
PHYSICAL REVIEW FLUIDS 7, 114204 (2022)

Dynamical motion of an oblate shaped particle exposed to an acoustic
standing wave in a microchannel
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The nonlinear effects induced on a nonspherical object exposed to an acoustic standing
wave offer acoustic radiation force and torque, resulting in the dynamical motion of the
object. Here, we study the translational and rotational motion of an oblate shaped particle
exposed to standing bulk acoustic waves in a microchannel using numerical simulations.
Acoustic pressure and velocity fields are obtained from a numerical model, and a perfectly
matched layer boundary condition is used to simulate the particle dynamics. A systematic
parametric study is carried out to understand the effects of initial orientation, aspect
ratio, size, and initial location of the particle on the translational and rotational motion,
by considering the acoustic streaming effects. In this paper, we reveal that the particle
undergoes rotation to minimize the acoustic radiation torque potential when the minor
axis of the particle is not in line with the acoustic pressure wave direction. We find that
the direction of rotation changes from anticlockwise to clockwise beyond a critical aspect
ratio of the particle. The location of maximum torque and consequently particle rotation
shift closer to the pressure node with increased particle size for a constant aspect ratio.
Our results show that a particle positioned closer to the pressure node rapidly rotates,
attributed to a sharp increase in acoustic radiation torque acting on it owing to a higher
torque potential. In this paper, we shed light on the dynamical motion of an oblate shaped
particle exposed to acoustic standing waves which may be relevant in understanding the
dynamics of an elongated micro-organism or biological cells.
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I. INTRODUCTION

Over the past decades, the field of acoustofluidics has gained momentum through experimental,
numerical, and theoretical developments that focus on the manipulation of micro-objects inside a
microchannel [1]. When a micro-object suspended in a fluid medium is exposed to bulk acoustic
waves, the object experiences mainly two acoustic effects. First, an acoustic radiation force acts on
the object, which occurs due to the scattering of the acoustic wave from its surface. The primary
radiation force acting on the particle depends on the density and compressibility difference between
the object and the suspending fluid [2]. Second, the particle experiences a drag force due to the
acoustic streaming-induced velocity field, which is approximated using the Stokes equation. The
effect of the acoustic radiation force on a spherical particle is well studied in the literature [3–7].
In a seminal work, an expression for the acoustic radiation force acting on a rigid sphere in an
ideal fluid was derived [8]. Subsequently, this expression was modified by Hasegawa and Yosioka
[4] including the compressibility of the particle. Further, Gor’kov [9] proposed an expression for
the acoustic force potential based on the kinetic and potential energies of the acoustic wave. Later,
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the acoustic radiation force acting on a spherical particle in a viscous fluid was investigated [10].
Interaction between multiple particles exposed to acoustic waves can give rise to the interparticle
radiation force which has also been studied [11].

Several theoretical studies have been presented in the literature for calculating the acoustic
radiation force and torque acting on a nonspherical particle. A generalized expression for primary
acoustic radiation force for ellipsoids exposed to the bulk acoustic standing wave was reported [12].
The primary acoustic radiation force and acoustic radiation torque acting on a prolate shaped particle
under the bulk acoustic standing wave were presented [13]. Subsequently, the acoustic radiation
force and moment were calculated and it was shown that previously reported analytical solutions
fail to approximate the radiation force and torque [14]. This is because since the particle shape
affects the scattered acoustic field, it is difficult to derive a generalized analytical expression of
the acoustic potential for any arbitrary shape particle. Recently, numerical simulations have been
attempted for modeling acoustic radiation forces and torques acting on an arbitrary shape particle.
A steady-state numerical model was proposed based on the boundary element model for calculating
the acoustic radiation force and torque acting on a nonspherical particle [15]. A literature review
suggests that although the acoustic radiation force and torque acting on nonspherical particles have
been exclusively studied, investigation of the dynamical motion of such particles has not received
much attention.

Understanding the dynamics of nonspherical particles inside microchambers exposed to ultra-
sonic waves may lead to potential microrobotics applications in the fields of science, engineering,
biology, and medicine [16]. Precise control of the dynamical behavior of particles through the
control of acoustic waves will have great relevance in microrobotic manipulations [17–19]. The
formation of particle clusters using acoustic waves could enable a controlled analysis of biological
particles [20]. Similarly, the superposition of two orthogonal standing waves can create a two-
dimensional array for acoustic trapping of microparticles [21]. It is possible to orient a nonspherical
particle in a specific direction due to the acoustic radiation torque acting on a particle [20]. A
time-harmonic device model was developed to simulate the acoustofluidics device and calculate the
acoustic pressure and velocity fields inside a microchannel [22]. Further, the pressure and velocity
fields were used to calculate the radiation force and torque on a complex particle, viz., red blood
cell, and disk shaped particle. A perfectly matched layer (PML) based method was proposed to study
the dynamical motion of a nonspherical particle under the bulk acoustic wave, wherein the acoustic
torque acting on an arbitrary shape particle exposed to an orthogonal acoustic standing wave was
numerically approximated [23]. In the case of two phase-shifted orthogonal standing waves, the
resulting streaming pattern around the suspended particle created a nonzero acoustic viscous torque
that induced particle rotation. Rotation of spherical particles due to acoustic streaming was shown
under two orthogonal standing waves [24]. Recently, the concept of torque potential was introduced,
similar to the Gor’kov force potential [9], to characterize the rotational motion of a prolate shaped
particle exposed to an acoustic wave [25]. The rotation of nonspherical glass fiber particles under
two orthogonal standing waves was experimentally studied [26]. It was found that the direction and
velocity of rotation can be varied by changing the amplitude of the two orthogonal standing waves.
Rotation and translation of disk shaped alumina microparticles in a one-dimensional (1D) bulk
acoustic standing wave were experimentally investigated [27], and a numerical model was validated
against the experimental findings. An experimental study showed that nonspherical particles in a
microchannel can be oriented as per the requirement for different applications such as field of flow
and imaging cytometry, by putting transducers at different angles and positions [28]. In this study,
the controlled orientation of red blood cells inside an acoustofluidic chip was presented.

In view of the above literature, we find that the fundamental understanding of the dynamical
behavior of an arbitrary shape particle exposed to bulk acoustic waves has not received much
attention. Although it has been shown that a nonspherical particle tends to rotate when exposed
to a bulk acoustic standing wave, the rotational dynamics such as the direction of rotation and
orientation dependency is not well understood. Here, we investigate the translational and rotational
motion of an oblate shaped particle when exposed to a bulk acoustic standing wave. We extended
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an existing numerical model [29] and modified the device modeling approach through multiphysics
coupling for computing the acoustic pressure and streaming velocity field. Further, the computed
pressure and velocity field is utilized to calculate the acoustic radiation force and torque acting on an
oblate shaped particle to explain the translational and rotational motion of an oblate shaped particle.
We perform a parametric study to elucidate the translational and rotational dynamics of the particle
by varying the initial orientation, aspect ratio, initial position, and particle volume.

II. NUMERICAL MODEL

A. Acoustic radiation force and torque

The governing equations used to estimate the acoustic radiation force and torque acting on
the particle are discussed in this section. The perturbation theory is employed to derive the first-
order and second-order acoustic fields considering a compressible and Newtonian fluid [30]. A
three-dimensional model is used to calculate the acoustic radiation force acting on a particle by
considering the incident and scattering waves and integrating the time-averaged acoustic fields using
the tensor integral method [31]. For nonreflecting boundary conditions of the acoustic wave from
the walls, perfectly matched layers (PML) surrounding the particle are used. Following the work of
Hahn et al., the PML domain is chosen based on the particle size instead of the wavelength [22].
Hahn et al. explained that the acoustic domain for the fluid and the suspended particle could be
modeled using either an acoustic structure interaction module or two pressure acoustic modules [22].
The PML layer is used to avoid the backscattering at the domain boundaries to nullify the effects
of the wall in the present simulation. The size of the PML layer is chosen based on the particle size
which helps in reducing the computational time. In the present case, the frequency domain is used
to calculate the acoustic radiation force and torque and therefore the size or thickness of the PML
domain will not alter the acoustic scattered pressure field [32].

