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In this study, we investigated the four-wave resonant and quasiresonant interactions in
a special degenerated case, wherein bichromatic mother waves are generated to give birth
to a daughter wave. One of the mother waves was counted twice to satisfy the four-wave
resonant conditions. Particular attention is paid to the effect of finite water depth. Theo-
retical analyses based on the Zakharov equation and direct numerical simulations using a
higher-order spectral (HOS) method were performed and compared. The present results
revealed that both resonant and quasiresonant four-wave interactions were suppressed by
the finite depth and eventually attenuated to zero for sufficiently shallow water. It is found
that the corresponding critical depth depends on the crossing angle of the initial mother
waves. For the two mother waves with a crossing angle θ = 25◦, four-wave resonance
survives up to k1h ∼ 0.57, where k1 denotes the wave number of the twice-counted mother
wave and h is the water depth. Furthermore, it is found that the four-wave resonant
interactions for different values of θ survive up to a global threshold value of k1h ∼ 0.4.
In addition, through three-dimensional (3D) Fourier analyses of the results by direct
numerical simulations, it is found that the bound wave effects are enhanced, and more
harmonics are generated as the water depth decreases.
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I. INTRODUCTION

The evolution of random ocean waves is a fundamental and popular research topic, despite being
investigated theoretically and experimentally for over 50 years. To describe the evolution of the av-
eraged properties of ocean waves, a statistical theory was established based on the weak nonlinearity
and quasi-Gaussian assumptions of a homogeneous wave field, which is often called Hasselmann’s
equation, or the kinetic equation [1]. Currently, the kinetic equation has been widely adopted in
modeling and forecasting the propagation of ocean waves, for example, the third-generation wave
models. The basis of kinetic equation is the four-wave resonant interactions.

Four-wave resonant interactions were first described by Phillips [2] and Hasselmann [1] based
on the perturbation approach. Let ki denote the wave number for different wave components, and ωi

is the corresponding angular frequency. Once the waves fulfill the conditions (i.e., k1 ± k2 ± k3 ±
k4 = 0, ω1 ± ω2 ± ω3 ± ω4 = 0), resonant interaction occurs, and energy transfer occurs among
these different wave components. With considering a special case of k1 = k2, the resonance
conditions are reduced to 2k1 − k3 = k4 with 2ω1 − ω3 = ω4, which implies that two mother waves
1 and 3 can give birth to a new resonant wave 4. The solutions of this special case correspond to
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the well-known figure-of-eight diagram [2]. Based on the perturbation approach, the amplitude of
the new resonant wave is expected to increase linearly with the propagation distance [3]. Moreover,
Longuet-Higgins [3] showed that the phase angle of the daughter wave is locked to −π/2 with
respect to the mother waves. Experimental validations with respect to the growth rate of daughter
wave were performed by Longuet-Higgins and Smith [4], McGoldrick et al. [5], and Tomita [6]
for perpendicular mother waves. Starting from the quadratic Boussinesq equations, Onorato et al.
[7] investigated the energy transfer in flat-bottom shallow-water waves, and for the first time found
that the four-wave resonant interactions are naturally a part of the shallow water wave dynamics.
Recently, to extend the validations of the degenerated resonance theory to more general cases,
experiments for oblique mother waves were conducted [8], where theoretical investigation was also
performed using Zakharov equation [9]. The experimental results, with the support of theoretical
analyses, demonstrated the linear growth of the daughter wave and the phase-locking between
resonant waves at small mother-wave steepness. Most of these experimental and theoretical studies
were focused on deep water, and it is still unclear whether the non-steady-state four-wave resonance
can be depleted by the effect of the finite water depth. Furthermore, to the best of our knowledge,
the threshold value, at which the growth rate of the daughter wave diminishes, has not yet been
found for four-wave resonance. This is one of the motivations for the present study.

However, the effect of water depth has been studied for modulational instability, which can be
considered as a special type of detuned (quasiresonant) four-wave interaction involving collinear
waves. In finite depth, wave interaction with the sea bottom generates a wave-induced current that
subtracts energy for nonlinear focusing. Consequently, the one-dimensional modulational instability
of wave trains to side-band perturbations attenuates and eventually vanishes for sufficiently small
water depth, that is, k0h < 1.363, where k0 denotes the dominant wave number and h denotes
the water depth [10,11]. The corresponding theoretical validations were performed for collinear
perturbations using Zakharov equation in Janssen and Onorato [12].

When a carrier wave is perturbed by appropriate oblique disturbances, the carrier wave is found
to be susceptible to instability even for k1h < 1.363 [13,14]. This result is validated by Toffoli
et al. [15] based on the experiments and numerical simulations. Furthermore, Fernandez et al.
[16] found that a carrier wave with oblique perturbations cannot sustain a substantial wave growth
for k0h < 0.8. To assess the effects of water depth on modulational instability in realistic wave
fields, some attempts have been made for irregular seas. Toffoli et al. [17] investigated the effects of
directional spreading and finite depth on the statistical properties of surface gravity waves, and the
results showed that at intermediate water depths, k0h = O(1), the third-order nonlinearity results
in weak deviations from Gaussian statistics independent of the degree of directional spreading of
wave energy. Fernandez et al. [18] assessed the role of modulational instability on wave statistics,
particularly on the occurrence of extremes in regular wave fields with different water depths
k0h = 1.78, 1.30, and 1.15, based on direct numerical simulations. They reported that in relatively
shallow water depths, modulational instability has a negligible effect on wave statistics, which are
primarily affected by the second-order nonlinearity. It should be remarked that the degenerated case
of four-wave resonance focused in the present work is different from the modulational instability.
In the degenerated case, it is assumed that a4 � a1, a3; in the modulational instability we assume
a3, a4 � a1. Thus, the daughter wave grows linearly, but the sideband of modulational waves grows
exponentially.

A number of numerical methods solving potential wave equations have been developed to study
the resonant wave interactions. For instance, Madsen and Fuhrman [19] presented a new third-order
solution for bichromatic bidirectional water waves in finite depth. More recently, Xie et al. [20]
studied four-wave resonance in deep water using a nonhydrostatic free surface flow model. The
effects of wave steepness on the resonant interactions were investigated. They found that strong
resonant interactions can lead to the bending and then splitting of crests and troughs. The HOS
method proposed by Dommermuth and Yue [21] and West et al. [22] has also been widely adopted
in the study of the nonlinear wave interactions. Toffoli et al. [23] and Xiao et al. [24] investigated
the evolution of long-crested and short-crested irregular waves through the HOS method. Gramstad
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FIG. 1. Solutions of degenerated four-wave resonant conditions (2k1 − k3 = k4, 2ω1 − ω3 = ω4) in differ-
ent water depths.

et al. [25] simulated the irregular waves with a bi-modal spectral structure. Fedele et al. [26] and
Fujimoto et al. [27] adopted both the third-generation wave model and HOS method to study the
occurrence of rogue waves based on field measurements.

The objective of this paper is to investigate the four-wave resonance at finite depth through
theoretical analysis based on an analytical model derived from Zakharov equation and direct
numerical simulations using the HOS. Both resonant and quasiresonant interactions are studied here.
The evolution of the generated daughter-wave amplitude and phase with respect to the mother waves
were analyzed. In particular, the effect of water depth was quantified, and further we determined the
critical water depth at which the four-wave resonant interaction diminished.

