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We study numerically the effect of a soluble surfactant on the stability of two-phase
flow in a finite-length microchannel. We calculate the steady base flow and its global
eigenmodes for experimentally relevant choices of material, kinetic, and flow parameters.
The results show that the system is unstable for capillary numbers above a critical value.
The surfactant surface concentration takes values of the order of the maximum packing
density over the whole interface, even for very small volume concentrations. The two
streams drag the surfactant molecules toward the downstream end of the interface against
the action of the Marangoni stress. The sharp reduction of the interfacial tension at that end
enhances the interface deformation and considerably destabilizes the system, translating
into a sharp reduction of the critical capillary number.
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I. INTRODUCTION

Numerous microfluidic applications involve two immiscible fluids moving side by side in mi-
crochannels. This configuration has been used to produce chemical reactions [1–5], mass transfer,
and separation of species [6,7], among other phenomena (see, e.g., Refs. [1–9] in Ref. [8]). The
stability conditions for these two-phase flows are well established in the case of infinitely long
microchannels [9–11]. However, much less is known when the interface is constrained between the
two ends of a channel of finite length, a relevant configuration in many applications.

In a two-phase flow in a microchannel of finite length, two immiscible streams are injected into
their respective inlet ducts and brought into contact at the junction. These streams move parallel
along the microchannel, separated by an interface pinned to the channel ends. Finally, the two phases
are separated at the exit and flow across two outlet ducts. On many occasions, there is undesirable
leakage of one phase into the outlet duct of the other. It is believed that this imperfect separation
is caused by a difference between the viscous pressure drops through the inlet ducts due to an
imperfect symmetry of the microfluidic device or a mismatch of the viscosities and injection flow
rates. The difference between the pressure drops is balanced by the capillary pressure produced
by the interface deformation. If the pressure drop difference exceeds a certain critical value, the
interface destabilizes and breaks up or depins from the channel ends, allowing one phase to penetrate
into the duct carrying the other.
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FIG. 1. Sketch of the fluid configuration.

Most of the previous works have focused on proposing strategies to stabilize the system and solve
or mitigate the practical problem described above [12–15]. Very recently, the physical mechanism
underlying this instability has been investigated both theoretically and experimentally [8]. The
results show that this instability is localized near the channel exit, where a “bump” of one of the
phases grows over time and protrudes into the other phase stream. This process leads to the periodic
shedding of droplets of one fluid into the other with a frequency proportional to the flow rate. The
study revealed the extreme sensitivity of this flow system to the device asymmetry and viscosity
difference.

Many of the applications of two-phase flows in microchannels involve liquids in which
surfactants are dissolved. The interfacial tension opposes the instability mechanism described
above. Therefore, the presence of a surfactant monolayer is expected to affect that mechanism.
Apart from the obvious effect associated with the global decrease in the interfacial tension,
there may be a complex interplay between the local reduction of this quantity (the soluto-
capillarity effect) and Marangoni convection. In fact, surfactant molecules adsorbed onto the
interface are expected to be dragged by the two coflowing streams toward the microchannel
end, where instability is localized. The extra reduction of the interfacial tension in that region
can significantly alter the critical conditions and how the system evolves after the instability is
triggered.

In this paper, we examine the global stability of the fluid configuration described above when
one of the two phases transports a dissolved surfactant. The results show that the system becomes
unstable for capillary numbers exceeding a critical value. We analyze how the surfactant affects
the critical conditions and the growth of the small-amplitude perturbations responsible for the
instability.

II. FORMULATION OF THE PROBLEM

We analyze numerically the effect of a soluble surfactant on the stability of the two-phase flow
sketched in Fig. 1. The microfluidic device consists of two identical two-dimensional (2D) channels
(1 and 2) of length L̂c and width Ŵ , joining with an angle α at the entrance. The length and
width of the junction are L̂m and 2Ŵ , respectively. In the experiments that motivated the present
analysis [8], the typical length scale in the third direction was O(100) μm, with the largest being
750 μm. The system was three-dimensional (3D), and the pressure set by the interface curvature
into the plane was important and was a focus of that work. Nevertheless, the 2D simulations were
in qualitative agreement with the experiments. Because of the challenge of 3D simulations with
surfactant transport, it is natural to learn from the 2D simulations reported here.
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A liquid of density ρ̂1 (ρ̂2) and viscosity μ̂1 (μ̂2) is injected at a constant flow rate q̂1 (q̂2) across
channel 1 (2). We assume that both streams discharge into a common reservoir and therefore are at
the same pressure p̂o = 0. The function ŷ = ĥ(x̂, t ) indicates the interface location in the Cartesian
coordinate system (x̂, ŷ) shown in Fig. 1. The interface is anchored at the points (0,0) and (0, L̂m).
In the absence of surfactant, the interfacial tension is γ̂0.

