
PHYSICAL REVIEW FLUIDS 7, 114701 (2022)

Self-similar vortex configurations: Collapse, expansion,
and rigid-vortex motion
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The problem of finding initial conditions that lead to self-similar motion of point vortices
is formulated as a linear system. The linearity in the equations is used to check for the
existence of similarity solutions with a given shape and, in particular, to numerically find
self-similar vortex configurations with or without any prior knowledge of circulations. Al-
gorithms for computing the one-parameter family of collapse and expansion configurations
and the finitely many rigid-vortex configurations present in the family are also discussed.
Typical families are shown to have vortices parametrized along closed curves, and the
conditions for which they are not closed are investigated via several numerical examples.
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I. INTRODUCTION

The point-vortex model [1] is a discrete vortex approximation widely used to describe the motion
of mutually interacting coherent vortical structures in a two-dimensional incompressible ideal fluid.
In this model, a vortex is identified as a vorticity singularity in an otherwise irrotational flow.
Although the complexities associated with the internal vortex structure are ignored, the framework
is capable of approximating the solutions of two-dimensional Euler equations [2–6] and tracking the
vorticity maximum dependably [7–9]. Furthermore, the equation of motion of N interacting point
vortices of circulations �α and coordinate functions (xα, yα ) on the unbounded plane is in the form
of an analytically approachable Hamiltonian system [10]

�α

dxα

dt
= ∂H

∂yα

and �α

dyα

dt
= − ∂H

∂xα

, (1)

with the Hamiltonian being

H = − 1

4π

∑
α �=β

�α�β log
√

(xα − xβ )2 + (yα − yβ )2, (2)

where α, β = 1, 2, . . . , N , and t denotes the time. Investigating the solutions of (1), the N-vortex
problems, help us to gain insights into the elementary processes that govern the mixing and transport
in turbulent flows [11].

One of the most intriguing phenomena associated with the N-vortex problems is the existence
of vortex collapse solutions, i.e., for specific sets of circulations and initial vortex positions,
point vortices would coalesce into the constant of the motion known as the center of vorticity
(
∑

�αxα,
∑

�αyα )/
∑

�α in finite time. After the collapse, there are no solution continuations via
point vortices. This particular singular nature of the vortex trajectories is unlike any two-dimensional
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(a) (b)

FIG. 1. Example of (a) three-vortex collapse showing the initial vortex positions (filled circles) and the
collapse trajectories (solid lines) wherein vortices with circulations �1 = 1 = �2, �3 = − 1

2 move in logarith-
mic spirals and simultaneously collide at the center of vorticity (+ symbol) in finite time. Vortex triangles
at different instances of time are shown as shaded triangles, and they are all similar to the initial vortex
triangle (dotted triangle). (b) The family of collapse and expansion initial conditions associated with the
circulations �1 = 1 = �2, �3 = − 1

2 given by the parametrization (x1, y1) = (−0.5, 0), (x2, y2) = (0.5, 0),

and (x3(θ ), y3(θ )) = √
3/2 (cos θ, sin θ ), 0 � θ < 2π , following the construction from [23,27]. The case

θ = π/4 (filled circles) corresponds to the collapse initial condition described in Fig. 1(a).

Euler flow, which it is supposed to be approximating and is theorized to be related to the loss
of uniqueness of solutions of Euler equations [12]. Moreover, the mechanism of vortex collapse
is considered an important elementary act in two-dimensional turbulent kinetics [13–18] since it
brings about different length scales to the system. Recently, it was also shown that the collapse of
three point vortices results in anomalous enstrophy dissipation [19,20], a characterizing property of
two-dimensional turbulence.

The collapse phenomenon in the simplest three-vortex case has been studied extensively in the
literature and is well understood [12,15,21–29]. For instance, it is known that the three-vortex
collapse is always self-similar [28], i.e., the triangle obtained by joining the location of the three
vortices retains the initial triangular shape throughout the motion [see Fig. 1(a)].

While there are counterexamples reported on the sphere [30], all known N-vortex collapses on
the unbounded plane stem from such shape-invariant evolution of vortices, hereafter referred to
as self-similar collapses. The collection of self-similar collapse initial conditions associated with
a circulation set often arise as a one-dimensional continuum wherein the initial vortex positions
vary along smooth planar curves [see Fig. 1(b)]. Along such a family of initial conditions, the
associated collapse time and Hamiltonian also vary continuously. Aside from the size contraction in
self-similar collapse, intervortex distances may also increase or remain constant during a self-similar
evolution. They are, respectively, called self-similar expansions and rigid-vortex motions. While the
self-similar collapse of three vortices is completely understood, little is known in general about
self-similar collapses in larger vortex systems apart from the following two necessary conditions
[24] on circulations and intervortex distances:

∑
α �=β

�α�β = 0, (3a)

∑
α �=β

�α�β ((xα − xβ )2 + (yα − yβ )2) = 0. (3b)
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Although a few self-similar collapse initial conditions of smaller vortex systems are known exactly
[12,31,32], gaining meaningful insights into the collapse phenomenon in the larger point-vortex
systems necessitates a robust numerical formulation of the problem and that defines the main
objective of this work.

For prescribed values of circulations satisfying (3a), several self-similar collapse examples have
been constructed in recent times [33,34] by numerically solving for the initial vortex positions from
the following algebraic system described by O’Neil [35]:

N∑
α=1

�α (xα + iyα ) = 0, (4a)

N∑
α=1

�α

(
x2
α + y2

α

) = 0, (4b)

vα (x1 + iy1) − v1 (xα + iyα ) = 0, (4c)

where i = √−1, 2 � α � N − 2, and vα = dxα/dt + i dyα/dt is the αth vortex velocity in com-
plex form, functionally expressed in terms of the vortex locations and circulations. Additionally,
following the numerical approach, it is also possible to iteratively find the family of self-similar
collapse initial conditions by specifying the Hamiltonian, i.e., incorporating the equation

H = H0, (5)

with the above list of equations (4) and varying the value of H0 to find different collapse initial
conditions of the same circulation set (e.g., see Kudela [34] and Gotoda [36]).

In this work, the problem of finding initial conditions leading to self-similar evolution of point
vortices is looked at from scratch by focusing on the ratios of intervortex distances. The resultant
algebraic system is a simple Ax = b type matrix system, where A is a matrix in terms of the
vortex coordinates, x is the circulations, and b involves a collision time parameter, respectively.
The formulation generalizes the existing linear algebra formulation on rigid-vortex configurations
studied by Newton and Chamoun [37] and Barreiro et al. [38], wherein the constant intervortex
distance condition yields an Ax = 0 type matrix system. The linearity enables us to search for self-
similar collapse configurations without knowing the circulations beforehand. Moreover, concepts
from linear algebra, such as singular values and least-square solutions, can be used to numerically
quantify how close a generic initial condition is to that of a self-similar one. In contrast to Kudela
[34] and Gotoda [36], in this work finding the family of collapse initial conditions is based on a
smoothness assumption and does not require perturbing the Hamiltonian or any other parameters.

This paper is organized as follows. A necessary and sufficient condition for the self-similar
motion of point vortices is formulated in Sec. II. The formulation is used to describe the distribution
of self-similar vortex configurations of three and four vortices in Sec. III. Three error functions,
which stem from the formulation and a description of a random walk procedure to minimize them,
are given in Sec. IV. The error functions are used appropriately to find and describe several nu-
merical examples of individual self-similar collapse configurations (Sec. V), the family of collapse
and expansion configurations (Sec. VI), and rigid-vortex configurations associated with the family
(Sec. VII). The findings are summarized in Sec. VIII.

II. PROBLEM FORMULATION AND GOVERNING EQUATIONS

Consider N-point vortices on the unbounded plane, indexed α = 1, 2, . . . N , with zα (t ) =
(xα (t ), yα (t )) being the Cartesian coordinate of αth vortex at time t . Evaluating (1), we obtain the
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governing equations of vortex motion as

dxα

dt
= −1

2π

N∑
β=1

′
�β

(yα − yβ )

l2
αβ

, (6a)

dyα

dt
= 1

2π

N∑
β=1

′
�β

(xα − xβ )

l2
αβ

, (6b)

where lαβ = √
(xα − xβ )2 + (yα − yβ )2 denotes the distance between α and β vortices, and the

primed sum is used to indicate that the β = α case is excluded from the summation (see Ref. [39] for
more details). Note that (6) is undefined in the event of a vortex collision, i.e., at some specific time
t � 0, at least one of the intervortex distances satisfies lαβ = 0. In the event of a vortex collision, the
point-vortex model (6) fails, and no further analysis is possible. Therefore, we shall assume that the
initial vortex coordinates kα = zα (0) are such that kα �= kβ if α �= β. For any such initial condition,
vortex motion is well defined for t ∈ [0, tc), where tc > 0 is the collision time if the initial condition
leads to a finite-time vortex collision, and if not, tc = ∞. Using (6), one can derive the following
useful expression for the squared intervortex distance derivative (see Chap. 2 of Ref. [39]):

d

dt

(
l2
αβ

) = 2

π

N∑
γ=1

′′
�γ Aαβγ

(
1

l2
βγ

− 1

l2
αγ

)
, (7)

where the double-primed sum is used to indicate that the two cases γ = α and β are excluded from
the summation, and

Aαβγ = 1
2 [(xβ − xγ )(yβ − yα ) − (xβ − xα )(yβ − yγ )] (8)

represents the (signed) area of the triangle 	αβγ obtained by joining the three vortex coordinates
zα, zβ , and zγ in that specific order. The quantity Aαβγ is positive (negative) if 	αβγ is counter-
clockwise (clockwise).

