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Large eddy simulations (LESs) are used to study the effects of veer (the height-
dependent lateral deflection of wind velocity due to Coriolis acceleration) on the evolution
of wind turbine wakes in the atmospheric boundary layer. Specifically, this work focuses on
turbines that are yawed with respect to the mean incoming wind velocity, which produces
laterally deflected wakes that have a curled (crescent-shaped) structure. These effects can
be attributed to the introduction of streamwise mean vorticity and the formation of a
counter-rotating vortex pair (CVP) on the top and bottom of the wake. In a truly neutral
boundary layer (TNBL) in which wind veer effects are absent, these effects can be captured
well with existing analytical wake models [Bastankhah et al., J. Fluid Mech. 933, A2
(2022)]. However, in the more realistic case of atmospheric boundary layers subjected
to Coriolis acceleration, existing models need to be reexamined and generalized to include
the effects of wind veer. To this end, the flow in a conventionally neutral atmospheric
boundary layer (CNBL) interacting with a yawed wind turbine is investigated in this paper.
Results indicate that in the presence of veer the CVP’s top and bottom vortices exhibit
considerable asymmetry. However, upon removing the veer component of vorticity, the
resulting distribution is much more symmetric and agrees well with that observed in a
TNBL. These results are used to develop a simple correction to predict the mean velocity
distribution in the wake of a yawing turbine in a CNBL using analytical models. The
correction includes the veer-induced sideways wake deformation, as proposed by Abkar
et al. [Energies 11, 1838 (2018)]. The resulting model predictions are compared with mean
velocity distributions from the LESs, and good agreement is obtained.

DOI: 10.1103/PhysRevFluids.7.114609

I. INTRODUCTION

Yawing a turbine deflects its wake, decreasing wake interactions and potentially increasing the
power output of downstream turbines [1]. Coordinating such actions over a wind farm could improve
its overall efficiency [2]. Wake deflection due to yaw was studied experimentally in [3–7], while
Ref. [8] performed an early large eddy simulation (LES) study and proposed a simple analytical
model for predicting the initial wake skewing angle just behind the turbine. In a subsequent wind
tunnel study [9], the formation of an axial counter-rotating vortex pair (CVP) was observed behind a
yawed actuator disk, in the presence of a uniform inflow. The deflection of the wake was attributed
to the CVP because the vortices (one above and the other below the actuator disk) induce a side
wash velocity that deflects the wake from the center of the turbine. The vortices also deform the
wake shape into a curled (crescent-shaped) structure. Reference [10] performed further wind tunnel
studies of a model wind turbine in a turbulent boundary layer and also observed CVP formation.

Reference [11] proposed considering the turbine as a lifting surface (applying a height-dependent
sideways force onto the fluid), analogous to a vertically placed airfoil that sheds streamwise (tip)
vortices in the presence of an incoming mean flow. Evaluation of the induced strength of the CVP
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near the turbine enabled predicting the yaw-induced wake deflection quite accurately [11]. Other
vortex-based models describe the vorticity at the turbine as a distribution of multiple, discrete point
vortices [12–14] whose downstream transport and diffusion are modeled numerically. Following
these studies, Ref. [15] proposed a theory for the generation and downstream evolution of the CVP.
Their analytical predictions for the decay of the maximum vorticity and circulation strength of the
vortices showed very good agreement with the LES data, while still assuming a circular shape of
the wake. In a more detailed recent study [16], it was shown that an analytical vortex-sheet-based
model can successfully predict the curled wake shape behind yawed turbines. In this model, the
wake edge was treated as a vortex sheet, and analytical solutions for the wake shape were obtained
using truncated power series expansions and the decaying circulation strength estimate of the CVP
from Ref. [15]. In addition, the lateral deflection of the wake induced by the trailing vortices was
also modeled. The Gaussian wake model for the axial velocity deficit in Ref. [16] was then modified
to include the deformation caused by the vortex sheet and this combined model predicted the curled
shape and the deflection of the wake quite accurately.

Wind turbine wake properties and the performance of wind farms depend on the prevailing
properties of the atmospheric boundary layer (ABL). For instance, it is well known that the wake
recovery rate (i.e., the wake expansion coefficient) is affected by the ABL’s thermal stratification
conditions [17]. At the same time, the Coriolis acceleration due to Earth’s rotation causes an Ekman
spiral flow in the surface layer of the ABL [18]. This leads to a height-dependent lateral realignment
of the incoming wind direction called wind veer, which can significantly affect the wind farm
power output [19]. Veer effects have been previously considered for an unyawed turbine in a stably
stratified ABL [20]. That work modified the Gaussian wake model with a veer correction term which
successfully predicted the skewed or sheared wake structure arising from the spanwise shear due
to the wind veer. Reference [21] considered the effects of both yaw and veer on individual turbine
blade aerodynamics. However, the combined effects of veer and yawing on wind turbine wakes
and their modeling via analytical approaches have not yet received significant attention so far. The
objective of the present study is to examine the evolution of turbine wakes in the presence of both
turbine yawing and veer, as well as to include both of these effects in analytical models of the turbine
wake.

In order to generate the relevant data, an LES of a yawed wind turbine in the presence of
an incoming mean flow typical of a conventionally neutral ABL (CNBL) that includes veer is
performed. The CNBL is a type of ABL characterized by a neutrally stratified turbulent boundary
layer region separated from the geostrophic and stably stratified free atmosphere by a capping
inversion layer at the boundary layer height [22]. As a reference, we also perform an LES of a
yawed wind turbine in a truly neutral boundary layer (TNBL) in which veer effects are absent. The
details of the LESs are described in Sec. II. The results are analyzed in Sec. III, which focuses
on the effect of wind veer on the downstream evolution of mean vorticity. The results are used to
introduce modifications to existing analytical models so that both ABL veer and turbine yaw can be
represented efficiently and accurately as described in Sec. IV. The main conclusions are summarized
in Sec. V.

II. LARGE EDDY SIMULATION OF A YAWED WIND TURBINE IN A CNBL

This section details the LES setup of CNBL and TNBL simulations used to generate data to
study the effect of wind veer on a yawed turbine wake. We use the open-source code LESGO [23], an
LES solver primarily developed to simulate ABL flows [24,25]. The code includes various dynamic
subgrid stress parametrizations, wall models, wind turbine representations using actuator disk or
line models, and inflow generation using the concurrent-precursor approach [26]. The code has
been validated by several previous studies [11,15,25–31]. The governing equations and numerical
method, initial conditions for the velocity, and potential temperature are discussed in Sec. II A.
The simulation setup is described in Sec. II B. The characteristics of the CNBL and TNBL to be
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simulated are described in Sec. II C, which documents the main differences in the mean flow velocity
profiles between the two cases.

