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Using numerical simulations, we show that the asymptotic states of two-dimensional
(2D) Euler turbulence exhibit large-scale flow structures due to nonzero energy transfers
among small wavenumber modes. These asymptotic states, which depend on the initial
conditions, are out of equilibrium, and they are different from the predictions of Onsager
and Kraichnan. We propose “hydrodynamic entropy” to quantify order in 2D Euler turbu-
lence; we show that this entropy decreases with time, even though the system is isolated
with no dissipation and no contact with a heat bath.
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I. INTRODUCTION

Euler turbulence remains unsolved till date. In this paper, we address the energy flux and entropy
of two-dimensional (2D) Euler turbulence. The equations of incompressible Euler flow are

∂t u + u · ∇u = −∇p; ∇ · u = 0, (1)

where u, p are the velocity and pressure fields, respectively [1,2]. The above system is isolated,
as it lacks external force and viscous dissipation. Consequently, the thermodynamic entropy of an
Euler flow remains constant [1]. However, when we solve Euler equations with an ordered initial
condition, structurally, three-dimensional (3D) Euler turbulence becomes more random during its
evolution [3], whereas 2D Euler turbulence tends to become more orderly [4,5]. Hence, the entropy
of Euler turbulence needs a reexamination.

Onsager [6] modeled 2D Euler flow using a collection of point vortices interacting via log-
arithmic potential. Onsager showed that for large energy, 2D Euler turbulence exhibits negative
temperature and a large cluster of same-circulation vortices. Recently, Gauthier et al. [7] observed
such giant vortices in an experiment involving 2D quantum fluid, thus providing an experimental
verification of Onsager’s theory. Billam et al. [8] developed a first-principles realization of Onsager’s
vortex model in a 2D superfluid. Miller [9] and Robert [10] extended Onsager’s theory to continuum
version of 2D Euler turbulence and computed entropy for the flow. Using tools of equilibrium
statistical mechanics, Bouchet and Simonnet [11], and Bouchet and Venaille [12] derived multiple
stationary states, namely, a dipole and unidirectional flow (shear layer), for 2D Euler turbulence.
Pakter and Levin [13] provided a contrary viewpoint and showed that 2D Euler turbulence is out of
equilibrium and that a system of interacting vortices becomes trapped in a nonequilibrium stationary
state; these results deviate from the predictions of Onsager [6]. Refer to review articles by Eyink
and Sreenivasan [14], and Bouchet and Venaille [12] for an extensive discussion.

*mkv@iitk.ac.in
†inspire.soumya@gmail.com

2469-990X/2022/7(11)/114608(13) 114608-1 ©2022 American Physical Society

https://orcid.org/0000-0002-3380-4561
https://orcid.org/0000-0001-7957-1727
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.114608&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevFluids.7.114608


MAHENDRA K. VERMA AND SOUMYADEEP CHATTERJEE

Lee [15] and Kraichnan [16] provide an alternative framework for Euler turbulence. They showed
that the evolution of Fourier modes of Euler equation follows Liouville’s theorem, and that the
equilibrium solutions of Euler turbulence are

E (k) = k2

β − γ k2
for 3D, (2)

E (k) = k

β + γ k2
for 2D, (3)

where β and γ are constants. Here, the Fourier modes form a microcanonical ensemble. The
derivation of Eqs. (2) and (3) involves two competing conservation laws: kinetic energy (

∫
dru2/2)

and kinetic helicity (
∫

dr(u · ω)) in 3D, and kinetic energy and enstrophy (
∫

drω2/2) in 2D, where
ω is the vorticity field. For some combinations of energy and enstrophy, 2D Euler turbulence yields
β < 0 or negative temperature [4,17]. Kraichnan and Montgomery [17] provide a detailed review
of 2D Euler turbulence.