We examine the effect on the flow stability of a surfactant dissolved in phase 1. The surfactant
transport is described in terms of the bulk and surface diffusion coefficients, D̂1 and D̂s, as well as
the parameters involved in the interface kinetic model for the net adsorption/desorption flux,

Ĵ = k̂aĉ

(
1 − �̂

�̂∞

)
− k̂d �̂. (1)

In this equation, k̂a and k̂d are the adsorption and desorption constants, respectively, ĉ is the bulk
surfactant concentration evaluated at the interface, and �̂∞ is the maximum packing density. The
effect of the surfactant surface concentration �̂ on the interfacial tension γ̂ is described by the
Langmuir equation of state [16],

γ̂ = γ̂0 + �̂∞R̂gT̂ ln

(
1 − �̂

�̂∞

)
, (2)

where R̂g is the gas constant and T̂ is the temperature. Equation (1) yields the Langmuir equation at
equilibrium for Ĵ = 0 [17],

ĉ

k̂d/k̂a
= �̂�̂∞

�̂∞ − �̂
. (3)

The combination of Eq. (3) and the Gibbs isotherm [18]

�̂ = − 1

R̂gT̂

(
∂γ̂

∂ ln ĉ

)
T̂ ,p̂

(4)

leads to Eq. (2).
We neglect the effect of the surfactant surface viscosity because of the nearly inviscid character

of most soluble surfactants, such as sodium dodecyl sulfate (SDS) [19]. In fact, the surface viscosity
of this type of surfactant becomes relevant only for very high surface velocity gradients, such as
those arising in the pinch-off of interfaces [20] or tip streaming [21]. The surfactant is convected
throughout the incompressible liquid phase 1. For this reason, the surfactant concentration at the
inlet of channel 1 is approximately the same as that in the reservoir, ĉ1 = ĉ∞. We assume that the
bulk surfactant concentration is smaller than the critical micellar concentration ĉcmc and therefore
micelles are not formed.

The bulk diffusion coefficient D̂1 corresponds to very high values of the Peclet number in most
experiments. This implies that the bulk surfactant concentration is almost uniform except within a
very thin diffusive layer formed next to the interface. The scale of the diffusive layer thickness λ̂D

can be estimated from the expression

D̂1ĉ∞/λ̂D ≈ k̂aĉ∞. (5)

For the values of D̂1, k̂a, and Ŵ considered in this work, λ̂D/Ŵ ≈ 10−2. The disparity between the
thickness of the diffusive layer formed next to the interface and the channel width poses a major
challenge to the numerical simulation.

We choose the channel width Ŵ , visco-capillary velocity Ûμ = γ̂c/μ̂1 (γ̂c is a characteristic value
of γ̂ defined below), and capillary pressure μ̂1Ûμ/Ŵ as characteristic length, velocity, and pressure,
respectively. In the absence of surfactants, the problem can be formulated in terms of the density
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TABLE I. Dimensionless parameters and their physical meaning.

Parameter Physcal meaning Definition

ρ Upper density/lower density ρ̂2/ρ̂1

μ Upper viscosity/lower viscosity μ̂2/μ̂1

Oh Inertio-capillary Reynolds number
μ̂2

1
ρ̂1Ŵ γ̂eq

Ca Lower viscosity/interfacial tension q̂1μ̂1
Ŵ γ̂eq

q Upper flow rate/lower flow rate q̂2/q̂1

Pe Surfactant volumetric convection/diffusion Ŵ γ̂eq

μ̂1D̂1

Pes Surfactant surface convection/diffusion Ŵ γ̂eq

μ̂1D̂s1

ka Adsorption rate k̂a ĉcmcŴ μ̂1
�̂∞ γ̂eq

kd Desorption rate k̂dŴ μ̂1
γ̂eq

Ma Surfactant strength �̂∞R̂gT̂
γ̂eq

c∞ Reservoir surfactant concentration ĉ∞/ĉcmc

and viscosity ratios, ρ = ρ̂2/ρ̂1 and μ = μ̂2/μ̂1, the Ohnesorge and capillary numbers,

Oh = μ̂1

ρ̂1ÛμŴ
= μ̂2

1

ρ̂1Ŵ γ̂c
and Ca = q̂1

ŴUμ

= q̂1μ̂1

Ŵ γ̂c
, (6)

and the flow rate ratio q = q̂2/q̂1.
When a soluble surfactant is added to phase 1, the following additional dimensionless numbers

are considered: The bulk and surface Peclet numbers, Pe = ŴÛμ/D̂1 and Pes = ŴÛμ/D̂s1, the
dimensionless adsorption and desorption constants, ka = k̂aĉcmcŴ /(�̂∞Ûμ) and kd = k̂dŴ /Ûμ,
the (Marangoni) elasticity number Ma = �̂∞R̂gT̂ /γ̂c, and the reservoir surfactant concentration
c∞ = ĉ∞/ĉcmc.

