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We derive the general dispersion relation for interfacial waves along a planar viscoelastic
boundary that separates two viscoelastic bulk media, including the effect of gravity. Our
unified theory contains Rayleigh waves, capillary-gravity-flexural waves, Lucassen waves,
bending waves in elastic plates, and the standard dispersion-free sound waves, as limiting
cases. To illustrate our results, we consider waves at a viscoelastic interface immersed in
water and at an air-water interface. We furthermore investigate waves at a viscoelastic
interface separating two identical viscoelastic bulk media, for which we consider both
Kelvin-Voigt and Maxwell materials, as applicable to polymer gels and solutions. For all
cases, we study how material properties determine the crossovers, scaling, and existence
regimes of the various interfacial waves. Since we include viscoelastic effects for all
media involved, our theory allows to model waveguiding phenomena in biology, such as
pressure pulses in axon membranes, which are possibly relevant for acoustic nerve pulse
propagation phenomena.
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I. INTRODUCTION

Waves at interfaces are well known and can be observed in everyday life. A classical example
is the capillary-gravity wave on an incompressible Newtonian fluid under the influence of gravity
[1-6]. For high enough frequencies, the capillarity dominates over the effects of gravity and the
dynamics of the capillary wave is dominated by the effects of surface tension; the displacement of
the interface is then predominantly perpendicular to the interface. The theory of this wave has been
extended to include interfacial properties, such as bending rigidity [7], and to include viscoelastic
shear response in the bulk, as applicable to, e.g., gels [8]. If the interface responds viscoelastically
to compression, then a second type of surface wave can coexist with the capillary-gravity wave. We
refer to this interfacial pressure wave as Lucassen wave [9-12]; it has recently received attention
because of its possible relevance for acoustic nerve pulse propagation [13—16]. The Lucassen wave
is essentially a sound wave along the interface and its displacement is predominantly in the plane of
the interface. For elastic materials where the interfacial properties are negligible, a third kind of sur-
face wave exists, which is called the Rayleigh wave [17]. While for a purely elastic material only one
such solution exists, for a viscoelastic material, two wave solutions with distinct dispersion relations
can coexist [18,19]. Viscoelastic Rayleigh waves are of particular interest, e.g., in geophysics, as a
model for earthquake-generated waves [20], or in material engineering, to noninvasively measure
mechanical properties of media [21]. In a scenario where gravitation, surface tension and bulk shear
viscosity are simultaneously nonzero, capillary-gravity-viscous (CGV) surface waves can exist,
which are different from all the above waves, and have only very recently been discovered [22].
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Localized waves at fluid interfaces have recently gained renewed attention in the search of a
more complete picture of nerve pulse propagation [23-29]. While the standard Hodgkin-Huxley
model is successful in modeling the observed electrical phenomena, it is known that a mechanical
displacement propagates alongside the electrical pulse [30,31]. The biological relevance of these
mechanical waves is not resolved conclusively, however, it has been conjectured that mechanical
waves accompanying the action potential serve a physiological function and that inclusion of these
mechanical phenomena into existing theories would provide a more complete picture of nerve pulse
propagation [23-29].

For the modeling of biologically relevant surface wave phenomena, a natural theoretical model
is given by a viscoelastic interface separating two viscoelastic media. In the biological setting, e.g.,
when comparing the axoplasm to the extracellular fluid separated by an axon membrane, the bulk
media on both sides will rarely differ so much as to justify neglecting one of them. Hydrodynamic
modes of a thin viscoelastic material at the interface between two Newtonian fluids were already
discussed in Ref. [32]. The dynamics of viscoelastic membranes separating two Newtonian fluids
have been studied with regard to microrheological studies of such membranes [33]. Recently, a
comprehensive dispersion relation has been derived for linear waves at a surfactant layer separating
two Newtonian fluids, supporting capillary-gravity waves and Lucassen waves as solutions [34,35].
However, the general case of two in general different viscoelastic media separated by a viscoelastic
interface has not been considered before.

For a single viscoelastic half-space, which is an appropriate model if one of the bulk media
is negligible, recently a general surface wave dispersion relation was derived, which contains
Rayleigh, capillary-gravity, and Lucassen waves as limiting cases [22]. This allowed to discuss the
relation between those waves: For water, modeled as an almost incompressible viscoelastic medium,
the Lucassen wave transforms into a Rayleigh wave at high frequencies. Waves on half-spaces of
a viscoelastic solid were investigated numerically in order to model rheological applications in
Refs. [36,37], while capillary waves on viscoelastic half-spaces have been studied numerically in
Refs. [38,39].

If the media at the two sides of an elastic interface can be neglected, then transversal oscillations
of the interface are described by elastic plate theory [40], while compression waves within the
interface are described by a standard wave equation.

For capillary-gravity waves, the relation between the model of two fluid half-spaces and the
model of just one fluid half-space has been explored [34], but the general relation between the
theories for interfacial waves with two fluid half-spaces, one fluid half-space, and an oscillating
plate in vacuum, has not been discussed.

In the present work, we derive the general dispersion relation for waves at planar viscoelastic
interfaces separating two different linear isotropic homogeneous viscoelastic half-spaces including
the effects of gravity. By considering a general dispersion relation, we quantify the existence regimes
of each of the aforementioned wave solutions and assess which material properties are relevant for
the respective wave modes and frequency regimes. We show how the interfacial capillary-gravity
and Lucassen waves follow from a factorization of the general dispersion relation. After considering
the symmetric case, where the two bulk media have the same properties, we then first discuss the
limit where one of the bulk media is negligible, and second the limit where both bulk media can
be neglected. Our theory furthermore allows us to study the interrelations of the various limiting
cases. For example, our derivation shows explicitly that the elastic plate equation can be considered
as a limit of the capillary-gravity-flexural wave, i.e., the capillary-gravity wave for an interface
with bending rigidity, a result which we have not encountered in the existing literature. The one-
dimensional wave equation, in turn, is recovered as a limit of the Lucassen wave.

We go on to discuss several explicit scenarios. We consider localized waves at a water-water
interface, and at an air-water interface (where we show that the half-space of air can be neglected).
We then consider the case of an interface separating two viscoelastic bulk media, modeled via
Kelvin-Voigt and Maxwell materials, respectively. For every explicit scenario, we highlight the

114801-2



LINEAR WAVES AT VISCOELASTIC INTERFACES ...

z

viscoelastic medium Il

viscoelastic medium |

FIG. 1. We consider a planar viscoelastic interface (medium II), which is located at z = 0 and separates
two viscoelastic bulk media (media I and III), which are infinitely extended in the half-spaces z < 0,z > 0. All
viscoelastic media are modeled as linear, isotropic, and homogeneous. We include gravitational acceleration,
which acts in the negative z direction. We consider wave solutions that travel in the x direction, and are
translationally invariant in y, and decay exponentially away from the interface at z = 0.

different power-law scalings of phase velocities and propagation distances emerging from the
model.

The organization of this paper is as follows: In Sec. II we establish the framework of our
calculations and derive a general dispersion relation for our setup: In Sec. Il A we review linear
viscoelasticity and explain how the viscoelastic properties of the interface enter the theory in the
form of boundary conditions. In Sec. I B we demonstrate how, for our setup, the harmonic wave
ansatz leads to a conditional equation whose solutions describe traveling waves localized at the
interface. In Sec. II C we show that the conditional equation factorizes under appropriate conditions,
leading to generalized approximate dispersion relations for capillary-gravity-flexural waves and
Lucassen waves. In Sec. III we discuss how special cases known from the literature arise in various
limits, namely, the symmetric case, where media I and III are equal, the situation where medium III
is absent, here called asymmetric case, and waves on a free membrane. In Sec. IV, after a review
of viscoelastic relaxation functions for Newtonian fluids, we then consider numerical solutions of
both the general dispersion relation and the appropriate limits, focusing on waves at the water-water
interface and on waves at the air-water interface, showing that air is mostly negligible when paired
with water. We investigate interfaces of viscoelastic bulk media, specifically polymer gels, modeled
as Kelvin-Voigt materials, and concentrated polymer solutions, modeled as Maxwell-fluids. For all
example systems, we discuss the different power-law scalings and crossovers in detail. Finally, in
Sec. V we summarize our findings and discuss implications as well as applications.

Because there is a great variety of notations in hydrodynamics and viscoelasticity theory, we
have compiled a list of all material parameters appearing in this paper in Appendix A.

II. GENERAL DISPERSION RELATION FOR WAVES AT VISCOELASTIC INTERFACES

We study localized waves at a viscoelastic interface between two viscoelastic media, as illustrated
in Fig. 1. We choose the coordinate system such that the interface is at z = 0, and refer to the
bulk media in the lower and upper half-spaces as medium I and medium III, respectively. The
interface itself we call medium II. We assume all displacements to be small, and use the linear
theory of viscoelasticity for the description of media I and III. Medium II enters the dynamics via
the boundary conditions at the interface.

The following derivation is a generalization of Ref. [22] and follows the standard derivation of
Rayleigh waves [17].
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A. Linear viscoelasticity

In each of the two bulk media, the linearized equations for momentum conservation are given at
a position r = (x, y, z) and time ¢ as [41]

om(r, )82 upg (1, 1) = dxou jx(r, t) + Fag j(r, t) (1)

for j € {x, y, z}, where M € {1, IlI} denotes the bulk medium, so that for z < 0 we have M = I and
for z > O we have M = 111, py,(r, ) is the respective mass density, u,, (r, t) is the displacement field,
F(r,t) is an external force, and where we use the Einstein summation convention for repeated
indices. We assume linear, isotropic, and homogeneous bulk media, for which the stress tensor
components oy jx(r, t) depend on the displacement via the viscoelastic stress-strain relation [41]

om,jk(r, 1) =/ gm,s(t —1)dpey jx(r 1)) dt’

00
5jk * ’ 1 i l
+3 [gm.a(t — 1) — gua,s(t — )]0 €pu(r, 1) dr’, 2
—00

where the components of the strain tensor are given by €y jx = (9;upm k + Ocin,;)/2, and by the
Einstein summation convention we have €y ;; = djup; = V - uy. For homogeneous media, the
shear and dilational relaxation functions g s(f), gum.a(¢) are independent of position, and to ensure
causality are equal to zero for negative arguments 7. With our parametrization (2) we can model any
linear, isotropic, and homogenous compressible bulk medium. In Sec. IV we consider three different
models for the bulk fluids, namely, the Newtonian, Kelvin-Voigt, and Maxwell fluid models. In
these cases, the response functions gy s and gy 4 can be written in terms of viscosities and elastic
moduli. We note that while water is usually modeled as a Newtonian fluid, in the THz regime the
Newtonian fluid model needs to be replaced by more general relaxation functions [42]. For the
interface, medium II, we assume a purely viscous shear response with viscosity 7,p, a viscoelastic
response under dilation with viscosity 15y, and a position-dependent surface tension op(r, 1), as
explained in Appendix C. For out of plane deformations, we consider a bending rigidity «,p and a
transverse viscosity nj-D, which accounts for the lateral friction between molecules in the interfacial
zone [43]. Furthermore, the interface has a surface excess mass area density p,p. The surface excess
mass is defined as the difference of the actual mass present close to the interface of the system and
the mass of a reference system in which the bulk concentrations in the two phases remain uniform up
to the interface [44]. A review for the derivation of the continuum-mechanical boundary conditions
of two bulk media divided by such a viscoelastic interface was given by Kralchevsky et al. [43]; the
resulting linearized stress-continuity condition for the displacement field at z = 0 has been derived
in Ref. [22] and is reproduced in Appendix C. Further below, we use this continuity condition to
relate the two solutions u;(r, t), up(r, t) at the interface z = 0.

