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Lipid-shelled microbubbles exhibit a strain-softening behavior and thus are char-
acterized by preferential excursion from equilibrium during expansion at insonation.
However, experimental studies have reported a counterintuitive behavior, identified as
the compression-only behavior, where they pulsate mainly in the compression phase.
We construct bifurcation diagrams of lipid and polymer-shelled microbubbles indicat-
ing the existence of a parameter range for which buckled shapes that are characterized
by significantly smaller volume and lower total energy level, in comparison with the
spherosymmetric state, are expected to spontaneously arise. The timescale for such a
transition depends on the amplitude and frequency of the initial disturbance but more
importantly on shell rheology in terms of the bending vs area dilatation modulus and
shear vs dilatational viscosity. We show by performing stability analysis and constructing
phase diagrams of coated microbubbles that an initially prestressed shell facilitates the
onset of buckling at relatively small sound amplitudes. Moreover, low values of the shell
bending modulus and shear viscosity in comparison with the area dilatation modulus and
dilatational viscosity, respectively, facilitate the onset of shape modes that characterize
bifurcating branches leading to deformed shapes with significant volume compression at
relatively low sound amplitudes. By performing dynamic simulations for lipid-shelled mi-
crobubbles, we capture the onset of compression-only effect during which the shell tends to
oscillate around compressed buckled shapes when subject to an acoustic disturbance. When
phase diagrams of polymeric shells are examined the amplitude threshold for dynamic
buckling to occur typically arrives before the onset of parametric shape mode excitation.
Therefore the shell cohesion is compromised before it achieves a steady pulsation around
a compressed shape, and this is verified by our simulations.

DOI: 10.1103/PhysRevFluids.7.113601

I. INTRODUCTION

Contrast agents are gas-filled encapsulated microbubbles that are used in novel biomedical
applications involving ultrasound such as targeted drug delivery [1] and medical imaging of vital
organs [2]. Their coating is usually a lipid monolayer or a polymeric material with the former shells
exhibiting a strain-softening behavior when subjected to acoustic disturbances [3–5]. This behavior
is a result of the reduction in area density of the lipid monolayer shell with increasing interfacial
area, which amounts to a preferential excursion from equilibrium during expansion [3,6] especially
at large sound amplitudes. However, certain experimental studies [6,7] have revealed a counterintu-
itive behavior of lipid monolayer shells whereby they pulsate mainly in the compression phase of
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their radial time series. The latter studies involved ultrafast imaging experiments with phospholipid
microbubbles, i.e., SonoVue and BR-14, and studied their response to external frequencies in the
range of 1, 1.8, and 4 MHz and acoustic amplitudes in the range between 50 and 200 kPa. In this
fashion they reported that 40% of the bubbles showed a compression-only behavior for 1 MHz
driving frequency and 50 kPa amplitude. They speculated that this behavior is triggered due to a
small shrinkage of the bubbles that occurs after preparation of the sample, when a small amount of
the interior gas diffuses into the liquid. An interesting aspect of this response type is that it has only
been reported in experiments involving lipid-shelled contrast agents instead of polymeric shells, a
fact that implies strong dependence on shell properties.

The theoretical aspect of this phenomenon has not yet been fully understood since the proper
modeling of lipid-encapsulated bubbles is quite complex mainly due to inadequate information and
difficulty to obtain reliable estimates of shell rheological parameters. The failure of preexisting shell
models to capture the compression-only behavior observed in experiments has led researchers to
introduce more sophisticated models that assume dependence of the rheological shell parameters
on the bubble radius. In fact, there is still an open discussion regarding the mechanism of the
compression-only behavior of lipid-shelled contrast agents. In particular, Marmottant et al. [7]
introduced a model that allows for modification of the rheological parameters of the shell as
the bubble oscillates. More specifically, they assumed a surface tension that depends highly on
the surface concentration of phospholipid molecules. In this fashion when the bubble is highly
compressed the shell is treated as a buckled solid phase and a zero-surface tension is assumed.
As the bubble expands above a critical limit an elastic state is entered where the surface tension
depends linearly on the area of the shell. In this state as the bubble expands the density of the
molecules on the interface decreases and consequently the effective surface tension increases. An
upper bound in the expansion radius is introduced above which a ruptured state is assumed, and
any further expansion treats the bubble as a pure gas phase with the surface tension being equal to
the one between water and air. In this context, the above researchers captured the compression-only
behavior when they considered the initial radius of the bubble to be the critical limit below which a
solid state is assumed for the shell. They attributed the initially compressed state of the bubble to the
dissolution of a certain amount of gas in the surrounding liquid that happens either spontaneously
or due to the repeated pulses imposed on the interface. This approach has been adopted in other
studies as well [8,9]. However, it does not introduce a proper elastic model for the shell as an elastic
material and assumes zero bending modulus to allow for buckling to take place at compression as
indicated by experiments [10]. As a result, it compromises the robustness of the methodology for
the acoustic characterization of coated microbubbles.

Using a different approach Doinikov et al. [11] introduced the shear-thinning behavior of the shell
in order to include nonlinear effects in the variation of shell viscosity. In this fashion they were able
to numerically capture compression-only behavior as reported by de Jong et al. [6] without however
reliably recovering resonance frequencies of coated microbubbles based on acoustic measurements.

In the present study we treat the shell as a viscoelastic solid characterized by area dilatation and
bending stiffness as well as shear and dilatational viscosity, in order to control the extent to which it
deforms and buckles subject to acoustic or other disturbances. We also allow for a strain-softening
shell behavior to account for the reduction of shell elasticity at expansion [3,9] and assume constant
rheological shell properties that do not depend on the radius of the bubble. Furthermore, we adopt
the assumption for an initially prestressed compressed shell due to gas leakage, originally proposed
by Marmottant et al. [7], in order to capture shell buckling at a relatively small sound amplitude.
We expect that shell viscosity plays a key role in the modeling of coated microbubbles, especially in
the presence of surfactant monolayers [12], but the shear and dilatational components of membrane
viscosity cannot be readily measured and consequently they are typically treated as equal [13].
However, in the present study we treat them as being different which allows for a more general
and realistic description of shell rheology. Overall, we aim at capturing energy transfer from the
breathing mode to shape modes associated with shell deformation and buckling, leading to the
compression-only response pattern.
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In this context, we carry out dynamic numerical simulations in an unbounded flow that demon-
strate the onset of the compression-only behavior, and we define its mechanism based on the results
of stability analysis. In particular, we investigate the static stability by performing a numerical study
on the static response of coated microbubbles subject to an external overpressure, in the manner
performed by Lytra and Pelekasis [14]. The latter approach resulted in bifurcation diagrams covering
a wide parameter range that is relevant to acoustic characterization studies of lipid and polymeric
shells. The goal is to identify different equilibrium configurations of the microbubble that may
affect its response in the presence of acoustic disturbances and lead to oscillations around a reduced
volume. In addition, the possibility for parametric instability to emerge is investigated, following
Tsiglifis and Pelekasis [15] and introducing the effects of prestress and discrepancy in the shear
and dilatational viscosities. We intend to capture a realistic route for the onset of shape modes
that will grow and eventually lead to the buckled shapes predicted by the bifurcation diagrams of
static analysis, thereby identifying a mechanism that may be responsible for the compression-only
behavior of contrast agents coated with a lipid monolayer shell. An effort will also be made to
account for discrepancies in the dynamic response of lipid and polymeric shells registered in the
literature, in terms of the parametric stability of polymeric and lipid-shelled contrast agents. The
lack of acoustic measurements that involve the former-type microbubbles exhibiting compression-
only behavior will be interpreted in this fashion. Finally, the results obtained with the numerical
simulations in an unbounded flow are presented and examined under the findings of static and
parametric stability analysis.

This paper is organized as follows: the problem formulation is discussed in Sec. II, where
the governing equations for the liquid flow are presented along with the ones describing the
encapsulated bubble. Next, in Sec. III the stability analysis is presented: in Sec. III A we briefly
discuss the method used for constructing the bifurcation diagrams, whereas in Sec. III B the details
of parametric stability analysis are presented including the effects of prestress and different shear
and dilatational shell viscosities. In Sec. IV the methodology employed for performing dynamic
simulations is described. Subsequently, in Sec. V the results of parametric stability, static numerical
analysis and numerical dynamic simulations are presented and cross-examined. Finally, in Sec. VI
the main conclusions of the study are summarized.