The system of differential equations (6) together with an initial condition zα (0) = kα represents
an initial value problem. Since the right-hand side expressions in (6) are smooth functions, the local
existence of a unique solution is always guaranteed for any set of distinct initial vortex positions
kα [40]. For N � 4, vortex trajectories generally tend to be chaotic and extremely sensitive to the
initial conditions [11].

Given the vortex positions at some time t � 0, we shall refer to the polygonal geometrical
object formed by joining the location of the vortices as a vortex configuration (see Fig. 2). This
work focuses on finding the special solutions of (6), referred to as the similarity solutions (the
corresponding physical act of vortex motion referred to as the self-similar motion), for which the
shape of the vortex configuration is time invariant. Before we move on to mathematically formulate
this concept, let us first discuss the degenerate case when all vortices lie on a straight line (i.e.,
collinear vortex configurations).

Remark (Collinear configurations). The notion of a constant shape, which here is a two-
dimensional concept, runs into problems when the N vortices are collinear. Suppose we define a
constant “line shape” as vortices retaining collinearity throughout the motion. All vortex triplets
must then have zero areas initially and for all time. Thus, it follows from (7) that such a vortex
motion, when it exists, must correspond to a collinear rigid-vortex motion and vice versa. They can
be found by expressing the following system of equations,

Aαβγ = 0 and
d

dt
(Aαβγ ) = 0, 1 � α < β < γ � N (9)

in terms of the intervortex distances and then solving for them from the resulting algebraic system.
In this work, we shall assume that the initial vortex positions kα are noncollinear unless mentioned
otherwise. Since the two-vortex case is trivial and all collinear, we shall also assume that N � 3.
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FIG. 2. Schematic showing the relation between vortex coordinates (left) and its associated vortex config-
uration (right). The overall shape of the configuration is highlighted via shading. It can be seen that a vortex
configuration is made up of several vortex triangles and if the angles of all these vortex triangles remain constant
during the motion, then the shape of the original configuration also remains constant.

In order for the vortex configuration to have a constant geometrical shape throughout the motion,
it is necessary and sufficient that for any three distinct vortices α, β, γ , the angles of the triangle
	αβγ remain constant. Since any angle can be expressed in terms of the ratios of side lengths of the
triangle using the cosine rule, it suffices to show that the ratios of all pairs of intervortex distances are
constant. As similar triangles must have the side lengths proportional, a constant ratio of intervortex
distances is also a necessary condition. Hence, we define a similarity solution as any solution of (6)
with the property that

d

dt

[
lαβ

lγ δ

]
= 0, t ∈ [0, tc) (10)

for all vortex indices α, β, γ , δ with α �= β and γ �= δ. Note that it is equivalent to consider the
squared ratios l2

αβ/l2
γ δ in definition (10) instead of the ratios lαβ/lγ δ , as lαβ/lγ δ is strictly positive in

[0, tc), and therefore

d

dt

[
l2
αβ

l2
γ δ

]
= 2

(
lαβ

lγ δ

)
× d

dt

[
lαβ

lγ δ

]
= 0 ⇐⇒ d

dt

[
lαβ

lγ δ

]
= 0. (11)

Furthermore, it suffices to fix the denominator indices, say γ = 1 and δ = 2 in definition (10), and
only show that ratios involving l12 are constants as it implies any ratio lαβ/lγ δ = (lαβ/l12)/(lγ δ/l12)
is also a constant. Therefore, we have the following equivalent definition for the self-similar motion
of point vortices.

Definition (Similarity solution). A solution of (6) is said to be a similarity solution if for all
indices α, β with α �= β

d

dt

[
l2
αβ

l2
12

]
= 0, t ∈ [0, tc). (12)

The definition (12) indicates that the similarity solutions are nothing but the equilibrium points in the
phase plane constituted by the squared ratios of intervortex distances of the form l2

αβ/l2
12. Therefore,

we look for the equilibrium points of the following nonautonomous first-order dynamical system

d

dt

[
l2
αβ

l2
12

]
= 1

l4
12

(
l2
12

d

dt

(
l2
αβ

) − l2
αβ

d

dt

(
l2
12

))
, 1 � α < β � N. (13)
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The equilibrium points of (13) are the solutions of the following system of algebraic equa-
tions wherein the derivatives have functional expressions as given by (7),

l2
12

d

dt

(
l2
αβ

) − l2
αβ

d

dt

(
l2
12

) = 0, 1 � α < β � N (14)

or, equivalently,

1

l2
αβ

d

dt

(
l2
αβ

) = 1

l2
12

d

dt

(
l2
12

)
, 1 � α < β � N. (15)

Note that (15) has no explicit time dependency and can be entirely expressed in terms of the
vortex coordinates and circulations. Consequently, finding an initial condition for a similarity
solution boils down to finding a set of N coordinate-circulation pairs (kα, �α )’s, which algebraically
solve (15). Suppose the initial vortex coordinates kα’s and circulations �α’s satisfy (15). Let

λ0 = 1

l2
12

d

dt
(l2

12)|t=0. It follows that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
l2
12

d
dt

(
l2
12

)
1

l2
13

d
dt

(
l2
13

)
...

1
l2
αβ

d
dt

(
l2
αβ

)
...

1
l2
(N−1)N

d
dt

(
l2
(N−1)N

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t=0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0

λ0

...

λ0

...

λ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Conversely, any set of N coordinate-circulation (kα , �α) pairs, which satisfy (16) for some λ0 ∈ R,
is an initial condition for a self-similar motion as it also solves (15). Expanding each N (N − 1)/2
left-hand side expression as a linear combination of circulations using (7), we finally end up with a
linear system

M� = �, (17)

where M = M(k1, k2, . . . , kN ) is the N (N − 1)/2 × N configuration matrix given solely by the
vortex coordinates as

M = 2

π

⎡
⎢⎢⎢⎢⎢⎣

0 0 A123
l212

(
1

l223
− 1

l213

)
. . .

A12N
l212

(
1

l22N
− 1

l21N

)
0 A132

l213

(
1

l232
− 1

l212

)
0 . . .

A13N
l213

(
1

l23N
− 1

l21N

)
...

...
...

. . .
...

A(N−1)N1
l2(N−1)N

(
1

l2N1
− 1

l2(N−1)1

)
A(N−1)N2
l2(N−1)N

(
1

l2N2
− 1

l2(N−1)2

)
A(N−1)N3
l2(N−1)N

(
1

l2N3
− 1

l2(N−1)3

)
. . . 0

⎤
⎥⎥⎥⎥⎥⎦,

� = [�1, �2, . . . , �N ]T is the circulation as a column vector, and � = [λ0, λ0, . . . , λ0]T is a column
vector of length N (N − 1)/2 whose entries are all equal. Although represented as a function of
initial vortex positions, calculating the configuration matrix does not require the exact initial vortex
coordinates; rather, only the geometric knowledge of the vortex configuration associated with the
initial condition, i.e., the orientations of the vortex triplets and inter-vortex distances, is sufficient.
Since one can find infinitely many coordinate representations for the same vortex configuration, it
is preferable to discuss the initial conditions in terms of the vortex configurations than in the initial
vortex coordinates. We henceforth refer to vortex configurations satisfying (17) for some � �= 0 and
λ0 ∈ R as self-similar vortex configurations.

Next, we shall discuss the physical role of the parameter λ0 in determining the type of self-similar
motion that results from an initial condition satisfying (17). Since the signed area function (8)
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is continuous, it can not change the sign without the vortex triangle going through a collinear
configuration. Hence, in a self-similar motion of vortices, where the angles remain the same
throughout, the orientation of individual vortex triplets will be preserved. From (7), observe that the
derivative of any squared intervortex distance can be expressed purely in terms of the intervortex
distance ratios and the signs of vortex triangle orientations; therefore, in a self-similar motion, these
derivatives are constant functions, i.e.,

d

dt

(
l2
αβ

) = cαβ ⇒ l2
αβ (t ) = l2

αβ (0) + cαβ t, (18)

where cαβ = d
dt (l2

αβ )|t=0 ∈ R. Since the motion is assumed to be self-similar, (17) is satisfied for
some λ0 ∈ R at t = 0. Consequently,

cαβ

l2
αβ (0)

= λ0 ⇒ l2
αβ (t ) = l2

αβ (0)(1 + λ0 t ). (19)

It follows that, depending on the sign of λ0, three types of self-similar motions are possible.
(i) Rigid-vortex motion (λ0 = 0) has constant intervortex distances, i.e., lαβ (t ) = lαβ (0) for

any t � 0. Consequently, the whole vortex configuration moves like a rigid body. Such a rigid
configuration can generally be translating, rotating (relative equilibria), or even stationary (fixed
equilibria). Since no vortex collisions are possible, the motion is well defined for t ∈ [0,∞). We
henceforth refer to self-similar vortex configurations with λ0 = 0 as rigid-vortex configurations.

