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The interaction between turbulent axisymmetric wakes plays an important role in many
industrial applications, notably in the modeling of wind farms. While the nonequilibrium
high-Reynolds-number scalings present in the wake of axisymmetric plates has been shown
to modify the averaged streamwise scalings of individual wakes, little attention has been
paid to their consequences in terms of wake interactions. We propose an experimental
setup that tests the presence of nonequilibrium turbulence using the streamwise variation
of velocity fluctuations between two bluff bodies facing a laminar flow. We have studied
two different sets of plates (one with regular and another with irregular peripheries) with
hot-wire anemometry in a wind tunnel. We show that the wake-interaction length, which
quantifies the streamwise position where the wakes start interacting, can be deduced
from the streamwise profiles of turbulence intensity, a quantity that is easy to resolve
even in challenging field measurements. By acquiring streamwise profiles for different
plate separations and identifying the wake-interaction length for each separation it is
therefore possible to study the interaction between two axisymmetric turbulent wakes in
terms of its energy cascade and in this case to show that the interaction between them
is consistent with nonequilibrium scalings. This work also generalizes previous studies
concerned with the interaction of plane wakes to include axisymmetric wakes. We find that
a simple mathematical expression for the wake-interaction length based on nonequilibrium
turbulence scalings can be used to collapse the streamwise developments of the second,
third, and fourth moments of the streamwise fluctuating velocity.

DOI: 10.1103/PhysRevFluids.7.114606

I. INTRODUCTION

Recently, flow regions with nonequilibrium high-Reynolds-number turbulence at odds with
usual Richardson-Kolmogorov phenomenology have been discovered in a number of turbu-
lent flows [1–4], in particular, axisymmetric and self-preserving turbulent wakes generated by
plates with and without irregular edges. These regions are characterized by streamwise evo-
lutions of the mean flow profiles which have only recently been documented and partially
understood in experiments [5,6]. The presence of a different set of scalings has many conse-
quences, such as variations in the turbulent entrainment in free-shear flows [7–11] and in eddy
viscosity models [12], among others. Furthermore, these regions can extend as far as about
100 plate characteristic lengths (defined as

√
A, with A the frontal area of the regular or

irregular plate) in the streamwise direction. A further study [13] critically revised the classi-
cal theory of high-Reynolds-number axisymmetric turbulent wakes [14,15] to encompass these
new scalings. Both direct numerical simulations and experiments were found to agree with the
theory.
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In this work we focus on the interaction of turbulent axisymmetric wakes generated by two
bluff bodies. This is an important configuration, present, for instance, in arrays of wind or marine
tidal turbines, and the interaction of the two wakes can be expected to involve nonequilibrium
turbulence. While some experiments in wind tunnel controlled conditions have been performed
recently [16–18], no attention has been paid to the relation between the energy cascade of the
turbulent flow and the wake-interaction length (defined as the streamwise distance at which two
wakes merge).

The nonequilibrium predictions and the classical predictions rely on axisymmetry of turbulence
wake statistics, self-preservation of (U∞ − 〈U 〉)/u0 (with U∞ the freestream velocity, 〈U 〉 the
streamwise mean velocity, and u0 = U∞ − U0 the centerline velocity deficit), turbulent kinetic
energy K , turbulence dissipation ε, the sum of production and turbulent transport, and a scaling
law for the centerline turbulence dissipation [9,13,19]. Both sets of predictions are obtained from
the Reynolds averaged streamwise momentum and turbulent kinetic energy equations leading to
a closed set of equations for u0(x) and the wake half-width δ(x). The equilibrium predictions for
axisymmetric turbulent wakes [see 14,15] for the streamwise evolution (along x) of u0 and δ are

u0(x) = AU∞

(
x − x0

θ

)−2/3

, (1)

δ(x) = Bθ

(
x − x0

θ

)1/3

, (2)

where A and B are dimensionless constants (that may depend on dimensionless wake generator
parameters), θ is the momentum thickness, and x0 is a virtual origin. For an axisymmetric wake, the
momentum thickness θ is defined by

θ2 = 1

U 2∞

∫ ∞

0
U∞(U∞ − 〈U 〉)r dr, (3)

which is constant with x, and the wake’s width is here characterized by the integral wake’s half-width
defined by

δ2(x) = 1

u0

∫ ∞

0
(U∞ − 〈U 〉)r dr. (4)