In a typical experimental run, the system properties are fixed, and the flow rates are progres-
sively increased in the same proportion. With the choice of the visco-capillary velocity Uμ as a
characteristic quantity (instead of the convective velocity q̂1/Ŵ ), the experimental run corresponds
to increasing the capillary number while the rest of the dimensionless numbers are fixed.

The most obvious surfactant effect on the flow stability is the global reduction of interfacial
tension. To eliminate this effect from our analysis, we choose the equilibrium interfacial tension
γ̂eq (instead of γ̂0) as the characteristic value γc. The interfacial tension γ̂eq can be calculated from
Eqs. (2) and (3) as a function of the surfactant concentration ĉ∞. Consider a fluid-fluid system with a
clean interface and another with the same densities and viscosities but with an interface loaded with
a surfactant monolayer producing the same equilibrium interfacial tension. These two systems may
behave differently due to the inhomogeneity of the interfacial tension when the surfactant monolayer
is present. With the choice γ̂c = γ̂eq, they are characterized by the same values of the dimensionless
numbers except for c∞. Therefore, the dimensionless surfactant concentration c∞ quantifies the
effects of local soluto-capillarity and Marangoni convection (not the global reduction of interfacial
tension).

For a fixed geometry, the set of dimensionless numbers becomes {ρ, μ, Oh, Ca, q; Pe, Pes, ka, kd ,
Ma, c∞} (Table I). For a given pair of liquids and a given surfactant, the only independent variables
are Ca and q. We will study the instabilities that occur when Ca reaches a critical value for fixed
values of the rest of the dimensionless parameters.
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III. GOVERNING EQUATIONS AND NUMERICAL METHOD

Hereafter, all the variables are made dimensionless using the characteristic quantities mentioned
above. The Navier-Stokes equations for the 2D velocity v(k)(x, y; t ) and pressure p(k)(x, y; t )
fields are

u(k)
x + v(k)

y = 0, (7)

Oh−1ρδk2
(
u(k)

t + u(k)u(k)
x + v(k)u(k)

y

) = −p(k)
x + μδk2

(
u(k)

xx + u(k)
yy

)
, (8)

Oh−1ρδk2
(
v

(k)
t + u(k)v(k)

x + v(k)v(k)
y

) = −p(k)
y + μδk2

(
v(k)

xx + v(k)
yy

)
, (9)

where t is the time, x and y are the Cartesian coordinates, u(k) and v(k) are the corresponding velocity
components for phase k, and δi j is the Kronecker delta. In the above equations and henceforth, the
superscripts k = 1 and 2 indicate the phase where the variable is evaluated. In addition, subscripts
t , x, and y denote the partial derivatives with respect to the corresponding variables. The action of
the gravitational field has been neglected due to the smallness of the fluid configuration and the
corresponding Bond number.

We assume that the surfactant molecules are dissolved in phase 1 as monomers at a concentration
below the critical micellar concentration. In this case, the surfactant volumetric concentration
c(1)(x, y; t ) (measured in terms of the critical micellar concentration ĉcmc) is calculated from the
conservation equation [22,23]

c(1)
t + u(1)c(1)

x + v(1)c(1)
y = Pe−1

(
c(1)

xx + c(1)
yy

)
. (10)

The kinematic compatibility and the velocity field continuity at the interface y = h(x, t ) yields

ht + hxu(1) − v(1) = 0, u(1) = u(2), v(1) = v(2). (11)

The equilibrium of both tangential and normal stresses, respectively, leads to

∣∣4μδk2 hxu(k)
x + μδk2

(
h2

x − 1
)(

u(k)
y + v(k)

x

)∣∣1

2
= −γx

√
1 + h2

x , (12)

∣∣−p(k)
(
1 + h2

x

) + 2μδk2
[
h2

xu(k)
x + v(k)

y − hx
(
u(k)

y + v(k)
x

)]∣∣1

2
= γ hxx√

1 + h2
x

, (13)

where |A|12 ≡ A(1) − A(2) and γ = γ̂ /γ̂eq.
The dependence of the interfacial tension γ upon the surfactant surface concentration is calcu-

lated from the Langmuir equation of state 2 [16], which in dimensionless form is

γ = 1 + Ma ln

(
1 − �

1 − �eq

)
, (14)

where � = �̂/�̂∞ is the reduced surfactant surface density, and �eq = �̂eq/�̂∞ is the value corre-
sponding to the equilibrium surface concentration �̂eq.