The rest of the paper is organized as follows. Theoretical formulation and analyses are provided
in Sec. II. The numerical setup for direct simulation is presented in Sec. III. Results and discussion
are described in Sec. IV. The validation of the numerical model is performed firstly by comparison
with experimental results from Bonnefoy et al. [8] in Sec. IV A. Then, five cases of resonant
interactions and five cases of quasiresonant interactions are chosen to study the effect of finite depth
on the growth of the daughter wave in Secs. IV B and IV C. The effects of bound and free waves are
also investigated. Concluding remarks are given in Sec. V.

II. THEORETICAL FORMULATIONS

A. Resonant interaction theory in finite water depth

Phillips [2] derived for the first time the resonant conditions (k1 + k2 = k3 + k4, ω1 + ω2 =
ω3 + ω4) with deep-water dispersion relation; the well-known figure-of-eight diagram graphically
presented the solutions.

For different water depths, the solutions will be varied because of the dispersion relation. Here,
we show how to calculate the resonant conditions of the following degenerate case:

2k1 − k3 = k4, (1)

and

2ω1 − ω3 = ω4, (2)

with the linear dispersion relation ω2 = g|k|tanh|k|h in finite water depth. Note that for a given
mother wave k1, Eqs. (1) and (2) provide three scalar equations for the four scalar components of k3
and k4, that is, for k3x, k3y, k4x, and k4y. With the crossing angle θ , the resonant waves k3 and k4 can
be determined. For the sake of simplicity, we assume k1 = (1, 0). Figure 1 shows the solutions at
different water depths. For each depth, there is a unique resonant curve (that is, the figure-of-eight
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diagram). With the crossing angle θ being given, the mother wave k3 and daughter wave k4 were
determined from the curve. As can be seen, the figure-of-eight manifolds tend to enlarge from the
deep-water condition up to k1h ∼ 3 and then start to decrease until it becomes similar at k1h ∼ 1
before it becomes smaller beyond that point.

Zakharov equation [9] is one of the main models used to study the evolution of nonlinear surface
waves. The interaction kernels T (k1, k2, k3, k4) (also written as T1234) and the necessary canonical
transformation are described in Krasitskii [28]. The Zakharov equation is derived for an arbitrary
constant water depth, but most of its applications are focused on infinite water depth. This may be
because the interaction kernel T1234 is nonunique for finite water depth, when k3 = k1 and k4 =
k2. This nonuniqueness ceases to exist at infinite water depth. To resolve the issue at finite water
depth, Janssen and Onorato [12] discussed the special case of T1111. Furthermore, Stiassnie and
Gramstad [29] derived the explicit expressions of T1212 and the expression for T1111 there is identical
to the that from Janssen and Onorato [12]. Through these comprehensive expressions from Stiassnie
and Gramstad [29], the evolution of bichromatic mother waves which interact with each other at
an arbitrary constant water depth can be studied using the Zakharov equation. Four-wave reduced
equation for pure gravity wave reads

i
∂ â1

∂t
= ω1â1 +

∫
T1234â∗

2â3â4δ1+2−3−4dk2,3,4, (3)

where âi(i = 1, 2, 3, 4) are the canonical variables from the complex amplitude Ai through a
canonical transformation. By introducing Bi = âi exp(iωit ), called action amplitude, we obtain

i∂t B1 =
∫

T1234B∗
2B3B4δ1+2−3−4 exp (i�1234t )dk2,3,4, (4)

where �1234 = ω1 + ω2 − ω3 − ω4. Because the degenerated four-wave resonance system consists
of only three waves including two mother waves 1 and 3, and a daughter wave 4, the discretized
evolution equations can be written as follows:

i∂t B1 = (�1 − ω1)B1 + 2T1134 exp(i�1134t )B∗
1B3B4, (5)

i∂t B3 = (�3 − ω3)B3 + T1134 exp(−i�1134t )B2
1B∗

4, (6)

i∂t B4 = (�4 − ω4)B4 + T1134 exp(−i�1134t )B2
1B∗

3, (7)

where �1134 = 2ω1 − ω3 − ω4 is the linear detuning factor. �i − ωi is the amplitude dispersion,
where �i are the nonlinear frequencies which satisfy the following nonlinear dispersion relations

�1 = ω1 + T1111|B1|2 + 2T1313|B3|2 + 2T1414|B4|2, (8)

�3 = ω3 + 2T1313|B1|2 + T3333|B3|2 + 2T3434|B4|2, (9)

�4 = ω4 + 2T1414|B1|2 + 2T3434|B3|2 + T4444|B4|2, (10)

where the kernel function T can be evaluated based on the formulations given by Janssen and
Onorato [12] and Stiassnie and Gramstad [29]. The expressions used for evaluation of the Kernel
in the form like T1212 is given in Appendix A. To solve Eqs. (5)–(7), it is assumed that the
daughter-wave amplitude is small relative to the mother-wave amplitudes, that is, |B4| � |B1|, |B3|.
By applying perturbation analyses on Eqs. (5)–(7), and keeping the terms of Bi up to the first order
with respect to ε, the initial stage of evolution of the mother and daughter waves can be written as
(the detailed derivation is provided in Appendix B)

B1 =
{
B10− 2T 2

1134B2
10B∗

10B∗
30B30[

1 − exp(−i��t )

��2
− it

��
]

}
exp[i(ω1 − �1)t], (11)
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B3 =
{
B30+ T 2

1134B2
10B∗2

10B30[
1 − exp(i��t )

��2
− it

��
]

}
exp[i(ω3 − �3)t], (12)

B4 = −iT1134B2
10B∗

30
sin(��t/2)

��/2
exp [−i(�4 − ω4 + ��/2)t] + H.O.T., (13)

where �� = 2�1 − �3 − �4 is the total detuning factor, which includes linear detuning �1134 and
nonlinear detuning. The subscript 0 denotes the initial value. Regarding the derivation of Eq. (13),
the reader can refer to Bonnefoy et al. [8] and Waseda et al. [30]. Here we made an extension
of the solutions to the first order in B4, and derived new solutions for B1 and B3 to account for
the effect of the daughter wave on the two mother waves during the initial stage of evolution. By
asymptotic analysis of Eqs. (11) and (12), one can show that the magnitude of B1 decreases whereas
B3 initially increases. This indicates that the energy transfers from mother wave 1 to mother wave
3 and the daughter wave at exact resonance. The comparison of the results using the extended
solutions with the direct numerical solutions is shown in Fig. 20 in Appendix B. As shown, the
agreement is satisfactory and confirms the findings on the energy exchange between mother waves
and the daughter wave. It is worth noting that a formal perturbation analysis will leave extra terms
in the evolution equation of B4 (denoted by H.O.T), but these will not affect the solutions of B1 and
B3 in the early stage of the resonant interaction.

