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Viscous dissipation as a mechanism for spatiotemporal chaos
in Rayleigh-Bénard convection between poorly conducting

boundaries at infinite Prandtl number
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Nonlinear Rayleigh-Bénard convection in an infinite-Prandtl-number fluid layer be-
tween poorly conducting boundaries is considered as a model for convection in the earth’s
upper mantle. It is shown that accounting for the generally neglected impact of viscous
dissipation may lead to the development of large-scale spatiotemporal chaotic dynamics
governed by the familiar Kuramoto-Sivashinsky equation �τ + ∇4� + 2∇2� − (∇�)2 +
α� = 0, known to occur in various physical systems.
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I. PROBLEM STATEMENT AND BASIC EQUATIONS

The problem of buoyancy-induced convection in horizontal layers of fluid heated from below
traditionally neglects the internal heating induced by viscous dissipation. However, it has long been
observed that viscous dissipations may be important if the width of the layer is large enough.
Such might be the case of convection of the earth’s mantle [1], where the dissipation number Di
[see Eq. (1) below] is of the order of unity. As shown below, close to the stability threshold, viscous
dissipation may trigger a nonrelaxational irregular spatiotemporal evolution of convective cells. To
demonstrate the effect we consider the case of nearly insulating boundaries (relevant to mantle
convection [2–4]) where the longitudinal dimension of convective cells is significantly greater
than the layer’s thickness. This allows separation of horizontal and vertical spatial variables, thus
lowering the effective dimensionality of the problem [2,3,5,6].

Except for the viscous dissipation term, the model employed is closely parallel to the seminal
formulation of Rayleigh [7] (see also Refs. [2–6,8]), pertinent to the Newtonian fluid with constant
transport coefficients and the Boussinesq distinguished limit. In suitably selected nondimensional
variables, the model may be formulated as follows. The heat equation
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Having the earth’s mantle convection in mind, the Prandtl number is regarded as infinitely high
[2–5]. As a result, the momentum equations become
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The continuity equation
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Equations (1)–(6) are considered in the layer

−∞ < x, y < ∞, 0 < z < 1.

For the case of a liquid layer between two rigid plates, the boundary conditions at z = 0, 1 read

u(z = 0, 1) = v(z = 0, 1) = w(z = 0, 1) = 0, (7)

∂θ (z = 0)

∂z
= Bibθ,

∂θ (z = 1)

∂z
= −Bitθ. (8)

To exclude the convective flow total expenditure, the model is augmented with an additional long-
time condition for a well-settled (yet generally unsteady) flow,

∫ 1

0
u dz =

∫ 1

0
v dz = 0. (9)

This condition is particularly transparent for the two-dimensional version of the problem, where
the flow velocity may be described in terms of the stream function: u = −∂�/∂z, v = 0, and w =
∂�/∂x. Equation (9) then readily implies �(z = 0, 1) = 0 [2,5].

The following notation was used in Eqs. (1)–(8): θ is the nondimensional temperature disturbance
in units of the difference between the temperature of the bottom (T−) and that of the upper boundary
(T+) in the absence of convection; x, y, z, and t are the nondimensional space and time coordinates in
units of the thickness d of the liquid layer and the time interval d2/κ , respectively; κ is the thermal
diffusivity of the liquid; u, v, w, and p are the nondimensional flow velocities and pressure in units
of κ/d and κ/d2, respectively; Ra = σg(T− − T+)d3/νκ is the Rayleigh number; σ is the volume
expansion coefficient; g is the gravitational acceleration; ν is the kinematic viscosity; Pr = ν/κ

is the Prandtl number; Di = σgd/cp is the dissipation number; cp is the specific heat at constant
pressure; and Bib and Bit are the nondimensional coefficients of heat exchange between the liquid
and boundaries (Biot numbers).

II. ASYMPTOTIC ANALYSIS

Let the Rayleigh number be close to the critical value Rac, corresponding to the onset of
convection,

Ra = Rac(1 + ε) (ε � 1). (10)

Assuming the heat loss to be small [5,6,8],

Bib = ε2βb, Bit = ε2βt , (11)
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we introduce the scaled space and time variables

x̂ = √
εx, ŷ = √

εy, ẑ = z, t̂ = ε2t . (12)

This choice of scalings is dictated by the results of the linear stability analysis [2,5]. Assuming the
dissipation number Di to be of the order of unity, we introduce new scaled variables θ̂ , û, v̂, ŵ, and
p̂ for the disturbances of temperature, flow field, and pressure,

θ = εθ̂ , u = ε
√

εû, v = ε
√

εv̂, w = ε2ŵ, p = ε p̂. (13)

This scaling is suggested by the relations (12) and the requirement of the asymptotic balance
between the terms ∂θ/∂t and ∂2u/∂z2 + ∂2v/∂z2 of Eqs. (1) and (2); ∂ p/∂x, ∂ p/∂y, ∂2u/∂z2, and
∂2v/∂z2 of Eqs. (3) and (4); ∂ p/∂z and θ of Eq. (5); and ∂w/∂z and ∂u/∂x + ∂v/∂y of Eq. (6). In
terms of new variables the problem (1)–(9) becomes.
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∂ x̂
+ ε2 ∂ v̂θ̂