A. Governing equations and numerical method

The code LESGO solves the filtered Navier-Stokes equations (with the Boussinesq approximation
for buoyancy effects) and the scalar potential temperature transport equation:

∂ ũi

∂xi
= 0, (1)

∂ ũi
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where the tilde (·̃) represents spatial filtering operation such that ũi = (ũ, ṽ, w̃) are the filtered veloc-
ity components in the streamwise (x), lateral (y), and vertical (z) directions, respectively, and θ̃ is the
filtered potential temperature. The term τi j = σi j − (1/3)σkkδi j is the deviatoric part of the subgrid
scale (SGS) stress tensor σi j = ũiu j − ũiũ j . The quantity p̃ = p̃∗/ρ0 + (1/3)σkk + (1/2)ũ j ũ j is the
modified pressure, where the actual pressure p̃∗ divided by the ambient density ρ0 is augmented with
the trace of the SGS stress tensor and the kinematic pressure arising from writing the nonlinear terms
in rotational form. The quantities f̃i = ( f̃x, f̃y, 0) are the streamwise and spanwise components of
the turbine’s force imparted on the fluid. The term −(1/ρ0)∂ p∞/∂xi is the mean external pressure
gradient applied to drive the flow. The δi j in Eq. (2) is the Kronecker delta function determining the
direction of buoyancy, turbine thrust, and Coriolis forces. In the buoyancy term, g = 9.8 m/s2 is the
gravitational acceleration, and θ̃0 is the reference potential temperature scale taken to be 288 K for
the CNBL case. In the Coriolis force terms, fc = 2	 sin φ = 10−4 s−1 is the Coriolis parameter at
latitude φ = 45◦. In Eq. (3), the term � j = ũ jθ − ũ j θ̃ is the SGS heat flux.

In the momentum equation (2) a constant mean pressure gradient ∇p∞ = (∂ p∞/∂x, ∂ p∞/∂y, 0)
is applied to drive the flow. For the CNBL case, it is written in terms of the geostrophic velocity
components Ug,Vg using the geostrophic balance equation

1

ρ0

∂ p∞
∂x

= fcVg,
1

ρ0

∂ p∞
∂y

= − fcUg. (4)

The geostrophic velocity components are specified as Ug = G cos α, Vg = G sin α, where G =
(U 2

g + V 2
g )1/2 is the magnitude of the geostrophic wind, which is set to 8 m/s, and α is the angle

made by the resultant wind velocity vector with respect to the streamwise x direction. For the
TNBL case, the dimensionless streamwise mean pressure gradient is set to a constant value. This
constant streamwise pressure gradient ensures that the mean flow is streamwise aligned throughout
the domain without any wind veer [V (z) ≡ 0]. In addition, since the TNBL flow is isothermal and
neutrally buoyant throughout the domain, Eq. (3) is not solved for this case, and the buoyancy term
in the momentum equation (2) vanishes.

In the CNBL simulation, we maintain a mean flow direction such that it is streamwise aligned
at the hub height. This is achieved by choosing a value of α for the geostrophic wind such that the
wind veer at hub height is zero [V (z = 0) = 0]. To compute the appropriate value of α, we use the
proportional-integral (PI) control approach introduced in Ref. [32] with a proportional gain KP = 10
and an integral gain KI = 0.5. We also impose the constraint V (z = 0) = 0.

We solve the equations for the high Reynolds number limit such that the molecular viscous and
heat diffusion terms are neglected in Eqs. (2) and (3). The necessary diffusion for the problem is
provided by modeling the deviatoric part of the SGS stress tensor (τi j ) and the SGS heat flux (� j )
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as

τi j = −2νSGS
T S̃i j, � j = −κSGS

T

∂θ̃

∂x j
, (5)

where νSGS
T is the SGS momentum diffusivity, κSGS

T is the SGS heat diffusivity, and S̃i j =
(1/2)(∂ ũi/∂x j + ∂ ũ j/∂xi ) is the symmetric part of the velocity gradient tensor. The diffusivities
are related by the SGS Prandtl number PrSGS = νSGS

T /κSGS
T , which is taken to be 0.4 in this paper

[33]. The diffusivities νSGS
T and κSGS

T are modeled as

νSGS
T = (CS�̃)2

√
S̃i j S̃i j, κSGS

T = Pr−1
SGSν

SGS
T = Pr−1

SGS(CS�̃)2
√

S̃i j S̃i j, (6)

where CS is the Smagorinsky model coefficient and �̃ = (�x�y�z)1/3 is the filter width and
�x,�y,�z are the respective x, y, z grid spacings. The model coefficient CS is evaluated using
the Lagrangian dynamic scale-dependent model [25].

The code uses the pseudospectral method along the streamwise and spanwise directions. The
wall-normal direction is discretized using a second-order central finite difference method. The
second-order accurate Adams-Bashforth scheme is used for time advancement. A shifted periodic
boundary condition is used in the streamwise direction of the precursor domain to prevent artificially
long flow structures from developing. This approach also enables the development of statistical
homogeneity with a shorter precursor domain size and less computational cost [34]. A stress-free
boundary condition is imposed on the top boundaries of the domains. The wall stress boundary
condition from the equilibrium wall model is applied at the bottom wall of both the precursor and
wind turbine domains. Assuming that the grid points near the surface are within the logarithmic
layer (Monin-Obukhov similarity in the absence of stratification), the wall stress τw magnitude is
evaluated as

τw = −
(

ũrκ

ln(z1/z0)

)2

, (7)

where ũr = √
ũ2 + ṽ2 is the resultant horizontal velocity at the first grid point z = z1 = �z/2, κ =

0.41 is the von Kármán constant, and z0 = 0.1 m is the assumed surface roughness height. Using
Eq. (7), the wall stress components are evaluated as

τi,3|w = τw

ũi

ũr
, i = 1, 2, (8)

which are applied as the stress boundary conditions at the bottom boundary. For the CNBL simu-
lation, we apply a zero-buoyancy-flux boundary condition q∗ = 0 to maintain neutral stratification
within the ABL.

The velocity fields of both the CNBL and TNBL LES are initialized with a log-law velocity
profile with zero-mean white noise superimposed. The noise is initialized for the entire domain
in the TNBL while only for the first 900 m from the bottom surface for the CNBL. To simulate
the CNBL conditions in the LES, an initial potential temperature profile with a capping inversion
layer is set up such that the boundary layer is neutral below the layer and is stably stratified above
it (see Fig. 1). The capping inversion height is set to 1 km from the ground. The initial potential
temperature θ̃ magnitude below the capping inversion region is 288 K (the same as the reference
temperature scale θ̃0). The thickness of the capping inversion layer, where the potential temperature
increases linearly from 288 to 290.5 K, is 100 m. Above this capping inversion layer, the potential
temperature increases with a lapse rate of 0.001 K/m.

To represent the wind turbine, we use the local-thrust-coefficient-based actuator disk model
(ADM) [15,27,31,35]. The ADM treats the turbine as a drag disk of diameter D and radius R = D/2
imparting a total force T on the fluid directed along the unit-normal direction n = cos βi + sin β j
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FIG. 1. Schematic of the CNBL simulation setup with the turbine in the concurrent wind turbine domain,
inflow mean velocity profile with streamwise U (z) and wind veer V (z) components, and initial potential
temperature profile θ̃ (t = 0) in the precursor domain.

perpendicular to the disk, where β is the yaw angle (see Fig. 2), and

T = −1

2
ρ0πR2C′

T u2
d . (9)

Here, C′
T is the local thrust coefficient and ud is the disk-averaged velocity defined as

ud =
∫

ũ · nR(x)d3x =
∫

(ũ cos β + ṽ sin β )R(x)d3x. (10)

The ud is an average of the velocity in the direction normal to the disk, ũ · n = ũ cos β + ṽ sin β

with the integration performed over the actuator disk using the indicator function R(x) (defined
below). The local thrust coefficient is set to C′

T = 1.33, the same value as used in previous
studies [15,27,31,35] to represent standard wind turbine operating conditions. The force is spatially
distributed using the smoothed indicator function R(x) such that the filtered force vector is

f̃ = T R(x) n = T R(x) cos β i + T R(x) sin β j. (11)

n
β

x

y

z

V (z) U(z)

FIG. 2. Schematic sketch of an isometric view of a yawed wind turbine at angle β in the presence of ABL
flow with mean velocity U = U (z)i + V (z) j.
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TABLE I. Computational domain size and grid points for LES of yawed wind turbine in the CNBL and
TNBL cases. Note that the grid resolution is the same for both LES domains.

