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On the equivalence of nonequilibrium and equilibrium measurements of slip
in molecular dynamics simulations
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We show that nonequilibrium and equilibrium measurements of slip are consistent,
provided the hydrodynamic wall location associated with the equilibrium measurement is
properly taken into account. The latter is a strong function of the fluid state and wall-fluid
interaction and cannot be neglected as it typically has been. Our results are based on an
alternative approach for calculating the hydrodynamic wall location which alleviates most
of the difficulties associated with its calculation via a Green-Kubo integral that appear
to have contributed to its neglect. Extensive molecular dynamics simulations are used to
validate our approach including a model for calculating the slip length that does not involve
a Green-Kubo integral.
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I. INTRODUCTION

The hydrodynamic behavior of fluids under confinement is a topic of significant theoretical and
practical importance. In many instances, slip or jump boundary conditions can be used [1–3] to
extend the range of validity of traditional macroscopic hydrodynamic models into the regime of
small or in some cases even moderate confinement. The most-well-known boundary condition of
this type is perhaps the Navier slip boundary condition

ux|z=zw = β
∂ux

∂z

∣∣∣∣
z=zw

, (1)

given here for a fluid-solid boundary, parallel to the z = 0 plane and located at z = 0; z = zw denotes
the hydrodynamic wall location. We have also assumed, without loss of generality, that the solid
boundary, or wall, is at rest and that the fluid flow and resulting slip are in the x direction.

Reliable methods for calculating the slip length β using molecular dynamics (MD) simulations
are invaluable both from a practical point of view but also for informing fundamental research
[4–11] into relation (1) based on a microscopic description of the fluid-solid interaction at their inter-
face. Slip in MD simulations can be measured in the presence of a velocity gradient by extrapolating
the velocity profile to the wall location. This approach is referred to as the nonequilibrium method.
The inherent presence of nonequilibrium is considered to be a disadvantage by some authors, since,
if the deviation from equilibrium is large, viscous heating, associated thermostats, or other nonlinear
effects may contaminate the result. In response to this school of thought, methods for measuring
slip using equilibrium simulations have also been developed. The most well known, perhaps, is the
Green-Kubo method proposed by Bocquet and Barrat [5], which invokes linear response theory
to calculate β. More recently, Duque-Zumajo et al. [12] developed an alternative approach which
avoids the well-known plateau problem associated with the Green-Kubo (GK) formulation [12–14].
Interestingly, in one of their publications [13] they were able to show that their GK expressions,
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although different in appearance, are equivalent to the original result of Bocquet and Barrat. Here
we also note the work by Hansen et al. [15], who first introduced the concept of the near-wall fluid
slab on which the analysis by Duque-Zumajo et al. is based.

Given the existence of these two quite different approaches to measuring slip in MD simulations,
the lack of a comprehensive investigation into their equivalence is conspicuous by its absence.
Comparisons between the two methods have been cursory, typically limited to the case of large
slip length, with the hydrodynamic wall location, an important parameter within the GK method,
neglected. On the other hand, typical modern computational resources are sufficient for performing
low statistical uncertainty [16] nonequilibrium simulations at small deviations from equilibrium
such that nonlinear effects are negligible. In this work we undertake this task, namely a detailed
comparison between nonequilibrium and GK measurements of slip to show the that the two
approaches are indeed equivalent, provided the hydrodynamic wall location is properly taken into
account. To this effect we propose an alternative approach for determining the latter quantity.
Additionally, by partially evaluating the GK relation for the slip length developed by Bocquet and
Barrat, we develop a model for calculating the slip length that does not involve a GK integral.

II. HYDRODYNAMIC WALL LOCATION VIA TANGENTIAL FORCE BALANCE AT THE WALL

We consider an atomic liquid in contact with an atomically smooth solid. Let z denote the
direction normal to the solid-liquid interface and pointing into the liquid, with z = 0 corresponding
to the first layer of solid atoms in contact with the liquid.