We consider gravity as external force, F y(r,t) = —gpyé., where g = 9.81 m/s? is the gravita-
tional acceleration and é, is the unit vector pointing in the positive z direction. We use the surface
gravity approximation [45], for which the effect of gravity on media I, I, and III, enters only at the
boundary condition z = 0 and not in the equations of motion of the bulk media; for more details see
Ref. [22].

B. Harmonic wave ansatz and resulting dispersion relation

To solve the momentum conservation Eq. (1) for bulk medium M, we describe the displacement
fields uy (r, t) via displacement potentials @y (r, 1), ¥,,(r, t) as

uy =Vou +V X ¥,,. 3)
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If the temporal Fourier transforms of the displacement potentials satisfy the Helmholtz equations

P (—i)py = 528w + Em.a) Adu, (4)
o (=i ; = $8m.sAVnj.  forj € {x, y, 2}, (5)

where A = 92 + 8y2 + 8Z2 is the Laplace operator and the tilde signifies the temporal Fourier trans-
form, then the displacement fields (3) fulfill the linearized momentum conservation equation (1)
for a linear, isotropic, homogeneous viscoelastic material with stress-strain relation (2) and without
external forces, as appropriate for the surface gravity approximation, as outlined in Appendix B.
The densities oy in Egs. (4) and (5) denote the constant equilibrium densities of the steady-state
solution, around which we perturb [22]. To obtain a stable equilibrium around which the linear wave
solutions are derived by perturbation, we assume that pr > ppy, i.e., that the less dense medium is
always in the z > 0 half-space.
The harmonic wave ansatz [17] consists of choosing the displacement potentials

om(x,z,t) = yrexp (—)\;,,,lllz|) exp [i(kx — wt)], 6)
Y, (x, 2, 1) = Wy exp (—Ay! |z]) exp [i(kx — w1)]3j, ©)

where j € {x,y, z}, M € {I, III}, and we assume the angular frequency w € R is a given parameter,
while the wave number k, the decay lengths A1, Ayt, and the coefficients @y, Wy € C depend
on w. For M =1 we have z < 0, and for M = III we have z > 0, so that the requirement that the
displacement decays to zero as |z| — oo implies Re(kl_ufl), Re()LA_l’lt) > 0. Our choicew e R, ke C
means we consider plane wave solutions with frequency w, which are damped as they propagate
along the x axis, and that we will later solve for k(w).

Direct substitution shows that in each half-space, the harmonic wave ansatz fulfills Egs. (4) and
(5) if [22]

Mk, @) =k + y(o), (8)
Mok, ) =k + ay(w), )
where we define
) 3(—iw)pum
= 10
V@)= e ) ¥ Bma (@) (10
2 o 2(—iw)pm
ay(w) = —gM’S(w) . (11

Equations (8) and (9) and the requirement Re(kﬁ}}l), Re()»;d’lt) > 0 determine )“ll_/l,ll’ )»A_,th uniquely
[46]. Physically it makes sense that these decay lengths perpendicular to the interface are fully
determined by the bulk properties.

For a given frequency w, the harmonic wave ansatz then contains five unknowns, namely, k, Py,
Wy, &y, V. To obtain a dispersion relation k(w) we now use the displacement and stress boundary
conditions at the interface. Continuity of the two nonvanishing components of the displacement field
at z = 0, and the stress boundary conditions at z = 0, yield a homogeneous linear system of four
equations for the four coefficients &y, W, @y, and Wy, which is given explicitly in Appendix C.
For a propagating wave with nonzero amplitude, this linear system of equations needs to have a
nontrivial solution, which means that the determinant of the coefficient matrix must vanish. Equating
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this determinant with zero then gives rise to the general dispersion relation
0 = 4(k*Map + g1 — pmn) — @ pap)[(K*Zop — iwpan) (K* — Ap A (K2 — Al )
+iwpiry] (K = Ay A ) + iopmigy (K — A7 AL
+4(k*g2p — iwpop)w’ [ oy (K = A iA) + e (K = AL ALY ]
+81s(K* = Ay [i08ns (= 4R2AL A + (K2 + )‘I_.tz)z)
+ 20008k (20 A — (K +217))]
+ 8 (K = Apta)) [iwgms (= 42 A A + (8 + 257)7)
=200 gk iy — (K + A ,))]
+ (—i0)nsgm s [2K2 (0 + A72) (€ + Ant) + efodi (Al + Al

+ 8ICAL A Ak — AL (K ) — 4 A (6 + A7) ] (12)
where we introduced the in-plane membrane relaxation function
(—iw)gop(®) := (—iw)(mp + Myp) + Kop (13)
and the out-of-plane membrane relaxation function
Map(k, ) := (—iw)map + 020 + kKo, (14)

where nle denotes the transverse viscosity, which was introduced in Sec. Il A. Because 1,p and 1},
only appear summed together in Eq. (13), we in the following set n}, = 0, with the understanding
that n,p includes the effects of both interfacial shear and dilational viscosity.

Equation (12) describes general surface waves at the viscoelastic interface between two vis-
coelastic bulk fluids and is the main result of this paper. If the effect of gravity is removed, g = 0,
then the equation becomes symmetric under the interchange of the indices I < III.

A solution k(w) of Eq. (12) represents a surface wave solution; the corresponding phase velocity
c(w) and propagation distance 8~ (w) are given by

1)

c(w) = Relk@)]’ (15)
1
71 _
prw)= Im[k(w)] (16)

For decaying plane wave solutions that travel in the positive x direction, we are therefore interested
in solutions k(w) with Re[k(w)], Im[k(w)] > 0. For later reference we note that from Eqgs. (15) and
(16) it follows that if

k~ " 17)
for some real number v, then
c~w'™, Bl~w. (18)

As it stands, Eq. (12) is too complicated to allow for general analytic solutions. However, as we
discuss in the following sections, and as has been noted for special cases before [8,32,47,48], many
known surface wave types can be retrieved from this equation in suitable limits.

C. Factorization of the dispersion relation
If for both bulk media (M € {I, IlI}) the condition [22]

3wpm 2 2wpm
- o L (o) € =———
128m.5(@) + Zm.a(@)] 18m,s(@)]

19)
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holds, and additionally assuming that the gravitational force on the interface can be neglected, i.e.,
P28 K w|gu s(@)], M e {1, 11}, (20)
then Eq. (12) factorizes to

0 = [K*Tlop + g(p1 — pm) — @ (pap + prrs + pmhm)]
x [K*gap — i@(pap + prire + puriiso)]- 2D

By equating either of the two factors with zero, we obtain two independent dispersion relations.
Whether a solution k(w) of either of the resulting equations fulfills the factorization conditions (19)
and (20) can of course only be checked a posteriori.

According to Egs. (8) and (9), in the limit (19) we obtain

M2~ ek, A~k (22)

Both inequalities in Eq. (19) can be interpreted physically. According to Egs. (3), (6), and (8), the
left inequality implies that )‘;4,21 ~ k2, so that V - uy; &~ 0, which means that the medium is almost
incompressible. The right inequality in Eq. (19), on the other hand, can be interpreted physically
as a long-wavelength limit. The inequality implies that )»A_,th ~ a3, in Eq. (22), which according to
Egs. (7) and (9) means that the decay length of the transversal potential ¥,, away from the interface
at z = 0 is much smaller than the modulus of the inverse wave number, 1/|k|, with which the wave
propagates along the interface, i.e., 1/|k| > |Apr|. Since these two interpretations are nonexclusive,
wave numbers that satisfy the two inequalities in Eq. (19) describe interfacial wave solutions in the
long-wavelength limit surrounded by almost incompressible bulk media.

The first factor in Eq. (21) yields a generalization of the dispersion relation for capillary-gravity-
flexural waves on a viscoelastic interface between two unbounded fluids, and can be rearranged as

pk? + (o1 — pm)g = @*(pap + priny + k), (23)

where T,p is given by Eq. (14). Using Eq. (14), assuming the bending rigidity in IT,p is negligible,
a crossover from surface-tension driven waves to a transverse-viscosity dominated response occurs
at the frequency

02D

U

We give a physical interpretation of Eq. (23) by observing that the equation formally looks similar

to a Fourier transformed wave equation with additional restoring force. This becomes more obvious
upon rewriting the equation as

Mo (ik)* — (o1 — pm)g = (—i®)*(pap + prrns + pmAmm)- (25)

The right-hand side contains a factor (—iw)?, which represents a second temporal derivative and
hence describes an acceleration. The effective area mass density which couples to this inertia is
given by the sum of the surface excess mass area density p,p and the effective area mass densities
associated with the longitudinal part of the wave, pjAr; and pmAm, respectively. To see this, we
note that according to Eq. (6), L) represents the penetration depth of the longitudinal part of the
wave into bulk medium M, so that py Ay is the effective area mass density of the longitudinal
oscillation in medium M. That the longitudinal part of the displacement is dominant for capillary-
gravity-flexural waves is plausible, as for inviscid incompressible Euler flow the capillary-gravity
dispersion relation can be derived assuming only a longitudinal displacement field [3]. The inertia
term in Eq. (25) is balanced by a linear restoring force, with strength (o — pnr)g, and a force
coupling to the surface deformation, represented by IT,p(ik)>. According to Eq. (14), this force has
elastic, dissipative, and bending, components. Performing an inverse Fourier transform of Eq. (25)
is not straightforward, for two reasons. First, 1), depends on both k and  via a complex square
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root, so that it in general does not correspond to a simple spatial or temporal derivative in real space.
Second, since we here derive the dispersion relation via the harmonic wave ansatz, the physical
interpretation of the function that obeys the inverse-Fourier-transformed Eq. (25) is not obvious.
From comparing the dispersion relation (25) with the stress tensor boundary conditions for the
surface displacement in the z direction, which is given in Appendix C, it is plausible that Eq. (25) is
the Fourier transformed equation of motion for the surface displacement in the z direction; however,
showing this rigorously is beyond the scope of the current work.