For a δ-correlated random velocity field as an initial condition, both 2D and 3D Euler turbulence
follow the energy spectra of Eqs. (2) and (3) with γ ≈ 0 [18,19]. In addition, for an initial condition
with large-scale structures, 3D Euler turbulence asymptotes to E (k) of Eq. (2) [3]. However, E (k)
of 2D Euler turbulence differs from Eq. (3) for coherent velocity field as an initial condition. For
example, for enstrophy-dominated 2D Euler turbulence, Fox and Orszag [4] reported deviations
from Eq. (3) at small wave numbers. For parameters where β + γ k2 ≈ 0, Seyler et al. [5] observed
large vortex structures, similar to those in a discrete vortex system [20]. Dritschel et al. [21] studied
the unsteady nature of 2D flow structures on a sphere. Robert and Sommeria [22] and Bouchet and
Venaille [12] analyzed such structures in the framework of equilibrium statistical mechanics.

The works of Fox and Orszag [4], Seyler et al. [5], Pakter and Levin [13], Bouchet and Simonnet
[11], Dritschel et al. [21], and Modin and Viviani [23] indicate that 2D Euler turbulence is out of
equilibrium, contrary to the assumptions of Onsager [6] and Kraichnan [16]. Bouchet and Venaille
[12] argued that even though nonequilibrium steady states of 2D Euler turbulence often break
detailed balance, under weak force and zero viscosity, they may be described by microcanonical
measures and entropy functional. Bouchet and coworkers [11,12,24], and Modin and Viviani [23]
explained the structures of 2D Euler turbulence in this framework. In this paper, we advance this
theme by carefully examining the energy transfers and energy flux of 2D Euler turbulence. We show
that the small wave-number modes exhibit nonzero energy transfers and hence break the detailed
balance, which is a stringent criterion for equilibrium. Thus, we demonstrate the nonequilibrium
nature of 2D Euler turbulence. We also quantify the order of the structures using hydrodynamic
entropy.

The outline of the paper is as follows. In Sec. II, we describe the nonequilibrium nature of 2D
Euler turbulence. We propose hydrodynamic entropy in Sec. III to quantify this nature. We conclude
the paper in Sec. IV.

II. NONEQUILIBRIUM NATURE OF 2D EULER TURBULENCE

Prior to a detailed discussion on 2D Euler turbulence, we summarize the energy spectrum and
flux of 3D Euler turbulence. Cichowlas et al. [3] simulated 3D Euler turbulence with Taylor-Green
vortex as an initial condition. For such simulations, in the early phase, the energy flows from large
scales to small scales and the energy flux is positive. After several eddy turnover times, the system
approaches equilibrium with vanishing energy flux. Refer to the Appendix for details.

For 2D Euler turbulence, we performed pseudospectral simulations on a (2π )2 box with a M2

grid. Here, M = 512. We dealiase the code by setting all the modes outside the sphere of radius
M/3 to zero. To conserve the total energy, we time evolve Eqs. (1) using the position-extended
Forest-Ruth-like (PEFRL) scheme [25,26] with time step = 10−4. We carried out three runs with the
following initial conditions:
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FIG. 1. For runs A–C of 2D Euler turbulence: (a), (c), (e) the initial states (b), (d), (f) the final states,
respectively. Here we plot the velocity field over the density plots of the vorticity field.

(1) Run A: The initial velocity profile is taken as (sin 11x cos 11y + ηx,− cos 11x sin 11y + ηy),
where (ηx, ηy) is random noise. We take |ηx| � 1 and |ηy| � 1.

(2) Run B: The initial nonzero velocity Fourier modes are u(1, 0) = (0, 1), u(0, 1) = (1, 0), and
u(1, 1) = (−i, i).

(3) Run C: The initial nonzero velocity Fourier modes are u(10, 0) = (0, 1), u(0, 10) = (1, 0),
and u(10, 10) = (−i, i).

We time advance runs A, B, C up to 170, 30, and 120 turnover times (2π/Urms) respectively. We
observe runs B and C reach the steady flow profiles after 10 to 20 eddy turnover times, whereas run
A reaches the steady state after 100 eddy turnover times. We label these states asymptotic states. In
this paper, we show that these states are out of equilibrium. The dependence of the asymptotic
states on the initial condition is consistent with earlier works, e.g., Celani et al. [27]. The top
and bottom panels of Fig. 1 illustrate, respectively, the initial and asymptotic states of the three
runs. Here, the velocity field is superposed over the density plots of the vorticity field. Runs A–C
asymptote, respectively, to a vortex-antivortex pair [6], a unidirectional flow (shear layer), and four
vortex-antivortex pairs. The above large-scale flow structures are embedded in small-scale noisy
flow. Similar structures have been observed by Bouchet and Simonnet [11] and Dritschel et al. [21].