II. PROBLEM FORMULATION

We consider an encapsulated microbubble of initial radius R0 that is submerged in a Newtonian
liquid of density ρ and dynamic viscosity μ. Since the microbubble may initially be in a prestressed
state we generally have

R0 = RSF + Ud , (1)

where RSF is the stress-free radius of the bubble and Ud is the amount of compression or expansion
imposed initially on the stress-free state. We investigate the microbubble response to a disturbance
imposed on the far field:

P′
∞ = P′

st + P′
dist = P′

st + P′
stε cos(ω f t

′), (2)

with P′
st, P′

dist denoting the dimensional undisturbed and disturbed pressure in the far field, respec-
tively, and ε, ω f the amplitude and angular frequency of the acoustic disturbance, respectively;
throughout this paper primed letters signify dimensional variables. We assume negligible compress-
ibility of the surrounding liquid and a vanishing liquid velocity in the far field. The characteristic
length scale is determined by the initial radius R0 of the bubble, whereas the appropriate timescale
is introduced via the external frequency as 1/ω f . In this context, the characteristic velocity and
pressure scales are expressed via quantities ω f R0 and ρω2

f R2
0, respectively. When simulations

of a coated microbubble that pulsates in response to a static overpressure are performed, the
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FIG. 1. A contrast agent in an unbounded flow.

eigenfrequency for volume pulsations, ω0, is used as characteristic timescale instead,

ω0 =
(

1

ρR3
0

[3γ (2σ + PstR0) − 2σ + 4χ ]

)1/2

≈ 2π × 106 1/s, (3)

corresponding to a microbubble with area dilatation modulus χ = 0.24 N/m; see also [16].
The problem formulation of a contrast agent in an unbounded flow is described via a spherical

coordinate system and is given in detail in [16]. In order to obtain the governing equations, we
assume axisymmetric variations of the bubble shape as well as the liquid velocity and pressure. In
Fig. 1 a schematic representation of the flow under consideration is provided with f1, R∞ denoting
the r-spherical coordinate of the thin shell that coats the bubble and the far field, respectively. Herein
we focus on an unbounded flow domain in an attempt to identify the mechanism that controls the
onset of compression-only behavior, leaving simulations of a wall-bounded flow arrangement for a
future study.

The flow in the surrounding liquid is governed by the mass conservation and momentum equa-
tions expressed through the Navier-Stokes equations. Since the liquid is considered incompressible
the governing equations for the liquid read in dimensionless form

∇ · u = 0, (4)

∂u
∂t

+ (u · ∇)u = −∇P + 1

Re
∇ · τ, σ = −PI + 1

Re
τ, τ = ∇u + ∇uT , (5)

where u = (ur, uθ , 0), Re = (ρω f R0
2)/μ is the Reynolds number of the surrounding liquid flow

that compares inertia with viscous forces, σ, τ, the full and deviatoric stress tensors in the sur-
rounding fluid, and I the unit tensor.

For the interface we employ a Lagrangian representation by introducing a Lagrangian coordinate
ξ (0 � ξ � 1), which identifies the interfacial particles with ξ = 0 and ξ = 1 corresponding to the
south (θ = π ) and north (θ = 0) pole of the bubble, respectively. The force balance on the gas-liquid
interface reads in dimensionless form(

−PI + 1

Re
τ

)
· n + PGn = −∇s · (

τ + qn
) + 2km

We
n = �F + 2km

We
n, (6)

where n denotes the unit normal vector pointing towards the surrounding fluid, PG is the gas
pressure inside the bubble, ∇s, km signify the surface gradient and mean curvature of the bubble

interface, respectively, and We = ρω2
f R0

3

σ
is the Weber number comparing inertia with capillary

forces. Despite the viscoelastic nature of the shell a certain amount of surface tension, σ = 0.051
N/m, is typically assumed for the lipid shells [7,8,17,18] as a measure of the internal gas exposure
to the surrounding liquid, whereas for polymeric shells surface tension is set to zero. Finally, �F is
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the resultant force due to the viscoelastic properties of the membrane which, according to the theory
of elastic shells, is derived by taking the surface divergence of the viscoelastic tension tensor on the
membrane surface and is calculated as

�F =
[

ksτs + kφτφ − 1

ro

∂

∂S
(roq)

]
n −

[
∂τs

∂S
+ 1

ro

∂ro

∂S
(τs − τφ ) + ksq

]
es, (7)

with S denoting the arclength of the interface, τs, τφ the principal elastic tensions, ks, kφ the two
principal curvatures, ro = rsin θ the cylindrical polar coordinate and es the tangential unit vector. In
Eq. (7) q corresponds to the transverse shear tension that is obtained from a torque balance on the
shell [19,20]:

q = KB

ro

∂ro

∂S

[
∂

∂ro
(roms) − mφ

]
, (8)

where ms, mφ express the principal bending moments and KB = kB/(ρω2
f R5

0) signifies the relative
importance of bending with respect to inertia.

The membrane tensions consist of an elastic and a viscous component,

τs = τel + τv. (9)

The membrane and bending stresses are defined via the shell constitutive laws; see also [15,16].
In particular, for the elastic part of the phospholipid shells we adopt the Mooney-Rivlin (MR) model
[21] and for the polymeric shells we introduce Hook’s law:

τMR
el = G

3λsλϕ

(
λ2

s − 1

(λsλϕ )2

)[
1 + b

(
λ2

ϕ − 1
)]

, (10a)

τH
el,s = G

[
λ2

s − 1 + ν
(
λ2

ϕ − 1
)]

2(1 − ν2)λϕ

, (10b)

with λs, λφ corresponding to the principal extension ratios based on the stress-free state, G =
χ/(ρω2

f R3
0) signifying the relative importance of shell dilatation with respect to inertia and ν the

Poisson ratio set to 0.5. The MR constitutive law is employed in order to describe shell softening
during expansion. In contrast with our previous studies [16,22,23] the dilatational μs and the shear
viscosity μsh of the shell are treated separately. More specifically, the viscous component is defined
by

τ v
s =

(
1

Res
+ 1

Resh

)
1

λs

∂λs

∂t
+

(
1

Res
− 1

Resh

)
1

λϕ

∂λϕ

∂t
, (11)

with Res = ρω f R3
0/μs and Resh = ρω f R3

0/μsh comparing the inertia forces with the viscous dilata-
tional and shear forces of the shell, respectively. As the shear viscosity, μsh, increases shape modes
are damped faster as the shell deforms. Shell viscosities μs, μsh (SI units in kg/s) are related to the
3D shell viscosity μs,3d , μsh,3d (SI units in Pa s) via μs = 3δμs,3d where δ is the shell thickness.

Besides the force balance, continuity of the liquid and shell velocities on the interface read as

u = Drs

Dt
(12)

with rs denoting the position vector of a particle at the interface.
At equilibrium, the dimensionless pressure, PG, inside the bubble is related to the dimensionless

pressure,Pst, on the far field as follows:

P′
G(t ′ = 0) = P′

st + 2σ

R0
+ 2

R0

χ

3

[
1 −

(
RSF

R0

)6]
(13a)

→ PG(t = 0) = Pst + 2

We
+ 2τel(t = 0). (13b)
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When there is gas leakage through the shell prior to the acoustic disturbance, a dimension-
less initial overpressure is established, �Pps � (P′

st − P′
G[t ′ = 0])/P′

st, that determines the initial
compression of the microbubble, R0/RSF, based on static shell equilibrium, Eq. (6), assuming
spherosymmetry:

Rps ≡ R0

RSF
= F

(
P′

st − P′
G(t ′ = 0)

P′
st

)
= F (�Pps). (14)

In order to determine the pressure inside the bubble the assumption of uniformity due to neg-
ligible density and kinematic viscosity of the enclosed gas is made. Moreover, bubble oscillations
are characterized as nearly isothermal since heat transfer between the bubble and the surrounding
liquid is assumed to take place fast in comparison with the timescale of the phenomena under
consideration. In this context, the bubble pressure is given by

PG(t = 0)V γ
G (t = 0) = PG(t )V γ

G (t ) = const, (15)

with VG denoting the dimensionless instantaneous volume of the bubble, VG(t = 0) = 4π
3 the initial

volume of the bubble, and γ the polytropic constant set to 1.07 for an almost isothermal variation.
The latter value is also close to the ratio of specific heats of certain ideal gases that are carried by
known contrast agents and undergo adiabatic pulsations during insonation [3,7,8].

III. STABILITY ANALYSIS

A. Static stability analysis

As was stressed in the introduction section, lipid-coated microbubbles are observed to pulsate
around a compressed and deformed state instead of the initial spherical configuration, and this
dynamic response pattern is often called “compression-only” pulsation. Since coated microbubbles
are also known [14,16,24] to possess a rich bifurcation diagram that contains significantly com-
pressed states due to their compressibility and shell elasticity, it is important to establish a potential
association between these two aspects of their static and dynamic response. To this end, we perform
a systematic analysis of the static configuration of lipid and polymeric microbubbles aiming at the
construction of bifurcation diagrams for a parameter range, in terms of size, area dilatation and bend-
ing moduli, that is relevant to available acoustic measurements. The numerical methodology closely
follows the analysis presented by Lytra and Pelekasis [14,25]. It entails solution of the formulation
presented in the previous section setting the fluid and interfacial velocity to zero. Numerical solution
was performed via the Galerkin Finite Element Methodology that employs 1D cubic splines for the
description of the bubble shape. These basis functions satisfy continuity of the second derivative and
this facilitates treatment in the weak formulation of bending stresses which involve fourth-order
derivatives. The nonlinearity of the problem is treated with the Newton-Raphson method with
the determinant of the Jacobian providing the bifurcation points when it crosses from positive to
negative values and vice versa. The calculated eigenvector corresponding to a vanishing eigenvalue
provides the details of the emerging branch in the vicinity of the bifurcation point. In this fashion,
previously obtained bifurcation diagrams are extended and complemented to accommodate the
needs of the present study. Evolution of the obtained static equilibrium as the external overpressure
varies is captured via simple or arc-length continuation in portions of the solution branch where
the determinant of the Jacobian is nonzero and around limit points, respectively. As postprocessing
of the numerical process the total energy of the microbubble, accounting for shell elastic energy
in terms of stretching and bending and the energy due to volume compression and surface tension,
is calculated and compared among different solutions obtained for the same shell parameters. The
bifurcation diagrams for the cases we examine are given in Sec. V A in the (V/V0,ε) plane, with V0

denoting the initial bubble volume and ε = �P
′
/P

′
st = (P

′
∞ − P

′
st )/P

′
st ′ , the dimensionless external

overpressure as a function of the dimensionless bending resistance, kB/(χR2
0), and dimensionless

initial overpressure, �Pps.
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B. Parametric stability analysis