The second factor in Eq. (21) corresponds to a generalization of the Lucassen dispersion relation
[10,12] and results in

iw
K = g—(PzD + priLe + pmAne)s (26)
2D

where 2,p is defined in Eq. (13). This equation also has a physical interpretation in terms of a force
balance equation [16]. To see this, we first rewrite the dispersion relation as

—iw(ik)*gap = (—iw)*(p2p + prAre + Pmhime)- 27

For a half-space filled with an incompressible Newtonian fluid, and bounded by a purely elastic
membrane, it has been shown that Eq. (27) describes the interfacial displacement in the x direction,
so that the equation describes a compression wave. Furthermore, for the Newtonian-fluid model the
inverse Fourier transform has been carried out explicitly, to derive a fractional wave equation [16].
We here recall the interpretation of Eq. (27) as equation of motion for the in-plane interface
displacement: The right-hand side has a factor (—iw)?, and hence corresponds to the acceleration
of the interface. The effective area mass density relevant for this inertia term consists of three
contributions, namely the surface excess mass area density p,p, and the effective area mass density
of the bulk media oscillating above and below the interface, which for the Lucassen wave is
dominated by the transversal motion and hence given by prAy and pprinr¢. The penetration depth
of the wave into the bulk medium, A/, in general depends on the angular frequency w, so that
the effective area mass density becomes frequency-dependent. Because of this, it is not possible to
explicitly perform the inverse Fourier transform of Eq. (27) without specifying the viscoelastic
response of the bulk media. The left-hand side of Eq. (27) describes the force with which the
interface responds to local compression along the interface, as described by the factor (ik)?. Using
Eq. (13) the prefactor becomes —iwg,p(w) = (—iw)np + Kop, so that local compression of the
interface leads to both an elastic response, described by K,p, and dissipation, described by 1,p.

The generalized Lucassen dispersion relation (27) gives rise to several crossover frequencies.
Whether for a given frequency the inertia term is dominated by the bulk media or the interface can
be estimated by comparing ppp with pr|Ar¢| + pur|Amr¢|. By equating these two expressions, and
using )‘;4,11 ~ oy together with Eq. (11), we obtain the corresponding crossover frequency w?, as
solution of the equation

\//01 215 (@hp) | + \//0111 |Zums(@5p) |
= 02D
V25,
where both 3; s, &ur s are evaluated at a)gD. If the expression on the left-hand side of this equation,
when evaluated at an angular frequency w, is much larger than the expression on the right-hand
side, inertia effects of the bulk media dominate over those of the interface, and vice versa. Similarly,

whether the response of the membrane to compression is dominated by elasticity or viscosity
switches at the crossover frequency

(28)

asti Kr»p
wsistie = —=2 (29)
2D

For v « w;gsnc, the membrane response is predominantly elastic, whereas for w > w%snc, viscous

dissipation dominates.
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We remark that Ajs; and the bending properties k;p and nj‘D (which are contained in [T,p) only
enter the dispersion relation (23), while Ay ¢ and the in-plane viscoelastic response of the surface,
described by 1:p, Kop (Which are contained in g,p), only enter Eq. (26). This is consistent with the
picture of the capillary-gravity-flexural wave as a transversal wave which contains significant out-
of-plane deformation, and the Lucassen wave as a pressure wave in the interface which is dominated
by the displacement in the plane of the interface [16].

The factorization Eq. (21) generalizes previous factorizations derived for an interface at a fluid
half-space [22,32,47]. That a factorization like Eq. (21) does not always hold for physically relevant
parameters was already predicted by Lucassen [47], and in the context of a fluid half-space is
an established experimental result [8,48]. Equation (12) therefore contains more information as
compared to Eq. (21), as the full dispersion relation allows to infer the range of validity of each
limiting case, as well as the interrelations between the limiting cases.

III. ANALYTICAL LIMITING CASES

A. Symmetric scenario

We now assume that media I and III have the same properties, i.e., that p = py = p, &5 =
81s = &urs» &4 = 81,4 = 8md, SO that o = o1 = oy, A = A = Amr1, A = A = A In this case,
the dispersion relation (12) simplifies to

0 = (K*Tap — @*pap) (K — A7 'A7)[(KPg2p — iwpap) (k% — A7 'A71) + 2iwpi) ]
+20% 047 (Pon — iwpop) (K2 — 47'071) = Sio@ay AT ot + (K = 472)°]. (30)
which also factorizes under the assumptions (19) and (20) to yield
0 = [£*TTop — @* (o2 + 20A)][K*Zop — iw(pap + 2p0)]. 3D

This equation follows alternatively from the previous factorization (21), and shows that in the
symmetric scenario gravitational acceleration becomes irrelevant. Equating each of the two factors
in Eq. (31) with zero yields generalizations of the well-known capillary and Lucassen waves at
interfaces separating two identical media [3,10].

B. Asymmetric scenario
We now consider the asymmetric case, where medium III can be neglected in comparison to
medium I. Typically, this is the case when medium I is much denser than medium III. The dispersion
relation for this case has been derived before [22] and proceeds similar to Sec. II, but without
explicitly taking into account the displacement above the interface, z > 0. The resulting equation is
[22]
0 = 4(k*TTap + p1g — @ pop)[(K*g2p — iwpap) (K> — A AL) + iwpih)]
- . 1 oa [ oa 1 o\2

+4(k%op — iwpop)w’ prrf, + Bus{iogrs[—4°AL AL 4+ (K + A7) 7]

+ 2008k 20 A = (F +4.0)])- (32)
This equation also follows from the full dispersion relation (12) in the limit

p
% <L gkl =10 A S A, (33)
I

where |Anp k| & 1 is obeyed for a medium III that is almost incompressible.
We now give a short summary of the waves described by Eq. (32), and refer the reader to Ref. [22]

for more details.
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Upon removing the effects related to the surface (p,p = 0, gop = 0, I1p = 0) and also gravity
(g =0), Eq. (32) becomes

R 2
4k2)"[,11)"l,t1 = (k2 + )"I,tz) ) (34)

where A, A;! are given by Egs. (8) and (9). This is the classical Rayleigh conditional equation [17]
whose solutions lead to the known (viscoelastic) Rayleigh waves [18,19]. For a viscoelastic bulk
material Eq. (34) has two distinct solutions k(w) [18,19]. In particular, there are two distinct
solutions to Eq. (34) for the vacuum-water interface, which are shown in Fig. 7 in Appendix D.

Similarly to Sec. II C, the conditional equation (32) factorizes if the inequalities (19) and (20)
hold for the half-space. Equation (32) then becomes

0 = [K*Tlop + p1g — @ (pap + i) 8ap — i@ (pap + prrr)], 35)

which equivalently follows from Eq. (21) in the limit (33). By equating each of the factors of
Eq. (35) with zero, we obtain two equations which correspond to two different wave solutions
[22]. The first factor yields a generalization of the capillary-gravity-flexural surface wave, the
second a generalization of the Lucassen wave. As has been shown before, for high frequencies the
factorization (35) can break down, and a frequency-dependent transition from the Lucassen wave to
a Rayleigh wave can occur [22].

For an incompressible Newtonian fluid, the second factor in Eq. (35), which corresponds to the
Lucassen wave solution, has been shown to be the Fourier transform of a fractional wave equa-
tion [16]. Using a simplified system that describes interfacial pressure waves in elastic monolayers
at the water-air interface via coupling a one-dimensional wave equation, representing the dynamics
of the interface, to a parabolic equation on the half-space below, a mathematically rigorous limit
leading to a fractional wave equation is presented in Ref. [49].

C. Free membrane

To obtain the dispersion relation for a free membrane in vacuum, we consider a limit of Eq. (32)
in which medium I is negligible compared to the interface. This is the case if

PIALL <1 PIALL
P2D P2D

< 1, (36)

which means that the oscillating mass of the motion below the membrane is negligible compared to
the membrane surface excess mass area density. The conditional equation (32) then factorizes as

0 = (K*Tlp — @ pap)(k*gap — iwpap), (37)

which is alternatively obtained from Eq. (35) in the limit (36).
Equating the first factor in Eq. (37), which comes from the capillary wave factor in Eq. (35), with
zero and substituting the definition of I1,p, Eq. (14), yields

—top(—ik)* + map (—iw)(—ik)* + oan(—ik)* = pop(—iw)*, (38)

which is a generalization of the classical dispersion relation of a bending wave in an elastic plate
[40], recovered in the limit nle =0, opp = 0. If the first factor of Eq. (37) is equal to zero, it
can be seen directly from the system of equations used to derive the general dispersion relation in
Appendix C that ® = 0 in Eq. (6), so that the displacement field # corresponding to the dispersion
relation (38) is purely transversal.

Using the definition of g,p, Eq. (13), and equating the second factor of Eq. (37) with zero, yields
a one-dimensional wave equation

(—ik)*Kap + (—iw)(—ik)*nap = (—i®)* pap. (39)

If Eq. (39) holds, it can be seen from the system of equations used to derive the general dispersion
relation in Appendix C that ¥ = 0 in Eq. (7), so that the displacement field u is purely longitudinal.
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Thus, while in general both the longitudinal and transversal displacements in Eq. (3) are necessary
to fulfill momentum conservation and the boundary conditions, for a membrane in vacuum the two
fields decouple.

IV. EXAMPLE SYSTEMS

A. Newtonian fluid as bulk medium
1. Viscoelastic relaxation functions for compressible Newtonian fluid

To apply our theory to situations where water is at least one of the bulk media and gravity is
present, we need to relate the viscoelastic stress-strain relation (2) to the usual stress-strain relation
for a compressible Newtonian fluid. This is done by including gravity, modeled as an external force
Fy i = —éizpug, into the argumentation usually carried out to derive sound waves in bulk media
[3,4,45], see Ref. [22] for more details. For a compressible Newtonian fluid, the shear and dilational
relaxation functions follow as

8ms = 2nu, (40)

3K,
Zuma(w) = 30}, + __,-Z’ (41)

where 7y, 1), are the shear- and dilational viscosity of medium M, and Kj is the modulus of
compression (bulk modulus) of the fluid, which for adiabatic compression is related to the sound
velocity ¢y as Ky = ,OMCIZW [3]. The relaxation function (41) describes the response of a Kelvin-
Voigt material and switches from a predominantly elastic to a viscous response if @ exceeds the
crossover frequency

wpmd = — - (42)
M

For the effect of gravity, we use the surface gravity approximation [45], for which effects of
gravity only enter in the boundary conditions at z = 0; cf. Appendix C.