(ii) Self-similar expansion (λ0 > 0) has the intervortex distances monotonically increasing with
time. Hence, during the motion, the vortex configuration expands while keeping the overall shape
constant. The vortex motion is well defined for t ∈ [0,∞) and lαβ → ∞ as t → ∞. We henceforth
refer to self-similar vortex configurations with λ0 > 0 as self-similar expansion configurations.

(iii) Self-similar collapse (λ0 < 0) has the intervortex distances monotonically decreasing,
reaching the zero value simultaneously at time tc = −1/λ0. Therefore, in a self-similar collapse,
the vortex configuration shrinks over time, and the vortices collapse to a single point in finite time
while keeping the shape constant. Note that the motion of point vortices is well defined only for
t ∈ [0, tc), unlike the other two cases. We henceforth refer to self-similar vortex configurations with
λ0 < 0 as self-similar collapse configurations.

Thus, λ0, which was defined as the initial rate of change of log(l2
12), becomes an important

parameter in a self-similar vortex motion as it coincides with the initial rate of change of any other
log(l2

αβ ). The sign of λ0 determines the type of self-similar motion executed by the point vortices
and is directly related to the collision time in a self-similar collapse. Now, we shall discuss some
properties and redundancies associated with the solutions of linear system (17).

(a) Trivial solution: (17) is trivially satisfied by any N distinct vortex coordinates, if �1 = �2

= · · · = �N = 0 with λ0 = 0.
(b) Degeneracy: The linear algebra formulation (17) is not a sufficient criterion for self-similar

motion in the case of collinear vortex configurations. Since all triangle areas are zero, the configu-
ration matrix M is a zero matrix in this case. Hence, any set of N vortex circulations would satisfy
(17) with the associated λ0 = 0.

(c) Timescale: Let (kα, �α ) be a solution to (17) for some λ0 ∈ R and let c �= 0 be any nonzero
real number. It follows that (kα, c �α ) is also a solution to (17), with λ0 getting scaled as cλ0.
Each such pair corresponds to a different choice of timescale. We shall use this property while
constructing the numerical method in Sec. IV A.

(d) Equivalent configurations: Let (kα, �α ) be a solution to (17) for some λ0 ∈ R. We shall call
a configuration k′

α to be equivalent to kα , if it yields the same ratios of intervortex distances as that
of kα , i.e.,

||k′
α − k′

β ||
||k′

2 − k′
1||

= ||kα − kβ ||
||k2 − k1|| , 1 � α < β � N, (20)
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where || · || denotes the usual Euclidean norm. For example, coordinate transformations such
as rotation, reflection, translation, and dilation yield equivalent configurations. If kα and k′

α are
equivalent, then they represent the same equilibrium point in the phase plane constituted by the
squared ratios of intervortex distances and therefore must be treated as the same. Finally, it may be
noted that since (17) is a necessary and sufficient condition for a self-similar vortex configuration,
any configuration k′

α equivalent to kα will also satisfy (17) for some λ′
0 ∈ R.

To avoid above-mentioned redundancies, we assume that (i) at least three of the circulations
are nonzero, and (ii) k1 = (0, 0) and k2 = (1, 0) by choosing the origin, orienting, and scaling the
axes suitably. The second assumption guarantees that any self-similar initial condition obtained is
unique up to a reflection along the x axis: these two mirror images will have opposing signs of λ0.
Consequently, there is a one-to-one correspondence between self-similar collapse and expansion
initial conditions. We may obtain one from the other either by reversing the signs of the circulations
or by finding its mirror image along the x axis.

III. MOTIVATION

This section provides a basic understanding of self-similar vortex configurations using the
formulation (17). The simplest nontrivial case of self-similar motion is that of the three-point
vortices, which is thus addressed first in Sec. III A. How the configuration matrix can be used to
analytically check for the existence of similarity solutions with a given geometrical arrangement
of vortices is discussed next in Sec. III B. Finally, in Sec. III C, we use the configuration matrix to
define and associate specific numerical errors with vortex configurations to indicate how far a vortex
configuration is from self-similar vortex configurations. The numerical errors are then used to study
the distribution of self-similar vortex configurations in the space of all four vortex configurations.

A. Self-similar motion of three vortices (N = 3)

The similarity solutions of the three-vortex systems are well understood (see, e.g., [23,27]). In
particular, deriving the two necessary conditions (3a) and (3b) is sufficient to completely describe
the continuum of three-vortex self-similar collapse and expansion configurations associated with
any circulation set. Whereas Aref [23] has discussed these two conditions as one of the parametric
cases in his complete study of three-vortex motion, Aref [27] derives them from an equivalent
definition of similarity solutions.

Here, we revisit the problem of self-similar motion of three-point vortices from the linear algebra
perspective (17) to arrive at (3) and to construct collapse initial conditions in a slightly different form
from [23,27]. When the number of vortices is three, (17) evaluates to⎡

⎢⎢⎣
0 0 2A123

π l2
12

(
1

l2
23

− 1
l2
13

)
0 2A132

π l2
13

(
1

l2
23

− 1
l2
12

)
0

2A231

π l2
23

(
1

l2
13

− 1
l2
12

)
0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎣

�1

�2

�3

⎤
⎥⎦

︸ ︷︷ ︸
�

=

⎡
⎢⎣

λ0

λ0

λ0

⎤
⎥⎦

︸ ︷︷ ︸
�

. (21)

Rearranging (21), we obtain

�3

l2
12

(
1

l2
23

− 1

l2
13

)
= λ0π

2A
, (22a)

�2

l2
13

(
1

l2
12

− 1

l2
23

)
= λ0π

2A
, (22b)

�1

l2
23

(
1

l2
13

− 1

l2
12

)
= λ0π

2A
, (22c)
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where A = A123 = −A132 = A231 denotes the signed area of the vortex triangle, which is assumed
to be nonzero. Since we do not want the system to reduce to a trivial two-vortex system, the three
circulations are also assumed to be nonzero. Substituting λ0 = 0 in (22) yields l12 = l13 = l23.
Hence, irrespective of the values of the three circulations, the equilateral triangle configuration is
the only noncollinear rigid-vortex configuration of three vortices.

We shall focus our attention on the three-vortex self-similar collapse and expansion configura-
tions (λ0 �= 0) in the remainder of this section. Simplifying the equation obtained by adding �1

times (22b), �2 times (22c), and −(�1 + �2) times (22a), we get

�3 = − �1�2

�1 + �2
or �1�2 + �1�3 + �2�3 = 0, (23)

which is nothing but the known necessary condition (3a). Without loss of generality, let us assume
the initial vortex coordinates to be k1 = (0, 0), k2 = (1, 0), and k3 = (x, y). Subtracting (22c) from
(22b) and simplifying the resulting equation yields the relation

ω = f (x, y) := 1 − x2 − y2

(x − 1)2 + y2 − 1
, where ω = �2/�1 (24)

which must be satisfied by any self-similar collapse and expansion initial condition. Since all three
circulations are assumed to be finite nonzero constants, the initial location of the third vortex (x, y)
for which (i) f (x, y) = 0, (ii) 1/ f (x, y) = 0, and (iii) f (x, y) = −1 cannot result in self-similar
collapse or expansion. Thus, apart from a zero measure set consisting of two unit circles centered
at (0,0) and (1,0), and the lines x = 1

2 and y = 0, the third vortex can be placed anywhere on the
plane to obtain a self-similar collapse and expansion configuration for appropriate values of the
three circulations satisfying (23) and (24). However, we shall see in Sec. III B that for larger vortex
systems, almost none of the configurations tend to be self-similar.

On the other hand, if we were to consider a fixed set of circulations, satisfying (23), and look for
all points (x, y), which yield self-similar collapse or expansion configuration, (24) then represents
an equation of a level curve in the two-dimensional plane. Note that (24) can be rewritten as(

x − ω

1 + ω

)2

+ y2 = 1 + ω + ω2

(1 + ω)2
, (25)

which represents a circle with radius R(ω) = (1 + ω + ω2)1/2/|1 + ω| and center on the x axis at
x0(ω) = ω/(1 + ω). The circle described by Aref [23,27] has a different center and radius due to
the difference in the coordinate representations of the configurations arising from the choice of k1

and k2 [see, e.g., Fig. 1(b)].
The circular contours of f for various values of ω are shown in Fig. 3(a). Recall that each circle

represents the locus of all possible locations of the third vortex in self-similar collapse or expansion
configurations associated with a specific choice of circulations. The vortex positions k1 and k2 are
marked as green and blue filled circles, respectively. The dashed vertical line x = 1

2 represents the
circle of infinite radius (ω = −1) and corresponds to the limit case of infinite �3 value [see (23)].
Since inverting ω is equivalent to simply interchanging the indices of first and second vortices, we
have R(ω) = R(1/ω), and the circles are mirror images along the line x = 1

2 . Two representative
contours looking at the particular cases of ω = − 1

2 and ω = −2 are shown in Fig. 3(b). Six vortex
triangle configurations associated with these two circles are highlighted via shading to illustrate the
apparent symmetry of self-similar vortex configurations along the y = 0 and x = 1

2 lines.
Each circle intersects the x axis twice at x0(ω) ± R(ω), which corresponds to two collinear

configurations. It can be verified that they are collinear rigid-vortex configurations satisfying (9).
Moreover, every contour intersects the x = 1

2 line twice at ( 1
2 ,±√

3/2) (marked by red filled circles),
which corresponds to the equilateral triangle rigid-vortex configuration mentioned before. Hence,
for a fixed set of circulations satisfying the necessary condition (23), the three-vortex self-similar
collapse and expansion configurations exist as a continuum with a few sandwiched rigid-vortex
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(a) (b)

FIG. 3. (a) Contours of f (x, y) for ω ∈ [−1.2, 1.2] (cyan) and 1/ω ∈ [−1.2, 1.2] (magenta) [see Eq. (24)];
(b) six vortex triangles associated with each of the contours f (x, y) = − 1

2 and f (x, y) = −2 (highlighted via
shading) show the reflective symmetry of the vortex configurations in the family along the x axis and x = 1

2
line (red dashed line). The green and blue filled circles denote the location of the first two vortices assumed to
be at k1 = (0, 0) and k2 = (1, 0), respectively.

configurations. To have a better understanding, let us look at how the Hamiltonian H and λ0 vary
along a typical continuum of self-similar vortex configurations.