We consider homogenous isentropic fluid with thermodynamic equilibrium as an unperturbed or
zeroth-order state. Now, using the standard perturbation terms up to the second order, the pressure
(p), density (ρ f ) and velocity (v) fields can be expressed as

p = p0 + p1 + p2 + · · · , (1)

ρ f = ρ0 + ρ1 + i + · · · , (2)

v = 0 + v1 + v2 + · · · . (3)

Here, 0, 1, and 2 are the zeroth-order, first-order, and second-order perturbations, respectively.
For inviscid flow, the perturbed pressure fields are obtained as

p1 = −ρ0∂tφ1, (4)

p2 = ρ0

2c2
0

(∂tφ1)2 − ρ0

2
|v1|2. (5)

Considering the time variation to be periodic, the time average of the first-order field leads to
〈p1〉 = 0, and only the time-averaged second-order field remains. The average force acting on a
particle is equal to that of momentum flux through the surface of the particle, which is given as [22]

Fr.ni = −
∫

∂V
[p2 + ρ0〈v1,iv1, j〉]n jdA, (6)

Fr.ni = −
∫

∂V

[{
−ρ0

2
〈|v1|2〉 + ρ0

2c2
0

〈(∂tφ1)〉2

}
+ ρ0〈v1,iv1, j〉

]
n jdA. (7)
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Similarly, the acoustic radiation torque can be obtained using the following expression [22]:

Tr.ni = −
∫

∂V
εi jkr j

[{
−ρ0

2
〈|v1|2〉 + ρ0

2c2
0

〈(∂tφ1)〉2

}
+ ρ0〈v1,iv1, j〉

]
n jdA. (8)

Here, εi jk is the Levi-Civita symbol and r j is the displacement vector from the center of mass of
the particle to that of the surface of the particle. Here, nj is the unit normal vector pointing at the
particle surface. The tensor integral is carried out over the surface ∂V of the particle.

B. Acoustic torque potential

Simlar to the acoustic force potential or Gor’kov potential, the acoustic torque potential can be
defined in order to better understand the rotational motion of the particle when exposed to bulk
acoustic waves [9]. The torque acting on a spheroidal particle exposed to a plane standing wave is
given by Tr = (τ0)/2 sin(2θ ), where τ0 is defined as the characteristic radiation torque [25]. The
mathematical definition of the characteristic radiation torque is given as τ0 = V EacQrad, where V
is the volume of the particle, Eac is the energy density of the wave, and Qrad is the dimensionless
radiation torque efficiency [25]. The work done by the radiation torque to move the particle from
θ = π

2 to θ = θk is obtained as

W =
∫ θk

π
2

Tr (θ )dθ = −τ0

2
cos2θk. (9)

Therefore, the total potential energy associated with the radiation torque is given by

	U = U (θk ) − U
(π

2

)
= −W = τ0

2
cos2θk . (10)

The minimum of the torque potential energy is obtained for the angle θk = π
2 , i.e., when the major

axis of the particle is perpendicular to the wave direction—the condition corresponds to the stable
equilibrium position. The torque potential becomes maximum for θk = 00, i.e., when the major
axis of the particle is aligned with the standing wave direction. For θk = 0◦, although the particle
experiences zero acoustic radiation torque, the particle is in an unstable equilibrium condition and
starts rotating due to the maximum torque potential. The acoustic torque potential elucidates the
rotational equilibrium position of the particle, which cannot be explained only through the acoustic
radiation torque.

C. Device model—pressure and velocity fields

A bulk acoustofluidics device typically consists of solid substrates, viz., a transducer, a silicon
substrate, and a glass substrate, with the silicon and glass substrates bonded to each other using
anodic bonding [33–38]. The schematic of an acoustofluidics device with a straight channel is shown
in Fig. 1. The half-wave pressure node formation inside the microchannel is shown in Fig. 1(a). The
pressure nodal plane (i.e., zero pressure amplitude) is formed at the center of the microchannel
and a standing wave coordinate system (x, y, z) is considered such that the y axis is aligned with
the pressure nodal plane. The entire device, without the presence of a microparticle, is simulated to
obtain the acoustic pressure and streaming velocity fields. We assume the acoustic wave propagation
to be isentropic and thus the pressure perturbations of the acoustic wave become proportional to the
density perturbations only. In the bulk, where the fluid may be considered ideal in the frequency
of MHz range, the assumption is well justified. Near the particles, the viscous and thermal stresses
lead to the viscous and thermal boundary layer thickness. Considering the fluid as water at room
temperature actuated at 2 MHz frequency, the thickness of viscous and thermal boundary layers are
0.4 and 0.2 μm, respectively [39]. Since we have considered the particle size of 8 μm, which is
one order higher in size compared to the boundary layer thickness, thus we neglect the transient and
thermoviscous effects in the present work, considering only the time-harmonic acoustic fields.
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FIG. 1. Schematic of the acoustofluidics device used to calculate the acoustic pressure and streaming
velocity fields. The device comprises a straight microchannel of width (W ) 500 μm, height (H ) 200 μm, and
length (L) 3.5 mm. The channels are etched into the silicon substrate and a glass substrate is used for sealing
the channel. Acoustic standing half wave is produced using a lead zirconate titanate (PZT) transducer. An
oblate shaped particle having the length of the major axis (a) and minor axis (b) is placed in the microchannel
and its translational and rotational dynamics are studied. Perfectly matched layer (PML) domain of size
20 μm × 20 μm × 20 μm with PML thickness 5 μm, having nonreflecting walls as the faces of a cube and
encapsulating the particle is also shown. PML has the same property as fluid to avoid rescattering of the
scattered wave into the computation domain.

Since the time-harmonic displacements of the different components are very small, we can model
the solid domain using the first-order time-harmonic equations [40]. We assume that the loss due
to the fluid element upon the solid domain is negligible. We consider the Fourier representation of
the time domain as A(r, t ) = A(r, ω)e−iωt , which is then used to formulate the relevant equations in
the frequency domain. Here, A is an arbitrary variable, r and t denote the space and time, and ω is
the angular frequency, related to the actuation frequency f as ω = 2π f . Now, we need to invoke the
real part of the time-harmonic field, Re[A(r, ω)e−iωt ] to obtain the physical values of the variables.

The solid components can be modeled using the Cauchy equation of motion in the frequency
domain,

∇ · σ + ρω2vs = 0, (11)

where σ is the stress acting on the material of density ρ and vs is the solid displacement field. Using
the kinematic relation, we can relate the solid strain γ to that of the displacement field as

γ = 1
2 [∇vs + (∇vs)T ]. (12)

The stress and the displacement field for each solid component are related using the constitutive
relation:

σ = C : γ, (13)

where C is the isentropic elasticity tensor, which can be further divided into the storage and loss
tensors as C = C′ + i C′′. Since the material damping for silicon is minute, the loss tensor can be
neglected and only the storage tensor is considered in the present case [41]. Usually, the elasticity
tensor is composed of 81 terms for an anisotropic material. However, for monocrystalline silicon for
a (100) wafer, the combination of cubic symmetry and the equivalence of shear conditions reduces
the fourth-order tensor to be represented by only three independent components [42]. Therefore, the
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anisotropic material tensor can be written in Voigt notation as follows:

C =

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤
⎥⎥⎥⎥⎥⎦

. (14)

We solve the above equations in COMSOL MULTIPHYSICS 5.4 to obtain the displacement fields
by considering the materials to be linear elastic [24]. Linear elastic materials with anisotropic and
isotropic models are used to simulate the silicon and glass substrates, respectively [22]. The terms
of the elasticity matrix can be expressed in terms of Young’s modulus E and Poisson’s ratio ν as

C11 = E (1 − ν)

(1 + ν)(1 − 2ν)
, (15)

C12 = Eν

(1 + ν)(1 − 2ν)
. (16)

For isotropic materials like glass, the elastic moduli are dependent, C44 = (C11 − C12)/2. The
density and relative permittivity of the silicon substrate are taken to be 2330 kg/m3 and 4.5,
respectively, whereas for borosilicate glass, the values are taken to be 2230 kg/m3 and 4.8, re-
spectively. The Young’s modulus and Poisson’s ratio of borosilicate glass are taken as 63 GPa and
0.2, respectively. Further, the elasticity matrices are used to model the elastic behavior of the silicon
and the values of the elasticity matrix coefficients, C11, C12, and C44 for silicon are 166, 64, and
80 GPa, respectively. The density of the lead zirconate titanate (PZT) transducer is 7700 kg/m3.

To solve for the displacement field of the transducer, an additional dependency of the stress
field on the electric field is modeled using Gauss’s law. Since the stress and charge are mutually
dependent, the coupled relations can be written as

∇ · D = 0, (17)

σS = CE : γ + dT · ∇V, (18)

D = d : γ − ε0ε
S
r · ∇V, (19)

where V is the electrostatic potential, D is the electric displacement field, d is the piezo coupling
tensor, ε0 represents the relative permittivity of the free space, and εs

r is the relative permittivity
tensor under a constant strain.

