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Many microorganisms live and evolve in complex fluids. Examples include mammalian
spermatozoa in cervical mucus, worms (e.g., C. elegans) in wet soil, and bacteria (e.g., H.
pylori) in our stomach lining. Due to the presence of (bio)polymers and/or solids, such
fluids often display nonlinear response to (shear) stresses including viscoelasticity and
shear-rate-dependent viscosity. The successful interaction between these microorganisms
and their fluid environment is critical to the function of many biological processes includ-
ing human reproduction, ecosystem dynamics, and the spread of disease and infection.
This interaction is often nonlinear and can lead to many unexpected behaviors. Here, I
will discuss developments in characterizing, modeling, and understanding the swimming
behavior of model microorganism in viscoelastic and shear-thinning fluids. Three main
microorganisms will be explored: (i) the nematode C. elegans, an undulatory swimmer; (ii)
the green algae C. reinhardtii, a puller swimmer; and (iii) the bacterium E. coli, a pusher
swimmer. Investigation with artificial particles and swimmers will also be discussed; such
studies are helpful in decoupling the biology from hydrodynamic effects. We will explore
the interactions between these swimmers’ gaits, geometry, and actuation and fluid rheolog-
ical behavior using mostly experiments, and discuss these results relative to numerical and
analytical predictions.
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I. INTRODUCTION

I would like to make it clear that this paper is not intended as a comprehensive review. For
that, I guide the reader to many excellent treatments on the fundamentals of swimming at low
Reynolds numbers (Re) [1–4] and on motility of living organisms and propulsion of active particles
in complex fluids [5–8]. Rather, this article offers an experimentalist view on the current state of
low Re swimming in non-Newtonian fluids; technical details will only be briefly described and
arguments will appear oversimplified, often relying on published literature. I hope such strategy
does not jeopardize the reader’s interest in the field; my goal is to provide a quick starting guide for
those interested in joining our community.

Complex fluids are widely found in nature and biology; examples include wet sand, mud,
milk, cervical mucus, saliva, and blood. While homogeneous at the macroscale, these fluids often
possess structure at an intermediate scale typically a few sizes of its constituents. Importantly, their
macroscopic flow behavior (i.e., rheology) is a strong and nonlinear function of their microstructure
[14–22]. Many fascinating macroscopic responses of fluids containing polymer molecules, surfac-
tants, colloids, liquid crystals, etc., have been reported in the literature over the years [23–30].
In the particular case of polymeric fluids, the presence of (flexible) polymer molecules in the
fluid and interaction of the molecules with the flow are responsible for nonlinear flow behavior
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FIG. 1. (a) Rod-climbing effect with a viscoelastic (VE) fluid [9]. (b) Schematic of polymer stretch-
ing in flows with curved streamlines [10]. (c) Electron microscopy image of lung cilia (from Wikipedia).
(d) Schematic of cilia normal beating cycle showing a power and recovery strokes [11]. (e) Images of
mammalian sperm cell moving in Newtonian. Inset show flagellum’s nearly sinusoidal waveform. (f) Sperm
swimming in VE fluids. (Inset) Flagellum shows a hyperextended waveform due to the presence of fluid
elasticity [12]. (g), (h) The worm nematode C. elegan moving in wet granular suspensions of (g) monodispersed
and (h) polydispersed particles [13]. Similar to sperm cells, interaction between nematode and suspension
microstructure significantly affects kinematics.

such as hydrodynamic instabilities, drag reduction, and even turbulence [9,24,26,31–39]. The exact
mechanisms responsible for such phenomena are still being elucidated and is a topic of much
current research [22,39]. But we do know that mechanical stresses in these polymeric fluids are
history dependent and depend on a characteristic time λ. In dilute solutions, this timescale has been
found to be proportional to the relaxation time of a single polymer molecule [40–42]; in semidilute
solutions, λ depends also on molecular interactions [14]. These (elastic) stresses grow nonlinearly
with strain rate and can dramatically change the flow behavior. An example is the “rod-climbing”
effect, in which a viscoelastic (VE) fluid (e.g., cake batter, bread dough, yogurt) creeps up a rod
being rotated in the fluid [9] [Fig. 1(a)]. This phenomenon was first described in the 1940s [43]
and involves a VE fluid being stirred by a rotating rod as shown in Fig. 1(a). The combination of
high-velocity gradients and curved streamlines can stretch the (bio)polymer molecules, which leads
to a normal stress difference N1 = τθθ − τrr , where r, θ , and z are cylindrical coordinates. This
normal stress difference (or hoop stress since the rod is curved) produces a volume force N1/r that
acts inwards against the outwards radial pressure gradient pushing the fluid up the rod [Fig. 1(b)].
The development of such viscoelastic “hoop stresses,” as polymer molecules are driven out of their
equilibrium conformation by the imposed flow, induce radial secondary flows that is responsible for
many destabilizing flow phenomena observed in VE flows [9,22,24,34,35,39]. As we will see here,
these additional (elastic) stresses and timescales can significantly affect the swimming behavior of
microorganisms.