On the other hand, the nonequilibrium predictions for the streamwise evolution u0 and δ are

u0(x) = AU∞

(
x − x0

θ

)−1

, (5)

δ(x) = Bθ

(
x − x0

θ

)1/2

. (6)

The only difference between equilibrium and nonequilibrium scalings is in the scaling of the
centerline value of ε [1], which will be different according to the nature of the energy cascade.
It is then possible to model the interaction between wakes via the streamwise scaling of δ. It is
expected that within the equilibrium cascade, the wake-interaction length x∗, defined by 2δ(x∗) ∝ S
(see [20,21]), will evolve as S3, with S the separation between the center of the plates. Accordingly,
the presence of nonequilibrium energy cascade implies that x∗ ∝ S2.

We present experimental evidence that the nonequilibrium theory in [13] properly models the
interaction of two axisymmetric wakes, for plates with both regular and irregular edges. We show
that, by having knowledge of the values of the wake width δ and the centerline velocity deficit u0 for
a single wake, it is possible to predict the length x∗ which quantifies the position where the wakes
meet. Furthermore, it is also possible to predict the intensity of the fluctuations at that particular
point. For this purpose, we propose an experimental setup where streamwise profiles of streamwise
fluctuating velocities are acquired via hot-wire anemometry in a wind tunnel. We introduce a method
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FIG. 1. (a) Sketch of the experimental wind tunnel setup and (b) irregular plate used herein. They are the
second iteration of a fractal plate with dimension Df = 1.5 and a square initial pattern, as characterized in [26]

where the interaction of wakes can be characterized using the streamwise evolution of the turbulence
intensity between both plates. To that aim, we have tested two different sets of plates, one with
square regular and another with irregular edges.

The possibility of modeling the interaction of wakes using the properties of an isolated one
is widely used in wind energy modeling. For instance, it is at the core of superposition methods
[22,23], used to model wind farms. Such applications usually rely on field data that is unresolved
in the small temporal or spatial scales (such as lidar scans [24,25]). The method discussed here to
quantify the wake-interaction length, which relies only only on the rms and averaged values of the
streamwise velocity, is therefore compatible with such experimental techniques and conditions.

This work generalizes previous studies on the interaction of plane wakes (see [21]) to include
axisymmetric wakes. We find that the derivation of the wake-interaction length proposed in [21] can
be used to collapse the streamwise development of the first three fluctuating velocity moments. Our
results suggest that nonequilibrium scalings are in good agreement with the interaction of wakes for
both sets of plates studied.

II. EXPERIMENTAL SETUP

The experiments were conducted in a low-turbulence wind tunnel with a test section of 3 × 3
ft2 (0.91 × 0.91 m 2) and 4.25 m long. The bluff plates were placed at the beginning of the
test section. Figure 1(a) presents a sketch of the wind tunnel setup. Two solid iron bars (with a
diameter of 16 mm) fixed to the wind tunnel sidewalls close to the ceiling and bottom served
as main support for the plates. Each plate was fixed to a thin iron rod (diameter 1.5 mm and
length 750 mm) using two (vertically aligned) screws. Within this configuration, no vibrations were
observed in the plates. The thin iron rods were connected to the main support by two pairs of
T-like casings. These casings were attached movably to the main support bars to allow changes in
plate separation. By means of small grub screws, the T casings could be fixed to the main support
bars.

We tested two different sets of plates (each set composed of two plates): one set with regular
square peripheries and the other set with irregular peripheries. These irregular plates, shown in
Fig. 1(b), are identical to those used in some previous works [5,6,13]. The perimeter shape of this
plate results from a geometric self-similar process leading, if continued ad infinitum, to a plate
with fractal perimeter of infinite length and fractal dimension D f = 1.5 but the same surface area
A. The irregular plate used here corresponds to the second iteration, which has been found to
produce larger values of drag coefficient and velocity deficits than other plates with both regular
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and irregular peripheries [5]. The regular plate has been chosen to have square peripheries and
therefore constitutes a canonical configuration that will be compared to the other plates. We remark
that nonequilibrium scalings have been found on a single axisymmetric wake generated by both
types of plates studied here (square or regular and irregular [6,13]). Furthermore, such scalings
have been reported on the same streamwise range covered in this study (10 < x/

√
A < 50). The

main difference in the evolution of the single wake of regular and irregular plates is then due to
the larger values of velocity deficit and local Reynolds number generated by the latter [defined as
ReL = u′√A/ν, with u′ the standard deviation of the streamwise fluctuating velocity u(t ) and ν the
kinematic viscosity of the fluid].