For the PZT transducer, the elasticity, couplingand permittivity tensors are defined as

CE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

CE
11 CE

12 CE
13 0 0 0

CE
21 CE

22 CE
23 0 0 0

CE
31 CE

32 CE
33 0 0 0

0 0 0 CE
44 0 0

0 0 0 0 CE
55 0

0 0 0 0 0 CE
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

d =
⎡
⎣ 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

⎤
⎦, (21)

εS
r =

⎡
⎣εS

11 0 0
0 εS

22 0
0 0 εS

33

⎤
⎦. (22)
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The coefficients of the elasticity tensor are given by CE
11 = CE

22 = 1.68×1011 Pa, CE
12 =

CE
21 = 11.0×1010 Pa, CE

13 = CE
23 = CE

31 = CE
32 = 9.99×1010 Pa, CE

33 = 1.23×1011 Pa, CE
44 = CE

55 =
3.01×1010 Pa, and CE

66 = 2.88 ×1010 Pa. The values of the coupling tensor coefficients
are given by d31 = 2.80 C/m2, d33 = 14.69 C/m2, and d15 = 9.86 C/m2. Finally, the values of
the coefficients of the relative permittivity tensor are given by εS

11 = εS
2 = 828 and εS

33 = 700 with
the vacuum permittivity value as ε0 = 8.8542×1012 C2/m2/N.

In the fluid domain, a purely time-harmonic model is not sufficient to understand the acoustic
pressure field. One can obtain the first-order time-harmonic equations using the perturbation ex-
pansion technique. The Helmholtz equation is used to model the first-order acoustic pressure and
velocity field as follows [19]:

∇2 p1 = −k2 p1, (23)

where p1 is the first-order time-harmonic pressure field, and k is the complex wave number defined
as k = ω

c1
. Here, c1 represents the complex speed of sound. The time-harmonic velocity field is

obtained as

u1 = i

ρ0ω
∇p1. (24)

Material damping is implemented to enhance the time-harmonic amplitudes in a resonant state.
The damping of the PZT device is modeled in terms of dielectric loss tangent and the mechanical
quality factor [22]. Further, the glue layer between the transducer and the silicon layer is approxi-
mated as a thin elastic layer. The thickness of the glue layer is taken to be 0.2 μm with a Young’s
modulus of 5.576 GPa and Poisson’s ratio of 0.3 [22]. The acoustics structure module is used to
couple the solid domain to the pressure acoustics domain used to model the fluid region.

For simulating the streaming velocity field, we need to resolve the viscous boundary layer using
an extremely fine computational mesh. However, it is computationally expensive to do this in the
case of a three-dimensional system. We solve this issue by using the concept of limiting velocity
[43]. Since the method requires a time-harmonic field outside the boundary layer, we can avoid
the requirement for an extremely fine resolution of the mesh. The limiting velocity method is
applicable only when there are no sharp edges in the computational domain. In the present study,
since there are no sharp edges, we used the technique to model the acoustic streaming velocity field
in the microchannel. Further, as we deal with a MHz frequency range, the viscous boundary layer
thickness is negligible, which further justifies our approach. The limiting velocities, obtained from
the analytical derivation of Nyborg [44] are given as [43]

uL = − 1

4ω
Re

{
u1

du∗
1

dx
+ v1

du∗
1

dy
+ u∗

1

[
(2 + i)

(
du1

dx
+ dv1

dy
+ dw1

dz

)
− (2 + 3i)

dw1

dz

]}
, (25)

vL = − 1

4ω
Re

{
u1

dv∗
1

dx
+ v1

dv∗
1

dy
+ v∗

1

[
(2 + i)

(
du1

dx
+ dv1

dy
+ dw1

dz

)
− (2 + 3i)

dw1

dz

]}
, (26)

where the asterisk denotes complex conjugation; uL and vL represent the two components of the
limiting velocities over a vibrating surface; u1, v1, and w1 are the three components of first-order
acoustic velocities along coordinates x, y, and z.

The governing equations for the second-order pressure and streaming velocity field are given by
[45]

∇p2 = η∇2u2, (27)

∇ · u2 = 0. (28)

The two equations above are solved to obtain the acoustic pressure and velocity fields, as
discussed in the next section.
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D. Numerical simulation of the particle dynamics

The pressure and acoustic streaming velocity fields obtained from the device model are used as
the background acoustic field to calculate the acoustic scattering field for a nonspherical particle.
Since we have considered only a single particle inside the domain, we consider the incoming
acoustic field to calculate the acoustic radiation force and torque acting on the particle.

In acoustofluidics, the dynamics of a particle are mainly governed by acoustic radiation force,
buoyancy force, and streaming-induced drag force. Further, we assume that the particle trajectory
does not change due to the inertial effects. For a nonspherical particle, the governing equation that
describes the 3D motion of the particle is given by [22][

Fr

T r

]
+

[
Fb

0

]
= L

([
u
ω

]
−

[
us

ωs

])
, (29)

where Fr and T r are the acoustic radiation force and torque given by Eqs. (7) and (8), respectively,
Fb denotes the buoyancy force, and L is the hydrodynamic resistance matrix. The particle transla-
tional and rotational velocity are given by u and ω, respectively, and the terms us and ωs are the
streaming velocity and streaming vorticity, respectively.

The hydrodynamics resistance matrix L can be written as a block matrix:

L =
(

K CT
s

Cs �s

)
. (30)

The submatrices K, Cs, and �s are 3×3 dimensional submatrices that represent the translational
tensor, translational-rotational coupling tensor, and rotational tensor, respectively. Here, the trans-
lational and rotational tensors are symmetric, while the translational-rotational coupling tensor is
nonsymmetric. In the present case, the symmetricity of the particle leads to a diagonal hydrodynamic
matrix where all the nondiagonal terms are zero. We obtained the coefficients of the L matrix
numerically using a creeping flow simulation around the particle. By taking the particle translational
and rotational motion in the three coordinate directions, we obtained each column of the L matrix.
For example, the first column can be obtained by considering the translational motion along the x
direction as ⎡

⎣L11
...

L61

⎤
⎦ = − 1

vpx

[
Fr

T r

]
. (31)

Here, vpx is the prescribed translational velocity of the particle in the x direction. The calculation
procedure for other columns of the hydrodynamics resistance matrix is discussed in Sec. S1 of the
Supplemental Material [46].

We have chosen the fluid region as a large cylindrical domain with an oblate shaped particle
placed at its center. A large fluid domain is considered to minimize the particle-wall interactions,
which otherwise may affect the hydrodynamics resistance coefficients [22]. The hydrodynamic
resistance matrix contains the drag coefficient matrix, translational-rotational coupling, and the
rotational matrix, and therefore the size of the matrix is 6×6 with 36 parameters. For an oblate
shaped particle, we obtained these parameters using the creeping flow simulations around the
particle by solving the Stokes equations without the body force term as follows,

η∇2vc = ∇pc, (32)

∇ · vc = 0, (33)

where vc and pc represent the creeping flow velocity and pressure, respectively, and η is the dynamic
viscosity of the fluid. Here, we have used the creeping flow module in COMSOL, similar to that done
in [22] as the surrounding fluid is stationary. We also performed simulations using the laminar flow
module which yielded identical results. However, in the case of a moving fluid system one needs
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load per unit area

FIG. 2. The structure of the numerical setup including the coupling between the different modules that
constitute a full device model.

to use the laminar flow module instead of the creeing flow module. To determine each column of
the 6×6 matrix, six linearly independent motions are prescribed, viz., translational and rotational
motion along the three Cartesian axes. Further, due to the symmetricity of the object, only the
diagonal terms remain, and all other terms of the matrix are equal to zero. The simulation results for
the creeping flow velocity and pressure are presented in the next section.

III. RESULTS AND DISCUSSIONS

In this section, first, we present and discuss the device simulation results on the pressure and
velocity fields. Then, we validate our numerical model by comparing the acoustic radiation force
computed using our model with that from an existing analytical model. Further, the effects of initial
orientation, aspect ratio, particle size, and initial position on the translational and rotational behavior
of an oblate shaped particle are presented and discussed.

A. Device simulation—acoustic pressure and streaming velocity fields

We simulated the acoustofluidics device comprising a lead zirconate titanate (PZT) transducer,
a glue layer, a silicon layer, and a borosilicate glass layer to obtain the pressure and velocity
fields inside the microchannel. The density and speed of sound of the fluid are taken as ρ =
997 kg/m3 and c = 1497 m/s, respectively. The structure of the numerical setup including the
coupling between the different modules that constitute a full device model is shown in Fig. 2. A
potential difference of 2.5 V is established across the transducer using the piezoelectric module.
The piezoelectric effects are coupled with the solid mechanics module to obtain the displacement
and electric potential across the microchannel. The glue layer between the transducer and silicon
layer is modeled as a thin elastic layer [40]. For the given dimensions of the microchannel of
width W = 500 μm, height H = 200 μm, and length L = 3.5 mm, and a transducer attached to
the silicon layer, a half wavelength is created at a resonating frequency of 1.44 MHz. It is to be noted
that the pressure difference across the channel is kept to zero so there is no pressure-driven flow
inside the microchannel, and flow occurs only due to the acoustic streaming effects. We obtained
the acoustic pressure field in the fluid domain inside the microchannel, and its effect is coupled with
that of the solid using a boundary load condition. Finally, the second-order velocity field is obtained
by solving the creeping flow equations, i.e., Eqs. (30) and (31). The acoustic pressure field shows
that the nodal plane is present at the center of the microchannel in the width direction, as shown in
Fig. 3(a). The acoustic streaming velocity field is as shown in Fig. 3(b), and a zoomed-in view of
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FIG. 3. (a) First-order acoustic pressure field inside the microchannel, frequency 1.44 MHz, wavelength
1000 μm along the width of the channel; pressure node is created at the middle of the channel in the width
direction (x direction) (0 MPa, gray; 1.17 MPa, creamy white). (b) Acoustic streaming field is generated inside
the microchannel using the limiting velocity boundary condition. A zoomed-in view of the acoustic streaming
field in the x-z plane at y = 0 μm, i.e., midpoint of the microchannel along its length, is also shown. The
clockwise and counterclockwise streaming field is observed in the x-z plane. Simulation results for the (c)
creeping flow velocity, and (d) creeping flow pressure contours.

the microchannel cross section shows the formation of four recirculation vortices, two vortices in
the clockwise direction and two vortices in the anticlockwise direction.