∂ ŷ
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+ ∂2ŵ
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0
v̂ dẑ = 0. (21)

For the subsequent arguments it is useful to integrate Eq. (14) over the interval 0 < ẑ < 1. Noting
the boundary conditions (19) and (20), we can write the resulting integral relation as
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A solution of the problem (14)–(21) will be sought as an asymptotic expansion

θ̂ = θ̂ (0) + εθ̂ (1) + · · · , û = û(0) + εû(1) + · · · , v̂ = v̂(0) + εv̂(1) + · · · , (23)

ŵ = ŵ(0) + εŵ(1) + · · · , p̂ = p̂(0) + ε p̂(1) + · · · .

The problem (14)–(21) in the zeroth approximation yields
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= 0,

(24)

û(0)(ẑ = 0, 1) = v̂(0)(ẑ = 0, 1) = ŵ(0)(ẑ = 0, 1) = 0, (25)
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= 0, (26)

∫ 1

0
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ŵ(0) = − 1
24 Rac∇2F (ẑ4 − 2ẑ3 + ẑ2),

p̂(0) = 1
2 RacF (2ẑ − 1), where ∇ = (∂/∂ x̂, ∂/∂ ŷ).

The integral relation (22) for the zeroth approximation yields∫ 1

0
ŵ(0)dẑ = −∇2F. (29)

Hence, using (28) for ŵ(0), we have

(Rac − 720)∇2F = 0, i.e., Rac = 720. (30)

To determine the as yet unknown function F (x̂, ŷ, t̂ ), we proceed to the next approximation. In this
case the system of equations and boundary conditions are

ŵ(0) = −∇2F − ∂2θ̂ (1)

∂ ẑ2
, (31)
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= ∂2ŵ(0)
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∂ û(1)

∂ x̂
+ ∂ v̂(1)

∂ ŷ
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∂ ẑ
= 0, (35)

û(1)(ẑ = 0, 1) = v̂(1)(ẑ = 0, 1) = ŵ(1)(ẑ = 0, 1) = 0, (36)

∂θ̂ (1)

∂ ẑ
= 0,

∫ 1

0
û(1)dẑ =

∫ 1

0
v̂(1)dẑ = 0. (37)

Hence, in view of (28) and (30) we have

θ̂ (1) = 1
2∇2F (2ẑ6 − 6ẑ5 + 5ẑ4 − ẑ2) + G(x̂, ŷ, t̂ ), (38)

ŵ(1) = − 1
14∇4F (2ẑ10 − 10ẑ9 + 15ẑ8 − 42ẑ6

+ 84ẑ5 − 70ẑ4 + 20ẑ3 + ẑ2) − 30∇2F (ẑ4 − 2ẑ3 + ẑ2) − 30∇2G(ẑ4 − 2ẑ3 + ẑ2). (39)

Expressions for û(1), v̂(1), and p̂(1) are omitted for brevity.
For the first approximation the integral relationship (22), accounting for (27), yields

∂F

∂ t̂
−

∫ 1

0
ŵ(1)dẑ = ∇2

∫ 1

0
θ̂ (1)dẑ − (βb + βt )F
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∫ 1
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∂ û(0)

∂ ẑ
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+
(

∂ v̂(0)

∂ ẑ

)2]
dẑ. (40)

Inserting the expressions found above for θ̂ (1), û(0), v̂(0), and ŵ(1) into (40), we obtain the required
equation for F (x̂, ŷ, t̂ ),

Ft̂ + 17
462∇4F + ∇2F − Di(∇F )2 + (βb + βt )F = 0. (41)

Equation (41) is a damped version of the familiar Kuramoto-Sivashinsky equation [9,10], which
often serves as a paradigmatic pattern-forming model for spatiotemporal chaos. Once we know the
function F , the temperature field of the liquid layer is determined by

T = T− + (T− − T+)(−z + εF ). (42)

III. NUMERICAL EXPERIMENTS

Using the rescaling

F = 1

2 Di
�, x̂ =

√
17

231
ξ, ŷ =

√
17

231
η, t̂ = 34

231
τ, (43)

βb + βt = 231

34
α,

we bring Eq. (41) to a single-parameter form, which is more convenient for numerical simulations,

�τ + ∇4� + 2∇2� − (∇�)2 + α� = 0. (44)

Linear stability analysis of the trivial solution (� = 0), corresponding to the absence of convection,
yields the dispersion relation

ω = 2k2 − k4 − α. (45)
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FIG. 1. Hexagonal cellular structure of the temperature field at α = 1, with periodic boundary conditions
at ξ = ±5π or η = ±5π . Darker shading corresponds to higher levels of temperature.