All plates studied have a reference length of Lb = √
A = 64 mm (with A the frontal area of the

plates) and a thickness of 1.25 mm. Only interactions of the turbulent wakes of the same type of
plate were studied; therefore we did measurements with two regular and two irregular plates only.
The plates were located vertically in the symmetry plane of the wind tunnel, normal to the laminar
freestream velocity. In the spanwise direction, they were equally spaced to the streamwise symmetry
plane. The total blockage of the setup remains low, close to 4.3%, and therefore we do not consider
any blockage corrections to our results.

Eleven different plate separations S were tested: 230, 240, 250, 260, 270, 280, 285, 290,
295, 300, and 305 mm. A right-handed coordinate system serves as reference, with +x point-
ing downstream, +y pointing to the bottom, and +z pointing in the spanwise direction. The
origin is set at the center point of the wind tunnel at the streamwise position of the plates.
Thus, x marks the streamwise distance to the plane of the plates. The freestream velocity was
kept constant at U∞ = 10 m/s throughout the tests and was controlled and stabilized with
a proportional-integral-derivative feedback system using the static pressure difference across
the 9:1 wind tunnel contraction and the temperature inside the test section measured halfway
along it. At that velocity, the fluctuations around the mean are below 0.1% when the test sec-
tion is empty. The resulting global Reynolds number for all data sets is Re = U∞

√
A/ν =

4.3 × 104 (similar to values reported in previous experimental works on axisymmetric turbulent
wakes [27–29]).

Hot-wire anemometry measurements were conducted downstream of the pair of plates using a
Dantec Dynamics 55P01 single hot wire, driven by a Dantec StreamLine CTA system. The probe has
a Pt-W wire, 5 μm in diameter, 3 mm long with a sensing length of 1.25 mm. The probe was placed
with a leveling laser at the wind tunnel centerline and velocity profiles in streamwise direction were
recorded with intervals of 10 mm. The probe can be located as close as 100 mm from the plates
and up to 3020 mm away from them. For each probe location, the acquisition time was 60 s with
a sampling frequency of 20 kHz. The traverse system is modular, allowing us to automatize the
acquisition of streamwise profiles over a 540-mm span. It can then be moved to cover different
regions of the test section. Therefore, to measure sufficiently long streamwise distances, two or
more profiles were recorded for each plate separation S. For the particular S = 285 mm case, a set of
streamwise profiles covering the entire test section was performed for both kinds of plate. Therefore,
for S = 285 mm we have access to the whole streamwise evolution of the velocity temporal signal
of the streamwise velocities.

To ensure continuity between individual streamwise profiles, the streamwise range covered by
each one of them overlaps for approximately 100 mm with the next or previous profile. At the begin-
ning of each single profile, a vertical wake profile was acquired within −250 mm < y < 250 mm
with �y = 20 mm to verify U∞ (acquisition time 30 s and frequency 20 kHz) and a new calibration
of the hot wire was made to account for possible thermal drifts of the wind tunnel. Calibrations were
made with a reference from a pitot tube located 50 mm below the hot wire and for nine equispaced
velocities between 5 and 15 m/s. Temperature was monitored during the streamwise profiles, so it
never changed by more than 0.2 ◦C.

Since the acquisition time of the centerline single-wire measurements was 60 s, an order of 1000
integral timescales at each streamwise position were recorded, thereby allowing good large-scale
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FIG. 2. Streamwise distribution of u′/〈U 〉 for the irregular plates at S = 285 mm.

resolution. The Kolmogorov frequency was always smaller than half our sampling frequency (which
is 20 kHz) and the fluctuations are always below 10% [see Fig. 3(a)]. We have also verified that
when the flow becomes turbulent (x > 1 m), our sampling time corresponds to 3–10 × 103 integral
timescales.

III. RESULTS: PLATES WITH IRREGULAR EDGES

A. Streamwise profiles and wake scale x12

For a plate separation of 285 mm, streamwise velocity measurements along the entire test
section have been conducted. To capture this length, 11 single-velocity profiles have been recorded.
These measurements yield directly the local streamwise mean velocity 〈U 〉 and the corresponding
fluctuating velocity around this mean u(t ). Figure 2 shows the streamwise distribution of the velocity
fluctuations u′/〈U 〉.