Precursor and wind turbine domain size Number of grid points Grid resolution
Case [Lx (km)×Ly (km)×Lz (km)] (Nx×Ny×Nz) [�x (m)×�y (m)×�z (m)]

CNBL 3.75×1.5×2 360×144×432 10.4×10.4×4.6
TNBL 3.75×1.5×1 360×144×216 10.4×10.4×4.6

The smoothed indicator function is defined as [23,31]

R(x) =
∫

G(x − x′)I (x′)d3x′, (12)

where I (x) and G(x) are the normalized indicator function and Gaussian filtering kernel, respec-
tively, given by

I (x) = 1

sπR2
[H (x + s/2) − H (x − s/2)]H (R − r), (13)

G(x) =
(

6

π�2

)3/2

exp

(
−6

||x||2
�2

)
. (14)

In Eq. (13), s is the x-direction thickness of the forcing region, which is set to 10 m, and H (x) is the
Heaviside function, which is used to localize the disk within the region −s/2 < x < s/2 and r < R,
where r =

√
y2 + z2. In the filtering kernel (14), � is the filter width defined as � = 1.5h, where

h =
√

�x2 + �y2 + �z2 is the effective grid size.
We note that the actuator line model (ALM) is a high-fidelity representation of the turbine as

it can capture the effects of root and tip vortices behind the turbine which are not resolved by the
ADM. However, owing to the high computational costs of running LESs with ALM and because
there are not many differences in the far-wake behavior between LES with the ADM and ALM [36],
we choose the ADM over the ALM in this paper.

In the following sections, the simulation setup and results from the precursor simulation of the
CNBL and TNBL LES cases are discussed.

B. Simulation setup

As shown in the schematic in Fig. 1, the simulation is performed using two computational
domains, the precursor and wind turbine domains. The turbine is placed in the wind turbine domain
while the turbulent inflow simulating the CNBL or TNBL conditions is generated in the precursor
domain. The details of the domain size and number of grid points are summarized in Table I, and
relevant dimensions are also shown in Fig. 1.

Figure 1 includes a sketch of the initial potential temperature (θ̃ ) profile (blue line) used
to simulate the CNBL atmospheric condition in the precursor domain. A sponge (or Rayleigh
damping) layer at the top boundary is used to dampen gravity waves in the computational domain.
This is a wave absorbing layer that is 500 m wide extending from the top boundary. A body force
with a cosine profile for its damping coefficient is applied in this layer to prevent reflection of
gravity waves [37,38]. The resultant mean flow is expected to take the form of a low-level jet with
velocity U = U (z)i + V (z) j. Together with the turbulence that develops in the precursor domain,
the velocity is then used as an inflow for the wind turbine domain using the concurrent-precursor
method [26]. In this method, at each time step, a part of flow from the precursor domain is copied
to the outflow region of the wind turbine domain. A fringe region is then defined to smoothly
transition between the wind turbine flow and the region of flow copied from the precursor domain.
The direction of the incoming mean velocity changes as a function of height. In contrast, for the
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TNBL simulation, the flow is isothermal in the entire computational domain, and there is no wind
veer, i.e., V (z) ≡ 0.

The wind turbine domain (second downstream domain in Fig. 1) includes a single turbine yawed
at an angle β = 20◦ placed at a distance of 500 m from the inlet. The diameter D and hub height
zh of the turbine are both 100 m. We use a Cartesian (x y z) coordinate system centered at the hub
of the turbine. Figure 2 provides a sketch of the turbine orientation indicating the yaw angle β, and
the normal direction. Figure 2 also shows the two-component velocity profile that includes a veer
velocity profile V (z) in addition to the streamwise profile U (z).

C. Characteristics of CNBL and TNBL

Upon reaching statistically stationary conditions, mean velocity profiles are obtained from
the LES in the precursor domain by performing time t and horizontal spatial (x-y) averaging.
Results are shown in Fig. 3 for both the CNBL (blue solid curves) and TNBL (open circles)
cases. At the hub height, the magnitude of the mean velocity for the CNBL profile is Uh =√

U 2(z = 0) + V 2(z = 0) = 6.4 m/s, and the pressure gradient forcing for the TNBL is set so
that the same Uh = 6.4 m/s is implied for both simulations. The friction velocities obtained from
averaging the wall stress in the precursor domain of both cases are uτ = 0.35 m/s. The resultant
velocity profiles for the CNBL and TNBL are shown in Fig. 3(a) together with the log-law velocity
profile. Both LES cases have a similar mean wind profile within the turbulent boundary layer. The
streamwise U (z) and spanwise wind veer component V (z) of the CNBL flow are plotted in Figs. 3(b)
and 3(c). The normalized streamwise velocities U/Uh from both the CNBL and TNBL cases agree
quite well with each other. As expected, the TNBL case does not display any mean wind veer
[open circles in Fig. 3(c)]. Conversely, wind veer exists in the CNBL. This veer is well represented
as V (z) = −Sz in the region near the turbine hub height, i.e., covering the rotor region between
z = 0.5D and z = −0.5D. We find from LES that the magnitude of the slope of the veer velocity is
S = 2.2×10−3 s−1. The Ekman spiral formed by U (z) and V (z) in the CNBL is shown in the inset
of Fig. 3(b). These results confirm that a streamwise aligned mean flow is achieved at the hub height
[V (z = 0) = 0] for the CNBL (Fig. 2) using the proportional-integral (PI) controller approach [32].
This behavior is also evident in the plot of flow angle α(z) = tan−1[V (z)/U (z)] versus wall-normal
height in Fig. 3(d), where α(z = 0) = 0. The corresponding plot (open circles) from the TNBL
confirms that the flow is aligned in the streamwise direction throughout the domain height.

Figure 4 shows contour plots of time-averaged streamwise vorticity ωx for cross-stream planes
at x/D = [2, 6, 10, 14] from the TNBL and CNBL simulations. The vorticity and the streamlines
overlaid on top of the TNBL contours at the cross planes indicate the presence of counter-rotating
vortices in the wake region. There is a clearly visible clockwise rotating vortex below and counter-
clockwise rotating vortex on top of the turbine as viewed along the positive x direction in Fig. 4(a).
In contrast, for the CNBL case in Fig. 4(b), the contours show the presence of counter-rotating
vortices affected significantly by the background veer vorticity where the top vortex is less visible
than the bottom vortex.