When they are subject to a large enough far-field overpressure coated microbubbles tend to
eventually acquire deformed shapes that are energetically favored, among the ones predicted by
the bifurcation diagram corresponding to the shell parameters. As a result, growth of the dominant
shape modes occurs spontaneously albeit on a much larger timescale in comparison with the
natural frequency for volume pulsation [16], when they are absent from the initial microbubble
shape, e.g., when the initial bubble shape is spherical. However, this process can be significantly
accelerated through parametric shape mode excitation when an acoustic disturbance is imposed
in the far field, provided the amplitude and frequency of the disturbance in conjunction with the
shell viscoelastic properties allow for such a transition to take place. Tsiglifis and Pelekasis [15]
performed stability analysis for the spherosymmetric pulsations of a contrast agent that is excited
acoustically with small axisymmetric disturbances. In this fashion, they obtained phase diagrams
illustrating the amplitude threshold for parametric mode excitation and dynamic buckling (DB) to
occur, as a function of microbubble rest radius for fixed forcing frequency and shell properties.
Dynamic buckling refers to a Rayleigh-Taylor-type instability that occurs very fast during the
rebound phase of the radial pulsation following maximal volume compression, that triggers loss
of shell cohesion. When the amplitude threshold for parametric instability is sufficiently below the
one for DB saturated pulsations around a deformed shape are possible and this bears significance to
the onset of compression-only behavior of coated microbubbles. In the present article the analysis by
Tsiglifis and Pelekasis is extended and enriched with features that affect the emergence of parametric
mode excitation. In particular, we will examine the manner in which the stability of contrast agents
is affected when the disparity between area dilatation and bending modulus or between shear and
dilatational viscosity increases. Coupling the above effects with the situation where the shell is
initially at a prestressed state, possibly due to gas leakage through the shell, offers additional
possibilities for shell destabilization. Since the detailed stability analysis is given in [15], in the
present study we only present a brief description of the analysis and focus mainly on the impact of
additional features such as prestress and the disparity between shear and dilatational viscosity, in
the interest of brevity.

We perturb the base state of the system that corresponds to the microbubble performing radial
pulsations due to an acoustic disturbance that is imposed in the far field. Upon assuming incom-
pressible flow and neglecting viscous dissipation in the surrounding liquid in comparison with shell
viscosity [26] the zeroth-order problem is recovered that consists of a modified Rayleigh-Plesset
equation describing the instantaneous radial position R̂ of the shell in response to the far-field
pressure P∞(t ) = Pst + εcost :

R̂
..

R̂ +3

2

.

R̂2 = PG(t ) − 2k0
m

Ŵ e
− �F 0

n − P∞(t ), R̂(t ) ≡ R′/RSF,

R̂(0) = R0/RSF = Rps = 1 + Ud

RSF

Ud <0−−−→ Rps < 1, ˙̂R(t = 0) = 0 (16)

with the gas pressure PG(t) provided by Eq. (15), �F 0
n signifying the zeroth-order normal com-

ponent of the force due to shell viscoelasticity, k0
m = 1/R̂ the instantaneous dimensionless mean

curvature of the pulsating microbubble while Rps is a measure of the shell prestress that depends
on the initial dimensionless overpressure �Pps. The stress-free radius, RSF, is employed as a
characteristic length scale rather than the initial bubble radius, R0, in order to conform with the
analysis in Ref. [15]; Ŵ e is also defined via the stress-free radius in this context. Upon expanding
in the sound amplitude ε and linearizing, the natural frequency for volume pulsation is obtained in
the form of Eq. (3). In the present study we are interested in obtaining the amplitude threshold for
growth of shape modes, therefore we investigate the microbubble response to disturbances involving
axisymmetric shape modes for arbitrarily large sound amplitude ε. To this end we examine the
dynamics of the microbubble in response to infinitesimal disturbances in the bubble shape, scaled
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via dimensionless parameter ε̂ � 1, involving axisymmetric shape modes:

r = R̂(t ) + ε̂w, θ = θ0 + ε̂u/R̂(t ), (17)

with w(θ0), u(θ0), denoting the displacements along the radial and azimuthal directions, respectively,
and θ0, the azimuthal angle along the generating curve of the spherosymmetric stress-free shape.
Following Tsiglifis and Pelekasis [15] we expand w and u in terms of the Legendre polynomials Pn

which constitute the eigenfunctions of the problem in the azimuthal direction,

w =
∞∑

n=1

wn(t )Pn(θ0), ψ =
∞∑

n=1

ψn(t )Pn(θ0), u ≡ dψ

dθ0
, (18a)

and recover, to first order in ε̂, the time evolution of the coefficients of the different shape modes in
the manner obtained in the latter study:

..
wn +3

.

R̂

R̂

.
wn +

[
(1 − n)

..

R̂

R̂
+ (n + 1)(n − 1)(n + 2)

Ŵ eR̂3

]
wn

+ n + 1

R̂
�F 1

n (
.

wn,
.

ψn,wn, ψn, B̂, Ĝ,Ŵ e, R̂es, R̂esh, Rps, R̂,
.

R̂, n) = 0, (18b)

�F 1
t (

.
wn,

.

ψn,wn, ψn, B̂, Ĝ,Ŵ e, R̂es, R̂esh, Rps, R̂,
.

R̂, n) = 0, (18c)

where B̂ = kB/(χR2
SF), Ĝ = χ/ρω2

f R3
SF R̂es = ρω f R3

SF/μs, R̂esh = ρω f R3
SF/μsh, Ŵe =

ρω2
f R3

SF/σ . The exact form of the normal and tangential stress components �F 1
n ,�F 1

t is given
in detail in [15] and is modified here in order to account for prestress Rps and the difference in
shear and dilatational viscosities μsh, μs. The respective forms are provided in the Appendix
of the present study. Equations (18) are solved for a given initial deviation from sphericity,
wn(t = 0), ψn(t = 0), and a radial history, R̂(t ), provided by Eq. (16) and the appropriate initial
conditions. When |wn(t )|, |ψn(t )| exhibit growth within 30 periods of the forcing, ω f , the nth
Legendre mode is considered as parametrically unstable, whereas when |wn(t )|, |ψn(t )| become
comparable with the microbubble instantaneous radius R̂(t ) within 10 periods of the forcing the
dynamic response is identified as DB leading to loss of microbubble cohesion. The former response
type is captured for a lower sound amplitude and is categorized as parametric instability that can
potentially generate a “compression-only” behavior, when the nth mode corresponds to the one
dominating the buckled shapes captured in the static bifurcation diagrams presented in Sec. V A 1.

IV. NUMERICAL METHODOLOGY

Based on the problem formulation of Sec. II we also perform numerical simulations of freely
pulsating microbubbles in response to a step change or an acoustic disturbance, in order to
investigate their dynamic response leading to the onset of saturated pulsations. The possibility
for pulsation around a compressed state is investigated in order to provide a mechanism for
compression-only response to emerge. The numerical methodology proposed by Vlachomitrou
and Pelekasis [16] is implemented with a superparametric finite element formulation involving the
standard biquadratic/bilinear representation for the unknown velocity and pressure fields coupled
with the B-cubic splines for the unknown location of the bubble-liquid interface. The introduction
of cubic splines is necessary because a fourth-order derivative arises in the force balance equation
[Eq. (6)] through the bending resistance of the shell. The continuity of the velocity components
is imposed as an essential boundary condition on the interface, whereas the normal and tangential
force balances are employed and discretized using the 1D cubic splines as bases functions in order
to determine the two coordinates r(ξ ,t) and θ (ξ ,t) of the shape of the microbubble. On the far
field, which is considered to be 10 rest radii away from the bubble centroid, the imposed pressure
disturbance is prescribed, while the velocity components are set to zero. The fully implicit Euler
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scheme is introduced for the temporal integration and the nonlinearity of the problem is treated with
the Newton-Raphson method.

The mesh is dynamically adapted once the interface is updated, using the elliptic mesh generation
scheme. According to the employed method the coordinates of the grid points in the physical domain
are defined by solving the following set of partial differential equations [27,28]:

∇ ·
(

ε1

√
r2
ξ + z2

ξ

r2
η + z2

η

+ 1 − ε1

)
∇ξ = 0, (19)

∇ · ∇η = 0. (20)

These equations are discretized using the biquadratic Lagrangian basis functions and the integral
terms that the divergence theorem produces are omitted to weakly impose orthogonality of the grid

lines in the boundaries. Introduction of the term

√
r2
ξ +z2

ξ

r2
η+z2

η
in the first equation allows the η curves to

intersect the interface almost orthogonally, while ε1 is an empirical parameter that ranges between 0
and 1 and controls the extent of mesh smoothness versus its orthogonality. Its value in each problem
is defined by trial and error and in our case is set to 0.1. The second equation generates the ξ curves
which are nearly parallel to the interface and are constructed so that they follow its deformation. In
any boundary where the coordinate is known, the corresponding equation for the grid is not written.
Instead, the value of the coordinate is imposed as an essential boundary condition.

