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A Hele-Shaw cell is a device used to study fluid flow between two parallel plates
separated by a small gap. The governing equation of flow within a Hele-Shaw cell is
Darcy’s law, which also describes flow through a porous medium. In this work, we derive a
generalization to Darcy’s law starting from a three-dimensional fluid with a parity-broken
viscosity tensor with no isotropy. We discuss the observable effects of parity-odd fluids in
various physical setups relevant to Hele-Shaw experiments, such as channel flow, flow past
an obstacle, bubble dynamics, and the Saffman-Taylor instability. In particular, we show
that when such a fluid is pushed through a channel, a transverse force is exerted on the
walls, and when a bubble of air expands into a region of such fluid, a circulation develops
in the far field, with both effects proportional to the parity-odd viscosity coefficients. The
Saffman-Taylor stability condition is also modified, with these terms tending to stabilize
the two-fluid interface. Such experiments can in principle facilitate the measurement of
parity-odd coefficients in both synthetic and natural active matter systems.
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I. INTRODUCTION

In three dimensions, isotropic fluids possess three independent viscosity coefficients, namely
shear viscosity, bulk viscosity, and rotational viscosity. Shear viscosity introduces friction between
adjacent fluid layers that flow with a relative velocity differential, bulk viscosity provides resistance
to compression or expansion of the fluid, and rotational viscosity gives rise to torque when the
fluid vorticity is nonzero. For incompressible flows, the bulk viscosity term vanishes and the fluid
pressure is entirely determined by the flow, i.e., it does not come from an equation of state. We will
restrict ourselves to incompressible flows in this work.

Both shear and rotational viscosity break time-reversal symmetry due to their dissipative nature
while preserving parity symmetry [1]. Viscosity coefficients that break parity in three dimensions
can only be realized in anisotropic systems. This is in contrast to two-dimensional (2D) systems
where there exists parity breaking viscosity coefficients that are consistent with isotropy. Odd
viscosity is an example of such coefficient, and it has been investigated extensively in both classical
and quantum two-dimensional systems [2–27]. Parity-breaking flows in three dimensions have been
considered in 3D plasmas in the presence of a magnetic field [1,28], and systems with polyatomic
molecules [29–31]. Recent work of Khain et al. [32] study the effects of parity-violating and
nondissipative viscosities for three-dimensional Stokes flows. For active matter systems the parity
violating coefficients stem from the relaxation of the fluid’s intrinsic angular momentum dynamics
[33–35].

In general, for incompressible fluids with no symmetry whatsoever, the viscosity tensor is a
daunting object with 64 independent coefficients. In this paper, we show that despite this complexity,
a remarkable simplification happens when such a fluid is placed in a Hele-Shaw (HS) cell, a
physical setup where the fluid is confined in a small separation between two plates. The governing
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equations of an isotropic fluid in a HS geometry is given by Darcy’s law,

Vi = − h2

12η
∂iP, (1)

where Vi(x, y) is the gap averaged 2D flow between the two plates separated by a small separation
h, η is the fluid shear viscosity, and P(x, y) is the fluid pressure. The form of Darcy’s law given in
Eq. (1) universally applies to fluids flowing through a porous medium [36,37]. It is also analogous
to Ohm’s law in isotropic media, where pressure is replaced by the scalar electric potential and
the constant − h2

12η
is replaced by the conductivity divided by the charge density.1 For a general

anisotropic incompressible fluid, we show that flow in a Hele-Shaw cell is governed by a modified
Darcy’s law that takes the simple form,

Vi = − h2

12
(y−1)i j∂ jP, (2)

where we have defined the matrix y in terms of the components of the full three-dimensional rank-
four viscosity tensor ηi jkl ,

y =
(

ηxzzx ηxzzy

ηyzzx ηyzzy

)
. (3)

Without specifying the symmetries of the underlying viscosity tensor, the precise form of the
coefficients in (3) cannot be determined. However, the explicit appearance of z indices means that
these terms have no 2D counterparts; they are unique to 3D flows. Thus, the odd viscosity coefficient
appearing in purely 2D systems does not contribute.

The form of Eq. (2) is analogous to two-phase flows through anisotropic porous media [38], and
Ohm’s law with an anisotropic conductivity tensor in two dimensions. However, the coefficients in
the fluid case are all transport coefficients associated with a first-order gradient expansion. For a
fluid with cylindrical symmetry aligned perpendicular to the HS cell, the system further simplifies,
since ηxzzx = ηyzzy and ηxzzy = −ηyzzx. Assuming this symmetry, we consider several examples of
typical HS setups, such as single-fluid channel flow, an expanding bubble, and the Saffman-Taylor
instability, and derive observable consequences of the parity-breaking terms for HS flows.

