, (15)

which leads to the following alternative expression for Eq. (14):(
− 1

ρ

∂ p

∂x

)
c

= p0

3
. (16)

The dimensionless variables are defined in the same manner as in a previous study [10], as

y∗ = y

H
, (17)

u∗ = u

uavg
, (18)

p∗ = p

p0
, (19)

T = t

tc
, (20)

F = f tc, (21)

and can be used to nondimensionalize Eq. (11) as follows:

∂u∗

∂T
=

(
− 1

ρ

∂ p

∂x

)∗
+ ∂2u∗

∂y∗2
. (22)

The prescribed pulsatile pressure gradient expressed by Eq. (12) can also be nondimensionalized
using Eq. (16) as follows: (

− 1

ρ

∂ p

∂x

)∗
= 3(1 + p∗

A sin 2πFT ), (23)

where p∗
A is the dimensionless form of pA, that is, p∗

A = pA/p0. Then, Eq. (23) can be normalized as
follows:

∇P̂ = 1

3

(
− 1

ρ

∂ p

∂x

)∗
= 1 + p∗

A sin 2πFT , (24)

such that the steady part can be set to 1.
The Womersley number α is a dimensionless number governing the flow characteristics of

pulsatile Newtonian flow, and is defined as follows:

α = R

(
2π f ρ

μ

) 1
2

, (25)

where R is the characteristic length, that is, R = H in this paper, and f is the pulsation frequency
[23]. This equation relates the transient inertial force to the viscous force. Using α, pulsatile flows
can be categorized into three different regimes, namely, the quasisteady (α < 1.32), intermediate
(1.32 < α < 28), and inertia-dominant (α > 28) regimes [24]. When the geometry (R) and material
parameters (ρ, μ) are fixed, α is the sole function of f and can be expressed using the dimensionless
frequency F as α = (2πF )

1
2 .
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This paper extends the definition of the Womersley number of a non-Newtonian fluid by adopting
the above-mentioned characteristic viscosity. The Womersley number of a non-Newtonian pulsatile
flow with frequency f and characteristic viscosity ηN is defined as

αN ≡ R

(
2π f ρ

ηN

) 1
2

. (26)

This Womersley number plays an essential role in the dimensional analysis of non-Newtonian
pulsatile flows and was used throughout this paper.

C. Flow regimes of pulsatile shear-thinning flows

Flow regimes of oscillatory Carreau flows have been separated according to the Womersley
number and the Carreau number (
 ≡ λuavg/2H) in [14]. Although the system in [14] is similar
to ours, some differences exist; we are interested in a pulsatile mass-driven flow with base flow
contribution, whereas the authors of [14] considered pressure gradient-driven flows oscillating from
a stationary state. Owing to the similarities between the systems, we adopted the classification of
flow regimes to shed light on how our system behaves under certain conditions, including limiting
behaviors.

Following the mathematical arguments presented in [14], one can obtain asymptotic expansions
in α2

N in the quasisteady regime where αN � 1 and in 1/α2
N in the inertia-dominant regime

where αN � 1. Furthermore, when 
 is small enough, asymptotic expansions can be developed
in 
2. In these regimes, solutions can be analyzed by using asymptotic methods, but as we will
discuss in the following paragraphs such regimes do not cover the parameter range of interest. We
are interested in intermediate αN s and non-negligible 
s, where the solutions must be obtained
numerically.

Some of the limiting behaviors can be directly anticipated from the flow curves. The shear-
thinning behavior of Carreau fluids mainly arises from parameters λ and n. We thereby classified
flow curves of the Carreau fluid as in Fig. 1. If λ → 0, the shear-thinning behavior is exhibited
in a high-shear rate regime, which is beyond the effective shear rate region of interest such that the
flow can be considered Newtonian, whereas, if λ → ∞, the Carreau fluid approaches the power-law
fluid because shear-thinning behavior starts in a low-shear rate regime. When n approaches unity,
the degree of shear thinning, that is, the slope of the flow curve, is negligible, resulting in the fluid
behaving as Newtonian fluid.