If the Newtonian fluid is weakly compressible, such that 1y, n), < 3Ky /o, then the factorization
conditions (19) become

— > —=> . 43
30 ke 2 (43)

Substituting the relaxation functions (40) and (41), into the generalized capillary-gravity-flexural
dispersion relation (23), we obtain

ﬁmy:w%ﬂ%;g

where we use that )‘[\7/[,11 ~ k holds in the limit (43). If [T,p ~ oup, then Eq. (44) is the classical
dispersion relation for capillary-gravity waves for Newtonian fluids [50].
On the other hand, the Lucassen dispersion relation (26) yields

iw
K = ~—<,/ ﬂ +./ ,Om'nm + ,02D>, (45)
82D —lw —iw

where we use that )»;,,}t ~ (—iwpy /my)"/? holds in the limit (43). Substituting the definition of g,p
(13) into Eq. (45), we obtain

= \/,Oszz + ein/4 (\/,01711603 + \/,011177111603)
Kop — iwnap

+ pap) = (1 — P (44)

) (46)
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where we have chosen the complex square root that leads to a positive real part for &, so that the
resulting wave propagates in the positive x direction. This is a generalization of the Lucassen dis-
persion relation [9-12], which was originally derived for a half-space filled with an incompressible
Newtonian fluid, and without taking into account interfacial inertia. Upon neglecting the membrane
viscosity, nop = 0, Eq. (46) reduces to one central result from Ref. [35], where the Lucassen wave
was discussed for elastic interfaces separating two Newtonian fluids.

For future reference, we note that for the Lucassen wave on a Newtonian fluid, the crossover
frequency at which the interfacial inertia dominates over the bulk fluid inertia is obtained by
substituting the shear relaxation function (40) into Eq. (28), which yields

2
o’ <«//01771 + Q/,011177m> . @7

2D =
P2D

For angular frequencies above w?},, the Lucassen wave behaves thus like the one-dimensional wave
equation solution for a free membrane, Eq. (39). This will be used to estimate crossover frequencies
in Secs. IVA2,IVA3,IVB1,and IVB2.

2. Water-water interface

The Newtonian fluid model deserves further attention, since water, which is ubiquitous and
fundamentally important for life on earth, is very well described as a Newtonian fluid up to angular
frequencies slightly below the THz regime [42,51-53], as we discuss further below.

We consider water at 25°C for media I and IIl, and use the parameters [54] n =~ 1 x
1073 Pas, n’ &3 x 103 Pas, p ~ 1 x 103kg/m?, ¢ ~ 1.5 x 10> m/s. For the interface, we use
the parameters g = 9.81m/s?, pop = 1 x 107%kg/m?, n;p = 1 x 107 Pasm, Ny = 0, nj-D =1x
107°Pasm, Kop = 34 x 107> N/m, oop = 5 x 1073 N/m, kop = 3 x 107! N'm, appropriate for a
planar DPPC bilayer immersed in water. The values for o,p and Kjp are obtained for monolayers
via measuring Langmuir isotherms [14,55], the shear viscosity n,p for a DPPC bilayer is estimated
from measurements of diffusing lipids in lipid membranes [56,57], while the bending rigidity x»p
is extracted from weakly deforming bilayer vesicles [58,59]. Although the values for o,p and Kjp
are obtained for monolayers, we assume for our numerical study that the corresponding values
for a bilayer are comparable. For the transverse membrane viscosity 13y, we did not find any
experimentally measured values for a DPPC membrane in the literature; we therefore use the same
value as for 7,p. For Langmuir monolayers in a trough, the surface excess mass area density pap
can be calculated as the quotient of added lipid mass and trough area. We use a typical value for
DPPC monolayers in the context of surface wave measurements [14].

The Newtonian fluid model (40) and (41) describes bulk water in a limited frequency range and
starts to break down on timescales comparable to those of the individual water molecule dynamics
[42,51-53]. For example, the shear response starts to deviate from Eq. (40) on the timescale of water
molecule rearrangements in the hydrogen bond network, corresponding to frequencies w > 10" s~!
[42,51-53]; similar effects are expected for the dilational response. In fact, as we will see below, the
dilational crossover frequency (42) is of the order of 10! s=! for water. Likewise, for molecular
length scales we expect that the assumption of a homogeneous medium will break down [51],
and that the dependence of the fluid response on the distance from the interface will become
relevant [60]. Therefore, while our analysis below extends to angular frequencies w = 10'*s~!, the
high-frequency range @ = 10'' s7! to @ = 10'* s~ ! is included primarily to study the mathematical
behavior of the dispersion relation, and is not expected to accurately describe the response of
actual water in an experimental system. To put these high frequencies into perspective, we note
that in experiments usually lower frequencies are considered. For example, Ref. [48] observed
thermally excited capillary waves on the free surface of water via laser light scattering for angular
frequencies of @ ~ 10%s~!. In Ref. [13] sound waves on lipid monolayers were measured for
angular frequencies of up to w &~ 107 s~!. There exist, however, bulk experiments that probe the
non-Newtonian response of water at @ =~ 10'' s™! without an interface present [52]. Note that
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FIG. 2. (a, c) Properties of waves at an interface separating two Newtonian fluids with identical parameters,
as discussed in Sec. IV A 2. Parameters are given in Sec. IV A, and correspond to a DPPC membrane (interface)
and water (bulk). The full dispersion relation (30) (solid blue and green lines) and the equations that correspond
to the individual factors of the factorized symmetric dispersion relation (31), i.e., Egs. (44) (dashed purple
line) and (45) (dashed red line), are solved numerically to obtain the wave number k as a function of w.
The corresponding (a) phase velocity and (c) propagation distance are then calculated using Eqgs. (15) and
(16). (b, d) Phase velocities and propagation distances for an air-water interface, as discussed in Sec. [V A 3.
Both the full dispersion relation (12) (solid blue and green lines) and the equations corresponding to the
individual factors of the factorized asymmetric dispersion relation (35) (dashed red and purple lines) are
solved numerically, and the resulting wave number k(w) is used to calculate ¢, 87! via Eqgs. (15) and (16).
Additionally, the solution of the asymmetric vacuum-water dispersion relation (32) is shown for comparison
(dotted orange line). For all subplots, vertical dashed lines denote the various crossover frequencies discussed
for (a) and (c) in Sec. IV A2 and for (b) and (d) in Sec. IV A 3; green dash-dotted lines denote crossovers in
the capillary-gravity-flexural wave (CGW), and blue dashed lines indicate crossovers in the Lucassen wave.
Red dotted lines highlight the frequencies at which solutions of the full dispersion relation disappear. The
power-law scalings of ¢ and 8~ within each scaling regime are indicated by black bars.

by using the viscoelastic response functions published in Ref. [42], it is possible to include the
non-Newtonian high-frequency response of bulk water into our theory; however, this is out of the
scope of the present work.

We numerically solve the full dispersion relation (12), which is equivalent to Eq. (30) in the
symmetric case, as well as the factorization (31) for k for a wide range of frequencies w. By
comparing whether a solution of the factorized equation agrees with the respective solutions of
the full equation, we can assess whether the factorization (31) holds for our particular choice of
materials. For the two distinct solutions for k(w) that we find, we calculate the phase velocities and
propagation distances via Eqs. (15) and (16). In Figs. 2(a) and 2(c) we compare the results to phase
velocities and propagation distances obtained from numerical solutions of the factorized dispersion
relation, Eq. (31), which for a Newtonian fluid are given by Egs. (44) and (45) with p = p; = pn,
n=n = nu-

The phase velocity of one numerical solution of the full dispersion relation (30) agrees with
the capillary-gravity-flexural wave (CGW) dispersion relation (44) for most of the frequency range
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considered. For angular frequencies w < 107 s~!, the bulk inertia dominates over the interfacial
inertia in Eq. (44), so that B~ 2w? p/oap, where we use that for the frequencies and wave numbers
in that regime it holds that ITop & oyp. This approximate expression for k implies k ~ w?3, and
consequently ¢ = w/k ~ w'/3, as observed in the figure. According to Eq. (24), at the crossover
frequency w3, = oap/ né‘D =5 x 10%s~!, the viscous dissipation term in the interfacial response
[1,p starts to dominate over the surface tension, so that [Top ~ —iwnéb. The right-hand side of
Eq. (44) is still dominated by the bulk inertia, so that k ~ w!/3, and hence ¢ ~ w?/?, as indicated
in Fig. 2(a) by a black bar. Finally, at wg = K/’ =5 x 10'! s7!, the dilational viscosity starts to
dominate over the elastic response in Eq. (41); the compressibility of the fluid starts to become more
relevant, and the solution corresponding to the capillary-flexural wave seizes to exist at wgd* ~
3.4 x 10'"' s, While this breakdown of the capillary-flexural wave is an interesting mathematical
fact, we emphasize again that at frequencies in the THz regime, the assumption that water behaves
as a Newtonian fluid breaks down, and Egs. (40) and (41) need to be amended to obtain a physically
accurate description of the viscoelastic properties of water at such high frequencies [42,51-53]. The
phase velocity of the second solution of Eq. (30) agrees with the Lucassen wave dispersion relation
(45) almost perfectly throughout the frequency range considered, except for a discontinuity at the
frequency wg = 5 x 10'! s™!, where the dilational bulk response switches from elasticity dominated
to viscous. The crossover frequencies (29) and (47), associated with the Lucassen wave are given
by why =4 x 1012571, wslstic = 3.4 x 107 s~!. For frequencies w < @$a¥, the Lucassen wave

dispersion relation is thus approximately given by Kypk? & 2¢7/4,/pnw3, so that k ~ w** and
hence ¢ ~ w'/4, as shown by a black bar in Fig. 2(a). At the crossover frequency w$ia, the inter-
facial viscosity starts to dominate over the interfacial elasticity, so that —iwnpk? ~ 2e™/*\/pnw3,
and hence k ~ w'/*, which implies ¢ ~ w*4, as observed approximately in Fig. 2(a). The slight
deviations from the expected scaling might indicate that the factorization condition does not hold
perfectly in this regime. For very large frequencies w >> w5, the Lucassen dispersion relation
approximately yields k> A iwpap/12p, meaning k ~ w'/? from which we obtain ¢ ~ w'/2. The onset
of this regime can be observed in Figs. 2(a) and 2(c) at the highest frequencies shown.

In Fig. 2(c) we show the propagation distances 8~!, defined in Eq. (16), corresponding to the
solutions of both the full and factorized dispersion relations; we calculate the propagation distances
using the same complex wave numbers k(w) as used for Fig. 2(a). Overall, both the factorized
capillary-flexural wave and the Lucassen wave propagation distances agree with the full solution,
and show scalings fully consistent with Eqs. (17) and (18) and the local scalings of k£ with
discussed in the context of Fig. 2(a). The only exception to this is the low-frequency regime of the
capillary-gravity-flexural wave, where the factorized dispersion relation (44) predicts a propagation
distance orders of magnitude larger as compared to the full dispersion relation (30). Furthermore,
the expected scaling of ~! ~ w™%/3 for the capillary-gravity-flexural wave for angular frequencies
w < 107 s7! does not fit perfectly to the prediction of Eq. (30), so that real and imaginary parts of
k(w) scale differently with w in this regime. This shows that while the factorized dispersion relation
(44) captures the real part of the wave number properly, for the imaginary part the full dispersion
relation is necessary.