The broad applicability of HS flows means that our analysis can easily be adapted to many
relevant physical situations. For example, HS cells have been used to study the behavior of active
matter and microswimmers [39,40], and the analysis done here could reveal the parity-odd nature of
the fluid. This would enable measurement of these coefficients for many complex anisotropic fluids.
Future experimental work could also focus on confinement of microrollers and colloidal magnetized
particles to a HS cell in order to probe their parity-odd behavior [41,42].

This paper is organized as follows. In Sec. II we derive Darcy’s law in the presence of a general
viscosity tensor. In Sec. III we impose cylindrical symmetry, which is used in the rest of the main
paper, while in Appendix we show these results can be extended to the case of a general viscosity
tensor by a simple coordinate transformation. In Sec. IV we discuss the observable modifications to
results involving flow in a channel, force on an obstacle, expanding bubble, and free surface stability.
We end the paper with a discussion on possible microscopic magnetic systems akin to ferrofluids
that can serve as a platform to realize some of the physics discussed in this paper.

II. PARITY ODD THREE-DIMENSIONAL FLUIDS IN A HELE-SHAW SETUP

The starting point of our hydrodynamic system is the equations governing local conservation of
momentum and mass. For an incompressible fluid they can be written in terms of the flow velocity

1In fact, Darcy’s law also manifests as Fourier’s law of heat conduction and Fick’s law of diffusion.
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FIG. 1. Geometry of the Hele-Shaw cell. Fluid is confined between horizontal plates at z = 0 and z = h.
Length and velocity scales in the xy plane are of size h/ε and ν/h, respectively.

vi and constant density ρ as

ρ(∂tvi + v j∂ jvi ) = ∂ jTi j + fi, ∂ivi = 0. (4)

The external force density fi is assumed to come from a uniform gravitational field in the negative
y direction, however, the following analysis can be extended to an arbitrary external force. For a
completely general viscosity tensor, which we will assume to be uniform throughout the fluid, the
stress tensor Ti j takes the form

Ti j = −Pδi j + ηi jkl∂kvl , (5)

where P is the pressure. In this paper we will ignore any thermal effects, so energy conservation
comes automatically.

The fluid is now confined between two parallel plates aligned with the xy plane, having a
separation h (see Fig. 1). This introduces a characteristic length scale to the system, and we can
derive Darcy’s law by assuming the hydrodynamic variables vary in the xy plane at much larger
length scales than the distance h between the two plates. This can be formally introduced by defining

x = h

ε
x̄, y = h

ε
ȳ, z = hz̄, (6)

where all barred quantities are dimensionless, and ε � 1. The viscosity tensor introduces another
dimensionful parameter to the system. In fact, ηi jkl/ρ has dimension of (length)2/t ime, which
introduces a characteristic time and velocity scale to the system. Let ρν be a representative
component of the viscosity tensor (usually the shear viscosity). The characteristic time and the
velocity scale are then given by h2/ν and ν/h, respectively. For example, the kinematic shear
viscosity of glycerine is approximately 650 mm2/s at 20 ◦C [43], and for a HS cell with h = 1 mm
this leads to a characteristic time of 0.0015 s and a velocity scale of 0.65 m/s. We can then introduce
the rest of the scaling by

t = h2

εν
t̄, vx = ν

h
v̄x, vy = ν

h
v̄y, vz = εν

h
v̄z. (7)

The gravitational force combines with the pressure term in such a way that P and ρgy scale the
same. Assuming that ρg scales as ε0, we have

P + ρgy = ρν2

εh2
P̄. (8)

With these scalings, the components of Eq. (4) become

−∂x̄ P̄ + ηxzzx

ρν
∂2

z̄ v̄x + ηxzzy

ρν
∂2

z̄ v̄y = O(ε), (9)

−∂ȳP̄ + ηyzzx

ρν
∂2

z̄ v̄x + ηyzzy

ρν
∂2

z̄ v̄y = O(ε), (10)
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−∂z̄P̄ = O(ε), (11)

∂x̄ v̄x + ∂ȳv̄y + ∂z̄v̄z = 0. (12)

The solutions for these equations that satisfy the no-slip boundary conditions on the plates are

v̄x(x̄, ȳ, z̄) = 6z̄(1 − z̄)V̄x(x̄, ȳ), (13)

v̄y(x̄, ȳ, z̄) = 6z̄(1 − z̄)V̄y(x̄, ȳ), (14)

v̄z(x̄, ȳ, z̄) = 0, (15)

where V̄x and V̄y are, respectively, the average values of v̄x and v̄y along the z direction. Restoring
dimensions, we have

h2

12
∂x(P + ρgy) + ηxzzxVx + ηxzzyVy = 0, (16)

h2

12
∂y(P + ρgy) + ηyzzxVx + ηyzzyVy = 0, (17)