The λ and n values of typical industrial shear-thinning fluids (e.g., battery slurries) fall in the
range 0.1 < λ < 100 s and 0.4 < n < 0.7, and the frequency ranges from 0.1 to 100 Hz. These
values correspond to the regime where fluid cannot be simplified to a power-law or Newtonian
fluid, and where a numerical solution is inevitable. Therefore, we focus on gaining insights into
flows in transitional regimes with the aid of numerical methods.

D. Pulsatile pressure gradient-driven versus mass flow-driven flow

In this section, the relationship between the pulsatile pressure gradient-driven and the mass flow-
driven flow is clarified. For Newtonian fluids, an analytic solution of the pulsatile pressure-driven
flow described in the previous section exists for the mass flow ṁ [10] as

ṁ = ṁ0 + ṁA sin (2π f t − �θm), (27)

where ṁ0 and ṁA are the steady and oscillatory components of the pressure gradient, respectively,
and �θm is the phase lag between the mass flow rate and the pressure gradient. Equation (27) can
be scaled with ṁ0 to be expressed in dimensionless form as

ṁ∗ = 1 + ṁ∗
A sin (2πFT − �θm), (28)
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FIG. 1. Classification of Carreau flow curves according to λ and n values. The shear rate range of interest
(0 � γ̇ � γ̇w) is highlighted in gray in the plot.

where ṁ∗
A and �θm can be expressed in terms of known parameters as

ṁ∗
A = p∗

A|ψ |, (29)

�θm = − arg ψ − π

2
, (30)

with parameter ψ defined as

ψ = − 3

α2

{
i

1
2 J 1

2

(
αi

3
2
)

αJ− 1
2

(
αi

3
2
) + 1

}
. (31)

According to [8], for Newtonian fluids, the pulsatile pressure gradient and mass flow rate may
be expressed as functions of one another, and knowledge of either of these suffices to determine all
other unknowns of the flow. In other words, if the mass flow rate is imposed as

ṁ∗ = 1 + ṁ∗
A sin 2πFT (32)

the resulting pressure gradient becomes

∇P̂ = 1 + p∗
A sin (2πFT + �θm), (33)
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FIG. 2. Schematic of the relationship between pulsatile pressure gradient-driven and mass flow-driven
flows. The equivalence of the two systems holds for Newtonian fluids.

with the same �θm as in Eq. (30). A schematic summarizing of this relationship is presented in
Fig. 2.

In this paper, we targeted pulsatile generalized Newtonian, particularly shear-thinning, flows
under periodic mass flow rate fluctuations, which can model pulsating flows in industrial applications
induced by positive displacement pumps, for example, diaphragm or gear pumps. To do so, we pos-
tulated that the pulsatile mass flow rate and consequent pressure gradient have the same frequency
as the phase lag as in pulsatile Newtonian flows, implying that pressure and flow oscillations can be
interchanged via a phase difference. The validity of our postulation is demonstrated numerically in
the following sections.

III. NUMERICAL ANALYSIS

This section discusses the numerical methods and boundary conditions used in the computation
and parameter setup of the numerical experiments. The in-house code was developed in the PYTHON

language using FEniCS, which is an open-source computing platform for solving partial differential
equations (PDEs) [25,26].

A. Numerical methods

The solution was computed using the method of lines approach, which is a numerical technique
for solving time-dependent PDEs by discretizing the derivatives to reduce the problem to a system
of ordinary differential equations (ODEs). The resulting ODEs can be integrated through various
numerical schemes to obtain a solution. In this paper, the finite element method was used for spatial
discretization, and the trapezoid rule with finite difference interrupts was used for time integration
[27].
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FIG. 3. Mesh configuration of two-dimensional channel where H = 25 mm and L = 500 mm. The compu-
tational domain was discretized by 12 000 triangular elements. The inlet, wall, and outlet boundary conditions
are labeled with numbers.