The relation between free-surface wave amplitude and wave action amplitude is ai = √
2ωi/gBi,

which is valid for finite water depth. Hence, the amplitude and phase of the daughter wave deduced
from Eq. (13) can be written as

a4 = T1134
g

2ω1k2
1

√
ω4

ω3k2
3

ε2
1ε3

∣∣∣∣ sin(��t/2)

��t/2

∣∣∣∣t, (14)

ϕ4 = −sgn[sin(��t/2)]
π

2
+ 2ϕ10 − ϕ30 − (�4 − ω4 + ��/2)t, (15)

where εi = ki|ai| is the wave steepness, and the subscript 0 represents the initial value. Using the
solutions for B1 and B3, we obtain the mother-wave phases ϕi(t ) = −(�i − ωi )t + ϕi0 for i = 1, 3.
With Eq. (15), the interaction phase is introduced as

ϕ = 2ϕ1 − ϕ3 − ϕ4 + ��t

2
= sgn[sin(��t/2)]

π

2
. (16)

It is worth noting that these evolution equations can be transformed from the temporal to the
spatial domain based on the relationship d = cg4t , where cg4 is the group velocity of the daughter
wave and d is the distance from the wavemaker measured in the daughter-wave direction. Thus,
Eqs. (14) and (16) can be rewritten as

a4 = ε2
1ε3G

∣∣∣∣ sin(��d/2cg4)

��/2cg4

∣∣∣∣ = ε2
1ε3G|sinc(��d/2cg4)|d, (17)

ϕ = 2ϕ1 − ϕ3 − ϕ4 + ��d

2cg4
= sgn[sin(��d/2cg4)]

π

2
, (18)

where G is the nondimensional linear growth rate of the daughter-wave amplitude, which is
expressed as

G = T1134
g

2ω1k2
1

√
ω4

ω3k2
3

1

cg4
. (19)

It should be noted that Eqs. (17) and (18) together with Eq. (19) are the main derived analytical
formulas and the starting point for the following analyses. In the case of infinite depth, these
equations can be reduced based on the deep-water dispersion relation, and the resulting expressions
are identical to those given in Waseda et al. [30] and Bonnefoy et al. [8]. However, the analytical
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(a) (b)

FIG. 2. The resonant growth rate of daughter-wave amplitude obtained from Eq. (19) as a function of
(a) crossing angle and (b) nondimensional water depth. The results from Bonnefoy et al. [8] for deep-water
waves are plotted for comparison.

solutions of Eqs. (17), (18), and (19) can be used to predict the evolution of the daughter wave for
an arbitrary water depth such that the effect of the finite water depth can be quantified and analyzed.

B. Theoretical analysis based on analytical formulas

At exact resonance (�ω = 0) and at a short distance (��d � 1), now we have
| sin(��d/2cg4)/(��/2cg4)| ≈ d . Equation (17) predicts linear growth of daughter-wave ampli-
tude and Eq. (18) shows that the interaction phase is locked at π/2 (equivalent to the fact that the
phase of daughter wave is locked at −π/2 with respect to the mother waves).

For the quasiresonance case [�ω ∼ O(ε2)], Eq. (17) shows that the daughter-wave amplitude
evolves as a | sin | function with a period of 2πcg4/��. As can be seen from Eq. (18), the interaction
phase is no longer locked at π/2; instead, it shows a periodic shift between −π/2 and π/2 with the
same period of 2πcg4/�� as that for the evolution of amplitude. This is an interesting feature that
cannot be observed in infinite water depth [8].

The growth rate depends on the values of the wave numbers |k1|, |k3|, |k4| and water depth h
through the dispersion relation for finite depth. Referring to the solutions of the resonance conditions
illustrated in Fig. 1, for a given |k1|, θ and h, the solutions of |k3| and |k4| are determined. Thus,
assuming |k1| = 1, the growth rate G(θ, h) can then be defined as a function of the crossing angle
θ and water depth h.

Figure 2(a) illustrates the resonant growth rates as a function of the crossing angle θ and water
depth k1h. The deep-water solutions extracted from Bonnefoy et al. [8] (see Fig. 2 therein) were
adopted here for reference. As shown in Fig. 2(a), the present results at k1h = 100 are in good
agreement with Bonnefoy et al. [8]. The growth rate G at θ = 0◦ for k1h � 1.363 is found to be
zero. This is because the interaction kernel T1134 reduces to T1111 in the collinear case and diminishes
to zero as k1h � 1.363 [12], which is the critical depth for modulational instability in the collinear
case. In addition, the curve of G at k1h = 0.4 suggests that almost all the four-wave resonances with
different crossing angles cannot survive as k1h < 0.4.

As shown in Fig. 2(b), for a given crossing angle of less than 90◦, i.e., θ = 5◦, 15◦, or 25◦, the
growth rate of daughter-wave amplitude is suppressed by decreasing water depth from k1h = 100.
As the depth becomes sufficiently shallow, the growth rate eventually approaches zero. For a large
crossing angle, we find that the growth rate increases first and reaches a maximum at approximately
k1h ∼ 3, and then decreases as the water depth becomes shallower. For instance, as shown in
Fig. 2(b), for crossing angle θ = 150◦, the growth rate gradually increases as the water depth
decreases from k1h = 5 to k1h = 3, and then reaches a maximum around k1h ∼ 2.8 before it
decreases to zero as the water depth further reduces. Another interesting feature, as can be observed,
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is that the corresponding critical depth at which the growth rate diminishes depends on the crossing
angle θ . As the crossing angle approaches zero, the critical depth reduces continuously. The critical
depth is k1h = 0.57 for θ = 25◦.

III. SETUP FOR DIRECT NUMERICAL SIMULATION

Assuming an irrotational, inviscid, and incompressible flow with constant water depth, the
velocity potential φ(x, y, z, t ) in the fluid domain satisfies the Laplace equation. On the free surface
z = η(x, y, t ), the kinematic and dynamic boundary conditions in the Zakharov’s form are written
as

ηt = −∇η · ∇φs + (1 + |∇η|2) · φz, (20)

φs
t + gη = −1

2
· |∇φs|2 + 1

2
(1 + |∇η|2)φ2

z , (21)

where φs(x, t ) = φ(x, η(x, t ), t ) is the surface velocity potential, η(x, t ) is the surface elevation,
x = (x, y) and ∇ = (∂/∂x, ∂/∂y).

At the sea bottom (z = −h), the boundary condition is

φz = 0. (22)

To investigate the evolution of the resonant wave system, we directly solved the field equa-
tion with boundary conditions using a HOS method proposed by Dommermuth and Yue [21] and
West et al. [22]. This is a pseudospectral method that uses a series expansion in terms of the wave
steepness of the velocity potential and the vertical velocity on the free surface. Here, we considered
a third-order expansion (order of nonlinearity M = 3) so that both three- and four-wave interactions
are included [31,32]. Moreover, we adopted higher-order expansion (up to M = 5) to examine the
effect of higher-order nonlinearity. Our results showed the growth rates of the daughter wave using
M = 3 and M = 5 were almost the same. The HOS has been widely adopted in the modeling of
the gravity waves (e.g., [23,24,33]). We have developed our own version of the HOS code using the
GPU-accelerated computing technique. It is important to mention that the present model does not
include effects related to the bottom topography (i.e., a flat-bottom boundary condition is assumed
here). Although the HOS method has been adopted by many researchers (e.g., [31,32]) to study the
nonlinear evolution of a random wave field, a precise validation to reproduce the four-wave resonant
interaction has never been performed before.