∂xVx + ∂yVy = 0, (18)

where Vx = V̄xν/h and Vy = V̄yν/h are the dimensionful average velocities. The above equations can
be combined into a single matrix equation,

∂a(P + ρgy) = −12

h2
yabV

b, (19)

where yab is given by Eq. (3). Splitting 12y/h2 into its symmetric and antisymmetric pieces, we end
up with

∂a(P + ρgy) = −(αγab + βεab)V b, (20)

where γab = γba, and α is defined such that det γ = 1.
The matrix γab contains only parity-even contributions, while the constant β contains only

parity-odd contributions. The form of both γab and β depend entirely on the particular fluid under
consideration, however, they contain only the coefficients with some three-dimensional nature. For
example, the coefficients μ2 and ηo

2 in Khain et al. [32] would contribute to β, while μ1 and ηo
1 would

not. Furthermore, both parity-odd coefficients in Robredo et al. [44] would contribute, as they are
3D in nature. In this work we focus only on the general observable consequences of a nonzero β,
and do not focus on which parity-odd coefficients constitute this β.

III. CYLINDRICALLY SYMMETRIC CASE

In this paper we restrict our focus to systems where the viscosity tensor has cylindrical symmetry
along the z axis, and discuss various observable consequences of the parity-breaking terms. In
Appendix we show that our results can be generalized to the anisotropic case, with most of the
results unchanged. For a viscosity tensor with cylindrical symmetry along the z axis, Eq. (20)
simplifies. The matrix γab reduces to δab, and

α = 12

h2
ηxzzx = 12

h2
ηyzzy, (21)

β = 12

h2
ηxzzy = −12

h2
ηyzzx. (22)

In this case, the system is analogous to a 2D electronic flow subjected to a magnetic field β pointing
in the positive z direction, electrostatic potential given by −(P + ρgy) and collision relaxation time
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given by m∗/(eα), where e is the elementary charge and m∗ is the effective mass of the electron.2

In this scenario, Eq. (20), along with Eq. (18), implies that the pressure satisfies Laplace’s equation,
and the average flow is irrotational, that is,

�P = 0, ∂xVy − ∂yVx = 0. (23)

Therefore, the function V = Vx − iVy is analytic, i.e., it satisfies the Cauchy-Riemann equations.
Moreover, since P(x, y) is a harmonic function, we can always define a function Q(x, y) such that
W = P + iQ is analytic. In terms of the complex variables ζ ≡ x + iy, V , and W , Eq. (20) becomes

d

dζ
(W − iρgζ ) = −μV (ζ ), (24)

where we have introduced a complex valued viscosity coefficient μ = α + iβ. An immediate
consequence of μ having a complex component is that the fluid flows at an angle

θ = arctan

(
β

α

)
, (25)

relative to the pressure gradient. This is a manifestation of the typical behavior seen in parity-odd
two-dimensional systems. For example, in the classical Hall effect, the electric current makes an
angle with respect to the electric field.

IV. OBSERVABLE EFFECTS OF PARITY BREAKING IN A HELE-SHAW SETUP

In the following, we discuss the effect of parity-breaking coefficients relevant to HS experimental
setups. We consider the case of single-fluid flow in a channel, drag force on an obstacle, bubble
dynamics, and the Saffman-Taylor instability problem.

A. Single-fluid flow in a channel

A simple example that highlights the parity-odd behavior is that of a fluid flowing in an infinite
channel, x ∈ [0, L], in the presence of gravity (see Fig. 2). In this case the analytic velocity V must be
constant,3 since the constant function is the only bounded analytic function over the whole domain.
Imposing the no-penetration condition at the walls, that is,

Vx

∣∣∣
x=0

= Vx

∣∣∣
x=L

= 0, (26)

we find that V = −iV0, where V0 is a real constant. From Eq. (24), we see that

W = iρgζ + iμV0ζ + W0, (27)

where W0 is a complex constant.
In order to calculate the net force on the sample, we must remember that the original problem is

three dimensional. However, given that Ti j ≈ −Pδi j to leading order, and that P does not depend on
z, the net force on the sample walls is

Fi = δxi h
ˆ R

2

− R
2

P
∣∣∣L

x=0
dy = 2β V0(RLh)δxi, (28)

2Note that Darcy’s law is analogous to Ohm’s law for electrical networks, Fourier’s law of heat conduction
and Fick’s law of diffusion. All of these situations mimic flow through a porous medium.