For a given value of ω the associated circular contour can be parametrized as

x(θ ) = x0 + R cos θ, y(θ ) = R sin θ, 0 � θ < 2π. (26)

Using the above parametrization, we may express both λ0 and the Hamiltonian H as a function
of θ . For illustration purposes, we examine a specific family of self-similar vortex configurations
associated with ω = −2, for which one possible set of circulations is �1 = 1, �2 = −2 = �3.
For this choice of circulations, the variations of λ0 and H with parameter θ are shown in Fig. 4.
Clearly, θ = 0, π , implies y(θ ) = 0, corresponds to the third vortex lying on the real line. Since,
by construction, the first two vortices are always assumed to be at (0,0) and (1,0) in the initial
conditions, the three vortices are collinear exactly at θ = 0, π . Because collinear configurations
can only be rigid-vortex configurations, we have λ0|θ=0 = 0 = λ0|θ=π . Furthermore, it has already
been established that the equilateral triangle and collinear configurations are the only rigid-vortex
configurations, hence, other zeros of λ0 must correspond to equilateral triangle configurations.
Since the vortex configurations when the third vortex is at (x, y) and (x,−y) are equivalent, the
two graphs are symmetric with respect to θ = π , albeit with a sign reversal in the case of λ0. Hence,
we only need to inspect the graphs for θ ∈ [0, π ]. The parameter λ0 oscillates between positive
(self-similar expansion configurations) and negative values (self-similar collapse configurations) in
a continuous fashion with zeros corresponding to the rigid-vortex configurations, which are marked
in the figure with small circles. Furthermore, along the continuum of configurations, the rate of
change of H is nothing but a constant multiple of λ0, which has the form (see Appendix B for the
derivation)

dH
dθ

= �3

2
λ0. (27)

Thus, the rigid-vortex configurations present in the family of self-similar vortex configurations
correspond to the critical points of the Hamiltonian function.
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FIG. 4. The variation of λ0 and Hamiltonian H with polar coordinate θ for ω = �2/�1 = −2. The red filled
circles correspond to the equilateral triangle configurations [cf. Fig. 3(b)] and unfilled circles to the collinear
configurations.

Figure 4 indicates that it is more natural to consider the whole continuum of self-similar vortex
configurations associated with a circulation set instead of restricting it to only the collapse or
expansion configurations. For instance, looking for the self-similar collapse configurations alone
may yield several isolated pieces of continua of vortex configurations which may all be described
by a single family of self-similar vortex configurations. Since the configurations in the continuum
have a continuous dependence on λ0 just as the Hamiltonian, it can be potentially used to distinguish
between sufficiently close self-similar vortex configurations of the family, replacing the Hamiltonian
used in [34,36]. Moreover, the parameter λ0 is a natural candidate to be used here, as it is directly
involved in the formulation (17), unlike the Hamiltonian function.

B. Existence of similarity solutions with a given shape

We can use formulation (17) to check whether it is possible to associate circulations to point
vortices arranged in a particular geometrical shape so that the resulting vortex system moves
in a self-similar fashion. This is done by first giving a coordinate representation for the vortex
configuration with the given shape and then checking whether or not the linear system (17) has
a nontrivial solution �. If there exists a � satisfying (17) for some λ0 �= 0, then one can always
scale the circulations by −1/λ0 to obtain an equivalent linear system with λ0 = −1. Hence,
the two right-hand sides �1 = [0, 0, . . . , 0]T and �2 = [−1,−1, . . . ,−1]T in (17) represent the
mutually exhaustive cases λ0 = 0 (rigid-vortex configuration) and λ0 �= 0 (self-similar collapse
and expansion configuration), respectively. Note that any � that satisfies M� = �1 belongs to
the null space of M. Hence, having at least one nonzero circulation set � translates to the nullity,
the dimension of the null space, being at least one. On the other hand, the linear system M� = �2

has at least one solution � if and only if �2 is in the column space of the matrix M. Consequently,
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(a) (b)

FIG. 5. Self-similar vortex motion associated with the (a) square shape and (b) parallelogram shape given
by (28) and (30), respectively. The filled circles denote the initial location of vortices, and the center of
vorticity is marked by a plus symbol. Shaded configurations highlight the overall shape and size of the vortex
configurations at different instances of motion.

the rank of both M and the augmented matrix [M|�2] should be the same. The solutions of both
linear systems can be found by row reduction.

To explain the points mentioned above through examples, let us first consider a vortex ar-
rangement in the form of a square shape. Without loss of generality, we may consider the vortex
coordinates as

k1 = (0, 0), k2 = (1, 0), k3 = (0, 1), k4 = (1, 1). (28)

For these coordinates, the configuration matrix M reads as

M = 1

2π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 1

0 1 0 −1

0 0 0 0

0 0 0 0

−1 0 1 0

1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Since zero rows are present in the matrix M, the associated λ0 can only be zero. Hence, there are
no self-similar collapses or expansions of point vortices with the square shape. From row reduced
echelon form, it can be shown that the null space of M is spanned by [1, 1, 1, 1]T, and that the nullity
of M is one. Therefore, the only self-similar motion with a square shape is the rigid-vortex motion by
four vortices of equal circulations, as shown in Fig. 5(a). In Fig. 5(a), the trajectories of four identical
point vortices initially located at (28) (marked by small filled circles) are shown. The shape of the
vortex configuration at different instances of motion is highlighted via shading. It can be seen that
vortices move in circular orbits around the center of vorticity (marked by a plus symbol) and retain
both the size and shape of the initial configuration (28) throughout the motion. The trajectories are
numerically obtained by integrating the system (6) using the fourth-order Runge-Kutta method.

Next, we consider a particular parallelogram shape given by

k1 = (0, 0), k2 = (1, 0), k3 = (−1 −
√

3, 1), k4 = (−
√

3, 1), (30)
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which yields the following configuration matrix M:

M = 52

π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 6 − 5
√

3 7 − 8
√

3

0
√

3 + 4 0 6
√

3 − 15

0 2(
√

3 + 4) 2(
√

3 + 4) 0

4
√

3 − 10 0 0 4
√

3 − 10

6
√

3 − 15 0
√

3 + 4 0

7 − 8
√

3 6 − 5
√

3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

Note that the rank of M is 4, and the nullity is zero from the rank-nullity theorem. Hence, there
are no rigid-vortex configurations with this particular shape. On the other hand, solving the linear
system (17) with M being given by (31) and λ0 = −1 by row reduction yields a solution

� = π [5 + 2
√

3,−4 +
√

3,−4 +
√

3, 5 + 2
√

3]T. (32)

Hence, a four-vortex self-similar collapse configuration exists with the given parallelogram shape
(30), as depicted in Fig. 5(b). Similarly to Fig. 5(a), in Fig. 5(b), small filled circles are used to mark
the initial location (30) of the vortices. The size of the filled circles is proportional to the magnitude
of the circulations (32), and the magenta (cyan) color is used to denote a vortex with positive
(negative) circulation. It can be seen that the vortices approach the center of vorticity (marked as a
plus symbol) in logarithmic spirals. The vortex configurations at different instances of time (shown
as shaded polygons) also verify that the initial parallelogram shape (30) is preserved throughout the
motion.

C. A discussion of N > 3 case

For N > 3, (17) is an extremely overdetermined system. If the matrix coefficients are assumed
to be random, we would expect only the zero solution for M� = �1 and no solution for M� =
�2. To investigate how abundant the vortex configurations that can lead to self-similar motion are,
compared to those that can not, we numerically assign a number E with a given configuration as

E = min(E0, E1), (33)

where

E0 = σmin/σmax and E1 = ||M�ls − �2||. (34)

Here, σmin and σmax are the smallest and largest singular values of the configuration matrix M,
and �ls is the least-square solution, which minimizes the norm ||M� − �2||. Observe that E0 and
E1 are zero if and only if the linear systems M� = �1 and M� = �2 have at least one solution,
respectively. Therefore, if E is sufficiently close to zero, we could numerically conclude that there
is at least one nonzero circulation set for which the given configuration leads to a self-similar motion.
As a simple representative case, the variation of logarithmic of E (base 10) is illustrated in Fig. 6 for
randomly generated 106 quadrilateral configurations as a discrete data plot. There are a total of 106

plot points marked by red dots in Fig. 6, and the jth plot point ( j = 1 to 106) corresponds to log(E )
of the jth configuration generated. It is seen that most of the configurations have an associated E
value between 1 and 10−2. The number of configurations that has E < 10−6 is negligible compared
to the number of configurations with E � 10−6. This further implies that, unlike the N = 3 case,
where almost all triangular configurations have an associated self-similar motion, it is very unlikely
that a random configuration of vortices could execute a self-similar motion for N > 3.