With a proper choice of the basis functions for velocity and pressure, a variational form of the
governing equations expressed by Eqs. (7) and (8) can be constructed as follows:∫

�

ρ
∂u
∂t

· v d� +
∫

�

ρ(u · ∇u) · v d� +
∫

�

σ : E (v) d�

−
∫

∂�

[2η(u)E (u) · n] · v d∂� +
∫

�

(∇ · u) · q d� = 0, (34)

where σ = 2η(u)E (u) − pI is the total stress tensor, and v and q are the test functions of u
and p, respectively. For viscous incompressible fluids, the mixed finite elements must satisfy the
Ladyzhenskaya-Babuska-Brezzi (LBB) condition to achieve accurate and stable solutions [28,29].
In this paper, the P2P1 element (quadratic velocity field and linear pressure field), which is known
to be LBB stable for triangular elements [30], was used.

The trapezoidal rule with finite difference interrupts is a time integration method that removes the
recursion of the trapezoidal derivative by replacing it with the backward finite difference formula
[27]. In this paper, a finite difference interrupt was applied with the interval of two time steps, and
the second-order Adams-Bashforth formula was used as the predictor.

B. Computational domain with initial and boundary conditions

The mesh configuration of the two-dimensional channel considered in the computations is shown
in Fig. 3. The channel was sufficiently long (L � H) to ensure a fully developed parallel flow in the
x direction [31]. Triangular elements were used, and the elements were more finely spaced near the
wall to capture strong velocity gradients. A no-slip boundary condition was specified at the walls
and a pulsatile velocity condition was specified at the inlet. The outlet pressure was set to zero.

In this paper, we numerically solved for the two-dimensional pulsatile flow of shear-thinning
fluids under periodic mass flow rate fluctuations. If the system was a fully developed parallel flow
under a pulsatile pressure gradient, it could be simplified to a one-dimensional model by solving
Eq. (11) with a time-dependent pressure gradient as a source term. However, as our system is
pulsatile mass flow driven, a time-dependent velocity profile must be provided as an inlet boundary
condition to solve the problem, complicating the issue. Contrary to Newtonian flows, where a fully
developed velocity profile is parabolic, obtaining a fully developed a priori velocity profile for
non-Newtonian flows is difficult, if not impossible. Consequently, the problem was approached
numerically to compute the flow developed along the x direction of the two-dimensional channel.

Without knowledge of the fully developed velocity profile, we chose the Newtonian velocity
profile, that is, a parabolic profile, as an inlet boundary condition because it satisfies the no-slip
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TABLE I. Carreau parameters of model fluid and corresponding wall shear rate, characteristic viscosity,
and pressure gradient computed through steady-state analysis using the WRMS method.

Carreau parameters Computed values

Case η0 (Pa s) η∞ (Pa s) λ (s) n γ̇w (s−1) ηN (Pa s) −d p/dx (kPa/m)

Base 50 0.01 1 0.5 108.5 6.404 6.63

1 25 0.01 1 0.5 108.4 3.207 10.45
2 100 0.01 1 0.5 108.6 12.80 41.72
3 200 0.01 1 0.5 108.6 25.59 83.40

4 50 0.01 0.1 0.5 106.7 20.01 65.21
5 50 0.01 10 0.5 108.5 2.033 6.626
6 50 0.01 100 0.5 107.8 0.6501 2.119

7 50 0.01 1 0.4 121.9 4.204 13.70
8 50 0.01 1 0.6 99.54 9.708 31.64
9 50 0.01 1 0.7 93.11 14.67 47.81

boundary condition and the exact flow rate, as shown in Eq. (32). Because the second-order basis
function was used for the velocity field, the flow rate can be induced from the parabolic velocity
profile without loss of information, thereby minimizing the approximation error originating from
the numerical method. Accordingly, the parabolic inlet velocity profile was sinusoidally specified
as

u(y) = umax

(
1 + y

H

)(
1 − y

H

)
(1 + ṁ∗

A sin 2π f t ), (35)

where umax is the maximum velocity of the steady-state flow with the average flow rate as follows:

umax = 3q

4H
. (36)

Here, umax = 1.02 ms−1 corresponding to a flow rate of 1 Ls−1 was used. The amplitude was fixed
at ṁ∗

A = 0.1.