3Any bounded analytic function in the infinite strip has to be a constant by an extension of Liouville’s
theorem.
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FIG. 2. Schematic for single-fluid channel flow. The fluid flows upward at an angle θ relative to the pressure
gradient, and a transverse force is exerted on the channel. A boundary layer of size h exists on each wall that
provides the necessary vorticity to enforce the true no-slip boundary conditions.

where R is assumed to be the total length of the sample. This approximation is only valid when
R � L. Thus, driving a fluid with parity-odd viscosity through a channel can impart a net force,
proportional to the sample volume, in the direction perpendicular to the flow. This is a measurable
effect realizable in a laboratory. Even though the origin of this net force may sound mysterious,
there is a nice interpretation in terms of 2D electronic fluids. In the presence of magnetic field, a
constant flow in the y direction is only possible if the electric field posses a component on the x
direction. This is the source of such a net force on the walls.

Since the true boundary condition is the no-slip condition, we can estimate the boundary layer
corrections to the net force (28), simply by considering that

ηixkl ∂kvl

∣∣∣L

x=0
≈ ηixxy ∂xvy

∣∣∣L

x=0
∼ ηixxy

V0

h
, (29)

where we assumed that the boundary layer thickness is of order h. Comparing this to the pressure,
which scales as h−2, we see that the boundary layer contribution comes as a higher-order correction.

B. Force on an obstacle with arbitrary cross section

In this section, we consider flow past a cylindrical obstacle with arbitrarily shaped cross section D
within the HS setup. We show that there are no corrections to the force acting on the compact
obstacle coming from the parity-breaking terms. The total force on this compact solid body is given
by

Fi = −h
ˆ �

0
P ni ds, (30)

where ds is the arc length element, � is the perimeter of the cross section D and n̂ is the normal
vector pointing outwards from the body. Assuming a positive orientation, the complex normal vector
nx + iny is given by −idζ/ds, since |dζ/ds| = 1 by the definition of arc length. Therefore,

F ≡ Fx + iFy = −h
ˆ �

0
P

(
−i

dζ

ds

)
ds,

F = ih
ffi

∂D
P dζ . (31)
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For potential flows, we can always define the analytic velocity to be of the form

V = d�

dζ
, (32)

where the complex potential � is the defined in terms of the velocity potential ϕ and stream function
ψ by

�(ζ ) = ϕ(x, y) + iψ (x, y). (33)

From (24), we have that

P = Re(−μ� + iρgζ ) + P0, (34)

where P0 is a real constant. Plugging this into Eq. (31), we end up with

F = ih

2

ffi
∂D

(−μ� − μ̄�̄ − iρgζ̄ + iρgζ + 2P0)dζ . (35)

We can see that the last two terms vanish by Cauchy’s integral theorem. Let the equation for the
curve ∂D be of the form ζ̄ = f (ζ ). Then

F = − ih

2

ffi
∂D

(μ�(ζ ) + μ̄�̄( f (ζ )))dζ + ρgh

2

ffi
∂D

f (ζ )dζ . (36)

Before proceeding, let us note that the last term is nothing but the buoyant force on the body. To see
this, we use that

ρgh

2

ffi
∂D

f (ζ )dζ = ρgh

2

¨
D

d ζ̄ dζ = iρghA, (37)

where A is the area of region D. This means that this force is always opposite to the gravitational
force, and is proportional the mass of fluid displaced by the body, ρ × (hA).

In order to determine � and �̄ on the curve ∂D, we must impose that Vn = 0 on ∂D. This implies
that

Vn = Re

(
−i

dζ

ds
V

)
∂D

,

Vn = − i

2

dζ

ds

d

dζ
[� − �̄|ζ̄= f (ζ )] = 0. (38)

This shows that the curve ∂D is a streamline. In other words, ψ (x, y)|∂D is a constant. Using this,
the force on a cylindrical body is given by:

F = −ihα

ffi
∂D

�(ζ )dζ + iρghA. (39)

Note that the first term in Eq. (39) is the drag force, and does not depend on the parity-odd
coefficient β. The reason for that is somewhat straightforward. If we define P̃ = P + βψ , with ψ

being the stream function, Eq. (20) can be written as (assuming cylindrical symmetry)

∂a(P̃ + ρgy) = −αva, (40)

which has the same form as the ordinary Darcy’s law. Moreover, since ψ (x, y)|∂D is constant,ffi
∂D

Pdζ =
ffi

∂D
P̃dζ , (41)

and so β does not contribute to the drag force. In fact, this true even in the anisotropic case, as
shown in Appendix. It should be noted, however, that even though the drag force is unchanged, for
most contours the resulting flow pattern will be modified due to β. This is similar to 3D flows with
parity odd terms, where a Stokeslet analysis is seen to modify the flow [32].
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In the case of an infinitely long channel, it is possible to fully determine the drag force on
a cylindrical body. For that we use that the complex potential for a flow with constant complex
velocity U at infinity is given by

�(ζ ) = Uζ + Ū f (ζ ). (42)

Plugging this into Eq. (39) gives

F = (2αŪ + iρg)hA (43)

and, because Ū = Ux + iUy, we obtain that the drag force is proportional to both the asymptotic
fluid velocity, and the volume of the body.