From Fig. 2 we identify three different regions in the flow (highlighted in the figure with different
colors and labeled 1, 2, and 3). In region 1, the two wakes have not met yet. It is important to
remark that the boundaries of the wake are of statistical nature and the flow can be affected by
the generator at radial distances much higher than δ. This is the reason why the fluctuations show
a monotonic increase in this region. Then the profile of u′/〈U 〉 suggests that in region 2 the two
wakes start to significantly interact and their boundaries meet more often than not, so the velocity
fluctuations reach a peak. This change of region is characterized by a sudden loss of linearity in
the dependence of u′/〈U 〉 on x (present, for example, in the range x ⊂ [500, 900] mm), as better
detailed below. Further downstream, in region 3, the wakes are fully merged and the fluctuations
exhibit a monotonic decrease.

For better comprehension of the interactions regions, we study the properties of the flow at
three representative streamwise locations: x1 = 500 mm, x2 = 1500 mm, and x3 = 2500 mm.
Figures 3(a)–(c) show the time signal of the streamwise fluctuating velocity u(t ) at these points. At
x1, the time signal of the fluctuating velocity is almost flat, with some extreme events. The spectrum
is not turbulent yet [Fig. 3(d)], while the probability density function (PDF) of u(t ) [Fig. 3(e)] is
far from Gaussian and positively skewed. This behavior is reminiscent of the findings in [30] for a
turbulent grid flow, very close to the grid bars. Regions 2 and 3 show a better developed turbulent
spectrum and a PDF which is still non-Gaussian but has become negatively skewed. Figures 2 and
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FIG. 3. Streamwise fluctuating velocity time signal u(t ) and its spectra and PDF at different locations
for irregular plates at S = 285 mm, for a time signal of u(t ) at (a) x1 = 500 mm, (b) x2 = 1500 mm, and
(c) x3 = 2500 mm. (d) Spectra at the three different locations. The blue line corresponds to x1, the red one to
x2, and the black one to x3. (e) PDF of u(t ) at the same locations and represented with the same colors as in (d).
At x1, the signal has a skewness of 3.0 and a flatness of 39.0. At x2 they are −1.9 and 8.5, respectively. Finally,
the signal at x3 has a skewness of −1.1 and a flatness of 4.4.

3 therefore suggest that the point x12, which demarcates regions 1 and 2, might be related to the
interaction of the two wakes and might be a good candidate for the wake-interaction length x∗.

In the following, we test whether the wake width of the irregular plates scales according to the
nonequilibrium dissipation law. To do so, we assume that the average edges of the two wakes meet
where their wake extent nδ (with n close to 2) is equal to S. Figure 4 visualizes this configuration.

FIG. 4. Sketch of the interaction of both wakes when 0.5S = nδ.
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FIG. 5. Example illustrating the procedure of automatic detection of x12: (a) location of minimum quadratic
deviation as a function of the number of points used for the linear fit and (b) x12 determined and its
corresponding linear fit (b), corresponding to S = 270 mm.

Throughout this work, δ is always defined according to Eq. (4). In consequence, Fig. 4 only shows
a schematized view of the interactions where it is assumed that the interaction will occur at S ∼ 2δ.
Regarding this wake-interaction process, we identify the location of the transition from region 1 to
2 (defined as x12) as the beginning of significant interactions.

Figure 5(b) shows an example of the streamwise evolution of the normalized velocity fluctuations
for the particular case S = 270 mm [others are shown in Fig. 6(a) and present a similar shape].
Regarding the wake-interaction process, we interpret the transition point x12 from region 1 to 2
along the centerline streamwise axis to be the beginning of significant interactions between the two
wakes in terms of turbulence velocity fluctuations. As we show in the present paper, the location
x12 can be determined with simple hot-wire anemometry measurements in the streamwise direction
only. The location x23 of the transition from region 2 to 3 would require more complicated data
collection and analysis methods [such as particle image velocimetry (PIV) and/or vertical hot-wire
anemometry profiles] and we leave it for a further study.