The decay of the wake strength is displayed in Fig. 5, which shows the maximum velocity deficit
�umax normalized by Uh in the wakes of the CNBL (blue curve) and TNBL cases (open circles) as a
function of downstream distance from the turbine. Except for the near-rotor region (x/D < 3) they
are very similar and also agree well with values obtained from a model (black curve) to be discussed
later in Sec. IV.

In the next section, the time-averaged LES data are used to study the evolution and decay of the
mean streamwise vorticity.

III. GENERATION AND DOWNSTREAM EVOLUTION OF MEAN VORTICITY

In this section, we discuss the implications of including the wind veer effects on the model
developed in Ref. [15]. The model is based on the linearized mean streamwise vorticity equation and
includes two mechanisms: (1) Streamwise vorticity is generated at the turbine due to curl of the
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(a) (b)

(c) (d)

FIG. 3. Plots of (a) mean inflow velocity, (b) streamwise velocity, (c) spanwise or wind veer velocity, and
(d) angle of the inflow near the hub height of the CNBL (blue solid curves) and TNBL (open circles) LES
cases. The inset in (b) shows the Ekman spiral. The black dotted line in (a) corresponds to the log-law velocity
profile with uτ = 0.35 m/s and Uh = 6.4 m/s. The black dotted line in (c) represents the linear approximation
V (z) = −Sz with S = 2.2×10−3 s−1.

spanwise component of the thrust force, addressed in Sec. III A, and (2) the generated vorticity is
advected downstream by the mean flow with simultaneous turbulent diffusion in the transverse y-z
plane, discussed in Sec. III B.

A. Mean streamwise vorticity generation at the yawed rotor

At the turbine location, the spanwise component of the force due to the yawed turbine changes
along the spanwise direction. As a result, streamwise mean vorticity is created at the actuator disk
periphery which is then transported downstream eventually forming the CVP. At the rotor location,
the linearized mean streamwise vorticity equation is dominated by advection and the creation of
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(a) (b)

FIG. 4. Contours of time-averaged streamwise vorticity ωx behind a yawed wind turbine at angle β = 20◦

from the (a) TNBL and (b) CNBL simulations. Contours are shown on various downstream planes at locations
x/D = [2, 6, 10, 14] and on the bottom surface (first plane above the ground) and side plane at y/D = 2. The
vorticity contours are normalized by the turbine diameter D and the hub height velocity Uh of the incoming
mean flow. The streamlines of the flow on the planes shown are overlaid on top of the contours visibly showing
the presence of the cross-stream flow.

vorticity due to the yawed actuator disk [15,39]:

Uh
∂ωx

∂x
= − 1

ρ0

∂ fy

∂z
, (15)

where ωx represents the time-averaged streamwise vorticity and fy is the spanwise (y-direction)
force per unit volume exerted by the turbine rotor on the passing air.

For a yawed actuator disk representation of the turbine, the spanwise component of the thrust
force per unit (fluid) mass is given by [15]

fy(x, y, z) = −1

2
ρ0CT U 2

h cos2 β H (R − r)δ(x) sin β, (16)

FIG. 5. Streamwise evolution of C(x) = �umax/Uh, the maximum velocity deficit normalized by Uh in the
wake of a yawed wind turbine for the CNBL case (blue solid curve) and TNBL case (open circles), compared
with C(x) from the model in Eq. (40) discussed in Sec. IV [black curve; the model is valid downstream of the
near rotor region (i.e., for x/D > 3)].
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where r2 = y2 + z2. Equation (16) is obtained using the standard expression for total thrust force
T = −(1/2)ρ0πR2CT U 2

h cos2 β distributed uniformly on the actuator disk. This distribution is
represented using the indicator function R(x) = H (R − r)δ(x)/πR2 [11], where H (R − r) is the
Heaviside function with the radial coordinate r spanning the transverse y-z plane with its origin at the
hub of the turbine. The force acts only at the turbine’s streamwise position x = 0 as represented by
the delta function δ(x). The thrust coefficient CT in Eq. (16) is related to the local thrust coefficient
C′

T in Eq. (9) by the relation CT = 16C′
T /(4 + C′

T cos2 β )2 [11].
Using expression (16) in (15), the analytical form of the vorticity distribution generated at the

turbine is obtained by integrating (15) in x, which gives

ωx(x = 0, r, θ ) = − 1

ρ0Uh

∫ x

−∞

∂ fy

∂z
dx = −1

2
CT Uh cos2 β sin β sin θ δ(r − R)H (x). (17)

Here, the r and θ directions are obtained through a cylindrical coordinate transformation of the y-z
transverse plane defined by y = r cos θ and z = r sin θ . The corresponding circulation strength of
the top and bottom vortices can be obtained by integrating Eq. (17) for the top and bottom half
planes, respectively, which gives

�top = −�bottom =
∫ ∞

0

∫ π

0
ωx(x = 0, r, θ )r dr dθ = −�0, (18)

where �0 = RCT Uh cos2 β sin β is the magnitude of the circulation strength. The corresponding
induced mean velocity components on the transverse plane, v and w, can be obtained by applying
the Biot-Savart law [15]

v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�0

4R
, r � R

−�0

4R

R2

r2
cos(2θ ), r > R,

w =

⎧⎪⎨⎪⎩
0, r � R

−�0

4R

R2

r2
sin(2θ ), r > R.

(19)

In order to compare the analytical solution in Eq. (17) with LES, it must first be filtered at scales
commensurate with the LES grid resolution to be consistent with the filtered representation of the
turbine forcing. This appropriate filtering was accomplished in Ref. [15] by first mapping Eq. (17)
to an arc distributed along the turbine edges (actuator disk circumference) and then convolving this
mapped function with a two-dimensional Gaussian filter. The resulting filtered vorticity at x = 0 is
given by

ωx(θ, r) = − �∗
0

2R∗

sin(θr/R∗)

σR

√
2π

exp

(
− (r − R∗)2

2σ 2
R

)
exp

(
− σ 2

R

2R2∗

)
, (20)

where R∗ = R + 0.75h is the effective radius of the filtered actuator disk with h depending on the
grid resolution according to h =

√
�x2 + �y2 + �z2. The Gaussian filter width is σR = 1.5h/

√
12.

The magnitude of the effective circulation strength for the vortices expected from LES must be
based on R∗ instead of R, specifically, �∗

0 = R∗CT Uh cos2 β sin β. Further following Ref. [15],
the analytical solutions for cross-stream induced velocities given by Eq. (19) are compared with
the numerical solutions by plotting v + ur cos θ and w + ur sin θ . Here, ur is the radial velocity
given by ur = (r/2)∂xu(R, 0, 0) for r � R∗ and ur = (R2

∗/2r)∂xu(R, 0, 0) for r > R∗. This step is
done to eliminate the radial inflow that occurs due to streamtube expansion resulting from a finite
streamwise pressure gradient behind the actuator disk that is not included in the theory but affects
the LES results.