For Runs A–C, total energy E = ∫
dr(u2/2)/

∫
dr = 0.2500954, 4, 4, while total enstrophy

	 = ∫
dr(ω2/2)/

∫
dr = 62.17, 6, 600, respectively; and these quantities are conserved. For vali-

dation of our numerical codes, we plot the time series of the total energy and total enstrophy along
with their relative errors in Figs. 2 and 3. The relative errors for energy and enstrophy are defined as

ε(t ) = |E (t ) − E (t = 0)|
E (t = 0)

; ε	(t ) = |	(t ) − 	(t = 0)|
	(t = 0)

. (4)
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FIG. 2. (a) For runs A–C of 2D Euler turbulence, (a) time series of the total energy, E , and (b) its relative
error, ε. We employ normalized time t ′ = 3t/17, t, t/4 for the three runs.

Since the three runs take different amounts of time to reach their respective asymptotic states, in the
plots, we employ normalized time, t ′ = 3t/17, t, t/4, for runs A–C, respectively. For the asymptotic
states of runs A–C, the relative errors in energy (ε) are 7.3 × 10−11, 1.9 × 10−11, and 4.5 × 10−8,
respectively, while those in entropy (ε	) are 6.3 × 10−9, 2.7 × 10−7, and 6.5 × 10−6respectively.

In Figs. 4(a) and 4(b), we plot the averaged energy spectra and fluxes of the three runs.
Here, we average 6500, 1000, and 10000 frames of runs A–C in the respective time intervals
(105, 170), (20, 30), and (20, 120). For intermediate and large wave numbers, E (k) of the three
runs follow Kraichnan’s predictions [Eq. (3)]:

Run A :E (k) = k

−3230 + 237k2
for k > 10, (5)

Run B :E (k) = k

−6357840 + 9361k2
for k > 40, (6)

Run C :E (k) = k

888 + 26k2
for k > 10, (7)

with constants having significant errors. We construct these functions using nonlinear least-squares
fits of the numerical data of k/E (k) to β + γ k2. We employ the standard scipy.optimize.curve_fit
function of Python for the computation.

Based on Eqs. (5)–(7) and Fig. 4(a), we claim that the large wave-number modes are in
equilibrium. Fjørtoft [28] and Nazarenko [29] showed that for 2D hydrodynamic turbulence,
kE � √

	/E � k	, where kE and k	 are the centroids of energy and enstrophy respectively.
For runs A–C,

√
	/E = 15.8, 1.2, 12.2. Hence, the wave numbers far beyond k	 are dominated

by enstrophy. In this regime, our simulations reveal that E (k) ∝ k−1, which corresponds to an

FIG. 3. For runs A–C of 2D Euler turbulence, (a) time series of total enstrophy, 	, and (b) its relative error,
ε	, as a function of t ′, where t ′ = 3t/17, t, t/4 for the three runs.
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FIG. 4. For runs A–C of 2D Euler turbulence: plots of the averaged energy spectra, E (k), and fluxes, �(k),
of the asymptotic states. In (a), the best-fit curves of Eqs. (5)–(7) are shown as dashed curves. (b) exhibits �(k)
for small k’s, while inset shows �(k) for the whole range.

equipartition of enstrophy. That is, modal enstrophy, Eω(k) = E (k)k2 = const, which leads to
E (k) ∼ 2πk/k2 ∼ k−1. Moreover, runs A and B exhibit β < 0 or negative temperature [6,16,17],
which is related to the emergence of large scale structures. Note that Onsager [6] and Kraichnan
[16] assumed the 2D Euler flow to be in equilibrium.