Due to their small length scales, microorganisms such as bacteria, sperm cells, and various kinds
of protozoa move or swim at low Reynolds number (Re) [Figs. 1(c)–(h)]. In such regime, fluid
linear viscous forces dominate over nonlinear inertial ones [1,44–46], and locomotion results from
nonreciprocal deformations in order to break time-reversal symmetry; this is the so-called “scallop
theorem” [47]. To survive, microorganisms must then seek locomotion strategies that break time
symmetry. Much work has been devoted in understanding such strategies in experiments, theory, and
numerical simulations [1,3,4,7,45,46,48,49]. Despite much progress, our understanding of swim-
ming at low Re numbers is mostly derived from investigations in Newtonian fluids. But, there are
many microorganisms (e.g., sperm cells, bacteria) that evolve in liquids that contain (bio)polymers,
surfactants, and/or solids (e.g., mud, mucus, gels) [48,50–52] and exhibit non-Newtonian behavior
such as shear-thinning viscosity and viscoelasticity. The question is as follows: How do these
nonlinear flow behaviors affect the swimming behavior of microorganisms?
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Let us consider the cilia beating in the human lungs [Figs. 1(c) and 1(d)], which is lined with
respiratory mucus. This complex biological fluid (mucus) has double duty: it protects against foreign
particulates and pathogens while allowing the transport of gases and nutrients [53]. Not surprising,
the rheological behavior of mucus is quite complex; it possesses large elastic and viscous modulus,
which are both shear-rate dependent [53]. We can estimate the elastic effects on ciliary motion
by computing the elasticity number El = λμ/ρL2. Here, μ are ρ the fluid viscosity and density,
respectively, and λ is the fluid relaxation time, and L is a characteristic length scale associated
with the microorganism. The quantity El is often thought as the ratio of two timescales: the time
for elastic stresses to relax λ, relative to the viscous timescale ρL2/μ. When El � 1, fluid elasticity
dominates the dynamics. It is important to note that the El is independent of flow kinematics or speed
(i.e., U ), and it is only a function of fluid properties and system geometry. For a typical cilia beating
frequency (∼60 Hz), one can approximate mucus viscosity to be μ ∼ O(1) Pa s with a relaxation
time λ ∼ O(10) s [53]. Taking the system length scale to be the flagellum length L ∼ O(10−5) m
and ρ ∼ O(103) kg/m3, we arrive at El ∼ O(1010). This exceedingly high value demonstrates that
lung ciliary motion occurs in a environment dominated by mucus elasticity. Note that El scales
inversely with the square of the organisms’ length scale L (usually in the μm scale), which means
that elastic stresses are likely to be accentuated for micron-sized organisms. A prime example is the
swimming of mammalian sperm cell [Figs. 1(e) and 1(f)], which switch from a nearly sinusoidal
waveform in Newtonian liquids to a hyperextended waveform in elastic media [12,48].

The examples above illustrate the complex behavior once microorganisms encounter fluids
with nonlinear rheological properties. The coupling between microorganisms’ kinematics and fluid
microstructure and the ensuing flow fields can give rise to unexpected results, some of which may
seem counterintuitive relative to Newtonian expectations. This coupling is often nonlinear and is a
two-way street: microorganism swimming motion affects the fluid response, and in turn the fluid
affects the organisms’s kinematics. Figures 1(g) and 1(h) show how the waveform of small worm
nematodes is affected by simply modifying the distribution of particle sizes (from monodisperse to
polydisperse) in a granular suspension. Thus, from an experimental standpoint, it is important to
work with model systems both in terms of choice of fluid and swimming microorganism; that is,
fluid rheological properties (i.e., shear-thinning, viscoelasticity, yield stress, etc.) should be carefully
characterized and organisms’ velocity fields (in those fluids) should be measured and/or computed.
There are a vast literature and well-established procedures for the former [9,14,54,55], and the
community is making significant strides in the latter. Some of those efforts will be discussed here.