C. Numerical experiments

1. Viscosity modeling

The Carreau model was used to describe the viscosity of a shear-thinning non-Newtonian fluid.
Based on the authors’ experience, the Carreau parameters were selected such that the viscosity of
the base case would be comparable to that of typical battery slurries. Then, parameters η0, λ, and n
were varied to establish nine different test cases, as presented in Table I. The corresponding viscosity
curves are shown in Fig. 4.

In this paper, we aimed to assess the effect of the Womersley number, αN , on the flow character-
istics, that is, to observe how the pressure gradient fluctuations behave under flow-rate disturbances.
Since αN is a function of the steady-state characteristic viscosity, ηN , parameters covering a wide
range of ηN were selected.

2. Frequency range and Womersley number

Seven different frequencies in the range of 0.1–100 Hz were investigated to cover a wide range of
frequencies that may occur during solution transportation. The Womersley numbers corresponding
to different cases and frequencies are listed in Table II, where it can be observed that the range of
Womersley numbers covers the quasisteady, intermediate, and inertia-dominant regimes, according
to the criteria of Newtonian flow.
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FIG. 4. Viscosity curves for test cases of Carreau model fluids when (a) η0 is varied, (b) λ is varied, and
(c) n is varied.

D. Validation of numerical method

We proved that our numerical solution of a pulsatile Newtonian flow is in good agreement with
the analytic solution. The dimensionless time-dependent velocity profiles and pressure gradients
were compared with analytic solutions of [10]. The velocity profiles at different times and sinusoidal
pressure gradients were accurately predicted by numerical simulations, validating our numerical
method for pulsatile Newtonian flows (see the Supplemental Material [32]).

To verify our method for pulsatile non-Newtonian flows, grid sensitivity analysis was performed
for the velocity profile and the pressure gradient. Here, we demonstrate two extreme cases where
the Womersley number is minimum (case 3, f = 0.1 Hz) and maximum (case 6, f = 100 Hz)
among the test cases presented in the previous section. The pressure gradient was studied with the
parameters p∗

A and �θm, which are critical in representing the pulsatile pressure gradient, as shown
in Fig. 5. From the results, we concluded that grid independence is achieved, and our choice of
12 000 elements is reasonable, considering the accuracy and the efficiency of the computation at the
same time.

IV. RESULTS AND DISCUSSION

This section discusses the analysis of the pressure gradients of the computed numerical solutions
to compare the effects of changing each parameter (η0, λ, and n). Moreover, a method for predicting
the pulsatile flow dynamics using the master curves is introduced.

TABLE II. Womersley number (αN ) calculated for each case and frequency.

Frequency (Hz)

Case 0.1 0.3 1 3 10 30 100

Base 0.3033 0.5253 0.9591 1.661 3.033 5.253 9.591

1 0.4286 0.7424 1.355 2.348 4.286 7.424 13.55
2 0.2145 0.3716 0.6784 1.175 2.145 3.716 6.784
3 0.1517 0.2628 0.4798 0.8310 1.518 2.628 4.798

4 0.1716 0.2972 0.5426 0.9398 1.716 2.972 5.426
5 0.5383 0.9324 1.702 2.948 5.383 9.324 17.02
6 0.9519 1.649 3.010 5.214 9.519 16.49 30.10

7 0.3743 0.6483 1.184 2.050 3.743 6.483 11.84
8 0.2463 0.4266 0.7789 1.349 2.463 4.266 7.789
9 0.2004 0.3471 0.6337 1.098 2.004 3.471 6.337
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FIG. 5. Grid sensitivity study for (a) case 3 and (b) case 6. A mesh with 12 000 elements was chosen.