Equations (5)–(7) and Fig. 4(a) reveal that the small wave-number modes deviate strongly from
Kraichnan’s predictions for equilibrium Euler turbulence, consistent with the works of Fox and
Orszag [4]. In the following discussion, we will show that the small-wave-number modes of 2D
Euler are out of equilibrium from various perspectives. As illustrated in Fig. 5, for small wave
numbers, E (k)’s do not follow k−5/3 energy spectrum, except for a small range of wave numbers
for run A. This is expected because Euler turbulence is very different from 2D hydrodynamic
turbulence, which exhibits E (k) ∝ k−5/3 when the intermediate scales are forced [30].

We complement the spectral studies with a quantification of energy transfers and fluxes. Euler
turbulence lacks external forcing and dissipation, hence the temporal evolution of E (k) is given by
[2,31–34]

dE (k, t )

dt
= T (k, t ), (8)

FIG. 5. For runs A–C of 2D Euler turbulence, plots of the averaged energy spectra for small wave numbers
k ∈ [1, 10]. The black-dashed line represents k−5/3 spectrum. Clearly, runs B and C do not exhibit k−5/3

spectrum, while run A matches with k−5/3 for very small region.
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FIG. 6. For runs A–C, plots of the time evolutions of dE (k)/dt (solid lines) and T (k) (dashed lines) for
three different wave numbers.

where T (k, t ) is the nonlinear energy transfer to wave-number shell k. If Euler turbulence were
to be in equilibrium, then for all k’s, dE (k, t )/dt = 0, implying that T (k, t ) = 0. Consequently,
the energy flux, �(k, t ) = − ∫ k

0 T (k′, t )dk′ would vanish for all wave-number spheres. This test is
an alternative one to the entropy maximization principle [33]. Energy conserving systems, as well
as Hamiltonian systems, are expected to approach equilibrium asymptotically [31,35]. It has been
shown that 3D Euler turbulence asymptotically reaches the equilibrium state with zero energy flux
[3]. But we show below that T (k, t ) and �(k, t ) for 2D Euler turbulence are nonzero for small k’s,
thus 2D Euler turbulence is out of equilibrium.

For 2D Euler turbulence, we illustrate T (k, t ) for the dominant wave-number shells (k = 1 to 4)
in Fig. 6. Clearly, these T (k, t )’s fluctuate significantly, and dE (k, t )/dt ≈ T (k, t ), thus validating
Eq. (8). For small k’s, the nonzero T (k, t )’s yield negative energy flux. In particular, min[〈�(k)〉] ≈
−3 × 10−4,−10−3,−8.4 × 10−4 for runs A–C, respectively. Note that the finite T (k, t ) and �(k, t )
for 2D turbulence are much larger than the corresponding quantities of 3D Euler turbulence (see the
Appendix). The nonzero T (k, t ) and �(k, t ) break the detailed balance of energy transfers and
indicate nonequilibrium nature of 2D Euler turbulence.

Based on the above observations, we conclude that the intermediate and large wave-number
shells are in equilibrium but the small wave-number shells are out of equilibrium. However, there is
an exception to the above rule. For the δ-correlated velocity field as an initial condition, 2D Euler
turbulence exhibits equilibrium solution with E (k) ∝ k [19]. For this particular case, γ ≈ 0, and k	

exceeds the grid size.
In classical literature of hydrodynamics, the thermodynamic entropy of Euler turbulence is taken

to be constant [1]. However, as discussed above, the disorder in Euler turbulence varies with time.
Hence, the thermodynamic entropy cannot capture the disorder in Euler turbulence. In Sec. III, we
define hydrodynamic entropy, which can describe the disorder in Euler turbulence.

III. HYDRODYNAMIC ENTROPY

Consider two gaseous systems shown in Fig. 7. In Fig. 7(a), the molecules are in thermal
equilibrium, and they move randomly with thermal speed Cs. Thermodynamic entropy provides
a good measure for the disorder in such a system.