The HOS method requires appropriate initial conditions for the surface elevation and the corre-
sponding velocity potential. In this study, the initial two mother waves are generated first to give
birth to a new resonant wave (also called a daughter wave). The input parameters include the
mother-wave wave numbers (k1 and k3), wave steepness (ε1 and ε3), propagation directions (θ1

and θ3), and the water depth h. For simplicity, the propagation direction for mother wave 1 is fixed
as θ1 = 0◦.

Three sets of simulations were carried out: Sets A and B for resonant interactions and Set
C for quasiresonant cases. In the first set of simulations (Set A), we studied the resonant in-
teractions in deep water and compared the solutions with the experiments in Bonnefoy et al.
[8]. The wave numbers |k1| and |k3| employed here are: |k1| = 3.28, |k3| = 2.06. The crossing
angle was fixed at θ = 25◦ to achieve a significant growth of the daughter wave, as suggested
in Fig. 2(a). The wave steepness for one of the mother waves varies from low to higher values:
fixed ε3 = 0.05 and varied ε1 = 0.028, 0.041, 0.056. To study the effects of water depth, resonant
interactions at five different depths h = 1.15, 0.75, 0.45, 0.30, and 0.15 m (corresponding to k1h =
3.65, 2.24, 1.35, 0.95, and 0.57, respectively) are simulated in Set B. As the resonant conditions are
modified with the change in the dispersion relation, the value of wave number |k1| is varied while
|k3| = 2.06 and θ = 25◦ are fixed to fulfill the exact resonance conditions at different water depths
(see Fig. 1).
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TABLE I. Key parameters in the cases chosen for direct numerical simulations of the resonant and
quasiresonant wave systems using the HOS method. We consider cases (Set A and Set B) when �ω < 0.005 as
“exact” resonance. Set B is configured for exact resonance case in finite water depth. Set C is the quasiresonant
case in finite water depth.

k1(m−1) k3(m−1) k4(m−1) ε1 ε3 θ (deg) h (m) k1h �ω(rad/s)

Set A 3.270 2.062 4.753 0.028 0.050 25 100 327 0.0026
— — — 0.041 — — — — —
— — — 0.056 — — — — —

Set B 3.177 2.062 4.569 0.056 0.050 25 1.15 3.65 0.0045
2.990 — 4.203 — — — 0.75 2.24 0.0033
2.990 — 4.203 — — — 0.45 1.35 0.0026
3.177 — 4.203 — — — 0.30 0.95 0.0002
3.831 — 5.859 — — — 0.15 0.57 −0.0005

Set C 3.270 2.062 4.753 0.056 0.050 25 1.15 3.76 0.0400
— — — — — — 0.75 2.45 0.1241
— — — — — — 0.45 1.47 0.1706
— — — — — — 0.30 0.98 0.0646
— — — — — — 0.15 0.49 −0.1678

In addition, we investigated the four-wave quasiresonant interactions in Set C. The wave
numbers of the mother waves k1 and k3 are chosen to be the same as those defined in Set A.
These deep-water resonant waves cannot trigger exact resonance at a finite water depth; how-
ever, quasiresonant or near-resonant interactions can be induced. Five different water depths h =
1.15, 0.75, 0.45, 0.30, 0.15 m (corresponding to k1h = 3.76, 2.45, 1.47, 0.98, 0.49, respectively)
are considered. The key parameters of the mother and daughter waves with the corresponding detun-
ing factors are summarized in Table I. The detuning factor is calculated as �ω = 2ω1 − ω3 − ω4,
where ωi is the linear frequency. It is worth noting that the HOS method cannot simulate exact
resonance (i.e., �ω = 0) owing to the bounded wave number resolution. However, we try to
minimize the mismatch of the frequency. Herein, we define the “exact” resonance condition the
detuning factor is small enough such that �ω < 0.005.

The computational domain is a rectangle of 20λ3x × 10λ3y, where λ3x and λ3y are the wave-
lengths corresponding to components of the wave number k3 in the x and y directions, respectively.
It should be noted that the resolution in wave number domain is determined by the dimensions of the
computational domain in x direction Lx and y direction Ly: �kx = 2π/Lx and �ky = 2π/Ly. The
computational domain ensures that k3 is precisely captured in the present numerical model, whereas
k1 may be slightly off from the desired wave number satisfying the exact resonance conditions.
Consequently, exact resonant interactions can hardly be formed in the HOS simulations, but we
keep �� as small as possible. The detuning factor values for each case are listed in Table I. A
total of 512 × 256 nodes is selected to capture the surface elevation and velocity potential. The
fourth-order Runge-Kutta time-stepping scheme with �t = T4/32 is adopted, where T4 is the period
of the daughter wave. The simulation duration was set as t = 128T4. An adjustment scheme for
approximately 10T4 was applied here for the initialization of nonlinear waves [34]. In the following
figures, the ending time of the adjustment scheme t = 10T4 is shifted to zero for convenience.

The space-time data of free-surface elevation from HOS simulations allow us to study the
evolution of daughter waves and validate the theoretical results by the Zakharov equation. Usually, a
two-dimensional Fourier transform F̂ {η(x, y)} is applied to the surface elevation at each time step to
calculate the daughter-wave amplitude and the phase angle. However, the amplitude and phase of the
bound waves are also included at the same wave number as the free-wave component. To quantify
the effect of the bound wave, a three-dimensional fast Fourier transform (3D-FFT) of the space-time
data F̂ {η(x, y, t )} is adopted. With this approach, the space-time spectrum is fully captured, and
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FIG. 3. Examples of the window function for the three-dimensional Fourier transform.

hence the free waves and bound waves can be easily distinguished through the linear dispersion
relation curve. This three-dimensional Fourier transform of the surface elevations is performed with
a window function of time M(t ) defined as follows [35]:

M(t ) = 1

2
− 1

2
cos

2π (t − t0 + W/2)

W
, t0 − W/2 � t � t0 + W/2, (23)

where W is the duration of time of the window function. t0 is the central time point. Examples of the
window function with different values of W and t0 are shown in Fig. 3. This window function selects
the time slice of length W centered at t0 and smoothly damps the data at the window edges, which
allows us to analyze the space-time spectra for different times. The frequency resolution of 3D-FFT
is inversely proportional to the length W . Thus, the selected W should ensure enough frequency
resolution and not include too many times. Here, we used W = 10T4 and t0 = 5T4, 10T4, ..., 100T4

to calculate the space-time spectra at different times.