It can be observed that region 1 is characterized by a linear relation between u′/〈U 〉 and x.
We identify the streamwise transition point x12 as the point where this linearity is lost and use this
property to determine x12 automatically for every case. To do so, the linear region is fitted locally for
a given streamwise range, which is gradually increasing in the number of points (i.e., for streamwise

FIG. 6. (a) Streamwise profile of the velocity fluctuations for all plate separations S in Table I. The black
squares represent x12, i.e., the x locations of the transition between regions 1 and 2. (b) Comparison of the wake
half-width profile obtained for a single irregular plate by [13] (blue line) with the results obtained using Eq. (9)
in the wake-interaction setup used here (red circles)
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TABLE I. Overview of transition locations between regions 1 and 2 obtained for irregular plates.

S (mm) x12 (mm) n 〈n〉 σn/〈n〉
230 670 2.26 2.26 0.0068
240 710 2.29
250 790 2.28
260 890 2.24
270 950 2.26
280 1030 2.26
285 1040 2.29
290 1110 2.26
295 1150 2.26
300 1190 2.26
305 1230 2.26

ranges that start on the smallest streamwise position and end on a distance that is increased between
subsequent fits). Plotting the location xmin of lowest quadratic deviation versus the number of points
used for the linear interpolation, the location x12 can be detected by the first plateau region within
this plot (other plateaus may exist for larger xmin due to the change of concavity that occurs within
region 2). An example of this procedure is shown in Figs. 5(a) and 5(b).

The streamwise locations found by this automatic procedure are represented by the black squares
in Fig. 6(a). A summary of the locations x12 identified by this process is given in Table I. To
determine the factor n, we use the scaling law of the wake half-width of a single wake

δ(x)

θ
= B

(
x − x0

θ

)β

, (7)

where δ(x) is the wake width at position x, θ is momentum thickness of the plate, x0 stands for
a virtual origin of the plate, and B and β are fitting parameters. For the irregular plates used
herein, Ref. [13] found the following values in agreement with the nonequilibrium dissipation law:
θ = 21 mm, x0/θ = −5.35, B = 0.37, and β = 0.52. We remark that these values were obtained
experimentally in the same wind tunnel, using the same equipment and plates, and therefore remain
valid for the modeling of the single-wake evolution of the plates studied here. Using these values
and Eq. (7), we can set up

1

n

S

2 θ
= B

(
x12 − x0

θ

)β

(8)

and solve it for n for every plate separation tested. The values thus obtained for n are given in
Table I. Perhaps remarkably, all n factors are found to be close to the mean value 〈n〉 = 2.26. This
result indicates that significant wake interactions take place where 2.26δ(x) is equal to the plate
separation. This result supports the validity of the nonequilibrium dissipation law in the wake of the
irregular plates and determines the beginning of wake interactions on the basis of the nonequilibrium
scalings of the wake half-width.

Combining Eqs. (7) and (8), a single-wake half-width δwake can be defined from the interaction
between two plates,

δwake(x12) = S

2〈n〉 , (9)

where for each plate separation S, one value of δwake can be estimated using its corresponding
value of x12 and the averaged value 〈n〉. We remark that, in Eq. (9), the averaged value 〈n〉 depends
on the set of parameters B, x0, and β and therefore carries information about the energy cascade

114606-8



INTERACTION OF TWO AXISYMMETRIC TURBULENT …

FIG. 7. Streamwise evolution of the intermittency factor γ obtained using Eqs. (10) and (11) (blue line)
and compared to the turbulence intensity u′/〈U 〉 (red line). The threshold used is u2

th = 0.05 m2/s2, while other
values give identical trends with different absolute values. The curves were obtained for a pair of irregular
plates with a separation S = 270 mm.

within the wakes. To underscore this result, Fig. 6(b) shows the streamwise evolution of the wake
half-width with increasing streamwise position from the plate as obtained for a single plate by [13]
(blue line) and compared to δwake (red dots). Again, the results coincide. It is therefore possible to
predict the overall level of the streamwise profile of δ(x), which is a characteristic of the mean flow
cross-stream profile of a single wake, by acquiring velocity fluctuation measurements in regions 1
and 2 of a two-wake setup.

We finish this section by assessing the consistency of x12 as the onset of interaction between
wakes and the possibility of using other parameters to quantify this phenomenon. For instance,
Fig. 3(a) suggests that the intermittency of u(t ) could also be used as a criterion to set the value of
x12. We define an intermittency factor via an intermittency function I (t ), which is defined as 1 for a
turbulent flow and as 0 for a nonturbulent one [31,32]. Given that we look to quantify the large-scale
intermittency of u(t ), we can define this function using a threshold u2

th for the time signal of u(t )2,

I =
{

1 if u(t )2 > u2
th

0 if u(t )2 � u2
th.