With these considerations, we can now compare the induced velocities from the LES including
veer with the theory. The comparisons are shown in Fig. 6. Figure 6(a) shows contours of the
streamwise vorticity from the LES of the CNBL with streamlines of the cross-stream velocities
superimposed. The corresponding filtered values from the analytical model [Eq. (17)] are shown in
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FIG. 6. Contours of ωtot
x D/Uh or ωxD/Uh [(a), (d), and (g)], (v + V )/Uh or v/Uh [(b), (e), and (h)], and

w/Uh [(c), (f), and (i)] at x/D = 0.5 in the wake of a yawed turbine with C′
T = 1.33, β = 20◦. (a)–(c) are

from the CNBL LES, while (d)–(f) are analytical predictions [15]. Subtracting the veer component of vorticity
and spanwise velocity from (a), (b), and (c) gives (g), (h), and (i), which has have good agreement with the
analytical estimates [(d), (e), and (f)].

Fig. 6(d). The LES results displayed in Fig. 6(a) show a significant asymmetry. Here, most of the
streamlines at the top do not close around the top vortex, in contrast to those of the bottom vortex.
This difference from the symmetric behavior predicted by the theory is due to the background mean
vorticity caused by the veer, 	x = −dV/dz and 	y = dU/dz. This observation inspires a model in
which the actual mean streamwise vorticity observed in LES (total vorticity ωtot

x ) comprises a linear
superposition of the veer component of the vorticity (	x) and the yawed turbine-generated vorticity
(ωx).

ωtot
x = ωx + 	x. (21)

We note that for a TNBL there is no wind veer [V (z) = 0] and the mean streamwise vorticity is
	x = 0. If the assumed form in (21) is correct, the difference ωtot

x − 	x from LES (i.e., subtracting
the veer vorticity 	x = −dV/dz) should be well predicted by the theoretical vorticity distribution
from Eq. (20). Figure 6(g) shows distributions of ωtot

x − 	x from LES and its associated streamlines
in the cross plane. Clearly, the agreement between the veer-subtracted CNBL LES data and the
model is much improved. For example, the symmetry is recovered and the streamlines now close
around the top vortex as expected from the model.

Figures 6(b), 6(e), and 6(h) show the corresponding spanwise mean velocities, while Figs. 6(c),
6(f), and 6(i) show the vertical velocities. The results in Fig. 6(b) show significant asymmetry. Since
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V > 0 below the hub height and V < 0 above the hub height, the induced velocity above the rotor
disk is significantly lower in the LES than in the model. In LES the veer velocity cancels much of
the induced velocity from the yawed turbine. Upon subtracting the veer velocity distribution from
the CNBL LES results [Figs. 6(g)–6(i)], we retrieve the more symmetric distribution, that has good
agreement with the theory [Figs. 6(d)–6(f)]. Contours obtained from the LES of the TNBL case (not
shown) also show good agreement with the model.

These results suggest that the model proposed in Ref. [15] to predict the generation of mean
streamwise vorticity due to a yawed wind turbine remains essentially unaltered even in the presence
of wind veer in a CNBL. The background veer vorticity can be added to that of the unperturbed
vorticity distribution in order to model the total vorticity distribution immediately behind the yawed
actuator disk. The further downstream evolution of mean vorticity is discussed in the following
section.

B. Downstream evolution of mean vorticity

Downstream of the rotor, the streamwise evolution of the turbine-generated streamwise mean
vorticity ωx is dominated by mean advection and transverse turbulent diffusion [15],

Uh
∂ωx

∂x
= νT (x)

(
∂2ωx

∂y2
+ ∂2ωx

∂z2

)
. (22)

Here, νT (x) ∼ uτ l (x) is the turbulent eddy viscosity, which can be modeled as the product of
the friction velocity uτ and a mixing length scale l (x). The wake size, which increases linearly
downstream of the turbine in the presence of ambient turbulence, is chosen as the appropriate mixing
length scale, such that l (x) ∼ x [40]. Following Ref. [15], this linearly growing mixing length scale
is given by l (x) = 2κν (x − x0)/

√
24, where kν = uτ /Uh is the vortex expansion coefficient and

x0 = −24−1/41.5h/kν is the virtual origin. Using this l (x), the eddy viscosity νT (x) becomes

νT (x) = uτ 2kν (x − x0)/
√

24. (23)

From the current LES simulations, using the values uτ = 0.35 m/s and Uh = 6.4 m/s, the vortex
expansion coefficient for both simulations results in kν = 0.0547.

We note that adding the constant vorticity due to veer, 	x to ωx, does not affect Eq. (22) as
long as it is constant in the vertical direction. Also, from Fig. 3, we can see that near the turbine,
the magnitude of the veer velocity V (z) is much smaller than the streamwise mean flow U (z).
Therefore we can expect the streamwise advection term to be dominant resulting in the same
governing equation (15) for ωx even in the presence of veer in a CNBL near the hub height. We
note that advection of vorticity by the veer-affected mean velocity can be simply accounted for by
interpreting x above as the streamline coordinate along the vortex trajectory that has a speed V (z)
in the transverse direction, but for now, we shall neglect these differences.

The solution to the advection-diffusion equation (22) can be obtained by linear superposition
of the fundamental solution to the equation. The vorticity generated at the turbine can be regarded
as a distribution of multiple point vortices with vorticity magnitude dωx(x = 0, y, z) = d�pδ(y −
y0)δ(z − z0) and circulation strength d�p located at the turbine disk edges y0 = R cos θ, z0 =
R sin θ . Governed by Eq. (22), these point vortices are advected downstream by the mean flow with
simultaneous turbulent diffusion along the transverse directions. Correspondingly, the fundamental
solution [41] to Eq. (22) is

dωx(x, y, z) = − d�p

4π2η2(x)
exp

(
− (y − R cos θ )2 + (z − R sin θ )2

4η2(x)

)
, (24)

where η(x) is the transverse turbulent diffusion length scale [40] given by

η(x) =
√

1

Uh

∫ x

0
νT (ξ ) dξ . (25)
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Using the eddy viscosity from (23) in (25), η(x) becomes

η(x) = kν (x − x0)/241/4. (26)

Adding the contributions from all the point vortices distributed on the turbine edge, the resultant
downstream vorticity field is obtained. Adding this vorticity to that of the background veer leads to
a total vorticity of

ωtot
x (x, y, z) = −

∫ 2π

0

d�p

4π2η2(x)
exp

(
− (y − R cos θ )2 + (z − R sin θ )2

4η2(x)

)
+ 	x. (27)

We assume that the peak vorticity occurs at y = 0 and z = ±R; evaluating (27) at this location gives
[15]

ωtot
x,max = �0

4η2(x)
exp

(
− R2

2η2(x)

)
I1

(
R2

2η2(x)

)
+ 	x, (28)

where In is the nth-order modified Bessel function of the first kind.
The circulation strength �(x) of the generated vorticity (excluding the background veer vorticity)

as a function of the downstream location is obtained by integrating ωx in the transverse plane,
�(x) = | ∫ ∞

0

∫ ∞
−∞ ωx(x, y, z) dy dz| = | ∫ 0

−∞
∫ ∞
−∞ ωx(x, y, z) dy dz|, which yields [15]

�(x)

�0
=

√
π

4

R

η(x)
exp

(
− R2

8η2(x)

)[
I0

(
R2

8η2(x)

)
+ I1

(
R2

8η2(x)

)]
. (29)

These analytical predictions for the decay of the maximum vorticity and circulation strength were
shown to have good agreement with the numerical simulations in Ref. [15].