The obtained fluid velocity and pressure field around the oblate shaped particle using the creeping
flow simulations are shown in Figs. 3(c) and 3(d), respectively. Identical fluid velocity and pressure
fields, and the same value of drag coefficient are obtained using the laminar flow module in COMSOL

and the results are presented in Fig. S1 in the Supplemental Material [46]. A large cylindrical
domain is taken for the flow simulation to avoid any effects of the particle-wall interactions on
the fluid dynamics. The fluid velocity is observed to be maximum at the particle surface and decays
continuously as we move away from the particle. For a prescribed particle surface velocity of 1 m/s,
the fluid pressure field is shown in Fig. 3(d). The maximum absolute value of the pressure field is
obtained about 300 Pa near the particle interface, and similar to velocity, the pressure decays to zero
at the cylinder wall. The forces and torques are obtained from the surface traction on the particle
surface, while the desired rotation and translational motion are evaluated by prescribing the velocity
to the particle in the three Cartesian directions. We have calculated the values of the diagonal terms
for different sizes and aspect ratios of particles and present the values in Table I. It is to be noted
that, due to symmetry, the y- and z-translational components L22 and L33 are equal. Similarly, the
rotational components about the y and z axes represented by L55 and L66 are also the same.

B. Model validation

Before we proceed to study the dynamical behavior of an oblate shaped particle, the pro-
posed numerical model is validated by comparing the acoustic radiation force acting on the
particle predicted from the model with that obtained from an existing analytical expression [12].
The particle density and speed of sound are taken as 1136 kg/m3 and 1680 m/s, respectively.
The compressibility of the particle is 1.91×106 kg/m2 s. The elasticity and Poisson’s ratio of the
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TABLE I. Values of the hydrodynamic resistance matrix coefficients for various particle sizes and aspect
ratios.

Dimension L11 (N s m−1 ) L22 (N s m−1 ) L33 (N s m−1 ) L44 (N m s) L55 (N m s) L66(N m s)

a = 8 μm(a/b) = 2 5.98×10−8 5.39×10−8 5.39×10−8 9.72×10−19 7.77×10−19 7.77×10−19

a = 12 μm(a/b) = 2 9.11×10−8 8.28×10−8 8.28×10−8 3.32×10−18 2.66×10−18 2.66×10−18

a = 16 μm(a/b) = 2 1.22×10−7 1.12×10−7 1.12×10−7 7.89×10−18 6.34×10−18 6.34×10−18

a = 9.12 μm(a/b) = 3 6.52×10−8 5.55×10−8 5.55×10−8 1.23×10−18 9.74×10−19 9.74×10−19

a = 10.08 μm(a/b) = 4 6.95×10−8 5.76×10−8 5.76×10−8 1.5×10−18 1.19×10−18 1.19×10−18

a = 10.85 μm(a/b) = 5 7.31×10−8 5.95×10−8 5.95×10−8 1.75×10−18 1.41×10−18 1.41×10−18

particle are taken as 2.7311 GPa and 0.35, respectively. The acoustic radiation force acting on a
spheroid shaped particle exposed to a bulk acoustic standing wave is analytically approximated
using the acoustic radiation force function, Yst as follows [12],

Fr = EacπR2Ystsin(2kx)ex, (34)

where Eac denotes the acoustic energy density, and R is the radius of the particle in the spherical
limit. The radiation force acting on the spheroid particle can be expressed in terms of the spherical
particle of the same volume given by King’s expression, given as [12,47,48]

Fr = (
1 + 6

25εs + 9
875ε2

s + · · ·) FKing
r (35)

where spheroid eccentricity is defined as εs = (a/b) − 1.
The acoustic radiation force acting on a rigid sphere predicted by King is given as FKing

r =
4πR3Eackφ sin(2kx)ex, where the contrast factor φ = 1+( 2

3 )(1−ρ f /ρp)
2+ρ f /ρp

and Eac is the acoustic energy

density defined in terms of incoming acoustic pressure amplitude as Eac = p2
a

4ρc2 [2,8]. The acoustic
force function using the King’s formula is given by

Yst = 4(kR)φ. (36)

For a fixed rigid sphere, the ratio of the density of fluid to density of particle is ρ f

ρp
= 0. The

contrast factor is equal to φ = 5/6 and the corresponding acoustic force function Yst = 10
3 (kR). If

the definition of the acoustic energy density is considered as Eac = p2
a

8ρc2 as defined in Ref. [49], the
acoustic force function for the fixed rigid sphere is given by

Yst = 8(kR)φ = 20

3
(kR). (37)

This shows that in the limit of the rigid fixed sphere ( ρ f

ρp
= 0), the Marston [50] expression for

a spherical particle and King’s theory [8] agree with each other. However, for a particle with finite
density the corresponding acoustic force function will deviate from that given by Eq. (37). Let us
consider a numerical example taken by Hasegawa in his paper: a rigid sphere with ρp

ρ f
= 10 and

kR = 0.1; the value of Yst from Ref. [49] is 0.612. The contrast factor is equal to φ = 0.7619. Using
the formulation of King, the Yst is given by 0.608 for the same particle. The value of Yst obtained
from the present simulation for the same density ratio and kR = 0.1 is Yst = 0.603, which is in good
agreement with the results of King and Hasegawa. In the present case, the density ratio ρ f

ρp
= 0.877;

using Eq. (36) the acoustic force function value for kR = 0.1 is given by Yst = 0.150. The value of
the acoustic force function obtained from the simulation model for the same density ratio is given
by Yst = 0.147 which agrees with the obtained value from te King’s expression.

We have used both Marston’s and King’s analytical expressions for an oblate and a spherical
shape particle, respectively, to validate our model. The variation of the acoustic radiation force
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FIG. 4. (a) The variation of acoustic radiation force function (Yst) for a rigid particle with finite mass
with the normalized particle radius (kR) obtained from our numerical model and calculated from the existing
analytical expression [Eq. (35)]. The numerical results are shown by the dotted lines, and the analytical
predictions are indicated by the solid lines. (b) Variation of acoustic radiation force function (Yst) with the
normalized particle position (x/λ) obtained from simulations and existing analytical models for a rigid and
compressible spherical particle of radius kR = 0.0483.

function with the normalized particle radius (kR) for three different aspect ratios, viz., a/b = 1,
1.5, and 2, is shown in Fig. 4(a). In this case, the particle is positioned at x = λ/8, where λ is the
wavelength of the acoustic wave, as it experiences the maximum acoustic force at this location. An
excellent match between our simulation results and the predictions from King’s analytical model
is observed for an aspect ratio of 1.0 for a particle radius kR < 0.2. A small difference between
the simulation results and the theoretical predictions is observed for larger particle size, kR � 0.2,

due to the Rayleigh limit assumptions (i.e., λ � R) used in deriving the analytical solution for
a spherical particle [8]. For aspect ratio, (a/b) = 1.5 and 2, there is a good match between the
simulations and analytical results given by Eq. (35) for normalized particle size, kR < 0.2.

Further, simulations are carried out considering a spherical particle of radius 8 μm (kR = 0.0483)
to be rigid and compressible, separately. The variation of acoustic force function (Yst) with the
particle position for compressible and rigid spherical particles is presented in Fig. 4(b). The
simulation results are compared with the existing analytical results of Gor’kov and King for a
spherical and rigid particle, respectively. Our simulation results match with analytical results for
a rigid and a compressible particle in the range kR 	 0.1.

C. Dynamical motion of an oblate shaped particle

We studied the dynamical motion of an oblate shaped microparticle of size a = 8 μm and b =
4 μm, as the lengths of the major and minor axis, respectively, when exposed to a bulk acoustic
wave inside a microchannel. As discussed earlier, the acoustic pressure and streaming velocity fields
are obtained from the device model, and using the pressure and velocity fields as the background
acoustic field, we simulated the transient behavior of the oblate shaped particle. To start with, we
explore the effects of the initial orientation of the particle (i.e., the alignment of the particle with the
pressure nodal plane).