The validation of the numerical methodology adopted in this paper, with or without wall inter-
action, was thoroughly presented in Vlachomitrou and Pelekasis [16,22] with several benchmark
tests.

V. RESULTS AND DISCUSSION

Before we procced to discuss the results of the dynamic numerical simulations it is crucial to
examine the encapsulated microbubbles we consider theoretically, in terms of static stability analysis
and parametric stability analysis. This will help us interpret the numerical results and establish a
potential association between their dynamic and static response.

Bubbles with soft lipid shells obeying the Mooney-Rivlin constitutive law and hard polymeric
shells following the standard neo-Hookean behavior are studied in an effort to capture the dif-
ferent response patterns reported in the literature. More specifically, for the lipid-shelled contrast
agents we consider a stress-free radius RSF = 3.6 μm, thickness δ = 1 nm, bending modulus
kB = 3 × 10−14Nm and we employ the Mooney-Rivlin constitutive law with the degree of softness
b set to zero [3,21]. Three different cases for the area dilatational modulus are examined: χ = 0.12
N/m, χ = 0.24 N/m, and χ = 0.48 N/m. The dilatational shell viscosity is set to 60 × 10−9 kg/s,
whereas the shear shell viscosity varies from 3 × 10−9 kg/s to 60 × 10−9 kg/s (μsh/μs varies from
0.05 to 1). For the polymeric shell we consider the PB-127 microbubble with a stress-free radius
of RSF = 2 μm, δ = 15 nm thickness, area dilatation modulus χ = 9 N/m and a bending modulus
equal to kB = 2.25 × 10−16Nm. The dilatational viscosity is set to 45 × 10−9 kg/s, whereas the
shear viscosity varies from 2.25 × 10−9 kg/s to 45 × 10−9 kg/s (μsh/μs varies again from 0.05 to 1).
The selection of the area dilatational modulus, the shell thickness and the dilatational shell viscosity
was based on typical shell viscoelastic properties that have been estimated in experimental studies
[8,9,29–31] and previously employed for the analysis and simulations of coated microbubbles; e.g.,
see [14–16,22,23,26].

In view of previous reports of gas leakage between acoustic measurements of coated microbub-
bles and the resulting onset of shape deformation at relatively small sound amplitudes [6–10], in
the present study emphasis is placed on the effect of prestress on the dynamic response of the
microbubble by effecting the onset of deformation and buckling at significantly lower amplitudes.

113601-9



PELEKASIS, VLACHOMITROU, AND LYTRA

This is the opposite effect to the swelling that is often observed with artificial capsules in response
to the osmotic pressure that develops when they are suspended in a saline solution [32], which
has a stabilizing impact on buckling. In order to facilitate comparison between shapes registered in
bifurcation diagrams (Sec. V A 1) using static analysis and the dynamic response pattern captured
for prestressed initial conditions, in the latter case we carry out parametric stability analysis and
perform simulations. We employ an initially compressed bubble radius R0 that is related with the
stress-free radius, RSF, via Eq. (1) with the initial radial displacement Ud taken to be negative
corresponding to a compressed state. As was already pointed out, initial compression is assumed
to be a result of gas leakage through the shell before the acoustic disturbance is applied, while the
far-field pressure remains constant, P′

∞ = P′
st; see Eq. (14). In this case the initial radius R0 is taken

to be slightly larger than the critical radius RB for static buckling to take place. Then a step change
or an acoustic disturbance is applied of the form shown in Eq. (2) corresponding to a vanishing or
finite forcing frequency, respectively.

The amplitude ε of the disturbance is selected so that it lies beyond the threshold for the onset
of static buckling registered in the bifurcation diagrams constructed in Sec. V A 1 for a prestressed
microbubble with the same amount of prestress, Ud/RSF, and viscoelastic properties; i.e., RSF >

R0 > RB.

A. Stability

1. Construction of bifurcation diagrams

As will also be discussed in the following analysis, in order to assist interpretation of and detailed
comparison with numerical simulations of prestressed microbubbles performed in the present study,
the bifurcation diagrams obtained herein pertain to shells that are prestressed. As a result, the
calculated equilibrium branches differ from those obtained by Lytra and Pelekasis [14] but retain
their original qualitative features. More specifically, Figs. 2–5 illustrate the features of the static
response of coated microbubbles for a strain-softening shell with progressively larger area dilatation
χ (Figs. 2–4) and a hard polymeric shell that exhibits neo-Hookean behavior (Fig. 5). Bifurcation
diagrams obtained for an initially prestressed shell are provided, followed by the shape evolution
in the emerging solution branches that invariably produce significantly compressed shapes as their
deviation from sphericity increases. The branches are named after the Legendre mode that arises
at the bifurcation point. Pn refers to the nth Legendre mode and the interfacial shape is illustrated
in terms of the Cartesian coordinates zB = rcosθ and x = rsinθ where r, θ , ϕ, signify spherical
coordinates with θ , ϕ denoting the azimuthal and polar angles; coordinate zB is measured with
respect to the geometric center of the bubble and is aligned with the axis of symmetry.

Figures 2–5 portray the evolution of the bifurcation diagram for decreasing relative bending
resistance of the shell, B̂ = kB/(χR2

SF), indicating a progressive hardening of the shell material. As
far as the lipid shells are concerned (Figs. 2–4), it is clear that the bifurcation branches correspond
to low shape modes whereas as the shell becomes harder (Fig. 4) higher modes appear as well. In
terms of amplitude, for the softer shell with χ = 0.12 N/m (Fig. 2) the symmetric mode P2 develops
first (εP2 ≈ 0.08) and modes P3 (εP3 ≈ 0.169) and P4 (εP4 ≈ 0.445) follow. For the shell with χ =
0.24 N/m (Fig. 3) the asymmetric mode P3 (εP3 ≈ 0.031) emerges first and shortly after modes
P2 (εP2 ≈ 0.09) and P4 (εP4 ≈ 0.174) appear, whereas when the area dilatational modulus is set to
χ = 0.48 N/m we have four bifurcation branches: P3 (εP3 ≈ 0.12), P2 (εP2 ≈ 0.163), P5 (εP5 ≈
0.311), and P4 (εP4 ≈ 0.375). Finally, in Fig. 5 that corresponds to a polymeric shell, the bifurcation
branches correspond to high modes P19 and P20 (εP19 ≈ 8.9 × 10−2 and εP20 ≈ 9 × 10−2) reflecting
intense shell hardening.

In all cases the branches exhibit bifurcation points. Branches characterized by the same mode
develop transcritically with oblate and prolate shapes; see, for example, P2 or P4 in Fig. 2(a).
Subcritical branches exhibit limit points that lead the solution development towards higher dimen-
sionless overpressure, P2 oblate or P4 oblate, while supercritical branches develop monotonically,
like the P3 in the same figure. The shapes eventually develop contact areas for smaller amplitudes
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FIG. 2. (a) Bifurcation diagram for a lipid-coated microbubble, embedded graph shows details around the
bifurcation points, and (b)–(d) shape of the microbubble corresponding to P2 oblate and prolate, P3 asymmetric
and P4 oblate and prolate branches, respectively, for selected points on the bifurcation diagram (V/V0, ε); χ =
0.12 N/m, kB = 3 × 10−14 N m, Ud = −0.61 μm, RSF = 3.6 μm; Rps = R0/RSF ≈ 0.83, B̂ = kB/(χR2

SF ) ≈
0.02.

in comparison with branches obtained without prestress. Shapes indicated with negative amplitude
pertain to the part of the solution branch that evolves towards lower amplitudes below the original
bifurcation point. The shapes presented in Figs. 2–5 along with their level of compression and
dominant shape modes will be used in order to assist the interpretation of dynamic patterns in the
acoustic response of prestressed microbubbles obtained by our simulations presented in Sec. V B.
Hence, a more detailed discussion on the above bifurcation diagrams is postponed until a latter
section.

2. Parametric stability analysis

Phase diagrams are also constructed for shells exhibiting the amount of prestress for which
bifurcation diagrams were obtained in Sec. V A 1 and varying the ratio of shear to dilatational
viscosity of the shell, μsh/μs. Thus, the amplitude threshold for the different shape modes to emerge
via parametric instability or DB is illustrated, along with the static buckling thresholds for the
branches that bifurcate from the main spherosymmetric branch. The latter are shown as horizontal
lines since they do not depend on shell viscosity. In particular, Figs. 6–9 provide the phase diagrams
for the shells whose bifurcation diagrams are provided in Figs. 2–5. Figures 7(b) and 9(d) provide
the phase diagram for varying discrepancy between shear and dilatational shell viscosity in the
absence of initial prestress for a lipid and a polymeric shell, in order to stress the impact of prestress
on shell stability.