C. Compact free surface problem

In this section, we will consider the famous HS free surface (moving boundary) problem
with parity-odd fluids. We first provide a quick (and incomplete) recap of free surface problems
considered for standard HS flows with isotropy. The isotropic free surface problem has been studied
since the early work of Galin [45] and Polubarinova-Kochina [46], which was followed up by several
authors and has been an active area of research in the form of Laplacian growth. For a nice review
see Howison [47] and the references therein.

The simplest free surface or moving boundary problem is that of one phase, zero surface tension
systems, with the pressure P(x, y, t ) satisfying �P = 0 in the region �(t ) occupied by the liquid.
The boundary conditions at the free surface ∂�(t ) are P|∂�(t ) = 0 and Vn = −α∂nP. For the single
phase case, the viscous fluid forms a boundary with an inviscid fluid such as air, and the free surface
equation coincides with the zero pressure boundary condition, and Vn = −(∂P/∂t )/|∇P| is the
normal velocity of ∂�(t ) in the outward direction. The resulting kinematic boundary condition
for the free surface P|∂�(t ) = 0 can be written as

∂P

∂t
− 1

α
| 
∇P|2 = 0. (44)

The above equation can be written in an analytic form using P = Re(W ), and then conformally
mapped to a unit disk,

Re

(
∂W

∂t
− 1

α

∣∣∣∣dW

dζ

∣∣∣∣
2)

= 0. (45)

This conformally mapped moving free surface equation is sometimes referred to as Polubarinova-
Galin, or Laplacian growth, equation [47].

The HS free surface problem is then completely specified when we prescribe a driving mecha-
nism and an initial shape profile ∂�(0). There are two variants of the free surface problem that are
often considered: (i) the viscous fluid occupies only a finite area surrounded by an inviscid fluid
such as air, and the motion is driven by sources or sinks within the viscous fluid, and (ii) a simply
connected bubble formed by injection of an inviscid fluid, for example air, into an infinite region
of a second fluid whose viscosity is large. These two problems can be framed in a similar way, but
there are key differences in the dynamics with respect to the stability of the free surface.

Here we only consider the case where the parity-broken viscous fluid occupies the exterior �(t )
of the finite bubble, with uniform extraction at infinity (see Fig. 3). If the air is injected at a rate q
given by q = dA

dt , where A is the area, then far from the injection point and bubble the outer fluid
has a solution for W of the from

lim
r→∞W (ζ ) ∼ − q

2π
log(ζ ) + W0. (46)
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= 0

∆ = 0

Ω( )

∆ 0
Ω( )

FIG. 3. Expanding air bubble surrounded by a parity-broken viscous fluid in a HS cell. The pressure profile
and shape of the interface are unchanged due to β, however, the flow has a spiral behavior.

The pressure profile cannot have angular dependence, otherwise it would not be a single valued
function. From (24), the far field complex velocity must then be of the form

V (ζ ) ∼ q

2πμ

1

ζ
= q

2πμ

e−iθ

r
. (47)

The radial and angular components of the far field velocity are then

Vr ∼ q

2π

α

α2 + β2

1

r
, Vθ ∼ q

2π

β

α2 + β2

1

r
, (48)

and so it is clear that β causes the flow to acquire circulation. The circulation and flux can be
computed far from the bubble. Let S be a curve far from the bubble, such that the velocity is
described by (47). Then

ffi
S

V (ζ )dζ ∼ i
q

μ
. (49)

The flux �v and circulation � at infinity are then given by:

�v ∼ α

α2 + β2

dA
dt

, � ∼ β

α2 + β2

dA
dt

. (50)

Thus, if the area of the air bubble is changing, the presence of circulation at the edge of the sample
can be used to measure the parity-broken terms in the viscosity tensor.

For a free surface parametrized by P|∂�(t ) = 0, the outward normal unit vector is given by n̂ =

∇P

| 
∇P| , and so the kinematic boundary condition can be written as

∂P

∂t
+ Vn| 
∇P| = 0. (51)
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For parity-odd fluids we have the following β modified form for Vn:

Vn = − 1

α2 + β2
(α∂nP + β∂sP). (52)

Since n̂ = 
∇P
| 
∇P| , the second term in the above equation vanishes. Substituting Eq. (52) into Eq. (51),

we obtain, (
∂P

∂t
− α

α2 + β2
| 
∇P|2

)∣∣∣∣
∂�(t )

= 0. (53)

From this it is clear that the shape dynamics of the bubble are effectively unchanged due to β, apart
from rescaling time by α̃,

1

α̃
= α

α2 + β2
. (54)