The reduced surfactant surface density is calculated by integrating the conservation equation

�t + �vt
x√

1 + h2
x

+ �xv
t√

1 + h2
x

− �vnhxx√
1 + h2

x

= 1

Pes

1√
1 + h2

x

(
�x√

1 + h2
x

)
x

+ J , (15)

where

vt = u(k) + hxv
(k)√

1 + h2
x

and vn = −hxu(k) + v(k)√
1 + h2

x

(16)
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are the tangential and normal velocity components at the interface, respectively, while J =
Ĵ /(Ûμ�̂∞/Ŵ ) is the net flux of surfactant given by the expression [Eq. (1)] [17,22,23]

J = kac(1 − �) − kd�. (17)

This flux equals the surfactant diffused from/to the bulk, i.e.,

J = cxhx − cy

Pe
√

1 + h2
x

∣∣∣∣
y=h(x,t )

. (18)

This equation couples surfactant transport across the bulk and at the interface.
Parabolic velocity profiles with mean velocities U1 = Ca and U2 = qCa were prescribed at the

inlet of channels 1 and 2, respectively. The outflow condition p(k) = 0 was imposed at the outlet
sections. The no-slip boundary condition was considered in all the solid walls. The triple contact
line was anchored at the two ends of the interface, i.e., h = 0 at x = 0 and Lm (Lm = L̂m/Ŵ ). The
reservoir surfactant concentration c∞ is imposed at the inlet section of channel 1. The surfactant
concentration at the inlet section of channel 2 is zero and remains zero in phase 2 for all time.
The numerical integration of Eq. (15) is performed considering zero diffusive surfactant flux at the
location of the triple contact lines.

In the global stability analysis, we assume the temporal dependence

U (x, y; t ) = U0(x, y) + δU (x, y) e−iωt + c.c. (|δU | � |U0|),
h(x; t ) = h0(x) + δh(x) e−iωt + c.c. (|δh| � h0) (19)

�(x; t ) = �0(x) + δ�(x) e−iωt + c.c. (|δ�| � �0)

where U represents the velocity, pressure, and bulk surfactant concentration fields, while U0 and δU
stand for the base flow (steady) solution and the spatial dependence of the eigenmode, respectively.
In addition, h0 and �0 represent the base flow solution for h and �, respectively, δh and δ� are
the corresponding perturbation amplitudes and c.c. denotes complex conjugate. The perturbation
evolves according to the eigenfrequency ω = ωr + iωi, where ωr and ωi are the oscillation fre-
quency and growth rate, respectively. Eigenmodes with ωi < 0, ωi = 0, and ωi > 0 correspond to
damped, marginally stable, and unstable perturbations, respectively.

The global surfactant mass conservation condition,
∫ Lm

0

√
1 + h2

0x J0 dx = 0, (20)

is taken into account when calculating the base (steady) flow.
The governing equations are integrated with a variant of the numerical method proposed by

Herrada and Montanero [24]. As mentioned in Sec. II, the major difficulty associated with the
presence of soluble surfactants is the existence of a very thin diffusive layer next to the interface for
the small bulk diffusion coefficient of most surfactants. However, the discretization in the direction
transverse to the flow with Chebyshev spectral collocation points accumulates the grid points next
to the interface [24], which facilitates the resolution of the diffusive boundary layer.

The method described by Herrada and Montanero [24] allows one to obtain both the base flow
and its eigenmodes. It can be seen that the calculation of the eigenmodes involves the Jacobian of
the system evaluated with the base solution. The matrix accounting for the temporal dependence of
the problem is calculated with essentially the same procedure as that for the Jacobian. Ponce-Torres
et al. [25] explained this technical aspect of the problem in some detail.

For the sake of illustration, Fig. 2 shows the eigenfrequencies with ωi � −8.42 × 10−4 for a
subcritical and supercritical capillary number. The growth rate ωi becomes positive, and the base
flow becomes unstable when the capillary number exceeds a critical value. The stability transition
can be easily identified: A slight change in the capillary number significantly increases the dominant
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FIG. 2. Growth rate ωi and frequency ωr of the eigenvalues with ωi � −8.42 × 10−4 for Ca = 0.00681
(solid symbols) and Ca = 0.00690 (open symbols). The results were calculated for {ρ = 1.72, μ = 0.5, Oh =
0.00141, q = 1; Pe = Pes = 3.54 × 106, ka = 5.96 × 10−6, kd = 5.37 × 10−9, Ma = 0.225, c∞ = 0.0055}.

mode growth rate. The critical capillary number Ca∗ is calculated as the average value between the
subcritical and supercritical ones (Ca∗ � 0.00686).