1. Effects of the initial orientation of the particle

To understand the effect of the initial particle orientation on its rotational and translational
motion, the initial orientation of the particle is varied with reference to the acoustic wave direction,
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FIG. 5. The time-lapse images showing the rotational dynamics of an oblate shaped particle exposed to
a bulk acoustic standing wave along the x direction. (a) Rotation of the particle is observed about the z axis
when the particle minor axis (MA) is initially along the y direction; i.e., particle coordinates are aligned with
the standing wave coordinate axes, θi = 0◦. (b) Rotation of the particle is observed about the y axis when the
particle MA is initially along the z direction; i.e., (xp, yp, zp) are aligned with the (x, y, z) coordinate system,
θi = 0◦. (c) Rotation is not observed when the particle MA is initially aligned in the standing wave direction;
i.e., particle coordinates are perpendicular to the standing wave coordinates system, θi = 90◦. The amplitude of
the acoustic pressure is spatially varying from 1.2 MPa near the wall (pressure antinode) to 0 MPa at the center
(pressure node) of the microchannel. The color contours in the planes represent the magnitude of the acoustic
pressure at various locations inside the microchannel. (See Supplemental Videos S1–S3, corresponding to z
rotation, y rotation, and no rotation cases, respectively [46]).

i.e., x direction. The orientation angle θ is defined as the angle between the major axis of the particle
and the standing wave direction. The coordinate system is shown in Fig. 1 with its origin (0, 0, 0)
at the geometric center of the microchannel, and the particle is initially placed at the location
x = 240 μm, y = 0 μm, and z = −50 μm, away from the pressure nodal plane, which allows us
to study its translational and rotational behavior when exposed to a bulk acoustic wave. The particle
with major and minor axes a and b is placed inside a perfectly matched layer (PML) domain as
depicted in Fig. 1. A particle coordinate system with the origin attached to the center of the particle
is considered [see Fig. 1(b)]. When the minor axis (MA) is along the yp or zp direction, then the
particle coordinate system and standing wave coordinate system are aligned to each other which
implies that the initial orientation angle θi = 0◦. The major axis of the particle which is along the
xp direction is aligned with the x direction of the standing wave coordinate. The time-lapse images
showing the rotational dynamics of the particle in such a case are shown in Fig. 5(a). We observe that
the particle continues to rotate about the z axis until the principal axis is perpendicular to the wave
direction while translating toward the pressure nodal plane. This suggests that finally the minor axis
is aligned with the pressure wave direction, resulting in a final orientation angle, θ f = 90◦. Similarly,
when the particle is initially placed with its MA is along the zp axis, the particle continues to rotate
about the y axis, as shown in Fig. 5(b). Since there are two major axes and one minor axis for
an oblate shaped particle, we observe both y and z rotation of the particle. In the case when the
MA is aligned along the x direction, the particle coordinate system and standing wave coordinate
system are perpendicular to each other and orientation angle θi becomes 90 °. Rotation of the particle
is not observed in such a case, as shown in Fig. 5(c). The rotation and migration dynamics of
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FIG. 6. (a) The x-z trajectories of the particles with different initial orientations, i.e., the minor axis (MA)
along the x, y, or z direction; the variation in the acoustic radiation force with the x coordinate of the center of
the particle is also presented. (b) The variation of the orientation angle and acoustic radiation torque acting on
the particle with different initial orientations with the position of the center of the particle along the x direction.
In all cases, V = 1.34×10−16 m3, (a/b) = 2, and the initial location of the particle center xci = 240 μm and
zci = −50 μm.

an oblate shaped particle at different initial orientations, with its minor axis at a 45 ° angle with
the y and z directions (i.e., θi = 135◦), are shown in Fig. S2 in the Supplemental Material [46].
The variation of particle trajectory, angle, angular velocity, acoustic radiation force, and acoustic
radiation torque with the particle center along the x axis are plotted in Fig. S3 [46]. Therefore, we
find that whenever the minor axis of the particle is not aligned with the pressure wave direction, i.e.,
θi 
= 90◦, rotation of the particle is observed, which suggests that the particle is in an orientation
that corresponds to an unstable equilibrium state whenever θi 
= 90◦. Upon exposure to the acoustic
field, the particle rotates in order to achieve an orientation that corresponds to a stable equilibrium
state. In the time-lapse images, the change in the color of the x-y planes cutting through the particle
shows a decrease in the magnitude of acoustic pressure indicating that the particle translates toward
the pressure nodal plane, i.e., along the x direction.

The x-z trajectories of particles with different initial orientations presented above along with the
variation in the acoustic radiation force acting on it as a function of the position of the particle
center in the x direction are presented in Fig. 6(a). The trajectories reveal that the particles move
along a curved path in the x-z plane—there is a motion in the z direction while translating toward
the pressure node along the x direction. The movement of particles along the z direction can be
attributed to the streaming velocity field, which constitutes the circulation vortices in the x-z plane,
perpendicular to the wave direction [see Fig. 3(b)]. The particles follow the streaming velocity
field while translating toward the pressure node. For the three different initial orientations presented
above, the profiles showing the variation of the acoustic radiation force overlap as the radiation
force acting on the particle is independent of the particle orientation. As the radiation force acting
on the particles in the three different cases is the same, the particle velocities resulting from the
radiation force acting on the particle are the same and hence the particle translation characteristics
are identical. However, as the rotational behaviors are different, depending on the rotation angle the
streaming-induced drag force will be different and hence the trajectories do not overlap.

The variation of the orientation angle and acoustic radiation torque acting on the particle with
the position of the center of the particles along the x direction is presented in Fig. 6(b). We see
that the particle starts rotating only when the minor axis is not aligned with the pressure wave
direction, the x direction, i.e., when the particle is in an unstable orientation state. When the minor
axis is positioned along the y axis, i.e., along the microchannel, the particle translates some distance,
until xc = 180 μm, as shown in Fig. 6(b), toward the pressure node first before rotating about the
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FIG. 7. (a) The variation of acoustic radiation torque and torque potential acting on the particle with the
rotation angle; acoustic radiation torque is obtained from our simulations and torque potential is obtained from
the analytical expression [25]. (b) Upper: initial location of the particle away from the pressure node; the
particle is aligned such that the major axis is along the pressure wave direction, i.e., x axis, with θ = 0◦. (ii)
Final location of the particle at the pressure nodal plane; the minor axis of the particle is aligned with the
pressure wave direction, i.e., x axis, with θ = 90◦.

z direction. Initial nonrotation of the particle can be attributed to the fact that torque acting on the
particle is zero initially until the particle translates to xc = 180 μm. Further, the acoustic radiation
torque increases and reaches a maximum at x ≈ 138 μm and then decreases further and finally
approaches zero. It is observed that the particle rotation occurs at the point of maximum torque, i.e.,
x ≈ 138 μm, as shown in Fig. 6(b). A similar trend is observed when the minor axis is positioned
along the z direction, i.e., along the pressure wave direction. The particle rotates about the y axis to
align its minor axis along the pressure wave direction, with the maximum torque occurring at x ≈
164 μm, relatively far away from the pressure node compared to the z-rotation case. The variation
of angular velocity with the particle position is presented in Fig. S4(a) in the Supplemental Material
[46]. As the torque value is nonzero from the original starting position of the particle, the particle
rotates much faster in the y-rotation case, within 0.3 s compared to the z-rotation case, which takes
about 0.5 s. Further, the magnitude of the maximum torque acting on the particle in the case of y
rotation is approximately half compared to the z-rotation case as shown in Fig. 6(b). Further, when
the minor axis of the particle is aligned with the pressure wave direction, we observe the particle
does not rotate, suggesting that the particle is already in a stable orientation state.

The rotational behavior of particles with different initial orientations presented above can be
explained in terms of the acoustic torque potential, 	U = τ0

2 cos(θ )2, as shown in Fig. 7(a), where
θ is the angle at which the major axis is inclined with the pressure wave direction, and τ0 is the
characteristic torque [25]. From this expression, we see that if the major axis in the xp direction
is aligned with the x coordinate of the standing wave, i.e., θ = 0◦, the particle experiences the
maximum torque potential. Therefore, the particle is in an unstable equilibrium orientation, although
the acoustic radiation torque obtained from our simulation is initially zero. The particle tends to
minimize the torque potential by undergoing rotation and aligning its minor axis along the wave
direction to attain the stable orientation state, as shown in Fig. 7(b), wherein both the torque and
torque potential vanish. The value of the torque is initially zero when θ = 0◦, attains a maximum
at an orientation angle θ = 45◦, and gradually decreases to zero again when the minor axis of the
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FIG. 8. (a) The x-z trajectories of the particles and the variation in the acoustic radiation force along the x
coordinate of the center of the particles, for different aspect ratios. (b) The variation of the orientation angle
(shown by dashed lines) and acoustic radiation torque (indicated by the solid lines) acting on the particles with
the position of the center of the particles along the x direction for different aspect ratios. Initial orientation: MA
along the y direction and θi = 0◦, particle volume fixed (V = 1.34×10−16 m3).

particle is oriented along the pressure wave direction, i.e., θ = 90◦. As the particle rotates about
the z axis, the particle’s coordinate system (xp, yp, zp) becomes perpendicular to the standing wave
coordinate system (x, y, z) as shown in Fig. 7(b). The above analytical results [25] are in agreement
with our simulation results shown in Fig. 6(b), the value of the torque is maximum at θ = 45◦,
at which the slope of the θ versus xc curve is the maximum, indicating a much faster rotation.
Therefore, when the minor axis yp of the particle is initially along the pressure wave direction,
i.e., θ = 90 degree, the torque potential is zero which corresponds to a stable orientation state and
rotational motion of the particle is not observed.