Here ω is the instability growth rate and k =
√

p2 + q2, where p and q are the perturbation (δ�)
wave numbers

δ� ∼ exp(ipξ + iqη + ωτ ). (46)

The trivial solution � = 0 is linearly stable or unstable depending on whether the heat loss
parameter α is greater or less than unity.

The numerical solution of Eq. (44) shows that near the linear stability threshold (α = 1) the
convective flow assumes a time-independent regular hexagonal cellular structure (Fig. 1). Moreover,
this pattern survives even for the values of α slightly above unity, indicating the supercritical nature
of the bifurcation at α = 1 (Fig. 2). At sufficiently small α the hexagonal structure transforms into an
irregular patter of chaotically recombing cells (Fig. 3). The numerical method employed is outlined
in the Appendix.

�������	



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2

FIG. 2. Bifurcation diagram: spatial average 〈|∇�|2〉 vs α. The dashed line represents the expected unstable
branch (see also Ref. [11]).
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FIG. 3. (a) Irregular cellular structure of the temperature field at α = 0.1. (b) Time record of �(0, 0, τ ).
See also the caption for Fig. 1.

IV. CONCLUSION

The formulation in the present work employed rigid (nonslip) boundary conditions at ẑ = 0, 1
Eq. (7). One may also consider alternative rigid-free or free-free conditions where Rac = 320 and
120, respectively, and where the second term of the F equation (41) becomes 58

693∇4F and 1091
5544∇4F ,

respectively [see the appropriately rescaled Eq. (3.15) of Ref. [2]]. This change, however, does not
affect the structure of the associated � equation (44).

At small viscous dissipation (Di ∼ ε) the equation for � may acquire other nonlinear terms,
e.g., ∇[(∇�)2∇�] and ∇[(∇2�)∇�] [2,5], suppressed in the present analysis. This problem is of
independent interest and is left for future discussion.

The two-dimensional Kuramoto-Sivashinsky equation has been extensively explored previously
employing different numerical strategies (see, e.g., [11–14]). A fascinating animation of the emerg-
ing spatiotemporal dynamics was recently conducted by Richters-Finger using a pseudospectral
scheme [15,16].

The present study is concerned with the asymptotic behavior close to the onset of convection. It
would certainly be of interest to relax this restriction by direct numerical simulations of the model
(1)–(8) augmented with some lateral (e.g., periodic) boundary conditions.
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APPENDIX A: NUMERICAL SCHEME AND RESOLUTION TEST

The solution of Eq. (44) is sought by the finite-difference method over the square domain
−5π < ξ, η < 5π with cyclic boundary conditions on ξ = ±5π or η = ±5π . The computational
domain is covered with a uniform net with equal spatial steps hξ = hη = h. Two rows of ghost
points are added across each boundary for handling the boundary conditions.

Partial derivatives in ξ are approximated as

∂�

∂ξ
= �n+1,m − �n−1,m

2h
+ O(h2), (A1)

∂2�

∂ξ 2
= �n+1,m − 2�n,m + �n−1,m

h2
+ O(h2), (A2)

∂4�

∂ξ 4
= �n+2,m − 4�n+1,m + 6�n,m − 4�n−1,m + �n−2,m

h4
+ O(h2). (A3)

Partial derivatives in η are treated in a similar way.
The mixed partial derivative is approximated as

∂4�

∂ξ 2∂η2
= 1

h2

(
�n+1,m−1 − 2�n,m−1 + �n−1,m−1

h2
− 2

�n+1,m − 2�n,m + �n−1,m

h2

+ �n+1,m+1 − 2�n,m+1 + �n−1,m+1

h2

)
+ O(h2). (A4)

Here n and m are net coordinates of the point (nh, mh), and �n,m = �(nh, mh).
The temporal derivative is handled by the explicit Euler method of the first order in �τ . If

all spatial items of the finite-difference operator are of second order then the overall degree of
approximation of the operator is 2 for the spatial step [17].

The resolution test is conducted following the recommendation and algorithm of Ref. [18].
Simulations with three different spatial steps h1 = h0 = 0.1277, h2 = h0/

√
2, and h3 = h0/2 were

conducted; h1/h2 = h2/h3 = √
2 > 1.3 (see Ref. [18]). The results are presented in Table I.

The convergence rate is 2.17 [see Eq. (3) of Ref. [18]]. This value corresponds to the second
degree of approximation of the finite-difference operator. The predicted value for the spatial average
〈|∇�|〉(h → 0) is 1.05016. Errors

〈|∇�|〉(h) − 〈|∇�|〉(h → 0)

〈|∇�|〉(h → 0)
(A5)

are shown in the last column of the Table I. The error, even for the minimal resolution, is small
enough for our purposes. Simulations corresponding to Figs. 1–3 are carried out at h = 0.1277.

TABLE I. Results of the resolution test for α = 1.

i hi �τ 〈|∇�|〉 Error

1 0.1277 10−5 1.04852 0.16%
2 0.08975 2.5×10−6 1.04939 0.07%
3 0.06334 10−6 1.04980 0.035%
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