In Fig. 7(b), the molecules comove in a hydrodynamic vortex. This system is out of equilibrium
because 2D hydrodynamic vortices coalesce to form large vortices via inverse cascade of energy.
To quantify disorder in an hydrodynamic flow, we scale separate the microscopic thermal processes
and the macroscopic fluid processes, and define two different entropies for them [18,36]. Thermody-
namic entropy is employed for the microscopic processes [37,38], whereas hydrodynamic entropy,
to be defined below, for describing macroscopic order. For Euler flow, only hydrodynamic entropy
would be meaningful because thermodynamic entropy is zero for this case.
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FIG. 7. (a) In a 2D gas in thermal equilibrium, the molecules move randomly with the sound speed Cs.
(b) A schematic diagram illustrating the velocities of molecules in a hydrodynamic vortex.

We employ Shannon entropy [39] to quantify the disorder of the fluid structures at macroscopic
level. For the same, we postulate that the probability of occurrence of a Fourier mode with wave
number k is pk = E (k)/E , where E (k) is the modal energy, and E is the total energy. Now the
hydrodynamic entropy of the flow is defined as

S = −
∑

k

pk log2(pk ). (9)

The above entropy, which is defined for a snapshot, can be applied to any fluid flow. Note that hydro-
dynamic entropy is very different from thermodynamic entropy, which depends on temperature and
volume of the system. At present, it is not apparent if hydrodynamic entropy and thermodynamic
entropy could be put on a similar footing. It would be interesting to explore whether we can relate
the two in a way Landauer [40] connected computation to entropy.

It is important to keep in mind that Shannon entropy [Eq. (9)] has been used earlier to quantify
order in images, music, messages, and DNA, as well as in a variety of flow phenomena, e.g.,
boundary layers, transitions, etc. [41]. There are many other measures of entropy. For example,
Clark et al. [42] employed Kolmogorov-Sinai entropy for quantifying 2D hydrodynamic flow,
whereas Drivas and Elgindi [43] quantified entropy of Euler flow in terms of accessible phase space.

Euler flow is an ideal case where thermal processes are ignored (due to zero viscosity). Therefore,
Euler flow has only hydrodynamic entropy. The entropies of the vortex solutions of Onsager [6]
and Miller [9] are hydrodynamic, however, these measures may differ from those computed using
Eq. (9). Interestingly, Kraichnan’s equilibrium solution with γ = 0 corresponds to a δ–correlated
velocity field [15,16,18]. For such a flow, pk = 1/M and the hydrodynamic entropy S = log2(M ),
where M is the number of modes of the system; this is the maximum possible hydrodynamic entropy
for a flow with M degrees of freedom.

Before reporting the hydrodynamic entropy of 2D Euler turbulence, we describe the hydrody-
namic entropy of 3D Euler turbulence. For the 3D Euler flow described in the Appendix, we compute
the entropy using Eq. (9) and plot its time series in Fig. 8. We derive the functional dependencies
of S(t ) using the nonlinear least-squares method. In the initial phase, the hydrodynamic entropy in-
creases exponentially, after which it approaches the maximum possible value S = log2(M ) = 18.3,
where M = (4π/3)(128/3)3 is the number of modes of the system. We observe that for 3D Euler
turbulence, the approach to equilibrium is slow. Since S increases monotonically in time, we claim
that 3D Euler turbulence evolves from order to disorder.

Now we compute the hydrodynamic entropies of the 2D Euler flows of runs A–C and plot the
entropy time series in Fig. 9. The duration and timescales of the three runs are quite different.
Hence, for a proper comparison, we normalize the time appropriately, i.e., t ′ = 3t/17, t, t/4 for
runs A–C, respectively. We observe that for each case, the entropy fluctuates in the early stages, after
which it decreases exponentially to an asymptotic value. Here too, we employ the nonlinear least-
squares method to derive the functions that describe the decrease in S. The asymptotic entropies for
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FIG. 8. In 3D Euler turbulence, hydrodynamic entropy exhibits monotonic growth, with an exponential
increase in the beginning and saturation in the end.

runs A–C are 4.9, 1.2, and 3.1, respectively. These values are smaller than the maximum possible
value, which is log2(M ) ≈ 16.5, where M = π (512/3)2 is the number of active dealiased modes.
Note, however, that S for all the runs exhibit small fluctuations in the asymptotic regime due to
the dynamic nature of the flow. Recall the temporal fluctuations of T (k, t ) and E (k, t ) described
in Sec. II. It is also important to note that the evolution of hydrodynamic entropy for 2D Euler
turbulence is very different that of 3D Euler turbulence.