We show example displacement plots of a Lucassen and capillary-gravity-flexural wave (CGW)
at w ~ 10%s~! in Figs. 3(a) and 3(c), respectively. The displacement plots are generated by solving
Eq. (30) for k(w) to obtain the displacement potentials ¢, ¥ via Egs. (6) and (7). The displacement
field is then obtained via Eq. (3). In Fig. 3 all displacement fields are shown for frequencies
lower than the first crossover frequencies in Fig. 2, i.e., in the elastic regime for the Lucassen
wave and in the surface-tension-driven regime for the capillary-gravity-flexural wave, respectively.
Displacements at frequencies higher than the first crossover frequency are shown in Fig. 8 in
Appendix E. In all plots, the displacements of the bulk media are shown as blue and red colored
grids, representing water and air, respectively. The interface is shown as a green line. We include the
dominant decay lengths of the wave as well as trajectories of single volume elements in black. Note
that in the harmonic wave ansatz the displacement is translationally invariant in the y coordinate
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FIG. 3. Plots of the displacement field u(r, ¢) of Lucassen and capillary-gravity-flexural waves (CGW) in
the elastic and surface-tension-dominated regime, respectively. The scaling is chosen such that the respective
dominant decay lengths into the bulk media, I/Re(A;lfl) and I/Re(k&}l), as well as the propagation distance
B~! = 1/Im(k) are well visible in the plot. The displacement of the interface is shown as a green line. Bulk
water displacement is shown as a blue grid, whereas bulk air displacement is shown as a red grid. Decay
lengths and volume element trajectories are shown in black. (a) Lucassen wave at water-water interface with
® = 1.02 x 103 s, (b) Lucassen wave at air-water interface with @ = 1.04 x 10°s~!. (c) Capillary-gravity-
flexural wave at water-water interface with w = 1.02 x 103 s~!. (d) Capillary-gravity-flexural wave at air-water
interface with w = 1.04 x 103 s~

and has no displacement in that direction, so that the cross sections shown in Fig. 3 and Fig. 8
are independent of the y coordinate, which is perpendicular to the plotted xz plane. We include
animated versions of all displacement plots in the Supplemental Material (SM) [61]. Comparing
the Lucassen wave at the water-water interface in Fig. 3(a) to the capillary-gravity-flexural wave
at the water-water interface in Fig. 3(c), the most prominent difference is that the displacement
of the interface is purely longitudinal (in the x direction) for the Lucassen wave, while for the
capillary-gravity-flexural wave, the displacement of the interface is purely transversal (in the z
direction). Away from the interface, both Lucassen and capillary-gravity-flexural waves have finite
longitudinal as well as transversal displacements.

In addition to the displacements plots, we show pressure maps and velocity fields of the example
waves discussed above in Fig. 4. The pressure is calculated as a perturbation to the steady state
solution of a fluid at rest and is given by [22]

Py(r,t) =Py — KyV -uy, (48)

where Py is the pressure at z = 0. In our pressure maps, we show only the difference of pressure
in the bulk to the pressure in the interface, i.e., we set Py = 0. Consistent with the surface-gravity
approximation, we in Eq. (48) consider only the bulk pressure changes due to local compression
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FIG. 4. Pressure maps and velocity fields corresponding to the waves shown in Fig. 3. Velocity fields are
shown as black arrows, where arrow lengths correspond to the magnitude of the velocity. The pressure is
shown as a heatmap, where a red-blue colormap is used for water pressure. The air pressure is indicated by a
purple-green colormap. The pressure in the bulk fluids is always shown relative to the pressure at the interface,
i.e., setting Py = 0 in Eq. (48). Scalings have been chosen equal to the plots shown in Fig. 3. (a) Lucassen wave
at water-water interface with @ = 1.02 x 10> s~!. (b) Lucassen wave at air-water interface with @ = 1.04 x
10° s7!. (c) Capillary-gravity-flexural wave at water-water interface with @ = 1.02 x 103 s~!. (d) Capillary-
gravity-flexural wave at air-water interface with @ = 1.04 x 10°s~!.

and expansion of the fluid. The velocity field is obtained by taking the temporal derivative of
the harmonic wave ansatz (3). Pressures and velocity fields at frequencies higher than the first
crossover frequency are shown in Fig. 9 in Appendix E. We include animated versions of all pressure
plots in the SM [61]. Comparing the pressure profile of the Lucassen wave at the water-water
interface in Fig. 4(a) to the pressure profile of the capillary-gravity-flexural wave at the water-water
interface in Fig. 4(c), the most prominent difference is that the capillary-gravity-flexural wave has
pressure nodes at the interface, i.e., changes in the sign of the pressure at the interface, whereas the
Lucassen wave exhibits no pressure nodes. Instead it is very well seen that the Lucassen wave is a
pressure wave along the interface. The velocity field for the Lucassen wave shows that velocities
are predominantly directed towards and away from the direction of wave travel, and their magnitude
decreases when moving away from the interface as well as from the site of initial excitation
x = 0. For the capillary-gravity-flexural wave, the velocity field shows a rotating behavior, with
the direction of rotation alternating from clockwise to counterclockwise at each pressure node. The
decay lengths are comparable to those of the Lucassen wave.

3. Air-water interface

Experiments on lipid monolayers often measure membrane properties on a trough of water [8,13—
15], which corresponds to a planar viscoelastic interface with water and air as bulk materials I and
III. In theoretical modeling of air-water interfaces, one usually considers only the water dynamics
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below the membrane, and does not explicitly consider the dynamics of the air above. This can be
intuitively explained by the much lower density and viscosity of air in comparison to water. In
this section, we compare predictions of our full dispersion relation (12) to the factorized half-space
dispersion relation (35), to demonstrate that the air dynamics can indeed be neglected.

For medium I we use water, modeled as a compressible Newtonian fluid with the parameters
from Sec. IV A 2. To model air as medium III, we also use the compressible Newtonian fluid model
from Sec. IV A 1; at 25 °C, the relevant parameters are [54] nyp ~ 18.2 x 10-°Pas, Ny = 0, o =
1.2kg/m?, cip &~ 343 m/s.

For a wide range of frequencies, we numerically solve both the full dispersion relation (12) and
the dispersion relations pertaining to each of the two factors of the half-space dispersion relation
(35). We subsequently use Egs. (15) and (16) to evaluate the corresponding phase velocities and
propagation distances, and show the results in Figs. 2(b) and 2(d). For comparison, we also include
the capillary-gravity-flexural wave solution of the full dispersion relation in the asymmetric case
(32).

For the capillary-gravity-flexural wave, we observe that the phase velocities predicted by the full
dispersion relation agree perfectly with the asymmetric dispersion relation throughout, and with
the factorized half-space dispersion relation up until wy ¢ = Ki/n; = 5 x 10" s71; at this frequency,
the dilational response of the water below the interface becomes dominated by the viscosity, and
at of& =3.41 x 10" s7! the capillary-gravity-flexural wave solution disappears, similar to the
symmetric case discussed in Sec. IV A 2 above. In contrast to the symmetric case, for the half-space,
the phase velocity is not monotonic, but has a minimum at @ &~ 10 s~!. This minimum denotes the
crossover from capillarity-dominated to gravity-dominated dispersion, and its location follows from
Eq. (44), by equating the left-hand side of the equation with the gravitational term, as

_ 3 1/4
wcg = (—(pl ,Omg g ) ~117s71, 49)
(o1 + pm)*o2p

where we use that for the frequencies and wave numbers involved [1,p & oyp holds, as follows
from Eq. (14), and employ the gravity-wave dispersion relation (see just below) to eliminate k
from the equation. For frequencies w < wcg, the right-hand side of the dispersion relation (44)
is dominated by the gravitational term, so that k ~ w? /8(pr + pm)/ (o1 — pm) ~ w?. According
to Eq. (18), we thus have ¢ ~ ™!, as observed in Fig. 2(b). This gravity-wave regime is not
present in the symmetric scenario, because for p; = py the rightmost term in Eq. (44) vanishes.
For the phase velocity of the Lucassen wave solution, we observe very good agreement between
the full dispersion relation and the factorized half-space solution throughout. Even close to the
frequency wB& = 3.41 x 10" s~!, where the capillary-gravity-flexural wave solution disappears,
the factorized Lucassen dispersion relation does not deviate from the full dispersion relation. This is
in contrast to the symmetric scenario shown in Fig. 2(a), and presumably because, in the present
case, weg = 3.41 x 101 s~ ! is closer to the crossover frequency a)gD = 10'2s~!, at which the
inertia of the interface starts to dominate over bulk properties, so that the crossover in the bulk
viscoelastic response is already less relevant for the dispersion relation.

The propagation distance of the capillary-gravity-flexural wave, shown in Fig. 2(d), displays a be-
havior similar to the symmetric case depicted in Fig. 2(c): For frequencies above @S, = oap /3y, =
5 x 10°s~!, where the surface viscosity dominates over the surface tension, the propagation dis-
tance of the full capillary-gravity-flexural wave agrees with the factorized half-space results. Below
the crossover frequency w9}, the two formulas (12) and (35) predict different propagation distances.
The propagation distance predicted by the full dispersion relation of the asymmetric case (32) agrees
with the full dispersion relation even below w3, except for very low frequencies w < 10%s™!. Also
note that the propagation distances 8! of the capillary-gravity-flexural wave scale differently than
B! ~ w72, as observed in Fig. 2(d).

To summarize this section so far, for an air-water interface, the factorized half-space dispersion
relation (35) overall constitutes a good approximation to the full dispersion relation (12) for both
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capillary-gravity-flexural and Lucassen waves. However, for the capillary-gravity-flexural wave, the
factorized equation fails to predict the breakdown of the wave at high frequencies, and overestimates
the propagation distances at low frequencies.

As for the water-water case discussed above, we include example displacement plots of a
Lucassen and capillary-gravity-flexural wave at w =~ 103s~! in Figs. 3(b) and 3(d), respectively.
Comparing the Lucassen wave at the air-water interface in Fig. 3(b) to the capillary-gravity-flexural
waves at the air-water interface in Fig. 3(d), it transpires that the displacements in the Lucassen wave
are dominated by longitudinal components, while the displacements of the capillary-gravity-flexural
wave are dominated by transversal components. However, both the interface and the bulk fluids pos-
sess finite longitudinal and transversal components in both waves. For the Lucassen wave, there is an
asymmetry in the vertical decay lengths: the vertical decay length of air 1/ Re()LI_H{ .) is significantly

larger than its counterpart for water, 1/Re (A ll ). Meanwhile, for the capillary-gravity-flexural wave,

the dominating vertical decay lengths 1/Re(A;; Il) and 1 /Re(kﬁlll) are symmetrical. As before, we
additionally show pressure maps and velocity fields of the Lucassen and capillary-gravity-flexural
waves at the air-water interface in Figs. 4(b) and 4(d). For the Lucassen wave, it transpires that
both the air half-space and the water half-space exhibit regions of alternating negative and positive
pressure, corresponding to the compression and expansion of the interface, similarly to the water-
water case. However, the regions of maximum pressure in the two half-spaces do not perfectly align.
For the capillary-gravity-flexural wave, as for the water-water interface shown in Fig. 4(c), there are
pressure nodes visible, however they are slightly shifted along the x direction, meaning that absolute
pressure maxima do not coincide for the two bulk fluids.