By carefully examining these graphs, it is clear that the initial prestress reduces the static
thresholds below the parametric excitation thresholds. This is most evident if we compare Fig. 7(a)
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FIG. 3. (a) Bifurcation diagram for a lipid-coated microbubble, embedded graph shows details around the
bifurcation points, and (b)–(d) shape of the microbubble corresponding to P3 asymmetric, P2 oblate, and prolate
and P4 prolate branches, respectively, for selected points on the bifurcation diagram (V/V0, ε); χ = 0.24 N/m,
kB = 3 × 10−14 N m, Ud = −0.46 μm, RSF = 3.6 μm; Rps ≈ 0.872, B̂ ≈ 0.01.

that assumes an initial prestress state with Fig. 7(b) that corresponds to a stress-free initial condition
[the same is also evident by comparing Fig. 9(c) to Fig. 9(d)]. In this fashion, a “window” is formed
in sound amplitude where the dynamic and the static limits are well separated. However, as the
shell becomes harder, this window becomes narrower, especially for polymeric shells (Fig. 9).
In the latter case, not only the parametric shape mode excitation limits for many high modes are
significantly low, but the dynamic bucking (DB) limit falls below the parametric thresholds and
thus quick shell destabilization is expected. It is also clear that for lipid shells (Figs. 6–8) as the
shear viscosity of the shell is reduced compared to the dilatational one, the parametric and DB
limits decrease as well, whereas for polymeric shells (Fig. 9) the effect of the discrepancy nearly
vanishes. In addition, when the ratio of the shear to dilatational shell viscosity is considerably small
for lipid-shelled microbubbles the shape modes that are excited parametrically correspond to the
modes of the bifurcation branches. The latter behavior is not observed for polymeric shells.
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FIG. 4. (a) Bifurcation diagram for a lipid-coated microbubble, embedded graph shows details around the
bifurcation points, (b) shape of the microbubble corresponding of P3 asymmetric branch, and (c) corresponding
shape of the merging branches P2 and P4 for selected points on the bifurcation diagram (V/V0, ε); χ = 0.48
N/m, kB = 3 × 10−14 N m, Ud = 0.3 μm, RSF = 3.6 μm; Rps ≈ 0.916, B̂ ≈ 0.005.

It should be pointed out that in carrying out the stability analysis liquid viscosity was neglected;
see also [15]. Consequently, the produced phase diagrams only provide a general trend for the
amplitude thresholds of the emerging shape modes. The latter will be underestimated in comparison
with the simulations that account for viscous dissipation in the surrounding liquid. Furthermore,
the effect of forcing frequency should be emphasized since a very small frequency will tend to
reproduce the static buckling thresholds pertaining to a step change in the far-field pressure, whereas
a large frequency will favor the predictions of the above phase diagrams corrected for the effect
of liquid viscosity. In this context, dynamic simulations performed in the present study for freely
pulsating bubbles will be employed in order to corroborate the above patterns and are presented
in the following section. These effects will also be critical for the interpretation of numerical
simulations that capture compression-only response of coated microbubbles pulsating in the vicinity
of a rigid wall, but the latter simulations will be presented in a future study. In the present study we
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FIG. 5. (a) Bifurcation diagram for a polymer-coated microbubble (χ = 9 N/m, kB = 2.25 × 10−16 N
m, Ud = −0.004 μm, RSF = 2 μm, δ = 15 nm) and (b, c) shapes of the microbubble corresponding to P19

asymmetric and P20 symmetric branches, respectively, for selected points on the bifurcation diagram (V/V0, ε);
embedded graph shows details around the bifurcation points; Rps ≈ 0.999, B̂ ≈ 6 × 10−6.

are mainly interested in identifying the mechanism behind the onset of compression-only response,
hence we extend the simulations over a large number of pulsations, ∼50, leaving the specification
of time frame to the study that includes wall effects.

B. Dynamic simulations

In this section we proceed to present and discuss the results of the simulations performed with
freely pulsating bubbles and examine them in the light of predictions by bifurcation diagrams and
linear stability analysis obtained for the same shell parameters.

Dynamic simulations performed in [16] for an unbounded flow and a step change disturbance in
the far-field pressure of amplitude ε = 2, captured the evolution of the interfacial shape until the
bubble concludes to the static equilibrium. Figures 10(a) and 10(b) provide the temporal evolution
of the bubble shape and breathing mode P0 as well as the Legendre shape mode decomposition of
the interface for this case. After the onset of static buckling the bubble temporarily achieves static
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FIG. 6. Phase diagram with increasing μsh/μs ratio for a lipid-coated microbubble (RSF = 3.6 μm, μs =
60 × 10−9 kg/s, χ = 0.12 N/m, kB = 3 × 10−14 N m, δ = 1 nm) subject to an initial prestress of Ud =
−0.61 μm and an acoustic disturbance of f = 1.7 MHz; Rps ≈ 0.83, B̂ ≈ 0.02, R̂es ≈ 8.3.

equilibrium with an oblate symmetric shape that is bent in the region around the two poles; see
shape corresponding to t = 88.4 in Fig. 10(a) and mode saturation between t = 75 and t = 90 in
Fig. 10(b). It should be noted that in panels illustrating the evolution of bubble shapes, the horizontal
axis, zB, corresponds to the axis of symmetry. As time evolves, this static shape is destabilized
and the bubble, eventually, reaches another deformed equilibrium state that is asymmetric and
is characterized by significant volume reduction and lower total energy content compared to the
intermediate symmetric one. When the amplitude of the step change is reduced to ε = 1.75 the
bubble bypasses the symmetric equilibrium and settles to a similar asymmetric equilibrium as
the one shown in Fig. 10(a) on a similar time interval. Upon disturbing the same microbubble
in terms of stress-free radius and viscoelastic properties, albeit at an initially compressed state
with Ud = −0.46 μm due to gas leakage and with an amplitude ε = 0.3, a dynamic response that
is similar to the one illustrated in Figs. 10(a) and 10(b) is recovered, Figs. 10(c) and 10(d); the

FIG. 7. Phase diagram with increasing μsh/μs ratio for a lipid-coated microbubble (RSF = 3.6 μm, μs =
60 × 10−9 kg/s, χ = 0.24 N/m, kB = 3 × 10−14 N m, δ = 1 nm) subject to (a) an initial prestress of
Ud = −0.46 μm, (b) no initial prestress, and an acoustic disturbance of f = 1.7 MHz; Rps ≈ 0.872, B̂ ≈
0.01, R̂es ≈ 8.3.
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FIG. 8. Phase diagram with increasing μsh/μs ratio for a lipid-coated microbubble (RSF = 3.6 μm, μs =
60 × 10−9 kg/s, χ = 0.48 N/m, kB = 3 × 10−14 N m, δ = 1 nm) subject to an initial prestress of Ud =
−0.3 μm and an acoustic disturbance of f = 1.7 MHz; Rps ≈ 0.916, B̂ ≈ 0.005, R̂es ≈ 8.3.

FIG. 9. Phase diagram with increasing μsh/μs ratio for a polymer-shelled microbubble (RSF = 2 μm, μs =
45 × 10−9 kg/s, χ = 9 N/m, kB = 2.25 × 10−16 N m, δ = 15 nm) subject to (a)–(c) an initial prestress of
Ud = −0.004 μm and (d) no initial prestress and an acoustic disturbance of f = 1.7 MHz; Rps ≈ 0.999, B̂ ≈
6 × 10−6, R̂es ≈ 2.
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FIG. 10. Temporal evolution of bubble shape (a, c) and of the breathing, P0, and shape mode decomposition
(b), (d) for a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.24 N/m, kB = 3 × 10−14

N m, δ = 1 nm) in an unbounded flow environment. Simulations for a step change pressure disturbance and
μsh/μs = 1, (a), (b) ε = 2 without prestress and (c), (d) ε = 0.3 with prestress with Ud = −0.46 μm (Rps ≈
0.872); B̂ ≈ 0.01, R̂es ≈ 8.3.

amplitude ε = 0.3 is selected so that it leads to the same compressed spherical configuration with
an amplitude ε = 1.75 on a stress-free shell. The buckled shapes are not the same for the above
amplitudes but similar, dominated by the energetically favored P2 and P3 in the manner exhibited
by Fig. 3. In this fashion buckled shapes are obtained at a significantly lower amplitude ε with
respect to the stress-free state, in agreement with the bifurcation diagram and relevant shapes shown
in Fig. 3(a). Note also that the final microbubble shape nearly exhibits contact at the end of the

113601-17



PELEKASIS, VLACHOMITROU, AND LYTRA

FIG. 11. Temporal evolution of bubble shape (a), (c) and of the breathing, P0, and shape mode de-
composition (b), (d) for a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.24 N/m,
kB = 3 × 10−14 N m, δ = 1 nm) in an unbounded flow environment. Simulations without prestress for an
acoustic pressure disturbance, with f = 1.7 MHz and (a), (b) ε = 2, for an inviscid liquid and μsh/μs = 1, and
(c), (d) ε = 2.1 for liquid water and μsh/μs = 0.05; Rps = 1, B̂ ≈ 0.01, R̂es ≈ 8.3.

saturation as also indicated by the equivalent shapes in Fig. 3 for both asymmetric and symmetric
shapes for this amplitude range.