To better visualize how typical self-similar vortex configurations are distributed among the space
of all possible configurations when N > 3, we consider a two-dimensional subclass of quadrilaterals
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FIG. 6. The discrete data plot of logarithm of E to the base 10 associated with 106 randomly generated
quadrilateral configurations [see (33)]. Each plot point (marked by red dots) corresponds to the log(E ) value
associated with one of the 106 configurations.

given by

k1 = (0, 0), k2 = (1, 0), k3 = (x, y), k4 = (x + 1, y), (x, y) ∈ R2. (35)

It may be noted that the elements of the above subclass are all parallelogram configurations, each
of which is uniquely determined by its location of the third vortex. Associating logarithms of E0,
E1, and E with third vortex locations of the configurations (35) yield the density plots, Figs. 7(a),
7(b), and 7(c), respectively. Since darker shade indicates a smaller error, points with the darkest
shade correspond to rigid-vortex configurations [Fig. 7(a)] and self-similar collapse or expansion
configurations [Fig. 7(b)]. Moreover, since E is just the minimum of E0 and E1, the density plot
of log E , shown in Fig. 7(c), is the same as Figs. 7(a) and 7(b) superimposed. Note that the two
previously discussed self-similar configurations [square (28) and parallelogram (30)] are elements
of the subclass (35) and are marked with green filled circles in Figs. 7(a) and 7(b), respectively.

(a) (b) (c)

FIG. 7. Density plot of (a) log E0, (b) log E1, and (c) log E in (x, y) plane [see (33) and (34)] associated
with the third vortex location in the parallelogram configuration (35). Green filled circle in (a) and (b) denotes
the known self-similar configurations (28) and (30), respectively. In (c), the intersection points corresponding
to rigid-vortex configurations that are part of the two circular self-similar collapse and expansion continua are
marked by small red filled (noncollinear) and unfilled (collinear) circles.
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FIG. 8. Density plot of (a) log E2 and (b) log E3 in (x, y) plane [see (37)] associated with the third vortex
location in the parallelogram configuration (35).

Clearly, only a measure zero set of a continuum of configurations, represented by the continuous
black curves in Fig. 7, can lead to a self-similar motion when circulations are chosen appropriately.
Let us focus on the two closed self-similar collapse and expansion continua represented by the
two circles in Fig. 7(b). We shall now show that all of the self-similar expansion and collapse
configurations (35) corresponding to the left and right circles stem from the circulation sets � [see
(32)] and

�′ = π [11 − 6
√

3,−4 +
√

3,−4 +
√

3, 11 − 6
√

3]T, (36)

respectively. This is done by as before obtaining density plots (see Fig. 8) of logarithms of

E2 = std[M ∗ �]

||M||F and E3 = std[M ∗ �′]
||M||F , (37)

where std denotes the standard deviation and ||M||F denotes the Frobenius norm, defined as the
square root of the sum of the squares of matrix elements. Note that normalization by ||M||F is used
to avoid the degenerate case of collinear configurations wherein M becomes the zero matrix. Any
self-similar configuration associated with the circulation sets � and �′ will have near-zero values
of E2 and E3, respectively, because of (17). Consequently, they will be represented by the darkest
shaded points in the density plot in Fig. 8. Comparing Figs. 7(b) and 8, it becomes evident that the
left circle corresponds to the collapse and expansion family of configurations associated with the
circulation set (32) and the right circle, that of the set (36). Note that in the family, the third vortex
is parametrized along the circle, as seen in Fig. 7(b), and the parametrization of the rest of the
vortices is given by (35). Hence, we see that in the family of collapse and expansion configurations,
apart from the first two vortices assumed to be at (0,0) and (1,0), the vortices lie in closed smooth
curves, just like in the N = 3 case. Furthermore, just like in the N = 3 case, the family contains
finitely many rigid-vortex configurations that are marked by red filled (noncollinear configuration)
and unfilled (collinear configuation) circles in Fig. 7(c).

The above approach may be used to visualize the distribution of self-similar vortex configurations
if the configuration space has three or fewer independent parameters. However, we have observed
that for N > 3, almost all vortex configurations tend to be non-self-similar. Consequently, discretiz-
ing the whole space of possible vortex configurations makes it an inefficient method for larger
vortex systems. An alternative approach to finding individual self-similar collapse and expansion
configurations and their associated families systematically using formulation (17) is discussed in
Secs. V and VI, respectively.
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IV. NUMERICAL METHOD

A linear algebra formulation solely focusing on the rigid-vortex configurations (λ0 = 0) has
already been discussed by Newton and Chamoun [37] and Barreiro et al. [38]. Thus, this work
mainly focuses on λ0 �= 0, which includes self-similar expansion (λ0 > 0) and collapse (λ0 < 0)
configurations. Since the reversal of the signs of either circulations or the y coordinates reverses the
sign of λ0, it suffices to only look for the self-similar collapse configurations while searching for
an individual self-similar collapse or expansion configuration. This section explains three strategies
to define an error function using the formulation (17). The error functions are defined in such a
way that a zero error corresponds to a self-similar vortex configuration. We shall use an easily
implementable algorithm based on the random walk procedure explained below to tend the error to
a near-zero value systematically.

Step 1: (Initialization) Randomly initialize the vortex coordinates kα . Since k1 and k2 are as-
sumed to be (0,0) and (1,0), we only need to initialize the rest of the N − 2 vortex coordinates.

Step 2: (Random walk procedure) Randomly select a vortex β ∈ {3, 4, . . . , N} and check
whether there is an improved update k′

β on a circle of radius proportional to err(kα )/2n centered
around kβ and at randomly generated angles iteratively for n = 1, 2, . . . , nmax, where nmax is the
maximum number of iterations. Select a different index and repeat the procedure if no improved
update is found even after reaching n = nmax.

Step 3: (Termination) If the improved error falls below a certain threshold, terminate the proce-
dure. If not, repeat step 2.

The advantage of this easily implementable random walk procedure is that it is unbiased in its
search; hence, it is more likely that we can find all solutions. Moreover, the present method has
computationally cheaper iterations, as it does not require the evaluation of derivatives. It may also
be used to efficiently generate good initial guesses for various Newton’s methods if faster numerical
convergence is needed. The three error functions are described in the following subsections.

A. Error 1: Free-vortex circulations

Suppose we do not assume anything on the circulations (i.e., �α’s are not known a priori), but
rather we would like to search for a self-similar vortex configuration satisfying (17) for some λ0 �=
0 and circulations �α . Without loss of generality, we assume λ0 = −1, i.e., � = [−1, . . . ,−1]T.
The assumption is based on the fact that �α may be scaled appropriately to obtain λ0 = −1 from
any solution of (17) with λ0 �= 0. For each vortex configuration given by the coordinates kα’s, we
associate an error

err1(kα ) = ||M(kα ) ∗ �ls − �||, (38)

where

�ls = min
X∈RN×1

||M(kα ) ∗ X − �||

is the least-square solution of the linear system (17), and M(kα ) is the configuration matrix
associated with kα . Clearly, if kα is a self-similar collapse configuration with λ0 = −1 for some
choice of circulations � ∈ RN×1, then ||M(kα )� − �|| = 0 and by the definition of least-square
solution ||M(kα )�ls − �|| = 0. Therefore, err1(kα ) = 0 if and only if kα is a self-similar collapse
configuration with λ0 = −1 and �ls being a choice of associated circulations. We have used the
backslash operator in MATLAB to find the least-square solutions.

B. Error 2: Fixed-vortex circulations

Suppose we fix the circulations �α beforehand and want to check whether there exist any self-
similar vortex configurations for that chosen set of circulations. In other words, we shall search for
kα satisfying (17) for some λ0 ∈ R, with a fixed � vector. With each configuration kα , we associate
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the following error:

err2(kα ) = std[M(kα ) ∗ �], (39)

where std denotes the standard deviation. Since the sign of λ0 is known only after the numerical
convergence, a solution could be any one of the three types of self-similar initial conditions
depending on the sign of λ0.

C. Error 3: Fixed-vortex circulations and fixed λ0

Once we find a self-similar collapse initial condition (kα, �α, λ0) using any of the above-defined
errors (i.e., err1 or err2), we can use it to search for a nearby self-similar vortex configuration of the
same circulation set. This is done by considering the error function

err3(k′
α, λ′

0) = ||M(k′
α ) ∗ � − [λ′

0, λ
′
0, . . . , λ

′
0]T||, (40)

and minimizing err3 in a close neighborhood of kα for fixed values of λ′
0 that are sufficiently close

to λ0. Note that err3(k′
α, λ′

0) = 0 if and only if k′
α is a self-similar vortex configuration associated

with the circulation set � and with logarithmic distance decay rate parameter λ′
0.

V. SELF-SIMILAR COLLAPSE AND EXPANSIONS

In this section, we illustrate a few examples of self-similar collapse configurations, which are
numerically constructed by minimizing the previously defined error functions err1 and err2 (see
Secs. IV A and IV B). The following algorithm is used to find collapse configurations:

1: If circulations are not specified, Set err=err1 Else Set err=err2.
2: Execute the random walk procedure (step 1 to step 3) to minimize err below some tolerance value.