In Fig. 7, the time-averaged streamwise vorticity distributions from the CNBL and TNBL
simulations are plotted at different downstream locations; here, cross-stream velocity streamlines
are superimposed. The results from the CNBL LES [i.e., including wind veer in Fig. 7(a)] can be
compared with those with the veer subtracted [Fig. 7(b)] and the contours from the TNBL simulation
[Fig. 7(c)]. Similar to prior results at the turbine location, it is evident from the cross-stream
velocity streamlines that veer distorts the structure of the top and bottom vortices along their entire
downstream evolution. This distortion results in an asymmetric distribution of vorticity between the
top and bottom vortices.

Next, we compare the top and bottom vortex circulations from LES with the model. The
circulation in LES is computed by integrating total vorticity �LES(x) = | ∫A ωtot

x (x, y, z) dy dz| over
a suitably defined cross-sectional area A of the vortices. Following the approach of Ref. [15], we
use Otsu’s classification method to determine the cross-sectional region over which to integrate the
vorticity. We apply the calculation of circulation both using the full vorticity and after subtracting
the background veer vorticity.

The resulting decay of circulation for the CNBL case is shown in Fig. 8(a), where the unequal
strength of the top (blue open circles) and bottom (red open circles) vortices can be seen. Veer
causes the circulation strength of the bottom vortex to be significantly higher than the top vortex’s
circulation. Also, these circulation estimates deviate from the analytical prediction of Eq. (29) (solid
curves in the plot). However, upon subtracting the veer vorticity 	x from the time-averaged vorticity
(open triangles), we obtain good agreement with the theoretical estimate from (29) with small
differences at far downstream locations for the bottom vortex. It also shows good agreement with
the circulation strengths obtained from the TNBL simulation (crosses). Figure 8(b) shows that the
peak vorticity of the CVP (ωx,max) is much larger than the veer vorticity (	x ) so that whether the 	x

is included or not does not affect the results appreciably.
In Fig. 8(a), we note a small deviation of the red open triangles at far downstream locations.

This difference can be attributed to the size difference of the bottom vortex in the CNBL case
versus the TNBL case [see Figs. 7(b) and 7(c) at x/D = 8, 11]. The difference could be due to a
differing turbulent expansion rate of the vortices between the CNBL and TNBL cases. The presence
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-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

FIG. 7. Turbulent decay of streamwise vorticity (a) from the CNBL case with background veer, (b) from
the CNBL case after subtracting the veer component, and (c) from the TNBL case at downstream locations
x/D = 1, 3, 5, 8, 11.

of a capping inversion layer and the stable geostrophic region above a CNBL are known to limit
the size of the largest turbulent eddies [42,43]. Thus turbulent diffusion may be more effective in the
case of a TNBL, thus enlarging the bottom vortex more when compared with the CNBL. While the
bottom vortices grow slightly differently in the TNBL and CNBL cases, the peak vorticity strengths

(a) (b)

FIG. 8. Decay of (a) circulation strength �/UhD as a function of the downstream location and (b) maximum
streamwise vorticity ωx,maxD/Uh for the CNBL case. Red and blue colors correspond to bottom and top vortices
of the CVP, respectively. Solid curves represent analytical solutions (28) and (29). Symbols represent quantities
plotted from LES, where open circles include the wind veer component and open triangles are plotted after
subtracting the wind veer component. Crosses are plotted from the TNBL simulation.
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at downstream locations from Fig. 8(b) are quite comparable. Hence the circulation strength of the
bottom vortex in a CNBL falls slightly below the analytical model due to its smaller size.

The comparisons of LES results with the theoretical model confirm that for the presently studied
CNBL case the downstream evolution of mean vorticity remains dynamically unaffected by the
presence of wind veer. The only effect of the veer is that its mean vorticity is superimposed with
that of the vorticity generated by the yawed actuator disk. With improved understanding and an
analytical model for the downstream evolution of vorticity in the wake of a yawed turbine, in the
next section, we examine analytical modeling of the mean axial velocity deficit needed to predict
the power generation of downstream wind turbines.

IV. APPLICATION OF VORTEX-SHEET-BASED CURLED WAKE MODEL IN A CNBL

The discussions in the previous sections demonstrate that a yawed actuator disk in the presence
of an incoming mean flow sheds a pair of vortices behind the turbine. This CVP arises from an
initially tubular vortex sheet distribution generated around the turbine disk periphery [13]. The
induced velocity from the vortex sheet deflects the wake away from the centerline and also deforms
the vortex sheet, leading to the known curled wake structure [9]. A recent study [16] proposes an
analytical model for the downstream evolution of vorticity that reproduces the curled wake shape
from the induced velocities acting on the vortex sheet. We first summarize the model of Ref. [16]
in Sec. IV A. We then generalize it to include insights regarding effects of veer from the previous
section and compare it with results from LES in Sec. IV B.

A. Summary of vortex-sheet-based curled wake model

According to the vortex-sheet-based curled wake model, the streamwise velocity deficit
�u(x, y, z) = U (z) − u(x, y, z) is given by a Gaussian profile [10,44] according to

�u

Uh
= C(x) exp

[
− (y − yc)2 + (z − zh)2

2 σ (θ, x)2

]
. (30)

Here, C(x) is the magnitude of the normalized velocity deficit, while σ (θ, x) is the wake width
expressed as a function of the downstream location x and polar angle θ defined as tan θ = (z − zh)/
(y − yc). The centroid location of the wake is yc, zh. In this section, we shift the origin of the x y z
coordinate system from the center of the turbine to the ground in order to be consistent with the
curled wake model definitions in Ref. [16].

The wake width σ (x, θ ) is determined by adding Jensen model linear wake growth [45] and the
angle-dependent wake shape function according to

σ (θ, x) = kwx + 0.4 ξ (θ, x). (31)

Here, kw = 0.6uτ /Uh is the wake expansion coefficient [16], and the curled structure of the wake is
modeled by the angle-dependent wake shape function ξ (θ, x). This function describes the vortex
sheet location that augments the wake width along the polar angle θ at any given streamwise
location as per Eq. (31). The sketches in Fig. 9 show the shape of the wake behind the turbine
under different conditions. Figure 9(a) shows the symmetric Gaussian wake of an unyawed turbine
that expands linearly downstream of the flow in a TNBL without wind veer effects. Figure 9(b)
shows the definition of the angle-dependent wake shape function ξ (θ, x), which becomes curled
due to the vortex sheet self-induction again in the absence of wind veer. Figure 9(c) shows a sketch
of the wake behind a yawed turbine in an ABL with wind veer effects, which is further discussed in
Sec. IV B. The model in Ref. [16] also takes into account the effect of the hub vortex which occurs
as a result of the rotation of the turbine. However, in this paper, we do not include the effects of
rotation.