This article is organized as follows: Section II presents a brief background on the fundamentals
of swimming at low Re in Newtonian and non-Newtonian fluids; Sec. II focuses on propulsion
of artificial particles in complex fluids; Sec. III will discuss mainly experimental works on the
swimming behavior of living microorganisms in viscoelastic fluids; Sec. IV provides a summary
and outlook.

II. BRIEF BACKGROUND

We begin by briefly discussing the hydrodynamics of swimming at low Re; a more thorough
review of the subject can be found elsewhere [1,4,44]. Under steady, low Re (no inertia) flow
conditions, the equation of motion reduces to

∇p = ∇ · τ, (1)

where p is pressure and τ is the deviatoric stress tensor. Equation (1) is known as the Stokes’
equation, named after the mathematician Sir George Stokes [44]. For Newtonian fluids, the stress τ

is linearly proportional to the strain rate γ̇ such that τ = μγ̇ = μ(∇u + (∇u)T ), where the constant
of proportionality is the dynamic viscosity μ. Equation (1) can then be expressed as

∇p = μ∇2u. (2)
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Note that Eq. (2) is linear in both velocity u and pressure p. Equation (2) is also instantaneous; it
has no dependence on time other than via boundary conditions. The lack of time dependence means
that the flow is reversible. An external force F(t ) will lead to a flow that upon reversal of the force
F(−t ) and its history, brings the flow back to its original state. This kinematic reversibility forms the
hydrodynamic basis of the scallop theorem put forth by Purcell in 1977 [47]. These hydrodynamic
properties illustrate that swimming at low Re can seem at first as a highly confined phenomenon, yet
microorganisms have found a variety of ways to overcome the constraints of the scallop theorem.

But, what if a microorganism is instead swimming in a complex fluid, as in the case of sperm
cells in cervical mucus [56] [Fig. 1(f)]. Such fluids display a plethora of nonlinear rheological
behavior including yield stress, thixotropy, shear-thinning viscosity behavior, and viscoelasticity.
To describe such flow behavior one needs to develop constitutive models that can accurately capture
the nonlinear relationship between (deviatoric) stress (τ) and strain rate (γ̇). That, of course, is
easier said than done and much effort has been devoted to the development of constitutive models for
complex fluids [18,57–59]. Here we will briefly discuss two such instances: shear-thinning viscosity
and viscoelasticity.

A. Shear-thinning fluids

Many biological fluids exhibit shear-rate-dependent viscosity (e.g., shear thinning and shear
thickening), that is τ = η(γ̇ )γ̇ , where γ̇ = [∇u + (∇u)T ] is the strain-rate tensor and η(γ̇ ) is a
non-Newtonian viscosity. Note that γ̇ is the magnitude of the strain-rate tensor γ̇ = √

1/2(γ̇ : γ̇ ).
Shear-thinning fluids have a viscosity that decreases as shear rate increases (e.g., paints, ketchup),
while shear-thickening fluids possess a viscosity that increases as shear rate increases (e.g., suspen-
sions of corn starch). This non-Newtonian viscosity is often described by an empirical power-law
model of the type η(γ̇ ) = k|γ̇ |n−1, where k is a viscosity factor and n is a power-law index. If
n > 1, the fluid is shear thickening whereas if n < 1 the fluid is shear thinning; for n = 1, the model
reduces to Newtonian behavior. This viscosity model, however, is unbounded in the limit of low
(γ̇ → 0) and high (γ̇ → ∞) shear rates, producing nonphysical viscosity values in those limits. A
more realistic (empirical) model for shear-thinning fluids is the Carreau-Yassuda viscosity model
[9] usually given as