Substituting P = Re(W ) and conformally mapping �(t ) to a unit disk yields the P-G equation with
renormalized rate q,

Re

(
∂W

∂t
− 1

μ

∣∣∣∣dW

dζ

∣∣∣∣
2)

= 0. (55)

Typically, the growth of the bubble is limited by a critical blow-up time tc, which is the time
it takes for sharp cusps to form [47]. Since the shear viscosity is a determining factor in tc, the
rescaling in (54) implies that β would modify tc. In particular, large values of β would delay this
cusp formation for a fixed rate q. We would like to point out that the system studied here is closely
related to the free surface dynamics in a rotating HS cell except for one important difference. In
the rotating case, the centrifugal force modifies the pressure at the boundary, resulting in a different
equation for the surface dynamics [48,49].

D. Dispersion and stability of the free surface interface between two fluids: Saffman-Taylor instability

In this section we study the Saffman-Taylor instability in the presence of the parity-breaking
terms and derive a modified free surface dispersion relation and stability condition. Consider a
setup with two superposed fluids subject to a downward gravitational force acting in the negative y
direction, with an interface between them moving with speed V0. In the following analysis V0 can
be positive or negative; positive values correspond to pumping the fluid in the positive y direction,
and negative values correspond to pumping the fluid in the negative y direction.

At a particular instant in time the unperturbed interface between the two fluids is located at y = 0,
and perturbations assumed to be of the from

y = H (x, t ) = ε Re(eikx+�t ), (56)

where ε is the small amplitude of the perturbation. We have also allowed for the possibility of a
complex valued frequency � = δ + iω. All quantities associated with the upper fluid (y > 0) are
marked with a 1, and all quantities associated with the lower fluid (y < 0) are marked with a 2. The
complex viscosity that enters (24) in each region is denoted by μ1 = α1 + iβ1 and μ2 = α2 + iβ2.

We start with general solutions for P in each region that satisfy Laplace’s equation, and compute
the corresponding components of the flow using (24). We then apply the kinematic boundary
condition at the free surface,

V (1)
y − V (1)

x ∂xH (x, t ) = V0 + ∂t H (x, t ). (57)

and impose the boundedness of the flow at y → ±∞. To first order in ε, we have

P(1)(x, y) = P(1)
0 + a1x + b1y − εe−ky+δt (A1 cos(kx + ωt ) + B1 sin(kx + ωt )), (58)
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(2)

(1)

= ( , )

( )

( )

FIG. 4. Interface between two odd fluids moving with speed V0 upwards, with small amplitude perturba-
tions. The asymptotic velocity in region (1) makes an angle θ1 with the vertical, and the asymptotic velocity in
region (2) makes an angle θ2 with the vertical. If β = 0 both angles can be set to zero.

P(2)(x, y) = P(2)
0 + a2x + b2y − εeky+δt (A2 cos(kx + ωt ) + B2 sin(kx + ωt )), (59)

where P(1)
0 and P(2)

0 are constant background pressures in each region, and where

ai = −βiV0 − αiV
(i)

x0 , (60)

bi = −αiV0 + βiV
(i)

x0 , (61)

are the constants determining the steady-state background flow, and

A1 = β1
(
ω + kV (1)

x0

) − α1δ

k
, (62)

B1 = α1
(
ω + kV (1)

x0

) + β1δ

k
, (63)

A2 = β2
(
ω + kV (2)

x0

) + α2δ

k
, (64)

B2 = −α2
(
ω + kV (2)

x0

) + β2δ

k
, (65)

are the amplitudes of perturbation. The constants V (1)
x0 and V (2)

x0 are the x components of fluids as
y → ∞ and y → −∞, respectively (see Fig. 4). At this point we have not fixed the asymptotic form
of the velocities, we only require that they agree kinematically with the interface to order ε.

We must also balance the forces at the interface. In general, the no-stress boundary condition
requires that niTi j be continuous across the free surface, and this continuity must be verified across
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any boundary layer that develops. In the standard HS cell there exists a boundary layer flow that
interpolates between the tangential velocity of each fluid on either side of a free surface. Along with
the HS scaling, this leaves only a single effective boundary condition on bulk solutions, that the
pressure must be continuous from one region to the next:

P(1)(x, y) = P(2)(x, y), y = H (x, t ). (66)

In the standard case, where β = 0, this leads to a jump in the bulk scale tangential velocity near the
free surface, but does not place any constraints on the asymptotic flow. However, the introduction of
β modifies this jump condition, and does in fact place a constraint on the flow. This manifests itself
in the form of the asymptotic velocity (68).