The wake shape function ξ (θ, x) has units of length and is normalized using ξ0(θ ) = ξ (θ, 0), the
initial shape of the wake, which depends on the angle θ and represents the shape of an ellipse as the
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(a) (b) (c)

FIG. 9. Sketch of velocity deficit behind (a) an unyawed turbine with no wind veer, (b) a yawed turbine
showing the induced curled wake, with the angle-dependent wake shape function ξ (θ, x) = ξ0(θ ) ξ̂ (θ, t̂ ) and
no wind veer, and (c) the yawed turbine in a CNBL (with wind veer). The shading represents the strength of
the velocity deficit �u.

rotor disk is yawed

ξ0(θ ) = R
√

A∗
| cos β|√

1 − sin2 β sin2 θ
. (32)

Here, A∗ is the ratio of the expanded streamtube area with the projected frontal area of the rotor
[16]:

A∗ = 1 +
√

1 − CT cos2 β

2
√

1 − CT cos2 β
. (33)

The normalization introduces a dimensionless angle-dependent wake shape function ξ̂ (θ, t̂ ) accord-
ing to

ξ (θ, x) = ξ0(θ ) ξ̂ (θ, t̂ ), (34)

where t̂ is a dimensionless time variable to be defined below [16].
The downstream evolution of the angle-dependent radial location of the wake is given by

ξ (θ, x) = ξ0(θ ) + ∫
ur (θ, t ) dt , where time t indicates the downstream evolution, i.e., t = x/Uh,

and ur (θ, t ) is the radial velocity induced by the shed streamwise vorticity. The vortex sheet
shape at downstream locations for a given θ is changed by the induced radial velocity from the
vortices. Given the strength of the vortex sheet or the circulation density γ = γ (θ, t ), the radial
velocity ur (θ, t ) governing the shape of the vortex sheet can be determined using the Biot-Savart
law as described in Ref. [16]. In Ref. [16], the evolution of dimensionless velocities, ûr = ur/γb,
ûθ = uθ /γb, and sheet location, ξ̂ = ξ/ξ0, is obtained using a power series method, where γb is the
reference circulation density at the turbine location. It is related to the circulation strength �0 in
Eq. (18) by

γb = �0

2R
= 1

2
CT Uh cos2 β sin β. (35)

The dimensionless time is defined as t̂ = t γb/ξ0. These analytical general solutions are valid at
short times, i.e., only near the turbine for times |t̂ | � 2 [16].

To capture the wake-curling effects at large times, an empirical expression for the nondimen-
sional vortex sheet location ξ̂ (θ, t̂ ) is proposed (see Eq. (B1) in Ref. [16]) which is valid for both
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short and long times. For a nonrotating turbine, the empirical expression simplifies to

ξ̂ (θ, t̂ ) = 1 − α

[
1

2
tanh

(
t̂2

4α

)
cos 2θ − 1

4
tanh

(
t̂3

8α

)
cos(3θ )

− 5

48
tanh

(
t̂4

16α

)
cos(2θ ) + 7

48
tanh

(
t̂4

16α

)
cos(4θ )

]
, (36)

where the constant α = 1.263. In Eq. (36), we also need to know t̂ . In a turbulent boundary layer, the
strength of the vortex decays downstream leading to a time-dependent circulation density γb = γb(t )
[16]. The definition of the nondimensional time t̂ = tγb/ξ0 then generalizes to

t̂ = 1

ξ0

∫ t

0
γb(t ′) dt ′. (37)

The circulation density γb(t ) is related to the decaying circulation strength �(x) considered in
Eq. (29) by γb = �(x)/2R. Using this relation along with t ≈ x/U (z) with U (z) = (uτ /κ ) ln(z/z0)
and η(x) = kνx/241/4 from Eq. (26), and assuming the virtual origin x0 = 0 to simplify the problem,
the integral (37) becomes

t̂ = 241/4

2kνU (z)ξ0R

∫ η

0
�b(η′) dη′. (38)

The integral was approximated using a fitting function resulting in a t̂ which is expressed
compactly according to

t̂ (x, z) ≈ −1.44
Uh

uτ

R

R
√

A∗
CT cos2 β sin β

[
1 − exp

(
−0.35

uτ

U (z)

x

R

)]
. (39)

The value of t̂ from Eq. (39) is used to evaluate ξ̂ (θ, t̂ ) in (36) and subsequently obtain ξ (θ, x) =
ξ0(θ )ξ̂ (θ, t̂ ) in Eq. (31).

Next, we turn to the normalized maximum velocity deficit magnitude C(x) = �umax/Uh in
Eq. (30), which is given by

C(x) = 1 −
√

1 − CT cos3 β

2σ̃ 2(x)/R2
, (40)

where

σ̃ 2(x) = (kwx + 0.4R
√

A∗)(kwx + 0.4R
√

A∗ cos β ) (41)

is an estimate of the average wake width over the angles which captures the trend of reduction of
horizontal width due to yawing at an angle β. The quantity R

√
A∗ is also an approximation of the

initial wake shape according to Eq. (32) for small β.
In Fig. 5, this analytical prediction for the maximum normalized velocity deficit magnitude C(x)

is plotted alongside estimates from the CNBL and TNBL LES. Here it is clear that the model
provides good agreement with the LES and is able to predict the correct velocity deficit decay for
x/D � 3.

The curled wake model predicts the wake deflection yc due to the shed vorticity according to

yc = ŷc(t̂ )R
√

A∗, (42)

where the nondimensional wake deflection ŷc is expressed as

ŷc(t̂ ) = (π − 1)|t̂ |3 + 2
√

3π2t̂2 + 48(π − 1)2|t̂ |
2π (π − 1)t̂2 + 4

√
3π2|t̂ | + 96(π − 1)2

sgn(t̂ ) − 2

π

t̂

[(z + zh)/R
√

A∗]2 − 1
. (43)
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FIG. 10. The wake deflection at hub height from the LES (CNBL) determined using two different methods
is compared with the estimate from the curled wake model (black solid curve) [16]. The LES results include
yc,LES using the integration over the positive velocity defect region (blue dashed curve) or Otsu’s method (red
solid curve).

In Ref. [16], an analytical solution for the wake deflection for short times is obtained assuming a
circular vortex sheet. For longer times, the deflection of the wake is estimated instead by modeling
the vorticity distribution as a CVP. This first term in Eq. (43) which is an empirical fit captures the
behavior of both these solutions across short and long times. The second term models the deflection
due to the image vortices needed to model ground effects.

These analytical estimates for wake deflection in Eq. (42) are compared with the wake deflection
computed from the velocity deficit in the CNBL simulation in Fig. 10. The blue dashed curve and
red solid curve represent the wake deflection yc,LES obtained from the CNBL simulation using

yc,LES(x) =
∫

y y �u(x, y, zh) dy∫
y �u(x, y, zh) dy

, (44)

where �u(x, y, z) = U (z) − u(x, y, z) is the velocity deficit. We chose two methods, one in which
regions where �u > 0 are used to perform the integrations in Eq. (44) and another in which regions
where �u > �uOtsu are used. Here, �uOtsu is the threshold chosen by the Otsu edge detection
method [15]. It is evident in Fig. 10 that the wake deflection from the curled wake model given by
Eq. (42) shows good agreement with the LES up to x/D = 7 but slightly overpredicts the observed
deflection further downstream. For the purposes of the present modeling accuracy, however, we
consider the level of agreement satisfactory.