(10)

Then the intermittency factor γ is defined as

γ = 〈I〉 = 1

Ts

∫ Ts

t=0
I (t )dt (11)

for a long enough integration time Ts.
Figure 7 shows the streamwise evolution of γ compared to the turbulence intensity for a

separation between plates of S = 270 mm. For this particular separation it was found (Table I)
that x12 = 950 mm. While γ does show a change of behavior that could be used to quantify the
interaction between two plates, Fig. 7(a) hints that it may be rather related to x23. As stated above,
future works using two-dimensional (2D) and 3D visualization of the velocity field could help us
understand the role of γ in the transition between the second and third regimes.

B. Higher-order moments

In previous studies, wake interactions have been investigated in terms of higher-order moments,
such as velocity skewness and flatness [20,30]. Figures 8(a) and 8(b) show the skewness and flatness
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FIG. 8. (a) Skewness and (b) flatness profiles for all plate separations tested. The separation increases from
left to right.

profiles for all plate separations tested. The behavior of both moments is quite similar to the results
of [20,30]. These two studies investigated 2D planar wakes of bars of turbulence-generating grids.
In contrast, the wakes in the current study are three dimensional and axisymmetric. Hence, Fig. 8(a)
provides experimental evidence that high-order moments can evolve similarly in the streamwise
direction in 2D planar and 3D axisymmetric wakes. The detailed analysis of this finding is left for
future studies.

A previous study [20] showed that the skewness and flatness profiles of different turbulence
grids could be collapsed by scaling the streamwise position with a wake-interaction length scale x∗.
Subsequently, [21] collapsed velocity fluctuation profiles of different experiments with an improved
wake-interaction length scale x′

∗. In Figs. 9(a) and 9(b) the skewness and flatness profiles are
replotted with the x axis scaled by the length scale x12 discussed earlier. We find that all values
of S collapse (we note that the figure is in linear scale), with the exception of the smallest separation
S = 230 mm. The reason for this exception may be that the wakes meet before having become
self-similar or axisymmetric for this low value of S. Moreover, for small values of S different
phenomena can arise in the interaction of near wakes. For instance, for square bars three different
regimes can be identified depending on the ratio between the bars’ separation and their size [33].
No similar study has been performed for bluff plates, and further research could clarify this point.

In the following section, we further test the idea that the length scale x12 is a wake-interaction
length scale and show also that it can be used to scale the streamwise profile of the turbulent velocity
fluctuations.

FIG. 9. (a) Skewness and (b) flatness profiles for all plate separations tested. The streamwise position x is
scaled by the length scale x12.
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TABLE II. Wake-interaction length scale values obtained for irregular plates.

S (mm) x12 (mm) x′
∗ (mm) x′

∗/x12

230 670 630 0.94
240 710 686 0.97
250 790 744 0.94
260 890 805 0.90
270 950 868 0.91
280 1030 933 0.91
285 1040 967 0.93
290 1110 1001 0.90
295 1150 1036 0.90
300 1190 1071 0.90
305 1230 1107 0.90

C. Wake-interaction length scale

As stated above, Refs. [20,21] proposed formulas for a wake-interaction length scale character-
izing the interaction of planar wakes emanating from fractal and regular grids. This length scale can
be easily constructed for any free-shear flow. In our case, two axisymmetric wakes can be surely
expected to interact at a streamwise distance x∗ from the plates where δ [defined via Eq. (4)] is
expected to be close to half the distance between the centers of the plates (defined as S in this work).
This implies that the wake-interaction length x∗ scales as x∗ ∝ S2 on the basis of Eq. (6), resulting
in

(
x∗ − x0

θ

)
∝

(
S

2θ

)2

. (12)

A crucial step in the wake-interaction approach of [21] is the neglect of the virtual origin x0 because
the “distance downstream where the wakes meet is very much larger than the virtual origin. We
therefore ignore the virtual origin x0 and effectively set it equal to zero.” In our case, this would
imply that x∗ � x0, which we find below to hold for all cases (see Table II).