Upon substituting (56) into (58) and (59) and setting them equal, we are given four equations,
two at order ε0,

P(1)
0 = P(2)

0 , (67)

α1V
(1)

x0 + β1V0 = α2V
(2)

x0 + β2V0, (68)

and two at order ε1,

(α1 + α2)δ − (ρ1 − ρ2)gk − (α1 − α2)V0k − (β1 − β2)ω = 0, (69)

(α1 + α2)ω + (
α1V

(1)
x0 + α2V

(2)
x0

)
k + (β1 − β2)δ = 0. (70)

Equation (67) implies the constant background pressures must be equal on both sides, while Eq. (68)
gives a constraint on the asymptotic form of the flow. If β1 − β2 = 0 the fluid can be pumped purely
in the vertical direction. However, with β1 − β2 �= 0, the fluid being driven (fluid 1, say) moves at
an angle relative to the driving fluid (fluid 2, say). If we introduce an asymptotic flow angle in each
region defined by

V (1)
x0 = V0 tan θ1, (71)

V (2)
x0 = V0 tan θ2, (72)

then (68) can be written as

α1 tan θ1 = α2 tan θ2 + (β2 − β1). (73)

This implies that for β1 − β2 �= 0, two superposed fluids cannot be pumped in the purely vertical
direction. Said another way, there must be an angle between the steady-state flow and the free
surface.

The system of equations (69) and (70) can be used to solve for δ and ω, and when written as a
single complex number we arrive at the modified free surface dispersion relation:

�

k
= (ρ1 − ρ2)g + V0(μ1 − μ2) − 2iα2V0 tan θ2

μ1 + μ̄2
. (74)

If β → 0, and the flow is normally incident to the interface in region (2), that is θ2 = 0, then the
frequency � becomes a real number, and the standard Saffman-Taylor dispersion is recovered [50].
For concreteness, we set θ2 = 0 from here onward, as to model a fluid being driven directly at the
interface. In this case, Eq. (74) is simply the complexified version of the Saffman-Taylor dispersion,
where the viscosities have been replaced by their complex generalizations.

While the modified dispersion is still linear in k, the conditions for stability are changed due to
β. Stability occurs when Re(�) = δ < 0, giving the modified free surface stability condition:

(ρ1 − ρ2)g + V0(α1 − α2) + V0(β1 − β2)2

α1 + α2
< 0. (75)
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Written another way,

V0

(
α1 − α2 + (β1 − β2)2

α1 + α2

)
< (ρ2 − ρ1)g, (76)

we can see that for fixed densities, stability depends on the sign of the quantity

α1 − α2 + (β1 − β2)2

α1 + α2
, (77)

which ultimately depends on the relative values of α1 and α2 in relation to β. In the absence of any
parity-broken terms, we recover the Saffman-Taylor stability condition.

The typical case in which the interface is unstable is that of a dense, viscous fluid resting on top
of a less dense, less viscous fluid (ρ1 > ρ2, α1 > α2). In this case, stability is achieved when

V0 < − (ρ1 − ρ2)(α1 + α2)g

α2
1 − α2

2 + (β1 − β2)2
. (78)

From this we see that the parity-broken terms in the viscosity tensor act to stabilize the interface.
Typically the fluid is required to be pumped downward with sufficiently negative V0, however, the
extra factor of (β1 − β2)2 in the denominator implies the velocity does not need to be as negative.
In the extreme situation, when α1 = α2 = α, the modification is most striking. In this case β is the
only way to reintroduce V0 into the stability condition, and stability condition (78) becomes

V0 <
2(ρ2 − ρ1)gα

(β1 − β2)2
. (79)

This opens an entirely new channel for stability that was not present when β = 0.
Regardless of whether or not the fluid is driven, the introduction of β gives the perturbed interface

a time-dependent oscillation, with a frequency ω proportional to |β1 − β2|. Stable configurations
return to equilibrium as a damped oscillator, and the unstable configurations oscillate with ever
increasing amplitude. This is a directly measurable quantity, and acts as a robust probe into the
parity-broken terms in the viscosity tensor.

V. DISCUSSION AND FUTURE DIRECTIONS

In this work, we derived the flow equations for a three-dimensional incompressible fluid with a
general parity-broken anisotropic viscosity tensor, when placed between two parallel plates with a
small separation h. In the infinitesimal gap limit, Darcy’s law admits a simple generalization that
contains only four viscosity coefficients, as shown in Eq. (2). We discussed the observable effects
of the parity-odd coefficients (for a cylindrical symmetric case) of the fluid in a channel flow, flow
around an obstacle, expanding bubble, and two-fluid interface stability (Saffman-Taylor instability).