2. Effects of aspect ratio and volume of the particle

We examine the dynamical behavior of an oblate shaped particle by varying its aspect ratio,
i.e., the ratio of the major to the minor axis (a/b), and volume (V ). First, keeping the volume
fixed (V = 1.34×10−16 m3), we varied the aspects ratio as (a/b) = 2−5, and observed its effect
on the dynamical motion of the particle. The particle is initially placed at xci = 240 μm, yci =
0 μm, and zci = −50 μm with its minor axis positioned along the axis of the microchannel, i.e.,
θ = 0◦. We observe that the acoustic radiation force acting on the particle has the same magnitude
irrespective of the aspect ratio, as shown in Fig. 8(a). From theory [2], the radiation force is directly
proportional to the particle volume, contrast factor, and its location inside the microchannel. As
the particle volume remains fixed, merely changing the aspect ratio of the particle does not alter the
magnitude of the acoustic radiation force. Consequently, the particle trajectories toward the pressure
node in the x-z plane for the different aspect ratios overlap, as shown in Fig. 8(a). The variation of the
orientation angle and acoustic radiation torque acting on the particle with the position of the center
of the particles along the x direction is presented in Fig. 8(b). We find that the radiation torque
acting on the particle changes its direction after a critical aspect ratio, (a/b) = 3. When viewed
along the positive z axis, the particle rotates in the anticlockwise direction for (a/b) = 2 and 3 and
the clockwise direction for an aspect ratio of (a/b) = 4 and 5. We see that the direction of the torque
changes its sign at the critical aspect ratio, (a/b) = 3, which explains why the direction of rotation
of the particle is flipped.

The change in the sign of the torque is attributed to the displacement vector r in
Eq. (8), which is defined as the distance between the center of mass and a point
on the surface of the particle. The components of the radiation torque about the z
axis can be written as τz = (x − xc)×[{− ρ0

2 〈|v1|2〉 + ρ0

2c2
0
〈(∂tφ1)〉2}ny + ρ0(n · 〈v1〉)〈v1 · ny〉] −
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FIG. 9. (a) The x-z trajectories of the particles and the variation in the acoustic radiation force along the x
coordinate of the center of the particles, for different particle volume ratios. (b) The variation of the orientation
angle and acoustic radiation torque acting on the particles with the position of the center of the particles along
the x direction for different particle volume ratios. Initial orientation: MA along the y direction and θi = 0◦,
particle aspect ratio fixed (a/b) = 2, initial location, xci = 240 μm, zci = −50 μm.

(y − yc)×[{− ρ0

2 〈|v1|2〉 + ρ0

2c2
0
〈(∂tφ1)〉2}nx + ρ0(n · 〈v1〉)〈v1 · nx〉]. Here, x and y are the coordinates

of the points on the particle surface, and xc and yc are the coordinates of the particle centroid. The
surface integral of the equation gives the acoustic radiation torque about the z axis. The comparative
surface integral values of the two terms in the above equation, i.e., (x − xc) and (y − yc) terms,
dictate the positive or negative direction of the total torque acting on the particle about the z axis.
For the aspect ratio values, (a/b) = 2 and 3, we observe that the first term, i.e., the (x − xc) term,
is larger than the second term, i.e., the (y − yc) term, contributing to a positive total torque acting
on the body about the z axis. Therefore, in these cases, an anticlockwise rotation of the particle
is observed, as shown by the positive values of the orientation angle θ in Fig. 8(b). For particle
aspect ratios (a/b) = 4 and 5, the surface integral value of the second term, i.e., the (y − yc) term,
is higher than the first term, i.e., the (x − xc) term, resulting in a net negative torque and therefore
clockwise rotation of the particle. Although the location of the maximum radiation force acting
on the particle remains fixed,at xc = 138 μm [see Fig. 8(a)], irrespective of its aspect ratio, the
maximum torque acting on the particle varies along the pressure wave direction depending on the
aspect ratio [Fig. 8(b)]. The variation of angular velocity with the particle position is presented in
Fig. S4(b) in the Supplemental Material [46]. We observe that the particle starts rotating and attains
a peak angular velocity when the torque reaches its maximum value. Interestingly, the torque acting
and thereby the orientation of the particle is symmetric, i.e., equal in magnitude but opposite in
direction, for aspect ratios, (a/b) = 4 and 5, at a location xci = 150 μm. The location of maximum
torque shifts away from the nodal plane in the x direction as (a/b) increases from 2 to 3, but it shifts
toward the nodal plane when (a/b) increases from 4 to 5.

Now, by keeping the aspect ratio fixed, (a/b) = 2, we vary the volume of the particle using a scale
factor γ , which defines the increase in the minor axis of the particle from its initial value, with γ =
1, 1.5, and 2. Here, γ = 1 corresponds to the initial volume of the particle, V = 1.34×10−16 m3

for (a/b) = 2. We observe that with an increasing particle volume, the acoustic radiation force and
acoustic radiation torque acting on the particle increase monotonically, as shown in Fig. 9.
We observe that as the particle volume increases, the effect of the acoustic streaming field on the
particle trajectory decreases, as evident from flatter trajectories for γ = 1.5 and 2, compared to a
more curved trajectory for γ = 1. The particle experiences the maximum radiation force at a dis-
tance of 138 μm from the pressure nodal plane irrespective of the volume of the particle, as shown in
Fig. 9(a). However, with an increase in the particle volume, the location of maximum torque acting
on the particle shifts toward the pressure nodal plane [see Fig. 9(b)]. The variations of maximum
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FIG. 10. (a) The x-z trajectories of the particles and the variation in the acoustic radiation force along the x
coordinate of the center of the particles, for different initial positions. (b) The variation of the orientation angle
and acoustic radiation torque acting on the particles with the position of the center of the particles along the x
direction for different initial positions. Initial orientation: MA along the y direction and θi = 0◦, particle aspect
ratio fixed (a/b) = 2, particle volume ratio fixed, γ = 1, zci = −50 μm.

force and torque with particle volume ratio are presented in Fig. S5(b) in the Supplemental Material
[46]. The results suggest at different particle volumes that the particle translates along the x direction
and undergoes rotations at different positions along the x direction—a larger particle rotates closer
to the nodal plane, although at a much higher angular velocity (see Fig. S5(a) in the Supplemental
Material [46]). This can be attributed to the increase in mass of the particle with an increase in
particle volume, which increases the inertial effects, and consequently, the rotational motion of the
particle gets delayed to a location closer to the nodal plane.

3. Effects of the initial position of the particle

The effects of the initial position of a particle along the pressure wave direction on its rotational
and translational motion are studied. For a fixed initial z position (zci = −50 μm), we observed
that for a particle initially placed away from the nodal plane at a distance of 240 μm [marked by
position 1 in Fig. 1(b)], the trajectory of the particle in the x-z plane is much longer and curved
more along the z direction, compared to when a particle is placed at 150 and 110 μm [marked by
position 2 and position 3 in Fig. 1(b)], respectively, as shown in Fig. 10(a). This is attributed to the
acoustic streaming field shown in Fig. 3(b), which shows the formation of the vortices. As a result,
a particle initially positioned far away from the nodal plane (i.e., a particle at position 1) follows the
outer streamline of the vortices resulting in a much longer and curved trajectory compared to the
particles located closer to the nodal plane (i.e., particle at position 2 and 3). Further, the motion of
the particle located at positions 2 and 3 is dominated by the acoustic radiation force resulting in a
flatter trajectory. The particles move toward the nodal plane due to the combined effect of acoustic
radiation force and streaming-induced drag and then tend to move in the z direction due to a zero
acoustic radiation force at the pressure node. The curves for the variation of acoustic radiation force
along the x direction for different initial positions of the particle overlap, as shown in Fig. 10(a).
However, the curves showing the variation of acoustic torque along the x direction are markedly
different, as shown in Fig. 10(b).