IV. RESULTS

We choose the values of the geometrical parameters L̂c = 6 mm, L̂m = 12 mm, Ŵ = 0.75 mm,
and α = 45◦. These values are the same as those considered in the experimental study of Kaneelil
et al. [8] except for the length of the outlet channels, which are shorter in our work. The properties
of the liquids approximately correspond to those of 50.5% glycerol in water and perfluorodecalin
also considered by Kaneelil et al. [8]: ρ̂1 = 1124 kg/m3, ρ̂2 = 1930 kg/m3, μ̂1 = 5.6 mPa s,
μ̂2 = 5.6 mPa s, and γ̂0 = 38 mN/m. Kaneelil et al. [8] conducted most of their experiments in
the absence of any added surfactant. We take the surfactant properties considered by Kalogirou
and Blyth [23] as a reference: D̂1 = D̂s = 5.5 × 10−10 m2/s, �̂∞ = 2.4 μmol/m2, R̂g = 8.314
J/(K mol), T̂ = 298.15 K, k̂a = 10−5 m/s, k̂d = 3.38 × 10−5 s−1, and ĉcmc = 9 × 10−3 mol/m3.
To facilitate the convergence in the simulations, we consider smaller values of μ̂2 and slightly
increase the diffusion coefficient, D̂1 = D̂s = 10−9 m2/s. The above values lead to the following
dimensionless numbers for the reference case: ρ = 1.72, Oh = 0.00141, Pe = Pes = 3.54 × 106,
ka = 5.96 × 10−6, kd = 5.37 × 10−9, and Ma = 0.225. We will conduct simulations for different
values of the viscosity ratio μ.

The interface deformation and surfactant volume concentration of the base flow when a small
amount of surfactant is added to phase 1 is shown in Fig. 3. The figure also shows the interface defor-
mation without surfactant for the same values of ρ, μ, Oh, q, and Ca. The flow drags the surfactant
molecules over the interface, increasing the surfactant surface concentration in the vicinity of the
right-hand interface end. This reduces the interfacial tension there, shifting the maximum interfacial
deformation towards the right-hand anchorage point and increasing the interface curvature there.
The maximum interface deformation is practically the same in the two cases because the proximity
of the anchorage point somewhat compensates for the local reduction of the interfacial tension.
However, the interface curvature takes higher values in the presence of the surfactant monolayer.

There is a thin surfactant concentration boundary layer next to the interface due to the large value
of the Peclet number. The surfactant depletion on the left-hand side of the interface produces a net
flux of surfactant molecules from the bulk to the interface. In contrast, the surfactant accumulation
on the right side of the interface reverses the flux: Molecules desorb from the interface and move to
the sublayer. In this region, the surfactant concentration does not exhibit a monotonic dependency
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FIG. 3. Interface deformation and surfactant volume concentration c(x, y) of the base flow for {ρ = 1.72,
μ = 0.5, Oh = 0.00141, Ca = 0.00681, q = 1; Pe = Pes = 3.54 × 106, ka = 5.96 × 10−6, kd = 5.37 × 10−9,
Ma = 0.225, c∞ = 0.0055}. The dashed line is the interface deformation in the absence of surfactant for the
same values of ρ, μ, Oh, q, and Ca.

upon the distance from the interface. In fact, there is a layer below the interface where the surfactant
concentration is smaller than that of the bulk c = 1. This effect is caused by the convection parallel
to the interface of the low surfactant concentration found on the left-hand side.

The results shown in Fig. 3 were obtained for a realistic value of the Peclet number. This
parameter is expected not to influence the system dynamics only if ε ≡ k̂dŴ �̂∞/(ĉ∞D̂1) � 1 [26].
In our simulations, ε = 2.2 and, therefore, diffusion may affect the system stability. As can be
observed in Fig. 4(a), the Peclet number influences the thickness of the boundary layer next to the
interface and, to a lesser extent, the value of surfactant volume concentration. However, neither the
surfactant surface concentration nor the interface deformation is significantly affected by the Peclet
number [Fig. 4(b)]. In other words, the base flow does not significantly change when the diffusion
coefficient is increased by two orders of magnitude except for the surfactant distribution next to the
interface.

FIG. 4. (a) Surfactant volume concentration c(x, y) at x = 15.16. (b) Interface contour h(x) and surfactant
surface concentration �(x). The results were calculated for Pe = Pes = 3.54 × 106 (solid line) and 3.54 ×
104 (dashed line) and for {ρ = 1.72, μ = 0.5, Oh = 0.00141, Ca = 0.00681, q = 1; ka = 5.96 × 10−6, kd =
5.37 × 10−9, Ma = 0.225, c∞ = 0.0055}.
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FIG. 5. Perturbation of (a) the interface contour Re[δh(x)] and (b) the surfactant surface concentration
Re[δ�(x)] for Pe = Pes = 3.54 × 106 (solid blue lines) and 3.54 × 104 (dashed black lines). The results were
calculated for {ρ = 1.72, μ = 0.5, Oh = 0.00141, Ca = 0.00681, q = 1; ka = 5.96 × 10−6, kd = 5.37 × 10−9,
Ma = 0.225, c∞ = 0.0055}.

The noticeable effect of the surfactant convection can be appreciated in the distribution �(x),
which considerably increases downstream and reaches its maximum value � � 1 (�̂ � �̂∞) at the
right-hand anchor point [Fig. 4(b)]. Since ka 	 kd , we obtain � ≈ O(1) over the whole interface
despite the tiny amount of surfactant (in terms of the critical micellar concentration) dissolved
in phase 1 (c = 0.0055). It should be noted that, for the surfactant properties considered in our
simulations, that amount of surfactant corresponds to � = 0.859 at equilibrium, a value relatively
close to the maximum packing density.