When such a fluid is pushed through a channel, a transverse force is exerted on the walls due
to the parity-odd coefficients. Measurement of this transverse force can enable us to determine
the magnitude of such parity-odd coefficients in both synthetic and naturally occurring three-
dimensional fluids. For a flow across an obstacle, the drag force is independent of the parity-breaking
effects, which is in contrast to recent results in three-dimensional systems with odd viscosity [32].
In the case of an expanding bubble, the pressure profile and interface dynamics are unchanged,
however, there is a modification to the far field flow, and measurement of the fluid circulation far
from the bubble gives a measure of the parity-odd terms. The stability condition of the two-fluid
interface is also modified due to the presence of parity breaking, with the parity breaking tending to
stabilize the interface dynamics.

In principle, the parity-odd behavior presented here could arise from a magnetized fluid (colloid)
subject to a uniform external magnetic field along the z axis. This assumes the fluid is incompressible
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and satisfies the Laundau-Lifshitz equation [51],

Dt M = −χM × B − λM × (M × B), (80)

together with

ρDtvi = ∂ jTi j, (81)

where Dt = ∂t + v j∂ j is the material derivative, and the stress tensor is given by

Ti j = − Pδi j + η (∂iv j + ∂ jvi ) + νMk[ε jkl (∂ivl + ∂lvi ) + εikl (∂ jvl + ∂lv j )]. (82)

The above set of equations are the minimal model that yields the desired parity-breaking effects
resulting from the relaxation dynamics of the magnetization equation. The above equations resemble
the three-dimensional fluids discussed in Ref. [34], where the magnetization plays the role intrinsic
angular momentum, albeit with Landau-Lifshitz dynamics.

An interesting question for the future is to investigate if these equations can arise in Ferrofluids,
or their close counterparts, dipolar fluids (see Refs. [52,53]). Ferrofluids seem to be a promising
platform to study the parity-breaking fluids discussed in this work, since they manifest remarkable
features, such as labyrinthine instabilities, when placed within a Hele-Shaw device [53,54].
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APPENDIX: FULLY ANISOTROPIC CASE

Even though the bulk of our analysis was done using cylindrical symmetry, the anisotropic case
with arbitrary matrix elements yi j can be shown to acquire a similar complex generalization, albeit
with modified analytic functions and boundary conditions. To derive a complex form of the Hele-
Shaw flow equations for the anisotropic case, it is convenient to introduce the isothermal coordinates

σ = √
γxx x + γxy√

γxx
y, τ = y√

γxx
, (A1)

such that, in this new coordinate system, Eqs. (20) and (18) become

∂σ (P + ρgτ
√

γxx ) = −α Vσ − β Vτ , (A2)

∂τ (P + ρgτ
√

γxx ) = −α Vτ + β Vσ , (A3)

∂σVσ + ∂τVτ = 0, (A4)

where we have defined

Vσ = √
γxx Vx + γxy√

γxx
Vy, Vτ = Vy√

γxx
. (A5)

Equations (A2)–(A4) imply that

(∂2
σ + ∂2

τ )P = 0, ∂σVτ − ∂τVσ = 0, (A6)

that is, pressure is a harmonic function in these new coordinates and the function V = Vσ − iVτ is
analytic, since it satisfies the Cauchy-Riemann equations in the isothermal coordinates. Moreover,
since P(σ, τ ) is a harmonic function, we can always define a function Q(σ, τ ) such that W = P +
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i Q is analytic. In terms of the complex variables ζ = σ + i τ , V and W , Eqs. (A2)–(A4) can be
written as

d

dζ
(W − iρg

√
γxx ζ ) = −μV (ζ ), (A7)

where α and β are combined into the complex viscosity μ = α + iβ.
Analogous to the cylindrical symmetry case, only α contributes to the drag force. To see this,

we must express the drag force on the body in terms of a contour integral in the complex ζ plane.
Equation (31) gives us

Fx = −h
ffi

∂D
P dy, Fy = h

ffi
∂D

P dx, (A8)

and with the help of Eq. (A1), we can write

F̃ = √
γxx Fx + γxy + i√

γxx
Fy = −ih

ffi
∂D̃

P dζ , (A9)

where D̃ is the object domain in the complex ζ plane. Since we are only interested in the drag force,
let us ignore the gravity term. From Eq. (A7), we obtain that

P = Re(W ) = Re(μ� + W0),

P = α Re(�) − β Im(�) + Re(W0), (A10)

where W0 is a complex constant. However, one can see that

V ini = dy

ds
Vx − dx

ds
Vy = dτ

ds
Vσ − dσ

ds
Vτ ,

V ini = Re

(
−i

dζ

ds
V

)
= Im

(
d�

ds

)
= 0, (A11)

which implies that Im(�) is constant on the contour ∂D̃. Therefore, we are only left with

F̃ = −iαh
ffi

∂D̃
�(ζ ) dζ . (A12)

From this, we directly observe that β does not contribute to the drag force, even in the anisotropic
case, as expected.
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