According to the GK theory of Bocquet and Barrat [5], the slip length appearing in Eq. (1) can
be calculated from

βGK = μAkBT∫ ∞
0 〈Fx(t )Fx(0)〉dt

. (2)

In this expression, angular brackets denote an ensemble average, A denotes the interface area, kB is
Boltzmann’s constant, μ is the fluid viscosity, and T is the (interface) temperature. Moreover Fx(t )
denotes the force exerted by the solid onto the fluid in the x (slip) direction. According to this theory,
the hydrodynamic wall location at which relation (1) is to be applied is not the fluid-solid interface
(z = 0), but a location inside the fluid given by

zw
GK =

∫ ∞
0 〈Fx(t )�xz(0)〉dt∫ ∞
0 〈Fx(t )Fx(0)〉dt

, (3)

where �xz = ∑
i mivxivzi + ∑

fxizi defines the x-z component of the fluid stress tensor, v ji denotes
the velocity of atom i in the direction j, and mi denotes the mass of atom i; i runs through all liquid
atoms. Here we note that fxi, the x-direction component of the force on liquid atom i, includes the
forces exerted by the solid onto the liquid.

A well-known issue [5] that limits the accuracy of GK approaches in finite systems (MD simu-
lations) is associated with the identification of the plateau in integrals such as

∫ ∞
0 〈Fx(t )Fx(0)〉dt .

As remarked above, Dugue-Zumajo et al. recently proposed [14] a reformulation that avoids
these theoretical difficulties. On the other hand, researchers using Eq. (2) typically sidestep this
issue by approximating [5] the plateau with the first peak of

∫ t
0 〈Fx(t ′)Fx(0)〉dt ′. Oga et al. [17]

recently provided some supporting argumentation for this approach by developing a model for
the time evolution of 〈Fx(t )Fx(0)〉 which reduces calculation of the autocorrelation integral to the
determination of three fitting coefficients in the model. Assuming their model to provide an accurate
estimate of the GK integral, they showed that the error incurred by calculating βGK using the first
peak of the function

∫ t
0 〈Fx(t ′)Fx(0)〉dt ′ becomes small when the separation between the viscoelastic

and GK relaxation timescales in the system studied is large; moreover, according to their model,
for typical values of these timescales found in MD simulations the discrepancy is on the order of a
few percent. Our MD results (see Fig. 1) are consistent with these findings, namely, identifying the
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FIG. 1. Comparison between estimates of βGK calculated using the model of Oga et al. [17] (red) and by
identifying the plateau by the first maximum of the running integral

∫ t
0 〈Fx (t ′)Fx (0)〉dt ′ (black). Simulations

were performed at T = 1.5 for εsl = 1 and Csl = 0.6.

plateau with the first peak of
∫ t

0 〈Fx(t ′)Fx(0)〉dt ′ results in a small overestimation of βGK of order 5%
compared to the value predicted by the model of Oga et al.

Evaluation of the expression (3) is more challenging. In addition to being significantly more
sensitive to noise [5] than (2), a reliable approach for identifying the plateau in the additional GK
integral is yet to be developed. As a result, the hydrodynamic wall location has received considerably
less attention, with studies utilizing the GK formulation simply ignoring its existence or perhaps
implicitly assuming that it is small compared to the slip length. Unfortunately, as will be seen below,
the latter is not an appropriate assumption, even in the case of moderately large slip length. This can
perhaps be used to explain the existence of a number of publications questioning the validity of (2);
the reader is referred to Ref. [12] for a more thorough review of this body of work.

Our objective here is to perform a thorough validation of the GK approach by comparing
its predictions to nonequilibrium measurements of slip. To achieve this goal we need accurate
measurements of the hydrodynamic wall location. We obtain those by using the tangential force
balance at the wall [5]

〈Fx〉 = −μA
ux

(
z = zw

GK

)
βGK

. (4)

This serves as an implicit equation for zw
GK, since the slip velocity ux(z = zw

GK) involves the
(hydrodynamic) wall location in its definition. In other words, given a measurement of the force
on the solid boundary, zw

GK can be determined as the location at which ux(z = zw
GK) satisfies (4), with

βGK determined from Eq. (2).