A. Pressure gradient fitting

The computed pressure gradients of the fully developed flows were nondimensionalized and
normalized with a steady part, as follows:

∇P̂ = 1

3

(
− 1

ρ

∂ p

∂x

)
n

/(
− 1

ρ

∂ p

∂x

)
c

, (37)

where (− 1
ρ

∂ p
∂x )n and (− 1

ρ

∂ p
∂x )c are the numerical solution and the characteristic pressure defined in

Eq. (14), respectively. The normalized dimensionless pressure gradient was then fitted to Eq. (33).
All pressure gradient results were well fitted, implying that the interchangeability between flow
rate-driven and pressure-driven pulsatile flow formulations under the phase lag postulated in the
previous section is valid. For example, Fig. 6 shows the fitted curves of the pressure gradient for the
base case.

Here, we want to compare the non-Newtonian and Newtonian pressure gradients. Therefore, the
amplification factor of the pressure gradient Ap is defined as follows:

Ap = p∗
A

p∗
A,Newtonian

, (38)

where p∗
A and p∗

A,Newtonian are the amplitudes of the pressure gradient of a non-Newtonian fluid
and Newtonian fluid with the characteristic viscosity of non-Newtonian flow, respectively; p∗

A was
obtained from the numerical solution using Eq. (33) and p∗

A,Newtonian was determined by analytical
solution [10]. In the following sections, Ap and �θm will be discussed in detail.

FIG. 6. Normalized pressure gradients of base case fitted to sinusoidal curve for f = 0.1, 0.3, 1, 3, 10, 30,
and 100 Hz.
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FIG. 7. (a) Amplification factor of pressure gradient and (b) phase lag between mass flow rate and pressure
gradient with varying η0 values; case 1, base case, case 2, and case 3 correspond to η0 = 25, 50, 100, and
200, respectively. (c) Amplification factor of pressure gradient and (d) phase lag between mass flow rate and
pressure gradient with varying λ values; case 1, base case, case 2, and case 3 correspond to λ = 0.1, 1, 10, and
100, respectively. The Newtonian solid lines in (b) and (d) indicate the phase lags of the Newtonian pulsatile
flows with the corresponding Womersley number, α, calculated by the Newtonian analytic solution.

B. Effect of η0 and λ

Figure 7(a) shows the amplification factor of pressure gradient Ap under differentη0 values. The
pulsation of the non-Newtonian pressure gradient is damped compared with the Newtonian one
when αN is low, but pressure gradient damping does not occur in the inertia-dominant regime, as
demonstrated by Ap converging to unity as αN increases.

In Fig. 7(b), the phase lag between the mass flow rate and the pressure gradient �θm is compared
to the Newtonian phase lag obtained by the analytical solution. The phase lag becomes more
pronounced as the inertial effects become dominant at high Womersley numbers, where the flow
cannot be in phase with the change in the pulsating inlet mass flow. As shown in Figs. 7(c) and 7(d),
the effect of λ is similar to that of η0; Ap converges to unity as αN and �θm increase, which indicates
the dominance of inertial effects at high αN .

From the existence of the single master curves of the amplification factors and phase lags
of different model parameters, it is concluded that our definition of the Womersley number is
appropriate for concisely representing the transient dynamics of non-Newtonian flows. Furthermore,
the definition of characteristic viscosity appears to be suitable to shear-thinning fluids.

C. Effect of n

Parameter n is a measure of the degree of the shear-thinning behavior of a fluid; n = 1 indi-
cates Newtonian behavior, and as n decreases below 1 the shear-thinning behavior becomes more

123301-12



ANALYSIS OF PULSATILE SHEAR-THINNING FLOWS …

FIG. 8. (a) Amplification factor of pressure gradient and (b) phase lag between mass flow rate and pressure
gradient with varying n values; case 7, base case, case 8, and case 9 correspond to n = 0.5, 0.6, 0.7, and 0.8,
respectively. The Newtonian solid line in (b) indicates the phase lag of the Newtonian pulsatile flow with the
corresponding Womersley number, α, calculated by the Newtonian analytic solution.

pronounced. When n is varied, Ap and �θm exhibit different patterns compared with when η0 or λ

is varied. From Fig. 8(a), it is clear that Ap increases, that is, the pressure gradient is less damped at
low αN as n increases. Let us recall that Ap is the relative amplitude of the non-Newtonian pressure
gradient compared to that of a Newtonian fluid. The behavior of Ap at low αN with increasing n is
reasonable, because the fluid converges to the Newtonian limit as n approaches unity. Additionally,
Fig. 8(b) indicates that the curves of �θm approach the Newtonian curve as n increases. Hence, we
may conclude that n is the only parameter shifting the master curves of Ap and �θm.