η = η∞ + (η0 − η∞)[1 + λc|γ̇ |a](n−1)/a, (3)

where η0 is the zero-shear viscosity, η∞ is the infinite-shear viscosity, and n is the usual power-
law index. The quantity λc is a timescale associated with the shear rate (in the unit of inverse
time) at which the fluid viscosity departs from Newtonian behavior. When the exponent a = 2,
then the equation above is known as the Carreau model. We can define a Carreau number Cr = λcγ̇ ,
which is used to characterize the transition from Newtonian-type behavior (zero-shear rate region)
and power-law region; Cr = 1 marks the departure from low shear-rate Newtonian viscosity [see
Fig. 2(a) for a schematic]. This model offers advantages over the power-law model discussed above.
The most significant perhaps is that the Carreau-Yassuda model is able to capture the frequently
observed viscosity transition from a low-shear-rate Newtonian plateau to the power-law region as
the shear rate γ̇ is gradually increased.

B. Viscoelastic fluids

Fluid elastic stresses accumulate, grow nonlinearly with strain rate, and are expected to signifi-
cantly affect the swimming behavior of microorganisms. Accurately describing such stresses (state
and history) is, however, quite the challenge [39,60]. A simple, linear constitutive model is the
Maxwell model, which is represented by a viscous damper and a elastic spring connected in series
[14,61] [Fig. 2(b)]. The Maxwell model is usually expressed as

τ + λ
dτ

dt
= ηγ̇, (4)
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FIG. 2. Schematic of fluid rheological models and working phase space. (a) Sketch of shear-thinning
viscosity behavior captured by Carreau-Yassuda model. The Carreau number Cr describes the transition from
Newtonian to power-law behavior. (b) Schematic of the Maxwell model, a linear constitutive equation for
viscoelasticity. It is described by an element containing a viscous damper and an elastic spring connected in
series. (c) Nondimensional phase space. This paper will focus on low Reynolds number behavior in which
inertia is virtually negligible. Two main fluid behaviors will be explored: viscoelasticity and shear-thinning
viscosity behavior. The Weissenberg (Wi) and Deborah (De) numbers characterize elasticity, while the Carreau
(Cr) number characterizes shear thinning.

where λ = η/G is the fluid relaxation time and G is the spring elastic modulus, This model
introduces a time-dependent stress that is proportional to “fluid elastic memory” λ, and it reverts
to Newton’s law of viscosity for λ = 0. The Maxwell model predicts that the stress relaxes
exponentially in time, which is relatively accurate for many dilute polymeric solutions. However,
Eq. (4) predicts that stress will increase linearly with time under constant stress, a trend not observed
in rheological measurements. Importantly, the Maxwell model is only valid for small deformations.
For large deformations, one can generalize the Maxwell model by incorporating frame invariance,
which leads to the upper-convected Maxwell model in the following tensorial form:

τ + λ
∇
τ = ηγ̇ . (5)

Here,
∇
τ denotes the upper-convected derivative of τ, defined as

∇
τ = ∂τ

∂t
+ u · ∇τ − (∇u)T τ − τ(∇u). (6)

While a significant improvement over its linear counterpart, the the upper-convected Maxwell
(UCM) model does not consider the contribution from the solution’s solvent viscosity (ηs) to the
total stress; hence, it fails to predict the “retardation effect” of elasticity when a step change in
stress is applied. The Oldroyd-B model addresses this and other issues [22,39], as is usually written
as

τ + λ
∇
τ = η(γ̇ + λr

∇
γ̇ ), (7)

where λr = ληs/(ηp + ηs) is the fluid retardation time, and ηs and ηp are the viscosities of the
solvent and the polymer, respectively. A parameter β = ηs/(ηp + ηs) is usually defined, and one
recovers the UCM model in the limit of zero solvent viscosity ηs = 0. While the Oldroyd-B model
is quite useful, it also has its limitations: it cannot capture rate-dependent viscosity and normal stress
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behaviors, and its stresses become unbounded in extensional flows beyond a critical (extensional)
rate. These issues arise mostly due to the infinite extensibility of the model polymer chains:
the finite-extensibility nonlinear elastic (FENE) type models can address (some of) these issues.
Nevertheless, the Oldroyd-B model is often employed to simulate viscoelastic shear flows where
stretching is relatively moderate [42] and is known to capture many nontrivial viscoelastic phenom-
ena such as the development of hoop stresses and hydrodynamic instabilities [9,22,24,39,62]. It is
important to note the nonlinear relationship between stress, τ, and flow field u, and its consequence
for swimming studies. It indicates that swimmers with different motility kinematics such as body
undulations and rotation of helical flagella are expected to produce different responses from the
(viscoelastic) fluid.