III. VALIDATION

We have performed equilibrium and nonequilibrium MD simulations of a model system over a
variety of conditions in order to (a) validate the ability of Eq. (4) to determine the hydrodynamic
wall location and (b) make a comprehensive comparison between equilibrium and nonequilibrium
measurements of slip. Our simulations were performed using the LAMMPS software [18]. The model
system, simulation setup, and parameters as well as our results are described in detail below.
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A. Molecular simulation setup

We consider a system comprising a dense liquid bounded by two fcc-structured walls in a slab
geometry. Atomic interactions follow the generalized Lennard-Jones (LJ) potential [19]

ui j (r) = 4εi j

[(
σi j

r

)12

− Ci j

(
σi j

r

)6]
, (5)

where r denotes the distance between atoms i and j.
In what follows, we will use subscript s to denote solid atoms and their properties and l to denote

liquid atoms and their properties. All quantities will be reported in nondimensional units using the
characteristic time τLJ =

√
mlσll

2/εll , the characteristic distance σll , and the potential well depth
εll associated with the liquid-liquid interaction. In all our simulations Css = Cll = 1, while Csl was
varied in the range 0.4 � Csl � 1 as will be discussed below.

The simulated system measured 30.8 LJ units in each of the two dimensions parallel to the walls;
the distance between the walls was also L = 30.8 units. Increasing L to 61.6 units did not produce
any significant change in our results.

Each wall consisted of a 7.71-unit-thick fcc slab of atoms divided into three regions, each under
different dynamics. The outermost region contained three atomic layers frozen in place. The middle
region contained seven atomic layers thermostated to the desired system temperature T via a Nosé-
Hoover thermostat. The innermost region, in contact with the fluid, comprised of a single atomic
layer under NV E dynamics. The surface of the wall exposed to the fluid is the (0,0,1) plane of the
fcc crystal. The wall density was fixed at nw = 1.09. In all simulations ms = 5 (ml = 1), σsl = 1
(σll = 1), and εss = 4 (εll = 1). A potential cutoff of 5 LJ units was used.

1. Equilibrium simulations

We calculate βGK by numerical integration of the wall-force autocorrelation trace, namely,
inserting the result for

∫ ∞
0 〈Fx(t )Fx(0)〉dt into (2). In all results presented here, the plateau value

of
∫ ∞

0 〈Fx(t )Fx(0)〉dt is identified with the maximum value of this function, in accordance with our
discussion in Sec. II.

2. Nonequilibrium simulations

We performed Couette flow simulations at wall speeds of ±0.1, which are sufficiently small for
nonlinear effects to be negligible and viscous heating to be small (maximum temperature variation
across the fluid was less than 0.01). The nonequilibrium slip length, denoted by βneq, was defined
as the distance into the wall at which the extrapolated fluid velocity profile reaches the wall speed
value. The above extrapolation was performed via a linear approximation of the velocity profile
fitted over the middle 75% of the fluid domain, away from the layering present close to the walls
[20].

Here we note that the slip length obtained by this procedure implicitly assumes that the hydrody-
namic wall location is z = 0 (zw

neq = 0). As will be seen below, this leads to considerable differences
between the equilibrium and nonequilibrium results for the slip length. The two can be compared
by referring both to the same hydrodynamic wall location. In the present case, this was done by
referring the nonequilibrium value to the GK hydrodynamic wall location, or in other words by
comparing βGK to βneq + zw

GK, where zw
GK was determined using Eq. (4). We note that due to the

linear velocity profile in Couette flow, this convention is arbitrary: Comparing βGK − zw
GK to βneq is

equivalent.

B. Simulation results

Simulations were performed for a wide variety of conditions, including variable liquid density,
variable temperature, variable solid-liquid attraction as characterized by Csl , and variable liquid-
sold interaction strength. Figures 2–6 show comparisons between the slip length as determined
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FIG. 2. Comparison between the Green-Kubo prediction βGK and the nonequilibrium slip βneq as a function
of fluid density at T = 1.5 with εsl = 1 and Csl = 0.6. Red symbols denote βneq at z = 0 and black symbols
denote βneq referred to z = zw

GK (βneq + zw
GK); the predictions and uncertainty associated with βGK are shown by

the black line and blue shading, respectively.

from Eq. (2) via equilibrium simulations (βGK), the slip length as determined by nonequilibrium
simulations (βneq), and the nonequilibrium slip length referred to z = zw