IV. RESULTS AND DISCUSSION

A. Resonant four-wave interaction in deep water

First, we study the resonant interactions between gravity waves in deep water. To examine the
evolution of the surface elevation and localized wave shape in the wave field, typical examples
recorded at t/T4 = 0, 64, and 128 are presented in Fig. 4. Figures 4(a)–4(c) show the top views of the
wave shape in a field of 20 m × 20 m. The dotted black lines represent crest lines of surface elevation
which are perpendicular to the propagating directions of the included wave components in the wave
field. As shown in the Fig. 4(a), the crest lines were found to be along with the directions around
90◦ and 65◦. The two crest lines confirm that the initial wave field consists of two different wave
components k1 and k3, propagating in 0◦ and 25◦, respectively. As the waves evolve, a new crest
line along 79◦ is observed, which indicates a new wave component propagating in the direction of
around 11◦. This is a direct signature for the generation of a daughter wave by resonant interactions.
Furthermore, it is observed that, as the wave evolves, the individual crest tends to be slightly rotated
clockwise and divided into two parts, which can explain the emergence of the new crest line. The
detailed formation process of the oblique localized crest is illustrated in Figs. 4(d)–4(f). As can be
observed, the individual crest is divided into an “old” crest accompanied by a relatively smaller
“new” crest. A similar phenomenon was observed in the numerical simulation of narrow-banded
wave groups [36]. In addition, we have confirmed that this “new” crest phenomenon and wave shape
do not depend on the initial phases of the mother waves, which is consistent with the phase-locking
mechanism formulated in Eq. (18).

Figure 5 shows the spatial amplitude spectra at different times, including the simplified direc-
tional spectra [Figs. 5(a)–5(c)] and omnidirectional spectra [Figs. 5(d)–5(f)]. The peak emerging at
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FIG. 4. Free-surface elevation (a–c) and corresponding localized crest shape (d–f) in deep-water resonant
case (Set A, ε1 = 0.056) measured at different times: t/T4 = 0 (a, d), 64 (b, e), and 128 (c, f).

wave number |2k1 − k3| both in the directional and unidirectional spectrum is direct evidence of
the generation of the daughter wave because of resonant interactions. From Figs. 5(d)–5(f), it can
be observed that the amplitude of mother wave 1 decreases gradually while that of mother wave
3 increases slightly, which is consistent with the analyses performed using Eqs. (11) and (12) (see
Appendix B).

FIG. 5. Directional spectra (a–c) and unidirectional spectra (d–f) in deep-water resonant case (Set A, ε1 =
0.056). Different columns correspond to the spectra recorded at different times: t/T4 = 0 (a, d), 64 (b, e),
and 128 (c, f). Vertical dotted lines denote the wave numbers in order of: |k1 − k3|, |k3|, |k1|, |2k3|, |2k1 −
k3|, |k1 + k3|, and |2k1|.
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FIG. 6. The space-time spectrum in deep-water resonant case (Set A, ε1 = 0.056). The solid line represents
the linear dispersion relation. Vertical dashed lines denote the components at wave numbers in order of:
|k1 − k3|, |k3|, |k1|, |2k3|, |2k1 − k3|, |k1 + k3|, |2k1|. A time-window function M(t ) with W = 64T4, t0 =
50T4 is used to obtain this spectrum.

We also noticed that the emergence of peaks at wave numbers |2k3|, |2k1|, |k1 + k3| and
|k1 − k3|, although the amplitudes are much smaller than those of the daughter wave. These are
likely the signatures of second-order nonlinear effects, but the peaks may include contributions
from both the bound and free waves.

To distinguish between bound and free waves, the space-time amplitude spectrum S(k, ω) was
analyzed using 3D-FFT, as shown in Fig. 6. A time-window function (23) with W = 32T4, t0 = 50T4

is applied. The solid blue line in the k-ω plot represents the linear dispersion relation and allows us
to distinguish the free and bound wave components, respectively. Higher-order harmonics at |2k3|,
|2k1|, |k1 + k3| and |k1 − k3| in Fig. 5 represent the total energy of both free waves, that lie on the
blue line in Fig. 6, and bound waves that do not. What is peculiar is the emergence of free waves at
|k1 + k3| and |k1 − k3|, whose amplitudes are much smaller than the daughter-wave at |2k1 − k3|.
Furthermore, only the free wave is found at |2k1 − k3| and the bound wave effect on the daughter
wave is negligible.

For a quantitative comparison with the experimental observations, the evolution of the daughter-
wave amplitude in the initial stage is presented in Fig. 7(a). The theoretical predictions for different
wave steepness are plotted in solid lines. It should be noted that our numerical results were converted
from the temporal domain to the spatial domain using the group velocity cg4. At short distances, the
daughter-wave amplitude was found to be in quantitative agreement with both the experimental
and theoretical results. However, with the growth of the daughter wave, the entire wave systems
do not satisfy the small-amplitude assumption adopted in resonant wave interaction theory; thus,
the discrepancy between theoretical solutions and the present results by the HOS method becomes
more noticeable, in particular in cases with large wave steepness. The HOS results indicate that
the growth rate tends to be attenuated after a longer time, which is more substantial as the mother-
wave steepness ε1 increases. Figure 7(b) illustrates the evolution of the sine of the interaction phase
angle ϕ = 2ϕ1 − ϕ3 − ϕ4 from HOS simulations. As shown, during the initial stage, the interaction
(d � 2 m) phase increases rapidly to π/2 and then remains unvaried for long distances, particularly
for small mother-wave steepness (e.g., ε1 = 0.028). This phase-locking phenomenon agrees well
with the theoretical predictions from Eq. (15) and the experimental observations of Bonnefoy et al.
[8]. For large wave steepness, we find there is a gradual reduction in sin ϕ.
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FIG. 7. Evolution of deep-water resonant waves (Set A). (a) Development of daughter-wave amplitude a4

with fixed ε3 = 0.05 and different ε1 = 0.028, 0.041, 0.056 (from bottom to top: red, green, and blue lines,
respectively). The solid lines represent the HOS results. The experimental results in Bonnefoy et al. [8] are
plotted in markers. Theoretical results using Eq. (14) are plotted in dashed lines. (b) The evolution of the sine of
the interaction phase ϕ = 2ϕ1 − ϕ3 − ϕ4 from HOS simulations, ε1 = 0.028(−−−), 0.041(− · −), 0.056(−−).

B. Resonant four-wave interaction in finite depth

Herein we investigate the effect of water depth on the resonant interactions by applying the
same kind of analysis performed in Sec. IV A to the results of Set B, as listed in Table I, using
HOS simulations. Figure 8 shows the simplified directional spectra (a–c) and unidirectional spectra
(d–f) for a finite water depth k1h = 0.95. Again, the peak observed at wave number |2k1 − k3|
confirms the existence of the daughter wave. The overall structure of the spectrum is similar to that
of the deep water case (Fig. 5); however, a slight difference is found in the relative magnitudes of

FIG. 8. Directional spectra (a–c) and unidirectional spectra (d–f) in finite-depth resonant cases (Set B)
recorded at different times: t/T4 = 0 (a, d), 64 (b, e), and 128 (c, f). Vertical dotted lines denote the wave
numbers in order of: |k1 − k3|, |k3|, |k1|, |2k3|, |2k1 − k3|, |k1 + k3|, and |2k1|. Conditions: ε1 = 0.056, ε3 =
0.050, and k1h = 0.95.
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FIG. 9. Evolution of resonant waves in finite water depth (Set B): (a) daughter-wave amplitude; (b) the sine
of interaction phase.

the daughter wave and the mother waves. In addition, the magnitudes of the waves at the bound
frequency components appear to be larger than those in the deep-water case.