The asymptotic state of run B is the most ordered one (having least entropy) among the three
runs. In the asymptotic regime of run B, the Fourier modes u(0,±1) contains 99% of the total
energy, hence, their probabilities are approximately 1/2 each. Therefore, these two modes yield
S ≈ log2(2) = 1, while the other modes contribute the rest (0.2). To quantify the evolution of these
modes, in Fig. 10, we plot the time series of Re[ux(0, 1)] and Im[ux(0, 1)] of run B. As shown in

FIG. 9. For runs A–C of 2D Euler turbulence, the temporal evolution of hydrodynamic entropies with t ′ =
3t/17, t, t/4, respectively. In each case, after initial transients, the entropy decreases with time and asymptotes
to an approximate constant value.
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FIG. 10. For run B of 2D Euler turbulence, time series of Re[ux (0, 1)] and Im[ux (0, 1)]. In this run, u(0, 1)
is the most dominant Fourier mode.

the figure, Im[ux(0, 1)] = 0, while Re[ux(0, 1)] approaches nearly a constant value for t > 10. The
fluctuations in ux(0, 1) are consistent with those in T (k, t ) discussed in Sec. II.

In contrast, for run C, the seven most energetic modes yield an approximate entropy of 2.3, while
the rest of them contribute the remaining 0.8. The Fourier modes of run A are more widespread than
those of runs B and C, hence run A has the maximum entropy among the three runs. Note that the
shear layer of run B has the least entropy, but the vortex-antivortex pair of run A has the maximum
entropy, which is still smaller than the maximum possible value of 16.5.

Thus, we show that the hydrodynamic entropy of 2D Euler turbulence decreases with time for a
significant duration, even though the system is isolated. Thus, 2D Euler turbulence is a rare isolated
system that exhibits evolution from disorder to order.

IV. DISCUSSIONS AND CONCLUSIONS

Kraichnan [16] and Onsager [6] assumed that 2D Euler turbulence reaches equilibrium. Kraich-
nan argued that 2D Euler turbulence exhibits the energy spectrum of Eq. (3), whereas Onsager [6]
advocated a large cluster of same-circulation vortices. We performed numerical simulations to test
whether 2D Euler turbulence is in equilibrium or out of equilibrium.

Our numerical simulations, as well as several past ones, report that at small wave numbers,
the energy spectrum and flux of 2D Euler turbulence differ from those predicted by Kraichnan
[16]. These differences arise due to the nonequilibrium nature of 2D Euler turbulence. It is
important to note that 2D Euler turbulence is one of the few energy-conserving systems that do not
thermalize (or approach equilibrium). Note, however, that several experiments on quantum fluids
report consistency with Onsager’s theory [7]. Hence, the relationship between Euler turbulence and
quantum fluids needs to be examined carefully. We also remark that the flow structures of 2D Euler
turbulence do not exhibit long-range order, as in a ferromagnet. Instead, the flow structures resemble
vortex-antivortex pairs of Berezinskii-Kosterlitz-Thouless transition [44].

More importantly, we propose hydrodynamic entropy to quantify disorder in Euler turbulence.
We observe that the hydrodynamic entropy of 3D Euler turbulence increases monotonically with
time, whereas it decreases for 2D Euler turbulence. Thus, 2D Euler turbulence is a unique isolated
system that exhibits evolution form disorder to order. This feature arises due to the inverse energy
cascade, which is a property of 2D hydrodynamics [2,30,32,45]. Hence, the emergence of hydrody-
namic order in 2D Euler turbulence has a dynamic origin. Note that the thermodynamic entropy of
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FIG. 11. For 3D Euler turbulence, plots of (a) the energy spectra E (k), and (b) the energy fluxes �(k) at
t = 0, 10, 30, 120. At t = 120, E (k) ∝ k2.