We observed that for a particle initially placed away from the nodal plane at a distance of 240 μm
(position 1), the maximum torque acting on the particle is smaller compared to when the particle
is positioned closer to the nodal plane, at a distance of 150 and 110 μm. Similarly, the maximum
torque experienced by a particle initially placed at a distance of 110 μm is higher than that by a
particle located at a distance of 150 μm in the x direction. The distance from the nodal plane at
which the torque experienced by a particle is the highest is proportional to its initial distance from
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FIG. 11. (a) The x-z trajectories of the particles (shown by red color axis) and the variation in the acoustic
radiation force (shown by black color axis) along the x coordinate of the center of the particles, for different
initial positions along the z direction. (b) The variation of the orientation angle (shown by red color axis) and
acoustic radiation torque (shown by black color axis) acting on the particles with the position of the center of
the particles along the z direction for different initial positions. Initial orientation: MA along the y direction
and θi = 0◦, particle aspect ratio fixed ( a

b = 2), particle volume ratio fixed, γ = 1, and xci = 240 μm.

the nodal plane. Further, the torque profile is much sharper in the case of a particle located closer to
the nodal plane than that located away from the nodal plane. Therefore, a particle located closer to
the nodal plane rotates much faster compared to that located away from the nodal plane, as shown
in Fig. S6(a) in the Supplemental Material [46].

The effects of the initial position of a particle in the z direction (zci = −50 and − 75 μm)
[marked by positions 1 and 4 in Fig. 3(b)] on its rotational and translational motion are studied. For
a fixed x position (xci = 240 μm), we observed that the trajectories of the particle initially placed
at zci = −50 and − 75 μm are parallel to each other until the particle reaches the pressure node
[see Fig. 11(a)]. The is due to fact that the acoustic radiation force is independent of the particle
position about the z axis. Since the variation of the force along the x axis is equal in both cases,
the particle follows a similar trajectory irrespective of the initial position in the z direction. It is
interesting to note that, irrespective of the initial position along the z direction, the particle tends
to move in the z direction at the pressure node which may be attributed to the acoustic streaming
field. On the other hand, the particle rotates faster when it is placed at zci = −75 μm compared to
zci = −50 μm as shown in Fig. 11(b). However, the rotation of the particle is anticlockwise when
placed at zci = −50 μm, while the rotation is clockwise when placed at zci = −75 μm. We observed
a transition in the direction of torque from positive to negative, when placed at zci = −50 μm and
zci = −75 μm resulting in the clockwise and anticlockwise rotation. The corresponding angular
velocity plot is shown in Fig. S6(b) in the Supplemental Material [46]. The time-lapse images of the
particle rotational and translational motion are shown in Fig. S7 [46]. It is to be noted that a complete
90◦ rotation does not take place when the particle is placed at zci = −75 μm. The streaming field
is more prominent in position 4 compared to position 1 [refer to Fig. 3(b)] which may affect the
particle rotation.

IV. CONCLUSIONS

We investigated the translational and rotational motion of an oblate shaped particle exposed to
bulk acoustic standing waves in a microchannel using numerical simulations. The numerical model
was used to solve the acoustic and pressure fields in the microchannel and a perfectly matched
layer boundary condition was used to simulate the particle dynamics. A detailed study was carried
out to understand the effects of the initial orientation, aspect ratio and size, and initial location of
the particle on the translational and rotational motion. We found that the acoustic streaming effects
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arising from the second-order velocity fields influence the particle trajectory during its translation
toward the nodal plane. Our study showed that an oblate shaped particle will rotate in order to
minimize the acoustic radiation torque potential when its minor axis is not aligned with the acoustic
pressure wave direction. We found the torque potential is nonzero when the particle is not aligned
with the pressure wave direction and it vanishes when it is aligned. The direction of rotation of
the particle was found to change from anticlockwise to clockwise beyond a critical aspect ratio,
which is explained by the signs of the two competing terms in the expression of the radiation
torque. The location of maximum torque and consequently rotation of the particle shifts closer
to the pressure node and the magnitude of the maximum torque increases with an increase in the
particle size, suggesting that a larger particle rotates faster and closer to the nodal plane. This is
attributed to the increase in mass of the particle with an increase in particle volume, which increases
the inertial effects and hence delays the rotation. We also find that a particle initially placed closer
to the pressure node experiences a sharp increase in acoustic radiation torque and hence rotates
faster. Our study illustrates the translational and rotational dynamics of an oblate shaped particle
which may find relevance in understanding the dynamical behavior of an elongated micro-organism
or biological cells in an acoustic field. The present model can be extended incorporating cell
deformability and cell-cell interactions for predicting the behavior of a cluster of biological cells
exposed to acoustic waves. Further, interaction and dynamics of nonspherical particles near a
fluid-fluid interface can be analyzed numerically by coupling the present model with a multiphase
flow. Such simulations will opens up a plethora of applications such as cell sorting, and medium
exchange that can be explored numerically.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.

ACKNOWLEDGMENTS

A.K.S. thanks the Department of Science & Technology (DST), Government of India, for
providing financial support in the form of the Swarnajayanti Fellowship Award via Grant No.
DST/SJF/ETA-03/2017-18. The support from the Indian Institute of Technology Madras to the
Micro Nano Bio Fluidics Group under the funding for Institutions of Eminence scheme of Ministry
of Education, Government of India [Sanction No. 11/9/2019-U.3(A)] is also acknowledged.

S.Z.H. and A.K.S. conceptualized the problem. S.Z.H. and K.B. performed simulations. A.K.S.
supervised the research. All authors contributed to the manuscript preparation.

[1] W. Connacher, N. Zhang, A. Huang, J. Mei, S. Zhang, T. Gopesh, and J. Friend, Micro/nano acoustoflu-
idics: Materials, phenomena, design, devices, and applications, Lab Chip 18, 1952 (2018).

[2] H. Bruus, Acoustofluidics 7: The acoustic radiation force on small particles, Lab Chip 12, 1014 (2012).
[3] G. T. Silva, Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid,

J. Acoust. Soc. Am. 136, 2405 (2014).
[4] T. Hasegawa and K. Yosioka, Acoustic-radiation force on a solid elastic sphere, J. Acoust. Soc. Am. 46,

1139 (1969).
[5] L. A. Crum, Acoustic force on a liquid droplet in an acoustic stationary wave, J. Acoust. Soc. Am. 50,

157 (1971).
[6] M. Barmatz and P. Collas, Acoustic radiation potential on a sphere in plane, cylindrical, and spherical

standing wave fields, J. Acoust. Soc. Am. 77, 928 (1985).
[7] A. A. Doinikov, Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I.

General formula, J. Acoust. Soc. Am. 101, 713 (1997).
[8] L. V. King, On the acoustic radiation pressure on spheres, Proc. R. Soc. London, Ser. A 147, 212 (1934).
[9] L. P. Gor’kov, On the forces acting on a small particle in an acoustic field in an ideal fluid, Sov. Phys.

Dokl. 6, 773 (1962).

114204-20

https://doi.org/10.1039/C8LC00112J
https://doi.org/10.1039/c2lc21068a
https://doi.org/10.1121/1.4895691
https://doi.org/10.1121/1.1911832
https://doi.org/10.1121/1.1912614
https://doi.org/10.1121/1.392061
https://doi.org/10.1121/1.418035
https://doi.org/10.1098/rspa.1934.0215
https://doi.org/10.1142/9789814366960_0008


DYNAMICAL MOTION OF AN OBLATE SHAPED …

[10] M. Settnes and H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid,
Phys. Rev. E 85, 016327 (2012).

[11] S. Z. Hoque, A. Nath, and A. K. Sen, Dynamical motion of a pair of microparticles at the acoustic pressure
nodal plane under the combined effect of axial primary radiation and interparticle forces, J. Acoust. Soc.
Am. 150, 307 (2021).

[12] P. L. Marston, W. Wei, and D. B. Thiessen, Acoustic radiation force on elliptical cylinders and spheroidal
objects in low frequency standing waves, in Innovations in Nonlinear Acoustics: ISNA17–17th Interna-
tional Symposium on Nonlinear Acoustics Including the International Sonic Boom Forum, AIP Conf. Proc.
No. 838 (AIP, Melville, NY, 2006), p. 495.

[13] G. T. Silva and B. W. Drinkwater, Acoustic radiation force exerted on a small spheroidal rigid particle by
a beam of arbitrary wavefront: Examples of traveling and standing plane waves, J. Acoust. Soc. Am. 144,
EL453 (2018).

[14] K.-M. Lim and S. Sepehrirahnama, Calculation of acoustic radiation force and moment in microfluidic
devices, Int. J. Mod. Phys.: Conf. Ser. 34, 14603809 (2014).

[15] F. B. Wijaya and K. M. Lim, Numerical calculation of acoustic radiation force and torque acting on rigid
non-spherical particles, Acta Acust. Acust. 101, 531 (2015).

[16] J. Dual, P. Hahn, I. Leibacher, D. Möller, T. Schwarz, and J. Wang, Acoustofluidics 19: Ultrasonic
microrobotics in cavities: Devices and numerical simulation, Lab Chip 12, 4010 (2012).