The dynamic behavior of the same coated microbubble was examined subject to an acoustic
disturbance by Tsiglifis and Pelekasis [26] and in an ensuing study by Vlachomitrou and Pelekasis
[22,23] neglecting or accounting for viscous dissipation in the surrounding liquid, respectively.
In both studies an initially stress-free state was considered while the dilatational and shear shell
viscosities were taken to be the same. In the former study parametric instability was captured at an
amplitude of ε = 2 and ω f = 2π1.7 MHz while the microbubble was seen to perform saturated pul-
sations between the spherical shape at expansion and the buckled shape at compression dominated
by the parametrically excited P4, Fig. 11(a). At the same time the time evolution of P0 exhibits
a type of “compression-only” response in the form of preferential excursion to compression as a
result of energy transfer between P0 and P4 [Fig. 11(b)]. Taking water as the surrounding medium
and using the stress-free radius and forcing frequency used in the above simulations as indicative
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values we obtain the Reynolds number, Re = ρω f R2
SF/μ ≈ 138, based on which we expect that

liquid viscosity will not bear a dramatic effect on the dynamic response of the microbubble.
Indeed parametric excitation of P4 is also captured by Vlachomitrou and Pelekasis [22,23];

however, the impact of liquid viscosity is that it decelerates the onset of deformation and energy
transfer between P0 and P4 thus increasing the amplitude threshold to ε = 2.5 and nearly eliminating
the “compression-only” response pattern. Nevertheless, the microbubble tends to pulsate around the
buckled shape dominated by P4 as can be gleaned by the emerging shapes and volume compression.
This is in cross reference to the bifurcation diagram [25] and the phase diagram in Fig. 7(b) both
obtained in the absence of prestress, indicating P4 as the first emerging parametrically unstable
shape mode. Upon introducing a distinctly reduced shear shell viscosity, dynamic simulations in
the absence of prestress initially capture the well-documented radial excursion towards expansion
during the phase of negative external overpressure, due to the strain-softening nature of the shell;
see [3,26]. However, the microbubble eventually exhibits a more intense volume compression during
the compressive phase of the pressure disturbance as illustrated in Figs. 11(c) and 11(d) when ε =
2.1. In the latter figures the shape and volume of the pulsating bubble are oscillating between the
two extremes corresponding to a spherical shell during maximal expansion and the buckled shape
dominated by P4 at compression. Owing to the large number of unstable modes, as illustrated by the
phase diagram of Fig. 7(b), the shape is polluted by P3 during compression and the volume pulsation
and growth of shape modes do not reach saturation. Instead they exhibit an oscillatory behavior due
to simultaneous growth of P4 and P3, Figs. 11(c) and 11(d).

1. Combined effect of prestress and reduction of shear viscosity

Motivated by the impact of shell viscosity on the emerging shape modes we proceed to study
the effect of a certain discrepancy between the shear and dilatational viscosity of the shell. We
perform a parametric study on the dynamic response of a microbubble with varying degree of
such a discrepancy in favor of the dilatational viscosity, in order to facilitate energy transfer
from the breathing to shape modes upon saturation of the pulsation. Indeed, decreasing the shear
viscosity reduces the threshold for parametric shape mode excitation for cases with or without
prestress. However, the absence of prestress does not induce any significant volume reduction during
saturation except for cases with significant discrepancy between the shear and dilatational shell
viscosity, as illustrated in Figs. 11(c) and 11(d) where the shape is dominated by P4 and P3. On the
contrary, coexistence of prestress with a reduction in the shear viscosity of the shell allows for the
compression-only response pattern to clearly emerge for a relatively wide range of shell viscosities,
as illustrated by the time evolution of shape modes discussed below.

To this end, we maintained the properties of the contrast agent employed in simulations shown
in Fig. 11, while gradually reducing the shear viscosity of the shell down to μsh/μs = 0.05 with
the dilatational one kept constant, μs = 60 × 10−9 kg/s. We also set the initial compression of the
bubble to Ud = −0.46 μm and thus the initial radius of the bubble, R0 = 3.14 μm, is slightly above
the critical threshold for static buckling. In particular, it corresponds to a radial compression of
R0/RSF ≈ 0.872 when the critical compression for buckling to occur is RB/RSF ≈ 0.87 pertaining
to a bifurcating branch emerging at a critical amplitude εcr ≈ 0.04 that is dominated by P3. The
bifurcation diagram in Fig. 3(a) illustrates the evolution of the three major nonspherical bifurcating
branches that exist for a microbubble with the above viscoelastic properties, dominated by an
asymmetric, P3, and two symmetric shape modes, P2 and P4, that emerge in the order cited in terms
of amplitude. It provides a comprehensive bifurcation diagram in the (V/V0, ε) plane illustrating the
structure of static equilibrium and the evolution of deformed shapes as a step change on the external
overpressure is applied, on a coated microbubble that is prestressed as a result of gas leakage through
the bubble shell.

In order to obtain a clearer picture of the selection process pertaining to the emerging deformed
shapes, we examine graphs of the amplitude thresholds for the parametric excitation of specific
Legendre modes for the cases with and without prestress in Figs. 7(a) and 7(b), respectively, and
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FIG. 12. Temporal evolution of bubble shape (a) and the volume and shape mode pulsation (b), for a
lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.24 N/m, kB = 3 × 10−14 N m, δ = 1
nm) subject to an acoustic disturbance with f = 1.7 MHz in an unbounded flow environment for the case
with prestress, Ud = −0.46 μm (Rps ≈ 0.872), ratio μsh/μs = 0.6, and sound amplitude ε = 1.3; kB/((χR2

0 ) ≈
0.01; B̂ ≈ 0.01, R̂es ≈ 8.3.

a forcing frequency of 1.7 MHz. In these phase diagrams the lines corresponding to amplitude
thresholds for static buckling to occur, leading to the major bifurcating branches, are also shown
along with the amplitude threshold for DB to occur within 10 cycles of the forcing. The latter is an
upper threshold in the imposed sound amplitude beyond which loss of cohesion and shell destruction
is expected to take place.

When the shear and dilatational viscosities are relatively large and equal in magnitude, growth
of shape modes is suppressed for medium sound amplitudes. Due to the prestress of the shell,
the threshold for static buckling to occur is well below that for parametric shape mode excitation.
The latter, as predicted by our numerical simulations, is located slightly below the prediction of
the phase diagram [Fig. 7(a)]. In the narrow gap between the threshold for parametric instability
and DB, 1.8 � ε � 2.3, a number of symmetric and asymmetric shape modes emerge that lead
to a compression-only type response. However, the simulations eventually stop due to contact of
different regions of the interface. This behavior is anticipated by the corresponding bifurcation
diagram [Figs. 3(a)–3(c)], which predicts contact of the interface for shapes evolving along the
symmetric and asymmetric branches in the above amplitude range.

Upon raising the discrepancy in favor of dilatational viscosity, i.e., setting μsh/μs = 0.6, growth
of P4 eventually dominates the shape of the bubble that oscillates between the nearly spherical shape
at expansion and the P4-dominated shape at compression [Figs. 12(a) and 12(b)]. The final volume
reduction is of the order predicted by the bifurcation diagram of the P4 branch [Figs. 3(a) and 3(d)]
for the same amplitude. P4 is also the mode identified by parametric stability [Fig. 7(a)] as the one
that is first excited for this parameter range.

Further reduction of shell shear viscosity to μsh/μs = 0.3 facilitates growth of P2 via parametric
instability, as registered in the respective phase diagram in Fig. 7(a). This reflects in the acquired
shapes and the additional volume reduction during compression; see also Figs. 13(a) and 13(b). The
bubble acquires shapes that essentially belong to the branch characterized by oblate P2 shapes, as
it bypasses the prolate part of this branch due to its larger energy content, and tends to produce
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FIG. 13. Temporal evolution of bubble shape (a), (c) and the volume and shape mode pulsation (b), (d),
for a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.24 N/m, kB = 3 × 10−14 N m,
δ = 1 nm) subject to an acoustic disturbance with f = 1.7 MHz in an unbounded flow environment for the
case with prestress, Ud = −0.46 μm (Rps = 0.872), and μsh/μs = 0.3 when (a), (b) ε = 0.7 and (c), (d) ε =
1.2; kB/(χR2

0 ) ≈ 0.01; B̂ ≈ 0.01, R̂es ≈ 8.3.

the energetically preferred oblate shapes. In fact, due to the finite forcing period the microbubble
does not have the time to acquire the shape captured by static analysis in Fig. 3(c), corresponding
to an amplitude of 0.7, which exhibits contact. Rather it pulsates around oblate shapes with varying
degree of deformation depending on the extent of P4 growth that is also parametrically triggered at
this parameter range. Increasing the sound amplitude to 1.3 parametrically excites P3 along with P2

on a much faster timescale [Fig. 7(a)], and the dynamic response is characterized by hybrid shapes
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FIG. 14. Temporal evolution of bubble shape (a) and the volume and shape mode pulsation (b), for a lipid-
coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.24 N/m, kB = 3 × 10−14 N m, δ = 1 nm)
subject to an acoustic disturbance with f = 1.7 MHz in an unbounded flow environment for the case with
prestress, Ud = −0.46 μm (Rps = 0.872), and μsh/μs = 0.05, ε = 0.3; B̂ ≈ 0.01, R̂es ≈ 8.3.

dominated by oblate P2 and P3 while achieving even stronger volume compression [Figs. 13(c) and
13(d)]. It is as if the microbubble pulsates along the oblate P2 branch [Figs. 3(a) and 3(c)] with
varying levels of deformation involving the asymmetric P3 mode, and a stronger excursion towards
compression in comparison with the expansion phase of its pulsation, with reference to the initial
spherical configuration. Clearly, for this parameter range, the tendency to compress as they deform
overwhelms the standard tendency of spherical strain-softening shells to expand, and this is the kind
of response pattern registered in the literature as compression only.