Euler turbulence remains constant throughout its evolution. Therefore, the decrease in hydrodynamic
entropy with time does not violate second law of thermodynamics.

Euler equation is time reversible due to an absence of viscous dissipation [2]. This is the reason
why thermodynamic entropy of Euler turbulence is constant [1]. Note, however, that the solutions of
Euler equation exhibits irreversibility due to their chaotic and nonequilibrium nature. As we show
in this paper, 2D Euler turbulence is a special energy-conserving system that exhibit nonequilibrium
behavior. However, 3D Euler turbulence reaches equilibrium asymptotically where detailed balance
is preserved statistically [3]. Interestingly, the hydrodynamic entropy captures the irreversibility and
disorder of 2D and 3D Euler turbulence quite well.

We conclude this paper by emphasizing that thermal and hydrodynamic processes, with or
without viscosity, are multiscale phenomena where hierarchical energy transfers play a critical role
[2,34]. Recently, Verma [18,36] attributed irreversibility in a turbulent flow to the asymmetric energy
transfers (e.g., forward cascade in 3D Navier-Stokes equation), which is a hydrodynamic property.
Following a similar approach, in this paper, we propose hydrodynamic entropy that successfully
captures the evolution of 2D Euler turbulence from disorder to order.
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APPENDIX: EVOLUTION OF 3D EULER TURBULENCE

In this Appendix, we summarize the energy spectrum and flux of 3D Euler turbulence. Cichowlas
et al. [3] simulated 3D Euler turbulence with Taylor-Green vortex as an initial condition. For such
simulations, in the early phase, the energy flows from large scales to small scales, and the energy
flux is positive. After several eddy turnover times, the system approaches equilibrium with vanishing
energy flux and E (k) given by Eq. (2).

To compute the hydrodynamic entropy for 3D Euler turbulence, we simulated 3D Euler flow. We
performed our simulation on a (2π )3 box with a M3 grid. Here, M = 128. We dealiase the code
by setting all the modes outside the sphere of radius M/3 to zero. We time evolve Eqs. (1) of the
main text using PEFRL scheme [25,26] to ensure energy conservation. As in Cichowlas et al. [3],
we take the Taylor-Green vortex (k0 = 1) as an initial condition, and time evolve the system till
120 eddy turnover time (2π/Urms) with a constant dt = 10−4. The total energy per unit volume
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FIG. 12. For 3D Euler turbulence, plots of (a) averaged T (k, t ) and (b) averaged �(k, t ). We average over
2000 frames in time interval (100, 120).

E = ∫
dr(u2/2)/

∫
dr = 0.125, and it is conserved up to 12 significant digits till the final time

t = 120. The system reaches equilibrium in approximately 100 eddy turnover time, consistent with
the estimates of Cichowlas et al. [3] and Verma et al. [19]. In the asymptotic state, the velocity field
is δ correlated and it is as random as that in a thermodynamic gas [19]. Using the numerical data, we
compute the energy spectrum and flux for the flow at times t = 0, 10, 30, 120. For the computation
of energy flux, we employ the algorithm outlined in Dar et al. [46] and Verma [47]. In Figs. 11(a)
and 11(b), we exhibit the energy spectra and energy fluxes at t = 0, 10, 30, 120. Clearly, with time,
the energy spectrum E (k) spreads from low wave numbers to high wave numbers, and asymptotes
to k2, consistent with the predictions of Kraichnan [16] [Eq. (2) with γ = 0].

The energy flux is nonzero for the intermediate configurations, but for t � 30, �(k) ≈ 0 for
small k’s. Note, however, that �(k) is of the order of 10−4 for large wave numbers. The fluctuations
in the energy flux are suppressed significantly on averaging over 2000 frames in time interval (100,
120) (see Fig. 12). We expect these fluctuations to subside at a later time when the system has
thermalized fully.

We also remark that for the δ-correlated initial velocity profile, E (k) ∝ k2 [Eq. (2) with γ = 0],
and energy flux vanishes from the beginning itself [19]. Thus, Euler turbulence remains thermalized
throughout for the δ-correlated initial condition.
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