In addition, the self-similar motion of the vortices starting at these vortex positions is verified
numerically by integrating (6) using the fourth-order Runge-Kutta method, and confirming that all
the intervortex distances simultaneously tend to zero in finite time (see Figs. 9 and 10). All numerical
computations are carried out using the MATLAB software.

A. Free-vortex circulations (error 1)

Figure 9 illustrates examples of self-similar vortex collapse configurations for N = 4 and 5
[obtained by minimizing the error (38)]. In Fig. 9(a), the initial positions of four-point vortices,
marked by the filled circles, are given as

k1 = (0, 0), k2 = (1, 0), k3 ≈ (1.2295,−0.1278), k4 ≈ (0.4900,−0.2107). (41)

The associated circulations are (found post numerical convergence)

� ≈ [−2.9852,−2.6854, 1.7625,−0.5061]T. (42)

The size of the filled circles is proportional to the absolute values of the vortex circulations, and
the magenta (cyan) color is used to denote vortices with positive (negative) circulations. Note that
the collapse time tc = −1/λ0 = 1 since λ0 was assumed to be −1 while defining the error (38).
The vortex trajectories are obtained via numerical integration for t ∈ [0, 0.999], which shows that
vortices do indeed spiral down to the center of vorticity (marked by a + sign) as t approaches tc.
The geometrical shape of the vortex arrangement at different instances of time is shown as shaded
polygons, and it can be observed that the shape is preserved during the motion.
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FIG. 9. (N = 4, 5) Examples of self-similar vortex collapse configurations (marked by filled circles) by
(a) four- and (b) five-point vortices and their respective collapse trajectories for t ∈ [0, 0.999]. The geometrical
shapes of the vortex configurations at different instances are shown as shaded polygons. The corresponding
intervortex distances vs time graph for (c) N = 4 and (d) N = 5. The (α, β ) indices are used to label the
distance functions lαβ .

Similarly, in Fig. 9(b), it can be seen that five-point vortices when placed initially at

k1 = (0, 0), k2=(1, 0), k3≈(0.8847, 0.0619), k4 ≈ (1.0192, 0.6393), k5 ≈ (0.4834,−0.1447)
(43)

with associated circulations (found post numerical convergence)

� ≈ [1.9879,−0.7826, 0.8766,−5.3597,−3.5566]T

executes a self-similar collapse, as evidenced by the constant geometrical shape which is decreasing
in size.

The variation of intervortex distances during the self-similar collapse motion [illustrated in
Figs. 9(a) and 9(b)] is depicted in Figs. 9(c) and 9(d), respectively. All the 6 distance functions
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FIG. 10. (N = 6, 7) Examples of self-similar vortex collapse configurations (marked by filled circles) by
(a) six- and (b) seven-point vortices and their collapse trajectories for t ∈ [0, 12.0868] and t ∈ [0, 2.1479],
respectively. The geometrical shapes of the vortex configurations at different instances are shown as shaded
polygons. The corresponding intervortex distances vs time graph for (c) N = 6 and (d) N = 7. The (α, β )
indices are used to label the distance functions lαβ .

[Fig. 9(c)] in the four-vortex case and 10 in the five-vortex case [Fig. 9(d)] tend to zero as t tends to
the unit collision time, indicating the simultaneous vortex collisions at the vorticity center.

B. Fixed-vortex circulations (error 2)

Since the vortex circulations must be known beforehand to define the error (39), we begin by
considering two sets of circulations,

� = [
√

2,
√

2,−1, 1,−1, 1]T (44)

and
�′ = [

5
2 ,−1,−1,−1,−1,−1,−1

]T
, (45)
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which satisfy the necessary condition
∑

�α�β = 0. Minimizing the error (39) for each of these
fixed circulation sets yields self-similar collapse configurations, as shown in Fig. 10. The initial
vortex positions in Fig. 10(a) are

k1 = (0, 0), k2 = (1, 0), k3 ≈ (−0.6683,−0.0507),

k4 ≈ (−0.4300,−0.6698), k5 ≈ (0.7485, 0.5501), k6 ≈ (0.6744,−1.4623), (46)

which are marked by magenta (positive circulation) and cyan (negative circulation) colored filled
circles. As before, the vortex trajectories are logarithmic spirals, which maintain the geometrical
shape (gray shaded) but shrink in size as the vortices approach the center of vorticity (marked +
sign). Similarly, for the second circulation set, vortices initially located at

k1 = (0, 0), k2 = (1, 0), k3 ≈ (2.3772,−0.1891), k4 ≈ (−0.0377,−0.6149),

k5 ≈ (0.6306,−0.2977), k6 ≈ (0.3209,−0.5039), k7 = (1.6487, 0.1807) (47)

exhibit a self-similar collapse.
The corresponding variation of intervortex distances with respect to time is illustrated in

Figs. 10(c) and 10(d). As expected, the distances all tend to zero in finite time. Since the λ0

parameter is not prescribed but rather only known post numerical convergence, we have different
collision times for the two. For the first set λ0 ≈ −0.0827 and hence the collision time tc ≈ 12.0868
as seen in Fig. 10(c). Similarly, the second one has λ0 ≈ −0.4656, hence tc ≈ 2.1479.

VI. SELF-SIMILAR FAMILY

While investigating the N = 3, 4 cases, we observed that for a given circulation set satisfying the
necessary condition (3a), the self-similar collapse and expansion configurations exist in the form
of kα (θ ), a continuum of a one-parameter family of configurations [see, e.g., (26)]. Along each
family of configurations, λ0 oscillated between positive and negative values in a continuous fashion
with finite zeros, which correspond to rigid-vortex configurations. We assume that kα (θ ), henceforth
referred to as the self-similar family of vortex configurations, is a sufficiently smooth function of the
parameter θ and propose the following parameter-independent approach to numerically computing
it.

1: Find a self-similar collapse configuration (kα, �α ) by minimizing err1 or err2.
2: Set λ0 = mean of [M(kα ) ∗ �].
3: Set λ′

0 = λ0 + δλ0, where |δλ0| � 1.
4: Define err(k′

α ) = err3(k′
α, λ

′
0).

5: Execute random walk procedure (step 2 to step 3) but using kα as the initial guess to minimize
err below some tolerance.

6: Set knew
α to be the converged solution and kold

α to kα .
7: for i = 1 to nmax do

8: Define δkα = h ∗ (knew
α − kold

α )/
√∑N

α=1 ||knew
α − kold

α ||2, where 0 < h � 1.
9: Set kguess

α = knew
α + δkα

10: Execute random walk procedure (step 2 to step 3) but using kguess
α as the initial guess to

minimize err2 below some tolerance.
11: Update kold

α with knew
α .

12: Update knew
α with the converged solution.

13: end for

Four examples of self-similar families of vortex configurations (first column) and their associated
variation of λ0 (second column) are shown in Fig. 11. The first two families [Figs. 11(a) and 11(b)
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FIG. 11. (a), (c), (e), (g) Examples of self-similar families of vortex configurations (first column) and (b),
(d), (f), (h) the associated variation of λ0 (second column). In (a), (c), (e), and (g), the dotted and solid lines
correspond to λ0 < 0 and λ0 > 0 regimes, respectively, and the filled circles denote the starting configurations
used in the algorithm. Black dots denote the rigid-vortex configurations.
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TABLE I. Approximate limit configurations in examples 1 and 2.

Approximate limit configuration

Index Circulation Example 1 Example 2

1 −2 (0,0) (0,0)
2 −3 (1,0) (1,0)
3 4 (1.2186 × 10−3,−6.1301 × 10−5) (9.4119 × 10−4, 4.7448 × 10−5)
4 4 (−1.2186 × 10−3, 6.1301 × 10−5) (−9.4119 × 10−4, −4.7448 × 10−5)
5 6 (−2.2866, −1.1599) (−2.2838, 1.1629)

and 11(c) and 11(d)] stem from the circulation set (42), whereas the last two [Figs. 11(e) and 11(f)
and 11(g) and 11(h)] originate from (44). The vortex configurations used as the starting points in
the algorithm are marked by filled circles in Fig. 11, some of which are the collapse configurations
discussed in Sec. V. Solid lines mark the self-similar expansion (λ0 > 0) regime, whereas the
self-similar collapse (λ0 < 0) regime is marked by dotted lines. Black dots spot the rigid-vortex
configurations (λ0 = 0). It is seen from these examples that there can be multiple disconnected
families for a set of circulations. Each self-similar family of configurations comprises the first two
vortices assumed to be at (0,0) and (1,0), and the rest of the N − 2 vortices parametrized along
smooth closed planar curves. The two equivalent mirror configurations along the x axis need not
be part of the same family, as seen in example 3 [see Figs. 11(c) and 11(d)]. Therefore, the closed
structure need not be because of the equivalency of configurations alone. Moreover, whenever the
family of configurations has reflective symmetry along the x axis, there appear to be two collinear
rigid-vortex configurations present in the family.