GK (βneq + zw
GK). Each data

point corresponds to the average value of the results from each of the two walls in the system. In
these comparisons, Eq. (2) was evaluated using bulk fluid properties. The results clearly establish

FIG. 3. Comparison between the Green-Kubo prediction βGK and the nonequilibrium slip βneq as a function
of fluid density at T = 1.5 with εsl = 0.6 and Csl = 0.6. Red symbols denote βneq at z = 0 and black symbols
denote βneq referred to z = zw

GK (βneq + zw
GK); the predictions and uncertainty associated with βGK are shown by

the black line and blue shading, respectively.
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FIG. 4. Comparison between the Green-Kubo prediction βGK and the nonequilibrium slip βneq as a function
of temperature at ρ = 0.68 with εsl = 0.6 and Csl = 0.6. Red symbols denote βneq at z = 0 and black symbols
denote βneq referred to z = zw

GK (βneq + zw
GK); the predictions and uncertainty associated with βGK are shown by

the black line and blue shading, respectively.

that nonequilibrium measurements of the slip length at the fluid-solid interface, that is, without
taking into account the hydrodynamic wall location, can be very different from those predicted
by the GK theory (2). However, when the hydrodynamic wall location is taken into account, in the
present figures by referring the nonequilibrium result to this location, the agreement between the two

FIG. 5. Comparison between the Green-Kubo prediction βGK and the nonequilibrium slip βneq as a function
of εsl at T = 0.825 and ρ = 0.83 with Csl = 1. Red symbols denote βneq at z = 0 and black symbols denote
βneq referred to z = zw

GK (βneq + zw
GK); the predictions and uncertainty associated with βGK are shown by the

black line and blue shading, respectively.
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FIG. 6. Comparison between the Green-Kubo prediction βGK and the nonequilibrium slip βneq as a function
of Csl at T = 1.5 and ρ = 0.68 with εsl = 1. Red symbols denote βneq at z = 0 and blue symbols denote βneq

referred to z = zw
GK (βneq + zw

GK); the predictions and uncertainty associated with βGK are shown by the black
line and blue shading, respectively.

methods is excellent. This also serves as a validation of using (4) to determine the hydrodynamic
wall location.

These results also show that the magnitude of zw
GK can be significantly larger than the value of

one LJ unit usually assumed in the literature and as such it cannot be neglected, especially since it
appears to be sensitive to the fluid state.

IV. EXPRESSION FOR β WHICH DOES NOT INVOLVE A GK INTEGRAL

In this section we discuss a model for calculating β without evaluating a GK integral. This
result is inspired by previous work [6], where such an expression was developed by relating the
force autocorrelation integral in (2) to a model for the relaxation dynamics of the density-density
correlation function, using a number of approximations as well as a detailed account of fluid-solid
interaction dynamics. The present work also models the force autocorrelation integral but follows a
different route, based on the observation, first reported for the case of the Kapitza resistance [21],
that the timescale associated with the GK integral governing interfacial transport can be approxi-
mately estimated using bulk fluid transport properties. This observation enables the elimination of
the autocorrelation integral in terms of the mean square of the tangential component of the wall-fluid
force and known fluid properties, arguably resulting in a simpler and more physically intuitive final
expression.

Following [21], we write (2) in the form

β = μAkBT〈
F 2

x

〉 ∫ ∞
0 φ(t )dt

= μAkBT〈
F 2

x

〉
Iβ

, (6)

where φ(t ) = 〈Fx(t )Fx(0)〉/〈F 2
x 〉 and

Iβ = lim
t→∞

∫ t

0
φ(t ′)dt ′. (7)
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The importance of this rearrangement is that it reduces the contribution of the GK integral in (2) into
the two distinct factors, namely, 〈F 2

x 〉, which is strongly dependent on the fluid-solid interaction and
fluid state, and the timescale Iβ , which our MD simulations show, in agreement with the results in
[21] for the case of the Kapitza resistance, is a very weak function of the fluid state and fluid-solid
interaction. Further progress can be made by introducing the assumption Iβ = τ/Dβ , where Dβ is a
constant and τ is the homogeneous fluid relaxation timescale defined by

μ = 1

V kBT

∫ ∞

0
〈�i j (t )�i j (0)〉dt =

〈
�2

i j

〉
V kBT

∫ ∞

0

〈�i j (t )�i j (0)〉〈
�2

i j

〉 dt = G∞τ, (8)

where �i j denotes a nondiagonal component of the homogeneous fluid stress tensor (i �= j) and

G∞ = 1

V kBT

〈
�2

i j

〉
(9)

is the fluid high-frequency shear modulus [22]. This assumption yields

β = DβG∞kBT

A−1
〈
F 2

x

〉 , (10)

in which the dynamics hidden within the GK integral have been expressed in terms of system
properties.