D. Why master curves?: Momentum diffusion versus flow pulsation

The transient dynamics of a flow can be discussed by comparing different time scales of a
system [33,34]. Characteristic time defined in Eq. (13), tc = ρH2/ηN , corresponds to the time for
momentum diffusion in the radial direction. Hence, the characteristic viscosity ηN has a direct effect
on the time scale over which the flow pulsations propagate in the channel, affecting flow responses.
Furthermore, the relationship between the ratio of tc and the period of the pulsation, 1/ω, can be
related with Womersley number as

α2
N = 2π f ρH2

ηN
= tc

1/ω
. (39)

The numerical data for each case fall on the master curves when plotted against Womersley number,
as displayed in Figs. 7 and 8. The result implies that the proposed characteristic viscosity effectively
expresses the momentum diffusion over the viscous time scale, tc, and the Womersley number acts
as a dimensionless parameter adequately representing the competition between viscous and pulsatile
time scales.

The quasisteady regime occurs at αN � 1, where the viscous time scale is small compared to the
pulsation time scale. In this low frequency regime, the flow is in phase with the pulsatile mass flow,
because the momentum transfer occurs immediately. The inertia-dominant regime can be found at
high frequencies when αN > 20, where the period of pulsation is negligible compared to the viscous
time scale, so that the flow becomes independent of the pulsation frequency. Here, the amplification
factor and phase lag approach unity and π/2, respectively.
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TABLE III. Fitted parameters of master curves of Ap and �θm with different n values.

Parameters of Ap Parameters of �θm

n L k1 c1 k2 c2 b L k1 c1 k2 c2

0.5 0.4269 3.982 1.376 1.636 3.271 0.5019 1.338 2.728 0.2757 0.7890 0.9025
0.6 0.3460 4.028 1.443 1.684 3.467 0.6020 1.322 2.740 0.4936 0.8219 1.007
0.7 0.2634 3.996 1.476 1.748 3.729 0.7018 1.312 2.739 0.6797 0.8453 1.104

E. Predicting pulsatile flow dynamics using master curves

This section provides a descriptive example of how to predict pulsatile flow dynamics using the
master curves. As discussed in the previous section, the shape of the master curve is n dependent;
therefore, the master curves were constructed for n =0.5, 0.6, and 0.7, respectively. Numerical data
were obtained from the datasets with the combination of η0, λ, and f such that the corresponding
αN values could be distributed as evenly as possible on the logarithmic scale. Hence, Ap and �θm

were obtained from the data and fitted as

Ap = L

1 + e−k1 log αN +c1
+ 1 − L − b

1 + e−k2 log αN +c2
+ b, (40)

where L, k1, k2, x1, x2, and b are the fitting parameters, and the following relationship holds:

�θm = L

1 + e−k1 log αN +c1
+ π/2 − L

1 + e−k2 log αN +c2
, (41)

where L, k1, k2, x1, and x2 are the fitting parameters. Notably, Ap converges to unity as αN → ∞,
and �θm converges to zero as αN → 0 and to π/2 as αN → ∞. These limiting behaviors were
exploited to formulate Eqs. (40) and (41). The values of the fitted parameters are listed in Table III,
and the constructed master curves are shown in Fig. 9.

To test the accuracy of the fitted master curves, we prepared test datasets that were not used for
curve fitting. Three new datasets with different n values (n =0.5, 0.6, and 0.7) were selected, as
listed in Table IV. The parameters were selected such that the values of αN spanned a wide range.
For the first dataset with αN = 8.587, the fitted master curve for n = 0.5 predicted Ap = 0.7872 and
�θm = 1.091, whereas the computed data yielded Ap = 0.7854 and �θm = 1.095. The two results
are essentially indistinguishable because the differences are below 0.5%, which indicates that our
fitted master curve can precisely predict the pulsatile flow behavior. The differences between the

FIG. 9. Fitted master curves of Ap and �θm with different n values (n = 0.5, 0.6, and 0.7). The curves for
n = 0.65 are constructed through the linear interpolation of parameters.