Comparing the Lucassen wave at the water-water interface in Fig. 3(a) to the Lucassen wave
at the air-water interface in Fig. 3(b), the most prominent difference is that the motion of the
water-water interface is purely longitudinal, while the motion of the air-water interface possesses
also a transversal component. This is due to the asymmetry in the vertical decay lengths 1/Re(A tl)

and 1 /Re(kﬁllt), respectively. Also note that the horizontal decay length 1/Im(k) is larger in the
asymmetric case than in the symmetric case. Comparing the capillary-gravity-flexural wave at the
water-water interface in Fig. 3(c) to the capillary-gravity-flexural wave at the air-water interface in
Fig. 3(d), the overall displacements look rather similar. The dominating vertical decay lengths are
givenby 1/Re(A| 11) and 1/ Re(kﬁlll), which are equal in both the water-water and air-water scenario.
As for the Lucassen wave, also for the capillary-gravity-flexural wave the horizontal decay length
1/Im(k) is larger for the air-water case as compared to the water-water case. The motion of the
water-water interface is purely transversal, while the air-water interface possesses a longitudinal
component. To sum up, the displacement of the water-water interface is purely longitudinal for
the Lucassen wave and purely transversal for the capillary-gravity-flexural wave, while differences
in bulk fluids introduce an additional transversal and longitudinal component to the interface,
respectively. Overall, horizontal decay lengths are larger in the air-water case than in the water-water
case.

B. Viscoelastic bulk media

One advantage of both our general dispersion relation (12) and the factorized dispersion relation
(21) is that these relations are derived for arbitrary linear, homogeneous, isotropic viscoelastic bulk
media. While in the previous Sec. IV A we used Newtonian fluids as bulk media, in the present
section we consider interfacial waves for two other viscoelastic bulk materials.

More explicitly, we consider the dispersion relation of the Lucassen wave solution on polymer
gels and polymer solutions as bulk media. We here focus on the Lucassen wave, as this is the relevant
pressure wave for biological scenarios related to nerve pulse propagation [15,16]. In particular,
a viscoelastic membrane surrounded by two viscoelastic media serves as a model for the cell
membrane of a neuron, separating the hydrogel axoplasm and extracellular fluid.
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1. Polymer gels as bulk media: Kelvin-Voigt model

The elastic properties of polymer gels are determined by the density of entanglements between
individual polymer chains. A characteristic of a gel are the extremely long lifetimes of entangle-
ments. On timescales relevant to the wave phenomena we investigate, we can therefore assume
permanent crosslinks between chains [62]. In the linear regime, the polymer gel can thus be modeled
as a purely elastic polymer network immersed in a viscous Newtonian solvent. We model this as a
Kelvin-Voigt material. For this, we leave the dilational relaxation function (41) unchanged, and use
a shear relaxation function

- 2Ey
Ems(w) =20y + . (50)

where 1, is the fluid viscosity, while Ej; is the fluid elastic modulus under shear. A systematic
bottom-up theory for the linear frequency-dependent viscoelastic response of a polymeric network
can be found in Ref. [63]. On a phenomenological level, the Kelvin-Voigt model corresponds to a
viscoelastic circuit comprised of a purely viscous damper and purely elastic spring, connected in
parallel [41,42].

From Eq. (50) the characteristic crossover frequency of the Kelvin-Voigt material follows as

oy = E—M, 51
Nm

below which the shear response is dominated by elasticity, guy (@) =~ 2Ey/(—iw). Above the
crossover frequency wXV, the shear response is approximately that of a Newtonian fluid, i.e.,
8m.s(®) = 2ny, which is constant as a function of w. Equation (51) implies that the Kelvin-Voigt
material has a characteristic timescale of t5¥ = 1/0XV.

Starting from the analytical solution of the generalized Lucassen wave (26) and inserting the
shear relaxation function (50) for 1), in Eq. (9), we obtain the analytical Lucassen-wave solution
for a viscoelastic membrane at the interface of two polymer gels as

. \/pmwz+em/4wRI<w>+¢Rm<w))’ )

K>p — iowmop

where
WKV
Ry(w) = pMnMw3<1 + l%) (53)

and where all complex square roots are chosen to have positive real part. For w > &Y, we have
Ry () ~ pynye® and Eq. (52) reduces to the Lucassen dispersion relation for a Newtonian fluid,
Eq. (46).

As an explicit example we consider a symmetric system with Kelvin-Voigt bulk media, with
elastic moduli E = E; = Eyjp = 0.1 Pa, as in Ref. [62]. For the other bulk and interface parameters
we use the same as in Sec. IV A 2; according to Eq. (51), this results in a Kelvin-Voigt crossover
frequency XV = 10?571

In Figs. 5(a) and 5(c), we compare the predictions of Eq. (52) to both the full symmetric disper-
sion relation (30), and the factorized Lucassen relation (46) for a symmetric Newtonian fluid system.
As expected, for w > a)}f}’ the two factorized solutions (46) and (52) lead to indistinguishable phase
velocities and propagation distances and differ only for » < w, when the elastic component in
Eqg. (50) is nonnegligible. A solution that is similar to the Lucassen wave for the full dispersion
relation (30) exists only in the frequency range w > o™ = 2.29s~!, where it is well described by
Eq. (52), except for a discontinuity at the frequency @ = 8.4 x 10'%s~!, as observed in Sec. IV A 3.
To rationalize the low-frequency breakdown of the Lucassen wave, we show in Appendix F that as w
approaches il = 2.29s~! from above, the real part of A, ! approaches zero, so that the transversal
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FIG. 5. Phase velocities ¢ and propagation distances 8~! for Lucassen waves at an interface separating
viscoelastic materials. Phase velocities and propagation distances are obtained from k(w) via Egs. (15) and
(16). For (a) and (c), the viscoelastic bulk materials are two Kelvin-Voigt materials with identical properties,
as discussed in Sec. IV B 1. To obtain k(w), the full symmetric dispersion relation (30) (solid blue line), the
Kelvin-Voigt Lucassen dispersion relation (52) (dashed red line), and the Newtonian-fluid Lucassen dispersion
relation (46) (dotted green line) are evaluated numerically. For (b) and (d), two Maxwell fluids with identical
parameters are considered as bulk materials; cf. Sec. IV B 2. To obtain k(w), each of the dispersion relations
(30) (solid blue line), (39) (dotted orange line), (46) (dotted green line), (55) (dashed red line) is evaluated
numerically. For all subplots, vertical dashed lines denote crossover frequencies as discussed in Sec. IV B 1 for
(a), (¢), and in Sec. IV B 2 for (b), (d). Blue dashed lines denote crossovers in the Lucassen wave. Red dashed
lines highlight the frequencies at which solutions of the full dispersion relation disappear. The crossover to the
free membrane limit is colored orange for better distinguishability. The power-law scalings of ¢ and 8! within
each scaling regime are indicated by black bars.

decay length of the Lucassen wave diverges. The wave solution therefore does not decay any longer
away from the interface and hence ceases to be a surface wave solution.

In summary, we observe that the Lucassen wave breaks down for angular frequencies shortly
below i, when the bulk media responds predominantly elastically. For angular frequencies above
a)?{?, the Lucassen wave behaves as the corresponding wave solution for purely viscous fluids, as
seen in Figs. 2(a) and 2(c), and in particular displays the same scaling regimes.

2. Polymer solutions as bulk media: Maxwell model

In contrast to the polymeric gel, the elastic properties of a solution of rather short polymer chains
in liquid solvent are determined by finite lifetime interchain entanglements. Polymer chains may
disentangle themselves from neighboring chains by diffusion, a process called reptation [62]. The
characteristic time of a chain to diffuse out of the loose polymer network is called reptation time,
and the characteristic macroscopic stress relaxation time 7y = 1/w}" of such a polymer solution
scales directly with the reptation time [62]. A polymer solution can be modeled as a Maxwell fluid
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with shear relaxation function

D) = (54)
1 —iwty

which for small angular frequency @ < )" = 1/1) reduces to the Newtonian fluid model (40).
On a phenomenological level, a Maxwell fluid corresponds to a purely viscous damper and a purely
elastic spring, connected in series [41,42]. This is in contrast to the Kelvin-Voigt model, where
damper and spring are connected in parallel. While the Maxwell model describes a fluid, meaning
that it features a purely viscous response in the low-frequency limit w < @)V, the Kelvin-Voigt
model describes a solid with a purely elastic response in the limit » < ok". It should be noted that
real polymer gels are in fact described by more than two viscoelastic regimes and must be modeled
by a combination of Kelvin-Voigt and Maxwell models.

The relevance of the Maxwell model goes beyond polymer solutions: As mentioned in
Sec. IV A2, in the THz regime also pure water deviates from a Newtonian fluid model, and descrip-
tions of water on such short timescales are based on the Maxwell model and generalizations thereof
[42]. For high-concentration glycerol solutions, non-Newtonian behavior in the shear viscosity can
be observed at lower frequencies, namely in the GHz regime [42].

Substituting the Maxwell-model shear relaxation function into the generalized Lucassen wave
(26), we obtain

) 55
= Kop — iwnap

which for v « w}t}w = 1/1) reduces to the dispersion relation (46) of a Newtonian fluid.

As an example, we consider a symmetric system with Maxwell ﬂuids as bulk media. For the
characteristic Maxwell frequency we use o™V = oMV = oMV = 10357, so that T = 1/MV =
71 = 7y = 1073 s. For all other bulk and interface parameters we cons1der the same values as in
Sec. IVA2.