B. Curled wake model applied to the CNBL including veer

Following Ref. [20], the effect of veer can be included as an additional spanwise wake displace-
ment such that

yc,veer(x, z) = x

U (z)
V (z) ≈ − x

U (z)
S (z − zh). (45)

Here, we also take into account the additional effects from z-dependent streamwise velocity. This
effect induces larger sideways displacement in the lower parts of the domain since for a fixed x, the
advection time will be larger and the sideways displacement will have had more “time” to take place.
The total spanwise wake deflection of the velocity deficit in (30) including the veer displacement
(45) is

yc(x, z) = ŷc(t̂ ) R
√

A∗ − x

U (z)
S (z − zh), (46)
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(a)

(b)

(c)

FIG. 11. Contours of �u/Uh at various streamwise locations from curled wake analytical model (30)
with centroid locations (a) yc = ŷc(t̂ )R

√
A∗ (no veer correction) and (b) yc = ŷc(t̂ )R

√
A∗ + yc,veer (with veer

correction). (c) the CNBL simulation with the v-w velocity streamlines.

where ŷc(t̂ ) is the dimensionless deflection given by Eq. (43) with t̂ = t̂ (x, z) evaluated from
Eq. (39). For the present LES data, the shear rate S of the wind veer in Eq. (45) has been measured,
and results in S = 2.2×10−3 s−1 [see Fig. 3(c)].

Analytical model predictions for �u/Uh from Eq. (30) at select downstream distances are plotted
as contours in Fig. 11(a) (no veer) and Fig. 11(b) (including veer) and compared against the CNBL
data [Fig. 11(c)]. Figure 11(c) also includes v-w cross-stream velocity streamlines (evaluated from
LES with the veer velocity subtracted). In Figs. 12 and 13, the one-dimensional profiles of �u/Uh at
z/D = [0.36, 1, 1.59] and y/D = [−0.94, 0, 0.42], respectively, are plotted at different downstream
locations. We can clearly see the effect of the wind veer in the contours of the analytically modeled
defect velocity. The veer deflects the wake rightward below the hub height and leftward above the
hub height, whereas not including the veer produces a wake that is only deformed by the vortex
sheet streamwise vorticity, resulting in a curled wake structure. The analytically predicted contours
closely resemble the contours from the CNBL simulation. The one-dimensional profiles in Figs. 12
and 13 show a more detailed comparison between the model and LES. These plots show that the
veer-deflected velocity deficit structure at far downstream locations is better predicted by the wake
model with the veer correction term included, albeit with slight deviations.

The results suggest that the curled wake model which was originally developed for a TNBL can
also be applied to a CNBL. The presence of veer only alters the shape of the velocity deficit by
shifting it towards one side below the hub height and to the other side above the hub height, and this
effect can be modeled with the additional spanwise deflection term given by Eq. (45).

To complete the description of velocity defect evolution, we compare with results from the TNBL
simulation in Fig. 14, again including the cross-stream velocity streamlines. Although there is no
wind veer in this simulation, we observe that the wake structure is still deflected to the right below
the hub height and somewhat towards the left above the hub height. This may appear surprising
at first sight since one would expect that the CVP induces a symmetric curled wake structure akin
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FIG. 12. Profiles of �u/Uh plotted at z/D = [0.36, 1, 1.59] and different streamwise locations x/D =
[3, 5, 8, 11] from the curled wake analytical model (30) with centroid locations yc = ŷc(t̂ )R

√
A∗ (red solid

curves) and yc = ŷc(t̂ )R
√

A∗ + yc,veer (blue dashed curves), and the CNBL simulation (green dash-dotted
curves).

FIG. 13. Profiles of �u/Uh plotted at y/D = [−0.94, 0, 0.42] and different streamwise locations x/D =
[3, 5, 8, 11] from the curled wake analytical model (30) with centroid locations yc = ŷc(t̂ )R

√
A∗ (red solid

curves) and yc = ŷc(t̂ )R
√

A∗ + yc,veer (blue dashed curves), and the CNBL simulation (green dash-dotted
curves).
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FIG. 14. Contours of �u/Uh from the TNBL simulation with cross-stream v-w velocity streamlines.

to the analytical contours from Fig. 11(a) without veer. However, in this case, the cause for the
asymmetry appears to be that unlike what is assumed in the model, the top and bottom vortices
themselves are not aligned in the same spanwise location. We can clearly see from the contour at
x/D = 11 in Fig. 14 that the bottom vortex has moved relatively more towards the left than the top
vortex. The cause of the misalignment of the two vortices is likely due to the fact that the streamwise
advection velocity near the ground is smaller than that at the top due to the shear in the U (z) ABL
profile. Thus, at a fixed distance x from the turbine, moving with the mean velocity there has been
more time for a sideways motion for the bottom vortex (induced by the top vortex) as compared
with the top vortex (induced by the bottom vortex). As a result, the entire bottom vortex is shifted
to the left, hence deflecting the induced velocity near the wake center downwards. This effect is
partially accounted for by using U (z) in Eq. (39) in the model and hence also helps explain the slight
top-bottom asymmetry seen in Fig. 11(a) even in the absence of veer. However, the results show that
for the TNBL case this effect is somewhat stronger. More detailed model versions that take such
effects into account may have to be developed. However, the presently proposed approach already
provides significant accuracy in predicting the highly nontrivial spatial distribution of velocity in
yawed turbine wakes.

V. CONCLUSIONS

This study investigates the effect of wind veer on the evolution of mean streamwise vorticity
and velocity deficit in the wake of a yawed turbine, in the context of CNBLs including Coriolis
acceleration causing a wind veer. In earlier work in the absence of veer (TNBL), the curled wake
dynamics had been shown to be best understood as consisting of a vortex generation phase, where
streamwise vorticity is injected in the flow due to the curl of the turbine yaw force, followed by
downstream advection and transverse turbulent diffusion of vorticity. Analytical solutions describ-
ing such behavior were derived and validated in Ref. [15]. In this paper, we have shown that the
evolution of mean vorticity remains relatively unchanged even in the presence of wind veer. LES
data show that when wind veer is included, the streamwise vorticity corresponding to the veering
mean flow, 	x, is simply superimposed additively to the vorticity generated by the yawed turbine.
For the yaw angle considered in this paper, this strengthens the bottom vortex and weakens the top
vortex while their evolution is still modeled well following the approach as described in Ref. [15].
We also adapted the vortex-sheet-based curled wake model [16] to describe present flow conditions.
It was found to yield good results for modeling the velocity deficit in both conventionally neutral
and truly neutral conditions. The velocity deficit affects downstream wind turbines if interacting
with the wake. The presence of wind veer in the CNBL can be included in the wake model by
adding an additional spanwise displacement term, modeled here using the wind veer velocity V (z).
We approximated the latter as V (z) = −S(z − zh), where the shear rate parameter S was determined
from the LES of CNBL flow. Although only one yaw angle is discussed in this paper, the veer
correction can in principle be applied to model the evolution of the velocity deficit for different yaw
angles, at least up to those tested in the work of Ref. [16], i.e., up to β = 300. Also, note that neither
the LES nor the model proposed includes the effects of wake angular momentum. Such effects can
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be included in the analytical model as well as in the LES using ADM with rotation (ADM-R), as
was done in Ref. [16]. A detailed analysis of such additional effects, i.e., evaluating whether wake
angular momentum could affect the superposition of veer and yaw vorticity decay, is left for future
efforts. For a fully predictive analytical model, one requires, in addition, an analytical model for
V (z) and U (z). Further work is required to cast such models (e.g., those developed in Refs. [46,47])
in terms that can be efficiently incorporated into present wind turbine wake models.
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