To quantify and examine the effect of water depth, the daughter-wave amplitude and interaction
phase for different water depths were computed and illustrated in Fig. 9. The ending time of the
nonlinear adjustment scheme [34] t = 10T4 is shifted to t = 0. We found that the growth rate is
gradually reducing with the decrease of water depth to k1h < 1.35 for crossing angle θ = 25◦. In
much shallower depth k1h = 0.95, the linear growth of daughter-wave amplitude and phase-locking
phenomenon still exist. However, it is interesting to see that, when the water depth gets shallow
enough to k1h = 0.57, the linear growth of the daughter wave disappears. Further, as shown by the
solid black lines for k1h = 0.57, the amplitude of the daughter wave for large d is much smaller
than the other cases and the interaction phase changes irregularly, which implies the energy transfer
between mother waves and daughter wave is negligible. This further suggests that the degenerated
four-wave resonant interaction ceases to exist at k1h = 0.57 for θ = 25◦, which agrees with the
prediction by the theoretical model based on the Zakharov equation, as illustrated in Fig. 2(b).
It should be noted that, in the present HOS simulations the mother waves k1 and k3 are precisely
captured, correspondingly the daughter wave 2k1 − k3 is also precisely captured. The disappearance
of the linear growth of the daughter wave cannot be attributed to discreteness of the computational
domain.

A three-dimensional fast Fourier transform of spatial-temporal data η(x, y, t ) is conducted to
evaluate the effect of bound waves on daughter-wave development at finite water depth. As an
example, the k-ω spectra at t = 50T4 for different depths are illustrated in Fig. 10. As shown in the
different panels of the figure, as the water depth decreases from k1h = 3.65 to k1h = 1.35, the two
components |2k3| and |2k1 − k3|, denoted by the white dashed vertical lines, get close to each other,
which is consistent with the variation in the figure-of-eight diagrams with the finite water depth, as
illustrated in Fig. 1. In addition, we can observe that for relatively higher depths k1h = 3.65, 2.24,
and 1.35 the wave energy at |2k1 − k3| is concentrated on the linear dispersion curve, and thus
includes only the free-wave component and not the bound-wave component. For shallower depths,
k1h = 0.95 and 0.57, the energy is distributed between the free wave on the linear dispersion curve
and the bound-wave components at higher angular frequencies. Besides, it is found that the effect of
bound wave becomes more pronounced as the water depth decreases, which is consistent with the
finding in Toffoli et al. [37].

To eliminate the effect of bound waves on the growth of daughter waves, the space-time
spectra for these two cases (k1h = 0.95 and 0.57) were evaluated every five periods using
the three-dimensional fast Fourier transform (3D-FFT) with a time-window length W = 10T4. The
evolution of the free-wave amplitude and phase were obtained (Fig. 11) and compared with the
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FIG. 10. Space-time spectra in finite-depth resonant cases (Set B). The solid line represents
the linear dispersion relation. Vertical dotted lines denote the wave numbers in the order of:
|k1 − k3|, |k3|, |k1|, |2k3|, |2k1 − k3|, |k1 + k3|, and |2k1|. The region around |2k1 − k3| is magnified in the
subplot of each panel. The time-window function M(t ) with W = 32T4, t0 = 50T4 is used to obtain these
spectra.

results that included both free and bound waves (Fig. 9). With bound waves, the daughter-wave
amplitude increases slightly for k1h = 0.95, while the interaction phase changes slightly. However,
as the water depth decreases to k1h = 0.57, the bound wave effect becomes substantial. At this water
depth, the free-wave amplitude is approximately not varied with time, which indicates that this is a
spurious free wave.

To validate the separation method for the free and bound harmonics based on a windowed
3D-FFT, the bound wave amplitudes at |2k1|, |2k3|, |k1 + k3|, and |k1 − k3| are compared with
the second-order theoretical results from Toffoli et al. [37], Dalzell [38] in Fig. 12. The red dots
correspond to the HOS results using a windowed 3D-FFT. The blue lines represent the second-order

FIG. 11. Effect of bound waves on the evolution of the daughter wave in resonant interactions of Set B:
(a) wave amplitude, (b) interaction phase.
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FIG. 12. Evolution of bound-wave components at |2k1|, |2k3|, |k1 + k3|, |k1 − k3|. The solid lines denote
the second-order theoretical predictions. The red circles represent the results from HOS simulations using the
3D-FFT.

predictions. A satisfactory agreement is found which provides a robust validation of the separation
of the free and bound waves.

To quantitatively compare the results of HOS and the analytical solutions using the Zakharov
equation, the first step is to calculate the growth rate of a4 during the initial stage from Fig. 9. Herein,
we used linear fitting a4 = Ḡd by the least-squares method in the initial stage of evolution, around
0 ∼ 30 m. It can be found that the amplitude of the daughter wave is still much smaller than the
mother waves at d = 30 m (see Fig. 20 in Appendix B). The second step is to compute the re-scaled
growth rate G through the relationship G = Ḡ/ε2

1ε3. The present analytical solutions of Eq. (19)
involves only the interaction of free waves, whereas HOS simulations include both bound and free
waves. The space-time spectrum analysis allows us to distinguish them (see Fig. 11). The results
with and without bound waves are compared in Fig. 13. As shown, at relatively large water depth,
the effect of the bound wave is minimal, and the HOS results are in satisfactory agreement with
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FIG. 13. Comparison of the growth rate obtained from HOS simulations and theoretical predictions using
Eq. (19) for different water depths. The experimental data for deep water in Bonnefoy et al. [8] is also plotted
for reference (dashed black line).

those from Eq. (19). However, with decreasing water depth, the effect of the bound waves becomes
more noticeable. After removing bound waves, the tendency of the HOS results with respect to water
depth is in better agreement with that based on Eq. (19). The bound wave effect is also confirmed
by numerical simulations with using small mother-wave steepness (see Appendix C). Furthermore,
as shown in the figure, it is confirmed that the four-wave resonance ceases to exist for k1h � 0.57,
which agrees with the theoretical prediction presented in Fig. 2.

C. Quasiresonant four-wave interaction in finite depth

Here, we investigate the four-wave quasiresonant interactions of Set C. The wave numbers of
the mother waves were selected to be the same as those in Set A. When the same wave number
resonance condition is used in finite water depth, the resonance conditions cannot be satisfied
anymore owing to the change in the dispersion relationship. However, quasiresonant nonlinear wave
interactions can occur instead.