We can then define a modified wake-interaction length for two axisymmetric plates in the
nonequilibrium regime by

x′
∗ = φ

S2

4θ
, (13)

where φ is a constant that depends on the geometry of the plates and accounts for the contributions
of B and 〈n〉. The wake-interaction length scale x′

∗ based on Eq. (13) is given in Table II for different
values of S together with the length scale x12 determined earlier. It can be seen that x12 and x′

∗ are
proportional to each other (and in fact do not differ by more than 10%). Hence, the length scale
x12, determined empirically, scales with the modified wake-interaction length scale x′

∗ based on
the nonequilibrium dissipation law. It is therefore possible to consider x12 as the wake-interaction
length for turbulent axisymmetric wakes. As a result, the length scale x12 can be used to collapse
the streamwise development of the turbulence intensities. To complete the scaling of the turbulence
intensity we note that, in the case of a single wake, the turbulent kinetic energy and the Reynolds
shear stress evolve together in the streamwise direction [13–15] and that the Reynolds shear stress
scales with streamwise distance as U∞u0[d/dxδ(x)] (see [13,15]). We therefore attempt the scaling
u′ ∼ √

U∞u0[d/dxδ(x)]F (x/x12), where F is a dimensionless function of x/x12. In this work we did
not measure the values of u0(x) and δ(x) and we therefore used their fits from [13] for the irregular
plates.
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FIG. 10. Profiles of u′ obtained for plates with irregular peripheries normalized according to according to
u′ ∼ √

2/3R0F (x/x12), where R0 = U∞u0[d/dxδ(x)].

In Fig. 10 we show the velocity fluctuations normalized according to u′ ∼√
U∞u0[d/dxδ(x)]F (x/x12). Most of the profiles collapse fairly well. Consistently with the

discussion in Sec. III B, the collapse is worse for smaller values of S.

IV. RESULTS: REGULAR SQUARE PLATES

As discussed above, in addition to the two plates with irregular peripheries, two regular square
plates with the same area (

√
A = 64 mm) were also investigated. Again, 11 different separations

were set and the same measurements as for the irregular plates were conducted. Figure 11(a) shows
the streamwise development of the velocity fluctuations for all separations. The shapes of these
profiles are similar to those for the irregular plates.

Again, we determine the length scale x12 at the point of transition from region 1 to 2 in the
turbulent fluctuations streamwise profile [see Fig. 11(a)]. The results of this automated procedure
are given in Table III . The n factor is once again very similar for all values of S, but slightly different
from the irregular plates: 〈n〉 = 2.13. Figure 11(b) compares the wake width based on the identified
length scale x12 with the results of the single-plate measurements of [6]. Equation (13) yields the
modified wake-interaction length scale x′

∗ for these regular square plates (see Table III). As found
for the irregular plates, our length scale x12 is a multiple of x′

∗, in this regular case with x12 = 1.24x′
∗.

FIG. 11. (a) Streamwise distribution of the velocity fluctuations for all square plate separations given in
Table I. (b) Comparison of the wake-width distribution found for a single regular plate in [6] (blue line) and the
results gained using Eq. (9) in the wake-interaction setup used herein (red circles). The parameters of Eq. (7)
corresponding to square plates are θ = 19.7 mm, x0/θ = −6.20, B = 0.494, and β = 0.50 [6].
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TABLE III. Overview of the length scale x12 and other parameters characterizing the wake’s interaction for
the square plates.

S (mm) x12 (mm) n 〈n〉 σn/〈n〉 x′
∗ (mm) x′

∗/x12

230 540 2.11 2.13 0.016 671 1.24
240 570 2.15 731 1.28
250 630 2.14 793 1.26
260 660 2.17 858 1.30
270 730 2.15 925 1.27
280 800 2.14 995 1.24
285 830 2.14 1031 1.24
290 860 2.14 1067 1.24
295 900 2.14 1104 1.23
300 980 2.09 1142 1.17
305 1050 2.05 1181 1.12

To evaluate the collapse capability of x12, we scale the streamwise profile of the higher-order
moments (skewness and flatness) of the velocity fluctuations with x12. In Figs. 12(a) and 12(b) we
plot the original skewness and flatness profiles and in Figs. 12(c) and 12(d) we plot the streamwise
skewness and flatness profiles scaled with x12. Some collapse, particularly for the larger values of S
is once again observed.

Finally, in Fig. 13, x12 is used to collapse the streamwise profile of velocity fluctuations.
Streamwise velocity fluctuations are scaled according to u′ ∼ √

U∞u0[d/dxδ(x)]F (x/x12) as for
the irregular plates. A fairly good collapse of the profiles is obtained again, except for the smaller
values of S.