By imposing an acoustic disturbance of amplitude 0.3 on a microbubble with an even lower shear
shell viscosity μsh/μs = 0.05, the compression-only effect is again captured dominated by oblate
P2 shapes. In fact, it is so intense that after its onset the bubble tends to remain constantly in the
compressed phase compared to the initial configuration. Furthermore, it is of great interest that, as
illustrated by Figs. 14(a) and 14(b), the shape and volume the bubble acquires during maximum
compression are very close to the static solution corresponding to an imposed amplitude of 0.3
[Figs. 3(a) and 3(c)] exhibiting contact between the two poles at the equatorial plane. This is a
result of the nearly negligible shear shell viscosity that allows for quick growth of shape modes that
periodically lead the dynamics towards the preferred static configuration. A slight increase of the
shear shell viscosity to μsh/μs = 0.1 or raising the forcing frequency to f = 2 MHz prevent contact
from taking place during the compression phase of the bubble pulsation by damping parametric
growth of shape modes or, equivalently, decreasing the duration of the excitation process during
compression; see Fig. 15. In fact, when the forcing frequency is raised [Figs. 15(c) and 15(d)],
the bubble eventually exhibits saturated pulsations around the asymmetric P3 mode that is also
preferentially excited at this amplitude and shear shell viscosity range [Fig. 7(a)] and is energetically
favored in the bifurcation diagram [Figs. 3(a) and 3(b)] based on static analysis.

2. Effect of shell elasticity

In this subsection we proceed to examine how shell elasticity affects the onset of the
compression-only behavior. We consider two shells obeying a strain-softening constitutive law,
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FIG. 15. Temporal evolution in an unbounded flow environment of bubble shape (a), (c) and volume and
shape mode pulsation (b), (d), for a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.24
N/m, kB = 3 × 10−14 N m, δ = 1 nm) with prestress, Ud = −0.46 μm (Rps = 0.872), subject to an acoustic
disturbance with amplitude ε = 0.3 and (a), (b) f = 1.7 MHz, μsh/μs = 0.1, B̂ ≈ 0.01, R̂es ≈ 8.3 and (c),
(d) f = 2 MHz, μsh/μs = 0.05, B̂ ≈ 0.01, R̂es ≈ 9, 8.

namely a softer and a harder shell compared to the one studied in Sec. V B 1 in terms of area
dilatation modulus, χ = 0.12 N/m and χ = 0.48 N/m. It is a parametric study which, along with
the case with a polymeric shell, focuses on the impact of a progressively harder shell on the
compression-only effect by gradually raising the ratio between bending and membrane stiffness,
kB/(χR2

0). The shell with χ = 0.12 N/m is a soft shell and consequently it is not as conducive
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to significant bending and requires larger amplitudes for buckling to take place. The bifurcation
diagram for this shell [Fig. 2(a)] is similar to the case with χ = 0.24 N/m, with the exception of the
P3 branch that evolves towards prolate rather oblate shapes along with the P4 branch. Its dynamic
response subject to an acoustic disturbance with forcing frequency ω f = 2π1.7 MHz, under a certain
amount of prestress, RSF = 3.6 μm, Ud = −0.61 μm, does not leave a useful amplitude window for
sufficient growth of shape modes. As a result deformation and static buckling take place above the
threshold for DB, particularly for small differences between shell dilatation and shear viscosity; see
also Fig. 6. As the shear shell viscosity decreases, μsh/μs � 0.65, shape modes corresponding to
the major bifurcation branches become parametrically unstable and provide the excursion to smaller
volumes during compression typically associated with the compression-only type response pattern.
Based also on the phase diagram provided in Fig. 6 and the corresponding bifurcation diagram in
Fig. 2(a) for χ = 0.12 N/m, P3 and P4 become unstable leading to a pulsation between the spherical
configuration at maximum expansion and prolate shapes that are asymmetric and exhibit significant
volume reduction with varying amount of P4 at maximum compression; see also Figs. 2(c) and 2(d).
Figures 16 and 17 illustrate this type of behavior for the above parameter range and is evident that as
shear viscosity is further reduced compression-only behavior is captured at lower sound amplitudes.
It should be noted that the microbubble never settles to a pulsation around the extreme oblate shapes
observed for simulations with a larger area dilatation modulus shown in Figs. 12–15, despite the fact
that P2 also grows parametrically especially for very small shear viscosities. This is attributed to the
fact that oblate P2 shapes, which are preferred based on their total energy at static equilibrium,
exhibit significant distortion and bending in comparison with the prolate ones dominated by P3 and
P4, and this is not favored in the dynamic response of the soft shell studied in Figs. 16 and 17.

The case of a shell with area dilatation modulus χ = 0.48 N/m is similar to the case with
χ = 0.24 N/m studied in Sec. V B 1. This pertains both to their respective bifurcation diagrams,
Figs. 3(a) and 4(a), which are both dominated by the P2 and P3 branches with their oblate parts
exhibiting significant volume compression, but also to their respective phase diagrams [Figs. 7(a)
and 8]. The latter graphs exhibit progressive acceleration of parametric excitation of shape modes
P2, P3, and P4, in terms of lowering the amplitude thresholds, as the shear shell viscosity decreases.
Thus, the above modes tend to dominate the dynamic response in the amplitude window defined
by the static and DB thresholds. This gives rise to bubble pulsations in the neighborhood of the P2

and P3 branches [Figs. 4(b) and 4(c)], especially at maximum compression. Figure 18 illustrates
this pattern as the shear viscosity of the shell decreases. In this case the bubble tends to achieve
saturated pulsation of the shape modes around a compressed volume, that decreases approaching
the equivalent static configuration along the oblate P2 or P3 branch. The former shapes also contain
P4 to a large extent as they entail gradual approach and eventually contact of the opposite poles in the
equator region. The obtained shapes reflect this aspect since growth of P4 is facilitated by parametric
mode excitation. They also exhibit varying levels of P3 contamination as the corresponding branch
occurs for the same parameter range as the oblate P2 one. In fact, for the cases shown in Figs. 18(c),
18(d), 19(a), and 19(b) obtained for the same sound amplitude but different shear viscosities, the
simulation for the smaller ratio of shell viscosities, μsh/μs = 0.05, triggers faster growth of P3

that leads to asymmetric contact of the opposite pole regions. Increasing the forcing frequency to
2.5 MHz bears the same effect on the bubble dynamics with raising the shear viscosity; compare
differences between Figs. 19(a) and 19(b) and 19(c) and 19(d) against those between Figs. 18(c)
and 18(d) and 18(a) and 18(b). It decelerates growth of shape modes and allows for saturated
pulsations [Figs. 19(c) and 19(d)]. Consequently, a compression-only type pattern is established
that is dominated by the asymmetric P5 and P3 modes along with a certain amount of P4.

It should be stressed that even though growth of P4 and P5 is also predicted by the phase
diagram obtained when χ = 0.48 N/m (Fig. 8), and there are distinct branches dominated by the
prolate P4 and P5 in the corresponding bifurcation diagram, such shapes were captured but did not
dominate the simulations. This is due to the fact that the respective branches do not evolve in the
amplitude range for which parametric mode excitation of prolate P4 or P5 is possible; see also the
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FIG. 16. Temporal evolution of bubble shape (a), (c) and the volume and shape mode pulsation (b), (d), for
a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.12 N/m, kB = 3 × 10−14 N m, δ = 1
nm) subject to an acoustic disturbance with f = 1.7 MHz in an unbounded flow environment for the case with
prestress, Ud = −0.61 μm (Rps = 0.83), and (a), (b) μsh/μs = 0.65, ε = 2.1 and (c), (d) μsh/μs = 0.15, ε =
1; B̂ ≈ 0.02, R̂es ≈ 8.3.
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FIG. 17. Temporal evolution of bubble shape (a), (c) and of the volume and shape mode pulsation (b), (d),
for a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.12 N/m, kB = 3 × 10−14 N m,
δ = 1 nm) subject to an acoustic disturbance with f = 1.7 MHz in an unbounded flow environment for the case
with prestress, Ud = −0.61 μm (Rps = 0.83), and (a), (b) μsh/μs = 0.05, ε = 0.6 and (c), (d) μsh/μs = 0.05,
ε = 0.8; B̂ ≈ 0.02, R̂es ≈ 8.3.

bifurcation diagram in Fig. 4(a) in cross-reference with the phase diagram for such shells provided in
Fig. 8.