Figure 7 shows that Eq. (10) provides a very reasonable approximation to our MD results. In this
comparison, the value Dβ = 1.05 was chosen as the one that gives best overall agreement between
the expression (10) and the MD results; G∞ was calculated using the analytical expression for a
LJ potential in [23], while A−1〈F 2

x 〉 was taken from MD simulations. Here we emphasize that once
determined as described above, the value of Dβ is not adjusted in any way; this is quite remark-
able given the variety of fluid conditions and solid-liquid interaction parameters explored in this
figure.

V. DISCUSSION

We have shown that nonequilibrium and equilibrium measurements of slip are consistent,
provided the hydrodynamic wall location associated with the equilibrium measurement is taken
into account. Moreover, our simulations showed that the hydrodynamic wall location associated
with βGK is dependent on the fluid state in a nontrivial manner and can be a significant fraction
of the slip length. In other words, zw

GK cannot be neglected in general; instead, a reliable method
for its calculation is needed. Our work has shown that reliable and accurate measurements of zw

GK
can be obtained by utilizing the tangential force balance at the wall in a nonequilibrium shear flow,
given by Eq. (4). Given that the latter approach requires a nonequilibrium simulation, we note here
that a method which uses MD simulations of two nonequilibrium flows, namely, a Couette and
a Poiseuille flow, to calculate the slip length and the associated hydrodynamic wall location was
recently proposed in [24]. The need for two distinct simulations for simultaneously determining
both of these quantities was first discussed in [5]; a variant of this approach was implemented for
dissipative particle dynamics simulations in [25]. A comparison between the method proposed here
and the one that uses two nonequilibrium simulations would be an interesting topic for future work.

The relative success of the approximation Iβ = τ/Dβ is also worth noting because it enables the
closed-form expression (10) and also because the similar success of the analogous approximation
in the case of the Kapitza resistance [21] suggests some generality. Models such as Eq. (10) as
well as others [6,9] are valuable because they replace the GK integral with a more transparent
connection between system properties and the slip length. Returning to (10), further work is required
for developing methodologies for calculating the value of Dβ from first principles. We also note
that, based on our results, relation (10) would benefit from a model for predicting the associated
hydrodynamic wall location; this is a subject left for future work.
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FIG. 7. Validation of relation (10) for a variety of conditions. Molecular dynamics simulation results and
associated uncertainty (for βGK) are shown by red symbols, while the prediction of Eq. (10) and associated
uncertainty are denoted by the black line and blue shading, respectively. Simulations were performed at the
following conditions: (a) T = 0.825, Csl = 1, and ρ = 0.83; (b) T = 1.5, εsl = 1, and ρ = 0.68; (c) εsl = 0.6,
Csl = 0.6, and ρ = 0.68; and (d) T = 1.5, εsl = 1, and Csl = 0.6.

The new GK formulation by de la Torre et al. [12,13], aimed at alleviating the GK plateau issue
discussed in Sec. II, also introduced a modified hydrodynamic wall location zw,C

GK = zw
GK − GβGK/μ,

where G > 0, given in terms of a GK integral, represents a correction to the fluid viscosity at this
location due to the wall presence [26]. Provided the evaluation of G is less challenging than that of
zw

GK, this new formulation may indeed be preferable, since it could provide less ambiguous estimates
of βGK coupled to a smaller in magnitude, and thus less important compared to the slip value,
hydrodynamic wall location. Such a formulation would also be advantageous for models such as
the one presented in Sec. IV, since it diminishes the importance of accurately determining zw,C

GK (or
zw

GK).
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