FIG. 12. (a) Unscaled skewness and (b) flatness profiles for all square plate separations tested and (c) skew-
ness and (d) flatness profiles scaled with x12.
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FIG. 13. Profiles of u′ obtained for plates with square peripheries normalized according to the equation u′ ∼√
2/3R0F (x/x12), where R0 = U∞u0[d/dxδ(x)].

V. RESULTS: COMPARISON BETWEEN IRREGULAR AND REGULAR PLATES

In this section we compare results obtained for both sets of plates. For instance, it can be observed
that, while collapse is acceptable for all cases, it may differ between types of plates. Indeed, irregular
plates have been found to require a longer streamwise distance to become self-similar [34]. They
also have, for a fixed streamwise position, smaller values of δ. This implies that for different types
of plates, a given separation S may differ when expressed as multiples of δ.

We therefore proceed to compare the major results from the irregular and the regular square
plates. We focus on S � 260 mm, where the profile collapse is best in terms of x12. In Figs. 14(a)
and 14(b) we plot the streamwise profiles of the skewness and the flatness of the turbulent velocity
fluctuations scaled by the interaction length scale x12 for both the irregular and the regular set of
square plates. A reasonable collapse is achieved. In Fig. 15 the streamwise profiles of the scaled
velocity fluctuations are displayed. It can be seen that the maxima of u′/

√
2/3R0 (where R0 =

U∞u0[d/dxδ(x)]) are higher for the regular plates than for the irregular ones. The scaling u′ ∼√
U∞u0[d/dxδ(x)]F (x/x12) seems to hold for both sets of plates, but the proportionality constant is

different depending on plate geometry. Further studies covering geometries not covered in this work
could help us better understand the dependence of the function F (x/x12) with different parameters
such as the plate’s edges, drag coefficient, etc.

FIG. 14. (a) Scaled skewness and (b) flatness of irregular and regular plates.
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FIG. 15. Scaled u′ of the irregular and regular square plates.

VI. CONCLUSION

In this work we have studied experimentally via hot-wire anemometry the interaction between
two turbulent axisymmetric wakes in the wind tunnel. The wake generators were pairs of plates,
one pair with plates of regular peripheries and one pair with plates of irregular peripheries. We
pointed out that the wake-interaction length x∗ can be quantified using only streamwise profiles of
the turbulence intensity in the symmetry axis between both plates. Furthermore, we found that x∗
is related to the wake half-width δ(x) and the separation between plates S as S ≈ 2.26δ(x∗). By
acquiring streamwise profiles for different plate separations and identifying the wake-interaction
length for each separation it is possible to show that the interaction between the wakes is consistent
with nonequilibrium scalings. The profile of the streamwise distribution of the normalized velocity
fluctuations u′/〈U 〉 is used to characterize the interaction of two wakes, as it shows three clearly
defined regions: a first region where the wakes have not significantly met yet and the flow is
highly intermittent and a second region where the wakes start to merge and u′/〈U 〉 reaches a
maximum value. Finally, in the third region both wakes are fully merged and the fluctuations exhibit
a monotonic decrease with streamwise distance.

We have therefore proposed to identify the wake-interaction length with the streamwise point x12

where the flow goes from region 1 to region 2. We found that the values of x12 are indeed consistent
with the nonequilibrium cascade, as x12 ∝ S2. Indeed, as explained in the Introduction, for the case
of the standard Richardson-Kolmogorov energy cascade, x∗ evolves as S3, while a nonequilibrium
cascade implies x∗ ∝ S2.

We also defined a wake-interaction length scale independently from x12 and have shown that it is
proportional to x12. We then used x12 to successfully collapse the streamwise profiles of the second,
third, and fourth moments of the streamwise fluctuating velocity.

Following previous theoretical developments [13–15] which demonstrated that the turbulent ki-
netic energy and the Reynolds shear stress both scale with streamwise distance as U∞u0[d/dxδ(x)],
we have proposed the scaling u′ ∼ √

U∞u0[d/dxδ(x)]F (x/x12), where F is a dimensionless func-
tion of x/x12. This scaling holds for both sets of plates, but the proportionality constant is larger for
the regular than the irregular plates.

Our results and analysis could contribute to the study of interactions between wakes of neighbor-
ing wind turbines and the design of wind farms. Further experimental studies using PIV or direct
numerical simulations can help give further insight into the properties of the wake across the three
regions we have identified in this work.
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