[17] F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani, and J. Wang, Smart
materials for microrobots, Chem. Rev. 122, 5365 (2022).

[18] C. Chen, F. Soto, E. Karshalev, J. Li, and J. Wang, Hybrid nanovehicles: One machine, two engines,
Adv. Funct. Mater. 29, 1 (2019).

[19] J. Li, B. Esteban-Fernándezde Ávila, W. Gao, L. Zhang, and J. Wang, Micro/nanorobots for biomedicine:
Delivery, surgery, sensing, and detoxification, Sci. Robot. 2, eaam6431 (2017).

[20] S. Oberti, A. Neild, and J. Dual, Manipulation of micrometer sized particles within a micromachined
fluidic device to form two-dimensional patterns using ultrasound, J. Acoust. Soc. Am. 121, 778 (2007).

[21] B. Hammarström, N. R. Skov, K. Olofsson, H. Bruus, and M. Wiklund, Acoustic trapping based on
surface displacement of resonance modes, J. Acoust. Soc. Am. 149, 1445 (2021).

[22] P. Hahn, I. Leibacher, T. Baasch, and J. Dual, Numerical simulation of acoustofluidic manipulation by
radiation forces and acoustic streaming for complex particles, Lab Chip 15, 4302 (2015).

[23] P. Hahn, A. Lamprecht, and J. Dual, Numerical simulation of micro-particle rotation by the acoustic
viscous torque, Lab Chip 16, 4581 (2016).

[24] A. Lamprecht, T. Schwarz, J. Wang, and J. Dual, Viscous torque on spherical micro particles in two
orthogonal acoustic standing wave fields, J. Acoust. Soc. Am. 138, 23 (2015).

[25] J. P. Leão-Neto, J. H. Lopez, and G. T. Silva, Acoustic radiation torque exerted on a subwavelength
spheroidal particle by a travelling and standing plane wave, J. Acoust. Soc. Am. 147, 2177 (2020).

[26] T. Schwarz, G. Petit-Pierre, and J. Dual, Rotation of non-spherical micro-particles by amplitude modula-
tion of superimposed orthogonal ultrasonic modes, J. Acoust. Soc. Am. 133, 1260 (2013).

[27] A. Garbin, I. Leibacher, P. Hahn, H. Le Ferrand, A. Studart, and J. Dual, Acoustophoresis of disk-shaped
microparticles: A numerical and experimental study of acoustic radiation forces and torques, J. Acoust.
Soc. Am. 138, 2759 (2015).

[28] O. Jakobsson, M. Antfolk, and T. Laurell, Continuous flow two-dimensional acoustic orientation of
nonspherical cells, Anal. Chem. 86, 6111 (2014).

[29] P. Hahn and J. Dual, A numerically efficient damping model for acoustic resonances in microfluidic
cavities, Phys. Fluids 27, 062005 (2015).

[30] H. Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab Chip 12, 20
(2012).

[31] S. Z. Hoque and A. K. Sen, Interparticle acoustic radiation force between a pair of spherical particles in a
liquid exposed to a standing bulk acoustic wave, Phys. Fluids 32, 072004 (2020).

[32] Acoustics Module User’s Guide, COMSOL MULTIPHYSICS® v. 5.3, COMSOL AB, Stockholm, Sweden,
2017, pp. 134–137.

114204-21

https://doi.org/10.1103/PhysRevE.85.016327
https://doi.org/10.1121/10.0005521
https://doi.org/10.1121/1.5080529
https://doi.org/10.1142/S2010194514603809
https://doi.org/10.3813/AAA.918850
https://doi.org/10.1039/c2lc40733g
https://doi.org/10.1021/acs.chemrev.0c00999
https://doi.org/10.1002/adfm.201806290
https://doi.org/10.1126/scirobotics.aam6431
https://doi.org/10.1121/1.2404920
https://doi.org/10.1121/10.0003600
https://doi.org/10.1039/C5LC00866B
https://doi.org/10.1039/C6LC00865H
https://doi.org/10.1121/1.4922175
https://doi.org/10.1121/10.0001016
https://doi.org/10.1121/1.4776209
https://doi.org/10.1121/1.4932589
https://doi.org/10.1021/ac5012602
https://doi.org/10.1063/1.4922986
https://doi.org/10.1039/C1LC20770A
https://doi.org/10.1063/5.0013095


S. Z. HOQUE, K. BHATTACHARYYA, AND A. K. SEN

[33] R. Habibi, C. Devendran, and A. Neild, Trapping and patterning of large particles and cells in a 1D
ultrasonic standing wave, Lab Chip 17, 3279 (2017).

[34] S. Karthick and A. K. Sen, Improved understanding of the acoustophoretic focusing of dense suspensions
in a microchannel, Phys. Rev. E 96, 052606 (2017).

[35] S. Karthick and A. K. Sen, Improved Understanding of Acoustophoresis and Development of an
Acoustofluidic Device for Blood Plasma Separation, Phys. Rev. Appl. 10, 034037 (2018).

[36] S. Karthick, P. N. Pradeep, P. Kanchana, and A. K. Sen, Acoustic impedance-based size-independent
isolation of circulating tumour cells from blood using acoustophoresis, Lab Chip 18, 3802 (2018).

[37] E. Hemachandran, T. Laurell, and A. K. Sen, Continuous Droplet Coalescence in a Microchannel Coflow
Using Bulk Acoustic Waves, Phys. Rev. Appl. 12, 044008 (2019).

[38] A. Nath and A. K. Sen, Acoustic Behavior of a Dense Suspension in an Inhomogeneous Flow in a
Microchannel, Phys. Rev. Appl. 12, 054009 (2019).

[39] J. T. Karlsen and H. Bruus, Forces acting on a small particle in an acoustical field in a thermoviscous
fluid, Phys. Rev. E. 92, 043010 (2015).

[40] A. Tahmasebipour, L. Friedrich, M. Begley, H. Bruus, and C. Meinhart, Toward optimal acoustophoretic
microparticle manipulation by exploiting asymmetry, J. Acoust. Soc. Am. 148, 359 (2020).

[41] P. Hahn, O. Schwab, and J. Dual, Modeling and optimization of acoustofluidic micro-devices, Lab Chip
14, 3937 (2014).

[42] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, What is the Young’s modulus of silicon?,
J. Microelectromech. Syst. 19, 229 (2010).

[43] J. Lei, P. Glynne-Jones, and M. Hill, Acoustic streaming in the transducer plane in ultrasonic particle
manipulation devices, Lab Chip 13, 2133 (2013).

[44] W. L. Nyborg, Acoustic streaming due to attenuated plane waves, J. Acoust. Soc. Am. 25, 68 (1953).
[45] J. Lei, M. Hill, and P. Glynne-Jones, Numerical simulation of 3D boundary-driven acoustic streaming in

microfluidic devices, Lab Chip 14, 532 (2014).
[46] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.114204 for the

hydrodynamic resistance matrix, effects of initial orientation on the dynamics of an oblate shaped particle,
dynamical motion of an oblate shaped particle, and angular velocity variation. Video S1: z rotation, Video
S2: y rotation, Video S3: nonrotation.

[47] P. Glynne-Jones, P. P. Mishra, R. J. Boltryk, and M. Hill, Efficient finite element modeling of radiation
forces on elastic particles of arbitrary size and geometry, J. Acoust. Soc. Am. 133, 1885 (2013).

[48] S. M. Zareei, S. Sepehrirahnama, M. Jamshidian, and S. Ziaei-Rad, Three-dimensional numerical simu-
lation of particle acoustophoresis: COMSOL implementation and case studies, Eng. Comput. (2022).

[49] T. Hasegawa, Acoustic radiation force on a sphere in a quasistationary wave field—theory, J. Acoust. Soc.
Am. 65, 32 (1979).

[50] P. L. Marston, Phase-shift expansions for approximate radiation forces on solid spheres in inviscid-
acoustic standing waves, J. Acoust. Soc. Am. 142, 3358 (2017).

114204-22

https://doi.org/10.1039/C7LC00640C
https://doi.org/10.1103/PhysRevE.96.052606
https://doi.org/10.1103/PhysRevApplied.10.034037
https://doi.org/10.1039/C8LC00921J
https://doi.org/10.1103/PhysRevApplied.12.044008
https://doi.org/10.1103/PhysRevApplied.12.054009
https://doi.org/10.1103/PhysRevE.92.043010
https://doi.org/10.1121/10.0001634
https://doi.org/10.1039/C4LC00714J
https://doi.org/10.1109/JMEMS.2009.2039697
https://doi.org/10.1039/c3lc00010a
https://doi.org/10.1121/1.1907010
https://doi.org/10.1039/C3LC50985K
http://link.aps.org/supplemental/10.1103/PhysRevFluids.7.114204
https://doi.org/10.1121/1.4794393
https://doi.org/10.1007/s00366-022-01663-0
https://doi.org/10.1121/1.382263
https://doi.org/10.1121/1.5016031