123301-14



ANALYSIS OF PULSATILE SHEAR-THINNING FLOWS …

TABLE IV. Carreau parameters, characteristic viscosity, frequency, and non-Newtonian Womersley num-
ber of test sets.

Carreau parameters

Test set η0 (Pa s) η∞ (Pa s) λ (s) n ηN (Pa s) f (Hz) αN

1 60 0.01 0.8 0.5 8.587 4 1.656
2 30 0.01 50 0.6 1.227 90 20.78
3 120 0.01 2 0.7 28.59 0.5 0.3209

predicted and computed values for the second and third datasets with different n values are also
negligible. The detailed data of the fitted master curves and predicted parameters can be found in
the Supplemental Material [32].

We further investigated the practical question of whether the pulsatile flow dynamics of shear-
thinning fluids can be predicted with any n value (that is, not only for n =0.5, 0.6, or 0.7). This is
demonstrated by the linear interpolation of the curve parameters with respect to n. The interpolated
master curves for n = 0.65, which seem to be reasonably constructed, are shown in Fig. 9. To test the
accuracy, the numerical solution of the pulsatile Carreau flow with η0 = 50, η∞ = 0.01, λ = 0.1,
n = 0.65, and f = 5 was used, and Ap and �θm were compared to those estimated based on the
interpolated master curve. The differences were 0.18 and 0.063%, respectively, which indicates the
remarkable accuracy of the interpolated master curve in terms of predicting the time-dependent flow
dynamics. The detailed data are presented in the Supplemental Material [32].

In summary, the proposed approach allows the precise prediction of the pulsatile flow char-
acteristics without explicit transient computations. We emphasize that Ap and �θm can be solely
determined by αN through steady-state analysis.

V. FINAL REMARKS

In this paper, we investigated the pulsatile behavior of shear-thinning Carreau fluids based on the
Womersley number αN , which was defined with a reasonable steady-state characteristic viscosity.
The numerical experiments conducted in this paper revealed the existence of master curves that
exhibit the dependency of Ap and �θm on αN , and the shape of the master curves was determined by
the degree of shear thinning, n. The results imply that the competition between viscous momentum
diffusion and flow pulsation can be observed by comparing time scales using the non-Newtonian
Womersley number proposed in this paper.

Here, we focused only on the linear transient response regime, where pulsations are sufficiently
small (≈10%) such that the pulsatile pressure gradient is solely characterized by the amplitude and
phase lag. Notably, Ap and �θm represent the amplitude and phase lag of a shear-thinning flow,
respectively, considering that the Newtonian amplitude and phase lag are obtained analytically [10].
The existence of a master curve indicates that the time-dependent characteristics of a shear-thinning
pulsatile channel flow can be predicted concisely without fully transient computations. The master
curves of Ap and �θm are expressed as parametric equations, and a simple linear interpolation of
the curve parameters can reasonably generate the master curves for any n with high accuracy. The
proposed approach for predicting time-dependent responses only requires the rheological properties
of the fluid, including n, frequency of interest, and steady-state characteristic viscosity.

The scope of this paper was limited to two-dimensional channel flows. However, the proposed
approach is expected to be extended to three-dimensional pipe systems using the same methodology.
In addition to Carreau fluids, other generalized Newtonian fluids, such as power-law, Cross, and
Carreau-Yasuda fluids, can also be analyzed within the same framework. In this paper, the shear-
thinning fluid was assumed to be homogeneous; however, complex fluids, such as battery slurries,

123301-15



NAYEON PARK AND JAEWOOK NAM

may exhibit thixotropic behavior owing to changes in their microstructure. Therefore, the proposed
approach can be further improved by considering nonhomogeneity.
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