Kudela [34] and Gotoda [36] showed that for certain sets of circulations, there exist self-similar
families which are not closed, i.e., individual vortex positions of the self-similar family of config-
urations do not form closed curves. The only discussed example in the literature is a seven-vortex
system given by

�1 = �2 = 1, �3 = �4 = �5 = �6 = −2, �7 = 3
2 . (48)

It has been reported that the self-similar family contains a configuration in which the vortices with
circulations {−2,−2, 1} are located at the same point. The family cannot be extended further once
the said configuration is reached. Here, we provide four such examples wherein the self-similar
families are not closed; see the first column of Fig. 12. Figures 12(a) and 12(d) are the two pieces
of a self-similar family associated with the circulation set

�1 = −2, �2 = −3, �3 = �4 = 4, �5 = 6, (49)

with the starting self-similar vortex configuration (marked by filled circles) given by

k1 = (0, 0), k2 = (1, 0), k3 ≈ (0.6248, 0.0113),

k4 ≈ (−0.6462, 1.0862), k5 ≈ (−0.7205,−0.0294),
(50)

in the decreasing and increasing λ0 directions, respectively. The approximate values of the two limit
configurations (ending configurations) are depicted in Table I. Note that we can only obtain the
various orders of approximations of the limit configuration depending on the order of h used in the
algorithm and because of the singular nature of the exact limit configuration.

Similarly, Figs. 12(g) and 12(j) are the two pieces of a self-similar family associated with the
circulation set

�1 = −1, �2 = �3 = 3, �4 = −3, �5 = �6 = 2, (51)
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FIG. 12. (a), (d), (g), (j) Self-similar families that are not closed, where insets show the zoomed part of
vortex triplet. Variation of norm of velocities ||V || of the vortex triplet (b), (e), (h), (k) and E2 = err2 values of
the vortex system with the vortex triplet being considered as a single vortex (c), (f), (i), (l).

with the starting configuration

k1 = (0, 0), k2 = (1, 0), k3 ≈ (−0.7169,−0.2554),

k4 ≈ (1.5677, 0.4530), k5 ≈ (0.8288, 0.7800), k6 ≈ (−0.8936, 1.0166), (52)
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TABLE II. Approximate limit configurations in examples 3 and 4.

Approximate limit configuration

Index Circulation Example 3 Example 4

1 −1 (0,0) (0,0)
2 3 (1,0) (1,0)
3 3 (−1.1102, −1.0758) (−5.6363 × 10−1, −1.6198)
4 −3 (8.1770 × 10−1, 7.6858 × 10−1) (7.2154 × 10−1, 7.5269 × 10−1)
5 2 (8.6873 × 10−3, 2.2768 × 10−2) (1.040 × 10−2, 2.0758 × 10−2)
6 2 (−8.6879 × 10−3,−2.2767 × 10−2) (−1.1040 × 10−2, −2.0757 × 10−2)

in the decreasing and increasing λ0 directions, respectively. The limit configurations are approxi-
mately as given in Table II.

In each of the four examples, as the family tends to the limit configuration, two of the vortex
coordinates tend toward the first vortex position at (0,0); see the first column of Fig. 12. On close
inspection (see the zoomed figures in the first column), it is observed that the three vortices are
asymptotically forming a collinear vortex configuration. Let us focus on these vortex triplets, i.e.,
on vortices with circulations {−2, 4, 4} in the first two examples and {−1, 2, 2} in the last two
examples, respectively.

Let {α, β, γ } ⊂ {1, 2, . . . , N} denote the set of indices of three vortices under consideration.
To analyze the nature of the limiting collinear configurations we inspect V = (vα, vβ, vγ ) of their
ordered individual velocities calculated as an independent three-vortex system by considering only
the induced velocities from the vortices of the subclass {α, β, γ } [see, e.g., (6)].

We observe that the norm of their velocities

||V || =
√

||vα||2 + ||vβ ||2 + ||vγ ||2 (53)

tends to zero as the configuration of the family tends to the limit configuration (see column 2) in
all four examples. Therefore, the collinear configurations asymptotically approached by the vortex
triplets are, in fact, fixed equilibrium configurations. Furthermore, if we treat the vortex triplet as
a single vortex with the sum of the three individual vortex circulations as its circulation, i.e., in
the circulation sets (49) and (51), replacing {−2, 4, 4} by 6 and {−1, 2, 2} by 3, respectively, yield
reduced vortex systems with circulations

{6,−3, 6} and {3, 3, 3,−3}. (54)

Notice that the circulations of the reduced vortex systems (54) satisfy the necessary condition (3a).
Assigning the center of vorticity of the vortex triplet as the location of the replaced vortex and
keeping the rest of the vortex coordinates the same in the configurations constituting the self-similar
family, we obtain a collection of vortex configurations associated with the reduced vortex system
(54). The variation of err2 values, denoted by E2, with iteration number is displayed for each of the
four examples (see the third column). It is seen that E2 tends to zero in all four examples. Therefore,
the limit configuration of each self-similar family is such that the associated reduced vortex system
is a self-similar configuration. It is worth noting that the first zero of E2 in Fig. 12(f) is due to the
collinearity of the corresponding vortex configuration.

The three vortices that cluster together to form an independent fixed equilibrium configuration
have a different length scale than the rest of the vortices. Such clustered vortex configurations are
known to exist in the continua of relative and fixed equilibrium configurations [41,42].
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VII. RIGID-VORTEX CONFIGURATIONS OF A SELF-SIMILAR FAMILY

Given a self-similar collapse or expansion configuration kα and the associated circulation set �α

of a self-similar family, to find the nearest rigid-vortex configuration of the family, we iteratively
change � and tend it to the zero vector. To be specific, we use the following algorithm.

1: Set kguess
α = kα .

2: for i = 1 to nmax do

3: Set λ′
0 = λ0 − λ0

nmax
i.

4: Define err(k′
α ) = err3(k′

α, λ
′
0 ).

5: Execute random walk procedure (step 2 to step 3) but using kguess
α as the initial guess to minimize

err below some tolerance.
6: Update kguess

α with the converged solution.
7: end for

In contrast to the algorithm used for finding the self-similar family, the above algorithm involves
the parameter λ0 and can be used to find the rigid-vortex configurations of the family accurately. The
algorithm is based on the assumption that λ0 has a convex graph in the λ0 < 0 regime and a concave
graph in the λ0 > 0 regime, respectively, as seen in the variation of λ0 with iteration number in
Fig. 11. The assumption may be dropped, if the initial configuration kα is sufficiently close to the
rigid-vortex configuration, such that λ0 varies monotonically along the self-similar family in the
direction of the said rigid-vortex configuration. This is achieved by first finding the self-similar
family and then initializing kα with the smallest |λ0| configurations. Although we may find the
noncollinear rigid-vortex configurations of the family by minimizing the above-defined error with
λ′

0 = 0 (i.e., i = 1 to nmax), to obtain the collinear ones, we shall instead consider a near-zero value
of λ′

0 (i.e., i = 1 to nmax − 1) in order to avoid the degeneracy of the formulation.
A continuum of self-similar collapse configurations tending to a rigid-vortex configuration is

constructed from each of the four self-similar collapse examples discussed in Sec. V, by iteratively
tending the λ0 parameter to zero and for each fixed λ0 minimizing the error (40). Furthermore,
the point-vortex equations (6) are numerically integrated with the limit vortex coordinates of the
obtained family as initial conditions to verify that they are indeed rigid-vortex configurations
characterized by constant intervortex distance functions.

In Fig. 13(a), a continuum of self-similar collapse configurations associated with the circulation
set � ≈ [−2.9852,−2.6854, 1.7625,−0.5061]T is illustrated for λ0 ∈ [−1,−0.001]. The collapse
configuration (41) corresponding to λ0 = −1 is marked with filled circles, whereas the configuration
k1 = (0, 0), k2 = (1, 0), k3 ≈ (1.2290,−0.0001), and k4 ≈ (0.4527,−0.0001) corresponding to
λ0 = −0.001 is marked with filled triangles. The curves all appear to be tending to the x axis as
λ0 approaches zero, indicating a collinear limit. Since −0.001 is close to zero, we would expect the
λ0 = −0.001 configuration of the family to be a close approximation of the collinear rigid-vortex
configuration as verified in Figs. 13(b) and 13(c). In Fig. 13(b), vortex trajectories for t ∈ [0, 5.5]
starting at λ0 = −0.001 configuration are shown, and it is a close approximation of uniform circular
motion around the center of vorticity (marked by a + sign). Moreover, the intervortex distances also
remain approximately constant with time, as seen in Fig. 13(c).

Similarly, in Fig. 13(d), a continuum self-similar collapse configuration associated with the
circulation set � ≈ [1.9879,−0.7826, 0.8766,−5.3597,−3.5566]T is illustrated for λ0 ∈ [−1, 0].
The initial collapse configuration of the family (λ0 = −1) given by (43) is marked with filled
circles and the ending (λ0 = 0) rigid-vortex configuration given by k1 = (0, 0), k2 = (1, 0), k3 ≈
(0.8935, 0.0013), k4 ≈ (0.6730, 0.4249), k5 ≈ (0.7148,−0.3378) with filled triangles. Unlike the
previous example, we have a noncollinear rigid-vortex configuration, which is verified by looking
at the vortex evolution for t ∈ [0, 4] [see Figs. 13(e) and 13(f)]. The vortex trajectories starting with
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FIG. 13. (a), (d), (g), (j) Self-similar collapse configurations (filled circles) and their nearest rigid-vortex
configuration (filled triangles). (b), (e), (h), (k) The rigid-vortex motion (second column), and (c), (f), (i), (l)
the associated temporal variation of intervortex distances (third column).

the (λ0 = 0) configuration can be seen to be uniform circular motion around the center of vorticity,
maintaining constant values of intervortex distances.