As explained above, both the concentration and the concentration gradient increase next to the
interface when the surfactant diffusion coefficient is decreased. However, the other quantities of
the steady base flow remain essentially the same. One may wonder if the unsteady perturbation
is also insensitive to the Pe and Pes values. Figure 5 shows the perturbations of the interface
contour and surfactant surface concentration corresponding to the dominant mode of the base flow
described above. There is a slight influence of Pe on δh. The influence on δ� is noticeable in
relative terms. However, the surfactant surface concentration � remains practically unperturbed
(δ� � �), implying that the interfacial tension profile established in the steady base flow remains
practically constant during the evolution of the dominant mode. Therefore, the effect of the Peclet
number on δ� hardly alters that evolution. In fact, the critical capillary numbers for instability for
Pe = 3.54 × 106 and 3.54 × 104 differ by less than 1.15%. The numerical fluctuations decrease as
Pe decreases even though the grid spatial resolution is much smaller for Pe = 3.54 × 104. For this
reason, we hereafter consider Pe = 3.54 × 104 in our simulations.

In the absence of surfactant, the flow becomes unstable due to the difference between the
hydrostatic pressure on the two sides of the interface [8]. The response of the system is more
complex when a surfactant is dissolved in phase 1. However, the instability is still associated to
some extent with the mismatch between the hydrostatic pressures on the two sides of the interface
at the junction inlet. This pressure difference is proportional to the product μ q because the flow
is developed in the channels. Therefore, one can expect the system behavior to be practically the
same if μ q takes the same value. We have verified this expectation by comparing the results for
(μ = 0.9, q = 0.8) and (μ = 0.72, q = 1). The critical capillary number, interface deformation,
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FIG. 6. (a) Surfactant surface concentration �(x) and (b) interface deformation h(x) for {ρ = 1.72, Oh
= 0.00141; Ca = 0.00703, Pe = Pes = 3.54 × 104, ka = 5.96 × 10−6, kd = 5.37 × 10−9, Ma = 0.225, c∞ =
0.0055} and (μ = 0.9, q = 0.8) (solid lines) and (μ = 0.72, q = 1) (dashed lines).

and surfactant concentration were practically the same in the two cases (Fig. 6). Hereafter, we will
set q = 1 in all the simulations and focus on the influence of μ on the base flow and the critical
capillary number Ca∗.

When there is a mismatch between the two viscosities, the jump of hydrostatic pressures
across the interface increases almost linearly with the capillary number (the injection flow rate).
This explains why the maximum steady-state interface deformation max(|h(x)|) is approximately
proportional to Ca (Fig. 7). When the maximum interface deformation exceeds a critical value, the
flow becomes unstable due to the growth of the dominant perturbation. The maximum deformation
withstood by the interface increases as the viscosity ratio decreases. In other words, larger stable
deformations can be obtained for smaller μ. This occurs even though the critical capillary number

FIG. 7. Maximum interface deformation, max(|h(x)|), as a function of the capillary number Ca for different
values of the viscosity ratio μ for {ρ = 1.72, Oh = 0.00141, q = 1; Pe = Pes = 3.54 × 104, ka = 5.96 × 10−6,
kd = 5.37 × 10−9, Ma = 0.225, c∞ = 0.0055} (circles). The solid and open symbols correspond to stable and
unstable base flows, respectively.
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FIG. 8. Shape of the velocity profile u(y) at x = 8 for c∞ = 0 (solid line) and c∞ = 0.0055 (dashed line).
The results were calculated for {ρ = 1.72, μ = 0.5, Oh = 0.00141, Ca = 0.00681, q = 1; Pe = Pes = 3.54 ×
104, ka = 5.96 × 10−6, kd = 5.37 × 10−9, Ma = 0.225}. The blue lines correspond to the interface positions.

decreases as μ decreases (Fig. 7). The quantity max(|h(x)|) depends almost linearly on Ca even
when the critical capillary number is exceeded. In fact, the critical point is surpassed without
any qualitative indication on the solution. This illustrates the importance of conducting the linear
stability analysis to ensure that the steady solution corresponds to an experimentally available state.

To better understand the role played by the surfactant monolayer, we now compare the results
calculated with and without surfactant. The following simple scaling analysis of the conservation
Eq. (15) reveals that the surfactant monolayer immobilizes the interface. Both �t and vn (vn is the
normal velocity to the interface) vanish in the steady base flow, while the surfactant net flux J and
surface diffusion are at most of the order of 10−4. Therefore, and according to Eq. (15), the net
superficial flux of surfactant, φx(x) (φ ≡ �vt and vt is the tangential velocity along the interface), is
practically zero over the interface. In addition, the anchorage condition ensures that vt = 0 at the two
interface ends x = 0 and Lm, and, therefore, φ = 0 at those two points. Since φ(0) = φ(Lm) = 0 and
φx(x) � 0, φ(x) must take very small values along the interface. The surfactant density �(x) takes
values of order unity (Fig. 4). Therefore, vt (x) � 0 over the whole interface.