In Figs. 5(b) and 5(d), we compare phase velocities and propagation distances based on Eq. (55)
to those obtained from the full symmetric dispersion relation (30) and the Lucassen wave dispersion
relation for a Newtonian fluid, Eq. (46). For frequencies o < oM%, where the Maxwell fluid
behaves like a Newtonian fluid, all three dispersion relations lead to identical phase velocities and
propagation distances, with a scaling that follows from Eqgs. (17) and (18), and the classical Lucassen
wave scaling k ~ w3/, as previously observed in Figs. 2(a) and 2(c). This is in contrast to the
Kelvin-Voigt model considered in the section above, where the solution differs from that of a Newto-
nian fluid for frequencies below the characteristic crossover frequency. For frequencies o > oMV,
the approximate scaling behavior of Eq. (55) can be obtained by considering the numerator and
denominator inside the square root separately. We first consider the numerator. Using Eq. (28), and
approximating g, ~ 2n/(—iwt) as appropriate for @ > oM™, the crossover from bulk-dominated to
interface-dominated inertia occurs at the angular frequency wjy, = 24/p1/T/pp & 6.3 x 107 s71;
this crossover here occurs at a significantly lower frequency as compared to a Newtonian fluid with
the same density and viscosity, for which in Sec. IV A 2 we obtained 10'? s~ Interestingly, such
a behavior is not seen in the Kelvin-Voigt model solution above. The crossover from elastic to
viscous interface response, described by the denominator of the dispersion relation (55), follows
via Eq (29) as w§s = Koy /nap = 3.4 x 107 s7!, which for our system parameters is very close
to wh,. For a)MW Lo a)glsmc, whyp, the dispersion relation is dominated by bulk inertia and
interface elasticity; the wave number scales approximately as k ~ (/pn/Tw/Kop)'/? ~ w'/?, which
according to Eq. (18) implies ¢ ~ w!/?, B~! ~ w~!/2. In this non-Newtonian frequency regime, the
dispersion relations (55) and (30) agree perfectly, and are markedly different from the Newtonian
fluid (46). This is in contrast to the Kelvin-Voigt model, where viscoelastic and Newtonian solutions
coincide for frequencies above the characteristic crossover frequency. For @ 3> @53, ol the
Lucassen wave is dominated by interfacial inertia and interface viscosity, and the wave number
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FIG. 6. Phase diagram showing the crossover frequencies found from the analytical solution of the Lu-
cassen wave on the polymer solution-polymer solution interface Eq. (55). The crossover from Newtonian to
Maxwell-fluid is denoted by @™V (blue line), whereas the crossover to the free membrane limit is denoted by
why, (orange line). The red dotted line shows the crossover from elastic to viscous response w$ia. The black
dashed line shows our choice of T = 1073 s as an example.

scales as k ~ /papw/np ~ @'/?, so that the scaling ¢ ~ w'/2, B~! ~ w~1/? also holds at this
frequency. That the dispersion relation is dominated by the interface for high frequencies is
highlighted by the free-interface dispersion relation (39), which is also shown in Figs. 5(b) and
5(d), and which agrees with the Maxwell dispersion relations for w > a)%sm, a)zpD. The interface
dominance is also the reason why the Newtonian-fluid dispersion relation starts to agree with the
Maxwell-fluid dispersion relation again at the highest frequencies shown: The bulk properties are
simply not relevant anymore.

In Fig. 6 we show a phase diagram illustrating the crossover frequencies of the Lucassen wave
solution for a viscoelastic membrane surrounded by two half-spaces consisting of a polymer solution
in water, described by a Maxwell-fluid model, where we denote our choice of T = 1073 s with
a black dashed line. It can be seen that for higher values of 7, the two crossovers happen at
frequencies further away from each other, whereas for smaller values of 7, the crossover frequencies
converge, until eventually the transition from the Newtonian-fluid behavior to the free membrane
limit occurs without an intermediate Maxwell-model regime. The vertical red dotted line denotes the
crossover frequency w$ia™i® from elastic to viscous interfacial response, as defined in Eq. (29). This
line intersects the horizontal black dashed line very closely to the crossover from bulk-dominated
Maxwell-model dispersion to free-membrane interface-dominated dispersion, highlighting again
that the two crossovers (bulk to interface dominated wave; elastic to viscous interfacial response)
occur simultaneously in Figs. 5(b) and 5(d).

In summary, we observe that the Lucassen wave at the interface of Maxwell fluids introduces
two new scaling regimes with a power law k ~ @'/2, which are distinctly different from the
corresponding wave solution in the purely viscous case except for the highest frequencies shown.
Moreover, the crossover frequency w5, marking the dominance of the interface properties over bulk
properties occurs at a lower frequency than in the corresponding Newtonian-fluid case.

V. DISCUSSION AND CONCLUSIONS

In the present work we derive the general conditional equation (12), which governs linear waves
at planar viscoelastic interfaces that separate two linear, homogeneous, isotropic viscoelastic bulk
materials. We show how viscoelastic Rayleigh waves, and generalizations of capillary-gravity-
flexural and Lucassen waves, as well as the equations from elastic plate theory, follow from
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our general relation. Focusing mainly on the Lucassen wave, we numerically solve the general
dispersion relation, and compare the result to analytical limiting cases, for several explicit example
systems, including a viscoelastic interface separating two Newtonian fluids, Kelvin-Voigt materials,
and Maxwell fluids. For each case we identify and interpret the intermediate power-law scaling
regimes of the wave phase velocity and propagation distance. Quantifying existence regimes
and studying interrelations between different limiting cases is only possible via a theory which
incorporates all relevant properties simultaneously. Our discussion of crossovers (Fig. 2 and Fig. 5)
thus has to be based on such a unifying theory, which we provide in Sec. II.

From a theoretical perspective, our work unifies the derivation of a wide variety of surface waves,
and uncovers relations between them. For example, our results make explicit that oscillations of an
elastic plate in vacuum are in fact a limiting case of capillary-gravity-flexural waves. Our theory
thus enables to systematically study the interrelations and parameter- and frequency-dependent
crossovers between different wave solutions. This will in particular serve as a bridge to connect
the extensive literature on waves on viscoelastic materials [64—66] to the literature on water wave
theory [3,4,67].

From a more practical perspective, our results have several applications: Just as viscoelastic
Rayleigh waves can be used to measure properties of the material they are excited on [38], or
the damping of capillary waves can be used to infer the viscosity of a Newtonian fluid [68], the
dispersion relations we derive here can be used to determine mechanical properties of both interface
and bulk media, a topic which continues to be of importance in soft matter physics [38,56,69,70].
More explicitly, after experimentally identifying the various power-law scaling regimes of phase
velocity and propagation distance of periodically excited Lucassen waves, the analytical viscoelastic
Lucassen dispersion relation can be inverted to extract the characteristic viscoelastic timescales of
the system under consideration. In particular, the high-frequency properties of viscoelastic surface
waves provide a route to probe the non-Newtonian nature of water on short time scales; here, the
surface-wave approach can complement established bulk-based experiments [52].

From a biophysical perspective, our theory for Lucassen waves in the presence of viscoelastic
bulk media serves as a starting point for investigating the properties of interfacial sound pulses as
carriers of information, which has possible relevance for acoustic nerve pulse propagation phenom-
ena [13-15]. Interfaces in biological systems are typically immersed in a hydrogel environment,
for which a viscoelastic description is more appropriate than a simple Newtonian fluid model. In
this context it will be particularly interesting to understand how bulk viscoelasticity changes the
properties of nonlinear sound waves at interfaces, which so far have exclusively been studied for
Newtonian bulk fluids [15,16]. One particularly interesting aspect of the Lucassen wave is the
dependence of phase velocities and propagation distances on the membrane compressibility K>p,
which according to Egs. (15), (16), and (46), is, for a wave dominated by membrane elasticity and
viscous bulk inertia, given by

c ~ ~Kyp, (56)

B! ~ VKap. (57)

In our continuum model, modifications in the physical system under consideration are incorporated
by changing the model parameters. For example, an axon membrane with a myelin sheath around it
can be modeled as an effective interface, with an effective area modulus K,p, assuming that myelin
sheath and axon membrane are rigidly connected. Although direct experimental measurements are
lacking, it is predicted that a myelin membrane has a larger area modulus K,p as compared to
the membrane of an unmyelinated axon [23,71-73]. We would therefore expect that myelination
increases the area modulus of the effective axon interface, which according to Eqgs. (56) and (57)
would then both speed up pressure waves and enhance their propagation distance. As has been noted
before in the context of pressure waves in cylinders [23], this acceleration of the pulse is similar to
what is observed in saltatory conduction, where myelinated axons lead to action potentials that travel
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TABLEI. Parameters appearing in our description of the viscoelastic media. For the bulk media parameters,
the index M e {I, 111} labels the medium.

Bulk media
Sus(w) Shear relaxation function
Bma(w) Dilational relaxation function
om (Volume) mass density
Ny Shear viscosity
Ny Dilational viscosity
Ky Bulk modulus
Ey Elastic modulus in Kelvin-Voigt model
™ Stress relaxation time in Maxwell model
c Speed of sound
P Pressure
Interface
12D In-plane shear viscosity
p In-plane dilational viscosity
M5 Transversal shear viscosity
KD Bending rigidity
—0op 2D pressure
02D (Area) mass density
Zp(w) In-plane relaxation function
Iyp Out-of-plane relaxation function
Bulk media and interface
g Gravitational acceleration

faster, as compared to their unmyelinated counterparts. We emphasize that this is not the textbook
view on saltatory conduction, for which compelling explanations already exist in the framework of
the Hodgkin-Huxley model. Similarly, if anesthetics solvated in the lipid membrane indeed decrease
the area modulus Kjp, as suggested in Ref. [23], the Meyer-Overton rule, which states that the
effectiveness of an anesthetic is directly proportional to its solubility in a lipid membrane [74,75],
would be fully consistent with the properties of the Lucassen wave, which according to Egs. (56) and
(56) leads to slower and more strongly damped waves, and hence less efficient pulse propagation.
Again, we stress that also for the Meyer-Overton phenomenon, there exist theories which do not
utilize mechanical pulses as means of signal transduction [76-79].

A possible extension of this work includes the effects of a time-dependent external force acting
on the interface, providing a theory to be used for surface microrheology [36,37]. Furthermore, it
will be interesting to extend this work to other geometries, e.g., on cylinders, where one bulk fluid
has finite depth and the interface is curved [80,81].
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APPENDIX A: TABLE OF PARAMETERS

In Table I we summarize all parameters that appear in this paper. The parameters for media I, II,
and IIT were all introduced in Sec. II.

APPENDIX B: DERIVATION OF HELMHOLTZ EQUATIONS

In the following we give a short derivation as to why potential functions ¢ and ¥ which solve the
Helmholtz equations (4) and (5) also solve the linearized equations for momentum conservation (1)
with viscoelastic stress-strain relation (2).