3. The case of polymeric shells

Our simulations have thus far demonstrated that shell rheology plays a key role in triggering
the onset of the compression-only effect. However, such a response pattern has not been reported
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FIG. 18. Temporal evolution of bubble shape (a), (c) and of the volume and shape mode pulsation (b), (d),
for a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.48 N/m, kB = 3 × 10−14 N m,
δ = 1 nm) subject to an acoustic disturbance in an unbounded flow environment for the case with prestress,
Ud = −0.3 μm (Rps = 0.916), and forcing frequency f = 1.7 MHz with (a), (b) μsh/μs = 0.65, ε = 1 and (c),
(d) μsh/μs = 0.2, ε = 0.6; B̂ ≈ 0.05, R̂es ≈ 8.3.

in experimental studies involving polymer-shelled microbubbles. In an effort to investigate the
behavior of this type of shells we consider the PB-127 microbubble that occupies a polymer shell
with a stress-free radius of RSF = 2 μm and δ = 15 nm thickness, an area dilatation modulus χ = 9
N/m and a bending modulus equal to kB = 2.25 × 10−16 Nm. The dilatational and shear shell
viscosities are initially set to 45 × 10−9 kg/s. In the absence of prestress the phase diagram as a
function of the ratio shell viscosity μsh/μs and sound amplitude shown in Fig. 9(c) for an acoustic
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FIG. 19. Temporal evolution of bubble shape (a), (c) and the volume and shape mode pulsation (b), (d), for
a lipid-coated microbubble (RSF = 3.6 μm, μs = 60 × 10−9 kg/s, χ = 0.48 N/m, kB = 3 × 10−14 N m, δ = 1
nm) subject to an acoustic disturbance in an unbounded flow environment for the case with prestress, Ud =
−0.3 μm (Rps = 0.916), and (a), (b) μsh/μs = 0.05, f = 1.7 MHz, ε = 0.6, R̂es ≈ 8.3 and (c), (d) μsh/μs =
0.05, f = 2.5 MHz, ε = 0.6, R̂es ≈ 12.2; B̂ ≈ 0.05.

frequency of 1.7 MHz, contrary to the cases of lipid shells presented so far with a similar range
of Res and Resh numbers, reveals that the DB limit lies below the static buckling threshold of the
major bifurcating branches obtained for a stress-free initial condition; the bifurcating asymmetric
and symmetric branches are dominated by P19 and P20, respectively. In fact, it nearly coincides
with the parametric mode excitation thresholds for some high modes (P19 and higher). As a result,
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FIG. 20. Temporal evolution of bubble shape (a) and the volume and shape mode pulsation (b), for a
PB-127 polymer-shelled contrast agent (RSF = 2 μm, μs = 45 × 10−9 kg/s, χ = 9 N/m, kB = 2.25 × 10−16

N m, δ = 15 nm) in an unbounded flow environment for the case of μsh/μs = 0.2 with prestress, Ud =
−0.004 μm (Rps ≈ 0.999), subject to an acoustic disturbance with f = 1.7 MHz and amplitude ε = 0.6;
B̂ ≈ 6 × 10−6, R̂es ≈ 2.

even small sound amplitudes will lead to bubble collapse via rapid shell destabilization, and this is
verified by our simulations.

When an initial prestress is introduced, the threshold for static buckling (Fig. 5) is considerably
lower than the one of lipid shells and consequently the bubble can endure only very small levels of
initial prestress. Nevertheless, even a small initial prestress, Ud = −0.004 μm, is sufficient to move
the static buckling threshold in the phase diagram [Figs. 9(a) and 9(b)] below the DB threshold and
the parametric shape mode limits, as was also reported in the case of lipid microbubbles. However, in
this case the threshold in sound amplitude pertaining to parametric shape mode excitation lies on the
upper boundary of the interval between the static and DB limits. In addition, several parametrically
excited modes exist for the same amplitude range. Consequently, it is difficult for the shape mode
that leads to a certain bifurcating branch to dominate the dynamics and give rise to the compression-
only effect. The parametric study that we carried out for prestressed polymeric shells of the above
type did not produce significant growth of shape modes below the DB limit and captured shell break-
up above this threshold. Compression-only-type behavior was only captured in the case depicted
in Fig. 20 for a considerable discrepancy between the shear and dilatational shell viscosity and a
sound amplitude beyond the DB threshold, possibly owing to the damping effect of liquid viscosity.
Growth of P20 is captured in the manner that is consistent with the bifurcation diagram, Fig. 5(c),
in terms of the shape and volume at maximum compression for the same amount of prestress and
sound amplitude.

VI. CONCLUSIONS

We carried out a theoretical/numerical study of freely pulsating coated microbubbles subject to
an acoustic disturbance in order to capture the response pattern that is identified in the literature as
compression-only behavior. It is a counterintuitive response since, especially strain-softening shells
such as lipid monolayers, exhibit preferential excursion from equilibrium during expansion as a
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result of the decrease in their area concentration of surfactant. It was thus found that compression
only is associated with the onset of significantly compressed shapes that pulsate in the vicinity
of static branches that bifurcate from the spherosymmetric configuration and are characterized by
buckled shapes. Such shapes are energetically favored over spherical shapes based on static analysis,
but their growth is relatively slow when it occurs spontaneously.

This process may be accelerated upon application of an acoustic disturbance in which case
an initial prestress generates a window of sound amplitudes between the static buckling and the
DB thresholds, within which parametric shape mode excitation is possible. We also provide phase
diagrams outlining the parametric stability thresholds for lipid and polymeric shells corroborating
the above pattern. This effect is more pronounced when there is significant discrepancy between the
dilatational and shear viscosities of the shell in favor of the former. Growth of shape modes that lead
to buckled shapes with significant volume compression and characterize the above static branches
was thus captured.

It was seen that shells with a small shear viscosity facilitate energy exchange with the breathing
mode leading to volume compression but also provide a distinctly lower amplitude threshold for the
shape modes, mainly P2, P3, and P4, that steer the dynamics towards the buckled shapes. When
the dilatation and shear viscosities are both large the amplitude threshold for parametric shape
mode is large and close to the DB threshold. In this case, even in the narrow interval between
them the large number of unstable modes does not allow for the static buckling configuration to be
approached and the compression-only behavior is prevented. In fact, this is the case with the much
harder polymeric shells which are characterized by a similar shell Reynolds, R̂es = ρω f R3

SF/μs,
but much smaller relative bending resistance, B̂ = kB/(χR2

SF), in comparison with the lipid shells.
For the former type shells the threshold for parametric mode excitation nearly coincides with that
for DB to take place, even in the presence of prestress and a discrepancy between dilatational and
shear viscosities, and consequently compression-only behavior is very rare. On the contrary lipid
shells are more amenable to surface treatment that leads to varying viscoelastic properties which,
in conjunction with a certain amount of prestress, may give rise to compression-only behavior
via selective parametric shape mode excitation. Among lipid shells those with larger membrane
elasticity, lower B̂, are more conducive to buckling and are more likely to exhibit compression-only
behavior. Simulations performed in the present study involving freely pulsating microbubbles,
corroborate this pattern and capture the onset of dynamic response whereby the bubble pulsates
mainly under compression with respect to the initial spherosymmetric configuration.

It is thus evident that understanding surface rheology is critical for the determination of the
acoustic response of coated microbubbles, provides insight for the optimization of acoustic charac-
terization of shell viscoelastic properties and can be a useful tool for the design of future contrast
agents. In a future study we will present simulations of wall bounded microbubbles in response
to acoustic disturbances and capture the combined impact of prestress and shear shell viscosity on
the onset of compression-only behavior, the establishment of trapped pulsation in the vicinity of the
wall vs bubble migration away from it, and the resulting enrichment of the available phase diagrams.
In this fashion, it will also be possible by cross referencing phase diagrams produced by simulations
with acoustic measurements that exhibit compression-only behavior, to obtain reliable estimates of
shell properties including discrepancies between the two shell viscosities.
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APPENDIX: O(ε̂) CORRECTION TO THE TANGENTIAL STRESS COMPONENT

When treating separately the two shell viscosities the analysis presented in Sec. III B is only
affected through the viscoelastic force of the shell introduced through the terms �F 0

n ,�F 1
n ,�F 1

t .
However, since only the dilatational shell viscosity contributes to the normal force balance equation,
the terms �F 0

n ,�F 1
n remain the same as in [15]. Regarding the tangential component �F 1

t it is
affected from both shell viscosities. The latter component reads as
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The elastic stresses are not affected in this context, whereas viscous stresses are given by Eq. (11).
In the framework of linear stability analysis λs, λφ are given by

λs = R̂ + ε̂(w + uθ ), λϕ = R̂ + ε̂(w + u cot θo), (A2)

with ε̂ signifying the amplitude of the linear disturbance in the bubble shape. Upon introducing
Eq. (A2) to Eq. (11) the viscous stresses are calculated:
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Finally, the contribution of the shear shell viscosity is incorporated to the tangential force balance
[Eq. (A1)] which for a neo-Hookean shell assumes the form
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and for a lipid-shelled microbubble reads
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− 1

3R̂8
{wθ [6 − 6b + 4bR̂2 + 2bR̂8] + ψθ [−2bR̂6 + 2R̂6 − 3λn + 2bR̂2

+ bR̂6λn + 3bλn − 3bR̂2λn − bR̂8λn − R̂6λn]}, (A4b)

where λn = n(n + 1).
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