The above conclusion means that a Poiseuille-like velocity profile is established on the two sides
of the interface (Fig. 8), which contrasts with the velocity distribution in the absence of surfactant.
Marangoni stress provides the force necessary to immobilize the interface. Without this force, the
interface immobilization is not feasible, and the conservation Eq. (15) cannot be verified. In fact, if
we “turn off” the Marangoni stress term −γx

√
1 + h2

x in Eq. (12), then the numerical code cannot
converge to a proper solution.

We showed in Fig. 3 that the addition of surfactant displaces the interfacial deformation towards
the right-hand anchor point. There is a fundamental difference between the instability with and
without surfactants. The instability is caused by an oscillatory mode (ωr 
= 0) in the absence
of surfactant (supercritical Hopf bifurcation). In contrast, the critical frequency vanishes when
a surfactant is added to phase 1 (Fig. 9), i.e., the system becomes unstable due to the growth
of a nonoscillatory perturbation. In the absence of surfactant, the oscillation frequency ωrOh−1/2

measured in terms of the inertio-capillary time tic = (ρ1Ŵ 3/γ̂c)1/2 is of the order unity, which
suggests that the oscillation is produced by the interfacial tension restoring force.

The difference between the critical modes with and without surfactant can be appreciated in
Fig. 10, where the interface perturbation δh(x) is plotted for the two cases. This function has
been normalized so that the area enclosed in the two cases is the same. The extra-reduction of
the interfacial tension next to the right-hand end enhances the interface protrusion in that region,
destabilizing the base flow.

The system becomes unstable for capillary numbers above a critical value. Figure 11 compares
the critical capillary numbers with and without surfactant. We could not calculate Ca∗ for larger
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FIG. 9. Growth rate ωi and frequency ωr of the eigenvalues with ωi � −0.0164 for (c∞ = 0, Ca = 0.0248)
(solid symbols) and (c∞ = 0.0055, Ca = 0.00728) (open symbols). The results were calculated for {ρ = 1.72,
μ = 0.8, Oh = 0.00141, q = 1; Pe = Pes = 3.54 × 104, ka = 5.96 × 10−6, kd = 5.37 × 10−9, Ma = 0.225}.

FIG. 10. Interface perturbation Re[δh(x)] for the critical conditions (c∞ = 0, Ca = 0.0248) (solid line)
and (c∞ = 0.0055, Ca = 0.00728) (dashed line). The results were calculated for {ρ = 1.72, μ = 0.8, Oh =
0.00141, q = 1; Pe = Pes = 3.54 × 104, ka = 5.96 × 10−6, kd = 5.37 × 10−9, Ma = 0.225}. Re[δh(x)] has
been normalized so that the area enclosed in the two cases is the same.

FIG. 11. Critical capillary number Ca∗ as a function of the viscosity ratio μ for {ρ = 1.72, Oh = 0.00141,
q = 1; Pe = Pes = 3.54 × 104, ka = 5.96 × 10−6, kd = 5.37 × 10−9, Ma = 0.225} and for c∞ = 0 (solid
symbols) and 0.0055 (open symbols).
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values of μ due to the high spatial resolution demanded by the simulation as the capillary number
increases. In the absence of surfactant, Ca∗ significantly increases as μ → 1, which indicates that
the instability is linked to the difference between the pressure drop across the inlet ducts. The system
behavior in the presence of surfactant is drastically different. The system is much more unstable, and
the critical capillary number hardly depends on the viscosity ratio. In fact, the surfactant monolayer
destabilizes the interface for small capillary numbers even under perfect symmetry conditions (μ =
q = 1). This result has obvious practical implications: Imperfect separation is expected at the outlet
of the microfluidic device if one of the phases carries a surfactant or surface-active impurities.

We have verified that the curve Ca∗(μ) in Fig. 11 is almost symmetric with respect to μ = 1
on a logarithmic scale, i.e., Ca∗(μ) � Ca∗(μ−1). In other words, the stability limit is practically the
same when the two phases are exchanged (1 ↔ 2, μ ↔ μ−1). This indicates that (i) the density ratio
and Ohnesorge number play a negligible role in the instability, and (ii) the system stability is almost
independent of the phase in which the surfactant is dissolved. As expected, the system behavior
depends on the surfactant monolayer composition, regardless of the liquid phase from which the
surfactant molecules come.