In Fig. 14, the free-surface elevation distribution and localized wave crest pattern of the quasires-
onant wave system recorded at different times are presented for an intermediate water depth
k1h = 2.45. We observed that the new crest generation phenomenon disappears, in contrast to the
results of the case of exact resonant interaction. This is because the energy transfer between different
scales induced by quasiresonant interaction is less pronounced, for example, the scale of the
daughter-wave amplitude is relatively smaller than that in the case of resonant interactions. However,
the quasiresonant interaction can still lead to a slightly enhanced formation of the localized crest
shape. As shown in Fig. 14(e), the localized single crest becomes higher and steeper at t/T4 = 30
and decreases to a minimum at t/T4 = 60, as shown in Fig. 14(f). To examine the wave crest height,
the wave height ηmax − ηmin was plotted as a function of the propagation distance d , as illustrated
in Fig. 15. This confirms the variation of the crest shape during the evolution of the nonlinear
wave fields. In fact, we find that this can be attributed to the oscillatory evolution of the daughter-
wave amplitude, as illustrated in Fig. 16. Figure 16 presents the HOS results of the daughter-wave
amplitude and interaction phase as a function of the propagating distance d for different water
depths. As can be observed, for k1h = 2.45, the first two maxima of the daughter-wave amplitude
occur at approximately d = 20 m and 60 m, which is almost synchronous with the maximum
crest heights observed in Fig. 15. From Eq. (17), one can show that the daughter-wave amplitude
varies as a |sin| function with a period of d = 2πcg4/��. The interaction phase varies periodically
between −π/2 and π/2 with the same period, referring to Eq. (18). For intermediate-depth cases
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FIG. 14. Free-surface elevation (a–c) and corresponding localized crest shape (d–f) in finite-depth quasires-
onant case (Set C, k1h = 2.45) recorded at different times: t/T4 = 0 (a, d), 30 (b, e), and 60 (c, f).

k1h = 3.65, 2.24, 1.35, 0.95, as expected, the daughter-wave amplitude varies periodically as a
| sin | function, and the interaction phase changes between −π/2 and π/2. Furthermore, the period
of amplitude recurrence and variation of the phase between −π/2 and π/2 are the same. For
example, with k1h = 2.45, the period of amplitude recurrence is approximately 37 m, and the period
of phase change between −π/2 and π/2 is approximately the same. In the case of the shallowest
water depth of k1h = 0.49, there was no clear tendency in the evolution, which is consistent with
the vanished growth rate of the daughter wave.

To investigate the effect of bound waves, the space-time amplitude spectra of the quasiresonant
systems were evaluated. Examples of t = 50T4 are shown in Fig. 17. Similar to the exact-resonant
cases, with decreasing water depth, more bound-wave peaks are observed and the bound wave at
|2k1 − k3| increased as the depth becomes shallow enough (that is, k1h = 0.98 and 0.49). Further-

FIG. 15. Variation of ηmax − ηmin with respect to d obtained from HOS simulations for the resonant case of
finite water depth k1h = 2.45 of Set C. Here, ηmax and ηmin are the maximum value and minimum value of the
free-surface elevations, respectively.
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FIG. 16. Evolution of finite-depth quasiresonant waves (Set C): (a) daughter-wave amplitude, (b) the sine
of interaction phase.

more, we can observe more energy concentrates around the linear dispersion curve, which suggests
higher harmonics are generated owing to wave-wave interaction as the water depth decreases. These
results can complement our understanding from the analytical solution, which only considers three
waves.

To examine the development of the daughter wave without bound wave effect, the space-time
spectra for the two shallow-water cases (k1h = 0.98 and 0.49) are evaluated for every five periods.
The evolution of the free-wave amplitude and phase at |2k1 − k3| was then obtained, as shown in
Fig. 18, and compared with the results that include both free and bound waves. As can be observed
in the figure, for k1h = 0.98, the daughter-wave amplitude first increases and then decreases to zero,

FIG. 17. Space-time in finite-depth quasiresonant cases (Set C). The solid line represents the linear disper-
sion relation. Vertical dotted lines denote the wave numbers in the order of: |k1 − k3|, |k3|, |k1|, |2k3|, |2k1 −
k3|, |k1 + k3|, and |2k1|.
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FIG. 18. Effect of bound waves on the evolution of daughter-wave in quasiresonant interactions: (a) wave
amplitude, (b) interaction phase.

while the interaction phases remain around π/2. This can be explained by Eq. (16), which shows
that the phase angle depends on the sign of sin(��t/2).

In addition, as can be observed in Fig. 18 for k1h = 0.98, with the bound waves being included,
the daughter-wave amplitude slightly increases during the early time and the interaction phase
also varies slightly. However, for k1h = 0.49, the bound wave effect was significantly enhanced,
particularly shown in the evolution of the interaction phase. In addition, even without a bound wave,
the daughter-wave amplitude initially increases rapidly. It can be inferred that other higher-harmonic
free waves are generated and interact with the mother waves.

Figure 19 compares the theoretical results from Eq. (17) with the HOS results for resonant
interactions in Set B and quasiresonant interaction in Set C. For reference, we also present the
experimental data for deep-water waves in Bonnefoy et al. [8]. Note that the HOS results presented
here only include free wave effects. Comparing with the HOS results for resonant interactions and
quasiresonant interaction, it was observed that they share a consistent tendency of the growth rate
with respect to water depth k1h. Furthermore, results for resonant interaction using the HOS method

FIG. 19. Growth rate of daughter-wave amplitude as a function of nondimensional water depth k1h with
crossing angle θ = 25◦. It includes the results from quasiresonant simulations and resonant simulations, as well
as those from Eq. (17). The experimental data for deep water in Bonnefoy et al. [8] is also plotted for reference
(dashed black line).

114803-19



S. LIU, T. WASEDA, AND X. ZHANG

and Eq. (19) show a similar tendency that the growth rate is gradually suppressed with the decreasing
water depth and eventually approaches zero at a sufficiently shallow depth. It should be noted that
the solutions from the theoretical model based on the Zakharov equation are only valid for a small
distance d when the amplitude of the daughter wave has not grown sufficiently to be comparable to
the mother-wave amplitude, which is the assumption used to derive Eqs. (14) and (16).

V. CONCLUDING REMARKS

In the present study, four-wave resonant and quasiresonant nonlinear interactions at different
water depths were investigated using analytical formulas derived from Zakharov equation and
direct numerical simulations using the HOS. Herein, we focused on the degenerated case, where
bichromatic mother waves are generated initially to give birth to a daughter wave. We analyzed the
evolution of the daughter-wave amplitude and phase with respect to the mother waves, as well as
the wave shape in the field.

The present theoretical solutions based on the Zakharov equation only considers the interaction
of the free waves. However, in the HOS simulations, both the free and bound waves were included
so that the interaction between different harmonics is consisted. To examine the bound-wave
effect, space-time spectrum analyses were performed using the three-dimensional Fourier transform
technique. The present results imply that the effect of the bound wave is not significant in deep
water. However, with the decreasing water depth, the bound wave effect becomes more pronounced,
particularly in the resonant cases of k1h = 0.95, 0.57, and quasiresonant cases of k1h = 0.98, 0.49.
To examine the bound wave effect, the evolution of daughter waves in these cases was reproduced
based on the space-time spectra using the 3D-FFT technique.

For the first time, with the support of analytical and numerical results, we found that four-wave
resonant and quasiresonant interactions are suppressed as the water depth decreases and eventually
diminish in sufficiently shallow waters. Four-wave resonance and quasiresonance between mother
waves with a crossing angle of θ = 25◦ cease to exist when the nondimensional depth approaches
k1h � 0.57. Moreover, theoretical analyses suggest that the critical depth depends on the crossing
angle, and almost all the four-wave resonant interactions with different crossing angles cease to
exist for values of k1h that are less than a global threshold value of approximately 0.4.

In the shallow-water condition, higher harmonics, owing to nonlinear wave-wave interaction,
were observed, in particular as the mother-wave steepness increases. In addition, we found that the
bound wave effect is enhanced as the water depth decreases, in particular when the mother-wave
steepness increases.