A self-similar collapse continuum of the circulation set [
√

2,
√

2,−1, 1,−1, 1]T for
λ0 ∈ [−0.0827, 0] is shown in Fig. 13(g). The initial (λ0 ≈ −0.0827) configuration (filled
circles) has coordinates given by (46) and the end (λ0 = 0) configuration (filled triangles) has
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coordinates given by k1 = (0, 0), k2 = (1, 0), k3 ≈ (−0.7358,−0.1108), k4 ≈
(−0.5040,−0.6619), k5 ≈ (0.6192, 0.6116), k6 ≈ (0.8871,−1.4724). The integrated vortex
trajectories of λ = 0 configurations for t ∈ [0, 80] are circular around the center of vorticity [see
Fig. 13(h)]. The intervortex distance remains constant as expected [see Fig. 13(j)].

Starting with the previously obtained (λ0 ≈ −0.4656) self-similar collapse configuration (47)
of the circulation set [5/2,−1,−1,−1,−1,−1,−1]T, we construct a continuum self-similar
collapse configuration for λ0 ∈ [−0.4656, 0] [see Fig. 13(j)]. The λ0 = 0 configuration of the
family is given by k1 = (0, 0), k2 = (1, 0), k3 ≈ (2.2688,−1.2440), k4 ≈ (0.0912,−1.1762), k5 ≈
(0.8343,−0.4575), k6 ≈ (0.5377,−0.8431), and k7 ≈ (1.0407, 0.5555). The limit configuration is
a uniform rotating-type rigid-vortex configuration, as it evolves in circular trajectories around the
center of vorticity [see Fig. 13(k)] with constant intervortex distances [see Fig. 13(l)].

VIII. CONCLUSIONS

The similarity solutions of point vortices have been identified as equilibrium points in the phase
plane constituted by the intervortex distance ratios. A necessary and sufficient condition for an initial
noncollinear vortex configuration to lead to self-similar motion has been found to be the equality of
all logarithmic-distance decay rates. The algebraic equations representing this condition are linear
in circulations, and of the form M� = �, where M is a thin matrix (called configuration matrix)
that depends solely on the vortex coordinates, � is the circulation set as a column matrix, and
� = [λ0, . . . , λ0]T is the logarithmic-distance decay rate as a column vector. The sign of the param-
eter λ0 determines the type of self-similar motion exhibited: (i) λ0 > 0, (ii) λ0 = 0, and (iii) λ0 < 0
correspond to (i) self-similar expansion, (ii) rigid-vortex motion, and (iii) self-similar collapse,
wherein the intervortex distances (i) increase, (ii) remain constant, and (iii) decrease, respectively.
Analyzing the distribution of self-similar collapse and expansion configurations for N = 3 and 4
showed that they tend to exist as a continuous family of vortex configurations wherein the individual
vortex coordinates are parametrized along closed smooth curves. In each family, the associated
λ0 oscillates between positive and negative values, with finitely many zeros corresponding to the
finitely many rigid-vortex configurations present in the family. It is more natural to consider the
whole continuum of self-similar vortex configurations rather than the pieces constituting only the
collapse or expansion configurations. Thus, we have defined a self-similar family of configurations
as the continuum of self-similar collapse and expansion configurations associated with a given
circulation set, which may also include finitely many rigid-vortex configurations.

Describing the self-similar motion of point vortices through configuration matrices has analytical
and numerical advantages over the existing formulations [33,34,36] in the literature. For instance,
checking the existence of similarity solutions with any given geometrical arrangement of vortices
turns into a routine linear algebra problem of solving M� = �. Moreover, numerical values can
be assigned to vortex configurations through their associated configuration matrix to indicate how
close it is to a self-similar vortex configuration, even without knowing the circulations. Three error
functions, thus defined using the configuration matrix, have been used appropriately to construct
numerical algorithms capable of finding the following: (i) the individual self-similar collapse and
expansion configurations with or without the prior knowledge of circulations, (ii) the self-similar
family of vortex configurations associated with a circulation set from any given collapse or expan-
sion configuration, and (iii) rigid-vortex configurations associated with a self-similar family.

We have shown from carefully constructed examples that multiple disconnected self-similar
families can be associated with a given circulation set. Moreover, we have observed that the closed
nature of vortex configurations in self-similar families is not a trivial consequence of symmetry,
as some examples do not contain the configurations reflected along the x axis. Furthermore, the
circulation sets for which self-similar families of vortex configurations are not closed show an
interesting structure. They include a subcollection of circulations satisfying (3a) and the reduced
circulation set wherein the subcollection is removed and replaced with the sum of its circulations
also satisfies (3a). Inspection of the vortex configurations in some self-similar families showed
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that the subcollection of vortices tends to a fixed equilibrium configuration and the reduced
vortex system tends to a self-similar vortex configuration as the family approaches the limiting
configuration. Thus, it appears that a form of individuality is lost by some of the point vortices at
the limit configuration when the self-similar families are not closed. Further studies are required to
verify whether or not these observations constitute a necessary and sufficient condition. It is also
worth investigating whether λ0 can have any complex behaviors in a family and whether a fixed
equilibrium configuration can be part of a self-similar family of configurations. In the examples
we considered, λ0 had well-behaved convex and concave shaped graphs, and the rigid-vortex
configurations of the families were all of the uniformly rotating types.
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APPENDIX A: NECESSARY CONDITIONS FOR COLLAPSE AND EXPANSION

The two necessary conditions of self-similar vortex collapse are derived using the linear algebra
formulation (17).

Lemma 1 (Necessary condition 1). Let �α ∈ R \ {0} be the vortex circulations. Any self-similar
vortex collapse and expansion initial condition must have

∑
α �=β �α�β = 0.

Proof. Since point-vortex systems are Hamiltonian systems we have

H = H|t=0. (A1)

Substituting (19) in the above equation yields

N∑
α �=β

�α�β log
(
l2
αβ (0)(1 + λ0 t )

) =
N∑

α �=β

�α�β log
(
l2
αβ (0.)

)
(A2)

Subtracting H|t=0 from both sides, we get

log (1 + λ0 t )
∑
α �=β

�α�β = 0, (A3)

which is true for any t ∈ [0, tc). Therefore, we must have
∑

α �=β �α�β = 0. �
Lemma 2 (Necessary condition 2). Let �α ∈ R \ {0} be the vortex circulations. If {kα ∈ R2|α =

1, 2, . . . , N} is a self-similar collapse or expansion configuration, then
∑

α �=β �α�β l2
αβ = 0, where

lαβ = ||kα − kβ || denotes the intervortex distance.
Proof. From the linear-algebra formulation (16) and the expression (7), for some λ0 < 0

l2
αβ = 2

πλ0

N∑
γ=1

′′
�γ Aαβγ

(
1

l2
βγ

− 1

l2
αγ

)
. (A4)

Multiplying both sides by �α�β and summing over all pairs of (α �= β ) we get

∑
α �=β

�α�β l2
αβ = 2

πλ0

∑
α �=β �=γ

�α�β�γ Aαβγ

(
1

l2
βγ

− 1

l2
αγ

)
. (A5)

Let S = ∑
α �=β �α�β l2

αβ . Since the right-hand sum essentially runs over all distinct triplets of indices
(α, β, γ ), we would expect to get the same result if we interchange the dummy variables α and γ :

S = 2

πλ0

∑
α �=β �=γ

�α�β�γ (−Aαβγ )

(
1

l2
αβ

− 1

l2
αγ

)
. (A6)
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Similarly, if we interchange β and γ ,

S = 2

πλ0

∑
α �=β �=γ

�α�β�γ (−Aαβγ )

(
1

l2
βγ

− 1

l2
αβ

)
. (A7)

Averaging the above three expressions for S we get

S = 2

3πλ0

∑
α �=β �=γ

�α�β�γ Aαβγ

(
1

l2
βγ

− 1

l2
αγ

− 1

l2
αβ

+ 1

l2
αγ

− 1

l2
βγ

+ 1

l2
αβ

)
= 0. (A8)

Hence, the proof. �

APPENDIX B: RELATION BETWEEN HAMILTONIAN AND
LOGARITHMIC-DISTANCE DECAY RATE

This appendix shows that along the continuum of three-vortex self-similar collapse and expan-
sion configurations associated with a circulation set, the rate of change of Hamiltonian is a scalar
multiple of λ0.

dH
dθ

=
∑
α �=β

∂H
∂l2

αβ

dl2
αβ

dθ
= −1

8π

∑
α �=β

�α�β

l2
αβ

dl2
αβ

dθ
,

= −�3

4π

(
�1

l2
13

dl2
13

dθ
+ �2

l2
23

dl2
23

dθ

)
,

= �3R sin θ

2π

(
�1 ω/(1 + ω)

l2
13

+ �2(−1/1 + ω)

l2
23

)
,

= �32A

2π (1 + ω)

(
�2

l2
13

− �2

l2
23

)
,

= −�2

2(1 + ω)

2A �3

π

(
1

l2
23

− 1

l2
13

)
,

= −�2

2(1 + ω)
λ0 = �3

2
λ0.
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