The interfacial tension is a stabilizing factor. The capillary number was defined in terms of the
corresponding equilibrium interfacial tension. Therefore, the decrease in Ca∗ cannot be attributed
to a global reduction of the interfacial tension. In contrast, the local soluto-capillarity effect does
enhance the flow instability. The surfactant accumulation at the downstream end of the interface
reduces the interfacial tension below its equilibrium value in that critical region, where the interface
deformation and curvature caused by the dominant mode reaches the maximum value (Fig. 5). This
extra-reduction of the interfacial tension due to the surfactant accumulation destabilizes the system.
To test this hypothesis, we have applied the value of the interfacial tension at equilibrium to all the
interface points when calculating the critical mode (not the base flow). We verified that the growth
rate of that mode decreases, i.e., the system becomes more stable. Therefore, the instability must be
attributed to the uneven distribution of the interfacial tension over the interface.

The Marangoni convention is expected to stabilize the system because it opposes the gradient of
surfactant concentration caused by the coflowing stream. To test this expectation, we turned off the
Marangoni stress −γx

√
1 + h2

x in Eq. (12) when calculating the critical mode (not the base flow)
and verified that the growth rate of that mode increases. This means that the system becomes more
stable when the Marangoni stress is considered.

V. CONCLUDING REMARKS

We have studied the effect of a soluble surfactant on the linear stability of two-phase flows in
a finite-length channel. Our results show that a very small amount of surfactant dissolved in one
of the phases considerably destabilizes the system. Due to the disparity between the dimensionless
surfactant adsorption and desorption constants, the surfactant surface concentration takes values
of the order of the maximum packing density over the whole interface. The streams convect the
surfactant molecules towards the right-hand end of the interface, where the maximum deformation
is produced even in the absence of surfactant. The surface concentration in that region becomes
slightly lower than the maximum packing density. The interfacial tension profile established by
the base flow hardly changes during the growth of the critical mode. The local decrease in the
interfacial tension increases both the steady deformation and the deformation caused by the critical
perturbation next to the right-hand end of the interface. This effect considerably enhances the
instability, which translates into a sharp reduction of the critical capillary number. Very small critical
capillary numbers are obtained in the presence of surfactant, even if the base flow is perfectly
symmetric (μ = q = 1).

Other conclusions of our study are the following. The bulk diffusion coefficient hardly affects the
base flow and its stability. This implies that accurate predictions can be obtained with significantly
larger values of that parameter, which considerably simplifies the simulations. The maximum inter-
face deformation is approximately proportional to the capillary number. Larger stable deformations
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are obtained for smaller values of the viscosity ratio. The surfactant monolayer suppresses the
interface motion, producing a Poiseuille-like velocity profile in the two phases. The instability is
caused by an oscillatory mode in the absence of surfactant, while the system becomes unstable due
to the growth of a nonoscillatory perturbation when the surfactant is added.

The experimental systems typically have significant 3D and exit effects, which hinders a quanti-
tative comparison between those experiments and 2D simulations. Nevertheless, we have observed
in our preliminary experiments that adding a surfactant decreases the period of the instability, which
at least is qualitatively consistent with the larger growth rates of the unstable modes observed in the
simulations.

It is well known that an infinite two-layer parallel flow is unstable under long-wavelength
perturbations. Kalogirou and Blyth [23] have shown that a sufficiently soluble surfactant stabilizes
the flow for μ < ρ2. In this case, solubility redistributes the surfactant over the interface and
partially suppresses the destabilizing Marangoni stress, which stabilizes the system under long-wave
and midwave perturbations. The properties of the liquids and the channel width in the present work
considerably differ from those in Ref. [23]. Therefore, a quantitative comparison is not feasible.
Nevertheless, we may state that, according to the results by Kalogirou and Blyth [23], the value of
the solubility parameter Rb = k̂a/(k̂d 2Ŵ ) � 198 in our simulations seems too large for the surfactant
to stabilize the perturbations allowed in our systems, i.e., those with wavelengths smaller than the
channel length.

In any case, the behavior of the finite-length microchannel is fundamentally different from that
of the infinite case. The surfactant accumulation in the microchannel’s downstream end reduces the
interfacial tension in that region. The local decrease in the interfacial tension increases the defor-
mation caused by the critical perturbation, which considerably enhances the instability. Marangoni
convection stabilizes the flow (contrary to what occurs in the infinite case) because it opposes the
accumulation of surfactant in the downstream end.

The critical eigenmode is oscillatory (ωr 
= 0) for a clean interface and becomes nonoscillatory
(ωr = 0) with the addition of a surfactant. The linear stability analysis captures only the initial
growth of the interface deformation. The oscillatory or nonoscillatory character of the critical
eigenmode is not, in principle, linked to the periodic shedding of drops, which is a nonlinear
phenomenon. In fact, this phenomenon happens not only in the absence of a surfactant but also
in the presence of it, as observed in our preliminary experiments.
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