It is worth noting that a flat-bottom boundary condition is assumed in the present study. As
the effect of bottom topography is included, the four-wave interaction becomes more complicated
and can play a significant role in the generation of oceanic extreme waves and the evolution of
the spectrum [39–41]. Further investigation on the effects of bottom topography on the four-wave
resonance is needed to better understand the statistical properties of extreme waves.
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APPENDIX A: EXPRESSION OF THE KERNEL T1212

Herein, we show the expression of the interaction kernel T1212 from Stiassnie and Gramstad [29].
The kernel can be decomposed into regular and singular parts,

T1212 ≡ T (k1, k2, k1, k2) = T (R)
1212 + T (S)

1212. (A1)
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The regular part T (R)
1212 can be written as
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The singular part T (S)
1212 can be written as
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,

(A3)

where Cg represents the group velocity.

APPENDIX B: DERIVATION OF THE ANALYTICAL SOLUTION OF THE
EVOLUTION EQUATIONS

Herein, we show the derivation of Eqs. (11), (12), and (13). By expanding all the functions as
power series in ε, and collecting the leading-order terms at O(ε0), it yields

i∂t B
0
4 = (�4 − ω4)B0

4 + 2T1134 exp(i�1134t )
(
B0

1

)2
B0

3. (B1)

By solving the aforementioned equation with the initial condition B0
4|t=0 = 0 (see the Supple-

mental Material of Bonnefoy et al. [8] for details), the solution can be recovered as

B0
4 = −iT1134B2

10B∗
30

sin(��t/2)

��/2
exp [−i(�4 − ω4 + ��/2)t]. (B2)

In addition, the evolution of daughter wave 4 can be written as the sum of the leading-order term
and the extra higher-order terms (H.O.T),

B4 = −iT1134B2
10B∗

30
sin(��t/2)

��/2
exp [−i(�4 − ω4 + ��/2)t] + H.O.T. (B3)
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The next step is to determine B1. Assuming the daughter-wave amplitude is much smaller than
those of the mother waves, that is, |B4| � |B1|, |B3|. By expanding all the functions as power series
in ε, the amplitude B1, B3, and B4 can be written as

B1 = B0
1 + εB1

1 + O(ε2), (B4)

B3 = B0
3 + εB1

3 + O(ε2), (B5)

B4 = εB0
4 + ε2B1

4 + O(ε3), (B6)

where we consider the first two orders. By substituting Eqs. (B4), (B5), and (B6) into Eq. (5), it
yields

i∂t
(
B0

1 + εB1
1

) = (�1 − ω1)
(
B0

1 + εB1
1

)
+2T1134 exp(i�1134t )(B0

1
∗ + εB1

1
∗
)
(
B0

3 + εB1
3

)(
εB0

4 + ε2B1
4

)
.

(B7)

By collecting the leading-order terms at O(ε0), we obtain

i∂t B
0
1 = (�1 − ω1)B0

1. (B8)

Thus, we obtain

B0
1 = B10 exp[−i(�1 − ω1)t], (B9)

where the subscript “0” denotes the initial value of mother-wave amplitude.
For the second-order terms at O(ε1), it leads to

i∂t B
1
1 = (�1 − ω1)B1

1 + 2T1134 exp(i�1134t )B1∗
1 B0

3B0
4, (B10)

which shows that the solution of B1
1 depends on B0

4.
Similarly, by substituting Eqs. (B4), (B5), and (B6) into Eq. (6), and collecting the terms at O(ε0)

and O(ε1), respectively, it yields

B0
3 = B30 exp[−i(�3 − ω3)t] (B11)

and

i∂t B
1
3 = (�3 − ω3)B1

3 + 2T1134 exp(i�1134t )B0
1B0

1B0∗
4 , (B12)

which shows that the solution of B1
3 depends on B0

4.
Substituting Eq. (B2) into Eq. (B12), we can show

B1
1 = 2T 2

1134B2
10B∗

10B∗
30B30

[
1 − exp(−i��t )

��2
− it

��

]
exp[i(ω1 − �1)t]. (B13)

Following the same procedures as for the mother wave 3, we obtain,

B1
3 = T 2

1134B2
10B∗2

10B30

[
1 − exp(i��t )

��2
− it

��

]
exp[i(ω3 − �3)t]. (B14)

Substituting Eqs. (B9) and (B13) into Eq. (B4), respectively, we obtain

B1 =
{
B10− 2T 2

1134B2
10B∗

10B∗
30B30

[
1 − exp(−i��t )

��2
− it

��

]}
exp[i(ω1 − �1)t]. (B15)

Substituting Eqs. (B11) and (B14) into Eq. (B5),

B3 =
{
B30+ T 2

1134B2
10B∗2

10B30

[
1 − exp(i��t )

��2
− it

��

]}
exp[i(ω3 − �3)t]. (B16)
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(a) (b) (c)

(d) (e) (f)

FIG. 20. The evolution of wave amplitude a1, a3 and a4 at k1h = 2.24, 1.35 in Set B. The analytical
solutions obtained from Eqs. (11), (12), and (13) are compared with those using HOS.

It should be noted that the relation between the free-surface wave amplitude and wave action
amplitude Bi is ai = √

2ωi/gBi. Figure 20 shows the comparison of the results using analytical
formulas with the results using HOS. As can be observed, a good agreement is observed in the
initial stage of the evolution.

APPENDIX C: DIRECT NUMERICAL SIMULATIONS USING SMALL
MOTHER-WAVE STEEPNESS

In HOS simulation, both bound and free waves triggered by nonlinear wave interactions are
considered. However, in the theoretical solutions based on the Zakharov equation only free-wave
components are retained. For this reason, the growth rate of the daughter wave from the HOS
simulation is slightly larger than that from the theoretical solutions of Eq. (19) at shallow depths,
where the effect of bound waves is nonnegligible (referring to Fig. 13). Nevertheless, attributed to
the windowed three-dimensional Fourier transform, the bound wave in HOS simulations can be also
removed using the k − ω plot. As expected, if only the free wave effect is considered, the results of
HOS are in good agreement with those from Eq. (19) (referring to Fig. 13).

To minimize the bound-wave effect, another approach is to reduce the mother-wave amplitudes
(equivalent to a reduction in wave steepness). As ε1 and ε3 reduce, the amplitudes of their bound
waves reduce, but the growth rate of the daughter wave is not varied [referring to Eq. (19)]. Thus, the
effect of bound waves on the generation of the daughter wave is suppressed. Herein, the steepness
decreases to ε1 = 0.0056, ε3 = 0.0050, while the other parameters are the same as those chosen in
Set B.

The evolution of daughter-wave amplitude is shown in Fig. 21, where the results with steeper
mother waves from Fig. 9 and the prediction of Eq. (14) are also plotted for comparisons. For the
case of k1h = 1.35, either large or small ε1, ε3, the results are in good agreement with the predictions
of Eq. (14). In the case of k1h = 0.95, where the influence of bound wave is more significant, HOS
results with larger steepness show a difference from those using Eq. (14). However, as the ε1 and ε3
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FIG. 21. The evolution of daughter-wave amplitude with larger and smaller wave steepness ε1, ε3. The
black solid line represents the analytical solution from Eq. (17).

are reduced, i.e., the bound wave effect is fully suppressed, so that the results of the HOS and the
analytical solutions from discretized Zakharov equation are consistent.
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