Since the convolutional integrals in Eq. (2) are considerably simpler in Fourier space, we start by
writing the temporal Fourier transform of Eqgs. (1) and (2) in the surface gravity approximation (cf.
Ref. [22])

N - - 8ij - -
pur(=i)iing,; = 8 (B (@) + - Enra(@) = B ) (B1)

for j € {x,y, z}, where the components of the stress tensor are given by &y ;; = (it + Okiipg,j)/2
and the displacement is a function of space and frequency, i1y, = ity (r, @). We furthermore use the
decomposition of the displacement into curl-free and divergence-free potentials (3), so that

iyt = 0;Pm + €1 Vni, (B2)

where ¢ i; denotes the three-dimensional Levi-Civita symbol [82]. We proceed to insert Eq. (B2)
into Eq. (B1). A quick calculation yields that

€ = Tr(€y) = Aduy, (B3)

where A = 32 + 8y2 + 8Z2 is the Laplace operator. After some mathematical transformations, we find
furthermore that

Wk = 0;APM + S€ 1 AV (B4)
Combining Egs. (B2), (B3), and (B4) into Eq. (B1), one obtains
. _ . _ . 1 = 1 N .
om(—iw)(0;Py + €1 Vm1) = gM,s(ajAfﬂM + ESjklakAI/fM,z) + g(gM.d — 8ms)0;Ady, (BS)

finally leading to

2

From the form of Eq. (B6) we can immediately see that if Eqs. (4) and (5) hold, then Eq. (B6) is
fulfilled.

1 - 1 .
0=09; <,0M(—iw)¢M - §(2£’M,s + gM,d)A¢M) + &k 0k (,OM(—iw)l/fM,l - —gM,sAllfMJ)- (B6)

APPENDIX C: DERIVATION OF LINEAR SYSTEM OF EQUATIONS DETERMINING THE FULL
DISPERSION RELATION

A review of the derivation of the continuum mechanical boundary conditions of two bulk media
divided by a viscoelastic surface was given by Kralchevsky et al. [43]. The interface is assumed to
have a purely viscous shear response with viscosity n,p, a viscoelastic response under dilation with
viscosity 7, and a position-dependent surface tension o. For out-of-plane deformations, a bending
rigidity kop and a transverse viscosity 73, is taken into account. Furthermore, the interface has an
area mass density pop. In Ref. [22], it is shown that the surface tension of the interface can be written
as

oxp(r,t) = oyp + Kopdgug, (C1)

114801-25



ZENDEHROUD, NETZ, AND KAPPLER

1 02 E 1 1 1 1
[ === Rayleigh wave solution #1
E — Rayleigh wave solution #2

10'
100

10-1|

c(w) [m/s]

10-2|
10-3

104 : : : :

10-2 |

1/B(cw) [m]
=

L L 1 1
101 10! 103 10° 107
w [1/s]

FIG. 7. Traditional Rayleigh wave solutions at the vacuum-water interface. The dispersion relation for the
traditional Rayleigh wave equation (34) is solved numerically to obtain the wave number k as a function of .
Phase velocities and propagation distances are obtained from k(w) via Egs. (15) and (16).

where oyp is the constant equilibrium surface tension, Kpp is the 2D modulus of compression of
the surface, and we use the convention that Greek indices run over {x, y}, while Latin indices run
over {x, y, z}. The position-dependent surface tension Eq. (C1) is necessary to model interfaces with
insoluble surfactants, such as DPPC membranes on water. This is because insoluble surfactants do
not simply move into the bulk upon compression of the membrane, which leads to a finite interfacial
compressibility. In fact, only for a finite interfacial compressibility K»p can interfacial pressure wave
(Lucassen wave) solutions arise from the general dispersion relation, as is shown in Refs. [16,22].
Combining Eq. (C1) with the results of Ref. [43], the boundary conditions

02037 UrD.0 = (01120 — O1.26) + (Ko + Mypd: )3 dptian g + 120 ds 8§u2D,ou for o € {x,y}, (C2)

Pa0d}Urn,; = (01,22 — 01.22) — Pang(1 — dguap ) + (020 + Mopd; — K2D8§)a§u2D,z (C3)

are derived in Ref. [22]. Here p,p is the constant equilibrium surface excess mass area density of
the interface, u,p is the displacement of the interface, and all functions of position are understood
to be evaluated at z = 0.

Including gravitational restoring forces in the boundary condition, the temporal Fourier transform
of the stress tensor (2) at the interface z = 0 is given by [22]

- _ o —iw - .
Gir(w) = =8k[6(w)Py — gpii(w)] + (—iw)gs(w)€jx(w) + 8 jr ——[8a(w) — &s(w)]€n(w), (C4)
where Py is the constant background pressure at z = 0 and the displacement field # and its
derivatives are understood to be evaluated at z = 0. Note that according to the surface gravity
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approximation [45], the gravitational acceleration of the bulk media only enters in the boundary
conditions via Eq. (C4) [22].

The continuity conditions at the interface z = 0 are obtained by calculating the displacement
field (3) from the harmonic wave ansatz (6) and (7) for z > 0 and z < 0, respectively, and equating
them at z = 0. This yields the two linear equations

1 1 q)l
ik = =ik =Ag) | Y| _ (0
(MJ ik ol —ik )| em |~ \o) (C5)
W

where A 11, AL tl , kﬁl{l, )»I’Hl,t are given by Eqgs. (8) and (9). The stress continuity equations are obtained

by calculating &y ;;, 61r,i; and iiop ; = (iiy,i|.—0 + #im,il,—0)/2 for the displacement field (3), and then
substituting the result into Egs. (C2) and (C3). For Eq. (C2), only the o = x case is needed, since
a short calculation shows that the « = y equation is fulfilled trivially. For the stress tensors of
media I and III we use the generalized form (C4) to include effects of gravity [22]. The resulting
equations for the stress boundary conditions are

0 = ik[iwpop — k*82p — 2815211 |1 + [A! (—iwpap + K*Zop) + &1 (K + )‘I_,rz)]‘l’l
+ ik[iwpap — K &op — 28m.shy | P
+ [—kﬁll,t(—ia)pzD + K*gop) — g’IILS(k2 + )‘I_Hz,t)]qjm (o)
and
0 = [A (@ pap — K*Tlop — 2gp1) — k2 papg + iwdrs (K + A7) |1
+ ik[@®pap — K*TIap — 2801 + )‘I_,tl (2i01,s — gpa0)] Wi
+ [—A (@ pop — K TTop + 2gpm) — k> pang — iwgms (K + Agf,) | Pm
+ ik[w® pop — K*Top + 2gpm + A ((2iwgus + go20) | Wi, (€7)

where again 4,7, AL . )‘1_111,1 and )LI_H{l are given by Egs. (8) and (9), and where Z,p(w), [Top(k, w) are

defined via Eqé. (13) and (14).

The homogeneous linear system of Eqgs. (C5), (C6), and (C7) for the coefficients @y, Wy, Py
and Wy has a nontrivial solution if and only if the determinant of the coefficient matrix is zero.
Calculating this determinant and equating it with zero, we obtain the conditional Eq. (12).

APPENDIX D: RAYLEIGH WAVES AT THE VACUUM-FLUID INTERFACE

As discussed in Sec. III B, we find a Rayleigh-type surface wave equation for the water-vacuum
interface. More explicitly, upon removing the effects related to the surface (pp =0, gp =0,
IT,p = 0), Eq. (32) becomes Eq. (34):

A = (1 42
This equation gives rise to two Rayleigh-type wave solutions k(w). A plot showing the two solutions
of Eq. (34) at the vacuum-water interface is shown in Fig. 7.

APPENDIX E: EXAMPLE VISUALIZATIONS IN THE DISSIPATIVE REGIME

We include example displacement plots of a Lucassen and capillary-gravity-flexural wave
(CGW) at w ~ 10%8s~! at the water-water interface in Figs. 8(a) and 8(c) and at the air-water
interface in Figs. 8(b) and 8(d), respectively. As opposed to the plots in Fig. 3, all displacement fields
are shown for frequencies above the first crossovers, i.e., in the dissipative regime. In this regime,
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FIG. 8. Displacement plots of Lucassen and capillary-gravity-flexural waves (CGW) in the dissipative
regime. The scaling is chosen such that the wave-type-specific dominant decay lengths into the bulk me-
dia 1 /Re()u;zl) and 1 /Re()\;lh) as well as the propagation distance f~' = 1/Im(k) are of the same order
of magnitude and visible in the plot. The displacement of the interface is shown as a green line. Bulk
water displacement is shown as a blue grid, whereas bulk air displacement is shown as a red grid. Decay
length and volume element trajectories are shown in black. (a) Lucassen wave at water-water interface with
o = 1.01 x 108 s™!. (b) Lucassen wave at air-water interface with w = 1.04 x 10%s~'. Note that the vertical
decay length into air 1/Re(A [, tl) is too large to include in the diagram without rendering the displacements
too small to observe. (c) Capillary-gravity-flexural wave at water-water interface with @ = 1.01 x 10%s7!
(d) Capillary-gravity-flexural wave at air-water interface with w = 1.04 x 10857,

the membrane response is dominated by the interfacial shear viscosity n,p for the Lucassen wave
and by the interfacial transversal viscosity nzLD for the capillary-gravity-flexural wave, respectively.
Again, the water-water interface displacements are purely longitudinal for the Lucassen wave and
purely transversal for the capillary-gravity-flexural wave, while the bulk fluid elements have finite
longitudinal and transversal components in both cases.

In addition to the displacement plots, we include pressure maps and velocity fields of the example
waves in the dissipative regime described above in Fig. 9. We include animated versions of all plots
in the SM.

APPENDIX F: BREAKDOWN OF LUCASSEN WAVE ON KELVIN-VOIGT INTERFACE

As discussedin Sec. IVB 1, at a)ﬁ‘{}‘ =2.295"! the numerical Lucassen wave solution of Eq. (30)

ceases to exist. In Fig. 10 we show that the real part of A !(k, w) approaches zero as w approaches
ol =2.2957!, 50 that the transversal decay length diverges; the wave hence ceases to be a surface
wave, which rationalizes the breakdown of the Lucassen wave.
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FIG. 9. Pressure maps and velocity fields corresponding to the waves shown in Fig. 8. Velocity fields
are shown as black arrows, where arrow lengths correspond to the magnitude of the velocity. The pressure
is shown as a heatmap, where a red-blue colormap is used for water pressure. The air pressure is indicated
by a purple-green colormap. The pressure in the bulk fluids is always meant to be the difference to the
pressure at the interface, i.e., Py = 0 in Eq. (48). Scalings have been chosen equal to the plots shown in Fig. 8.
(a) Lucassen wave at water-water interface with @ = 1.01 x 10%s~!. (b) Lucassen wave at air-water interface
withw = 1.04 x 108 s™!. (c) Capillary-gravity-flexural wave at water-water interface with w = 1.01 x 10871,
(d) Capillary-gravity-flexural wave at air-water interface with w = 1.04 x 10%s7!.

108

101 -

10~ |

103 F

inverse damping length [1/m]

105

— Re(A;1)

= m(A)

1

1

2.25

2.30

2.35

2.40

w [1/s]

2.45 2.50

FIG. 10. Plot of real and imaginary parts of the inverse transversal damping length A'(k, @) in the
frequency region of the breakdown of the Lucassen wave for a purely elastic membrane bounded by half-spaces

of polymer gels modelled as Kelvin-Voigt fluids, obtained by inserting the numerical solution k(w) of Eq. (30)
into Eq. (9). Dashed lines show negative values.
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