One can define two main dimensionless parameters to describe the effects of elasticity. The first
is the Deborah number (De), defined as the ratio of fluid relaxation time to the flow timescale such
that De = λ/T . Here T is characteristic timescale associated with the flow deformation process;
fluidlike behavior is obtained in the limit of De = 0. In swimming studies, this flow timescale is
often substituted by the microorganisms’ beating frequency f such that De = f λ. The second is the
Weissenberg number (Wi) which quantifies the degree of nonlinearity associated with (fluid) normal
stresses N1 = 2ληγ̇ 2 (from UCM) relative to shear stresses τ = 2ηγ̇ ; hence, Wi = λγ̇ . (For more
information, please see [63].) Nonlinear elastic stresses are expected to become important in the
flow for De, Wi > 1.

A working phase space can now be defined using the dimensionless numbers described here
[Fig. 2(c)]. The different axis quantify the effects of inertia (Re), elasticity, and shear-thinning
viscosity (Cr). These forces and effects often appear together along the planes in the phase space,
and such situations have yet to be studied in detail. Here, however, we will focus on cases in which
fluid inertia in negligible, that is, Re � 1. We will straddle the Wi, De, and Cr axis, focusing on
situations in which one of these effects is dominant.

III. RECIPROCAL SWIMMERS: CAN FLUID RHEOLOGY ENABLE PROPULSION?

The discussion above makes it clear that fluid rheology can significantly affect the swimming
behavior of living organisms. But, can fluid rheology enable propulsion at low Re? That would mean
breaking the scallop theorem [47], for which the main assumptions are no inertia and Newtonian
behavior [see Eq. (2)]. If we relax these assumptions, then it may be possible to break kinematic
reversibility and achieve net motion even for reciprocal swimming strokes [64]. Consider Purcell’s
scallop now immersed in a shear-thinning fluid. If the scallop opens and closes its mouth at different
rates during one stroke, then it may produce different non-Newtonian shear viscosities (η) (in
space and time) along the stroke’s path if the condition of Cr > 1 is met. That is, the viscosity
field around the scallop would be nonuniform with the lowest viscosity values near the boundary
and largest values away from boundary at a particular instant in the stroke. This would mean that
the scallop would experience different viscous stresses during one reciprocal stroke. This viscous
stress “imbalance” may be enough to lead to net motion. That is, (shear) rates matter when it
comes to propulsion in shear-rate-dependent viscosity fluids. The possibility that fluid rheological
properties could enable propulsion has been explored for a handful of special cases: a flapping
surface extending from a plane [65,66]; a sphere which generates small-amplitude sinusoidal motion
of fluid along its surface [1]; a “wriggling” cylinder with reciprocal forward and backward strokes
at different rates [67]; oscillating [68,69] and counter-rotating spheres [70] [Figs. 3(c) and 3(d)].
Analysis of the flow fields generated by these “swimmers” moving in Oldroyd-B and FENE-P model
fluids suggests that elastic effects can generate forces that scale quadratically with the amplitude of
the motion [65,66]. This demonstrates that fluid elastic stresses can be exploited to enable propulsive
forces, circumventing the scallop theorem.

Nearly a decade ago, fluid-assisted propulsion for a reciprocal swimmer was experimentally
demonstrated in viscoelastic fluids [71,72]. In those studies, a single rigid object, in this case an
asymmetric dumbbell particle or dimer, is externally actuated in a reciprocal manner in viscous
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FIG. 3. Breaking the scallop theorem in non-Newtonian fluids. (a), (b) Asymmetric dimer (L ≈ 3 mm)
being reciprocally actuated in a viscoelastic (VE) fluid at Re � 1. The dimer produces enough curvature in
the streamline to generate normal stresses in fluid. Dimer propulsion speed increases (quadratically) with De
[71]. (c), (d) Counter-rotating spheres in VE fluids can achieve propulsion due to hoop stresses surrounding
the faster-spinning smaller sphere [70]. (e), (f) Self-assembled, magnetic colloidal scallops moving in shear-
thinning fluids; propulsion directionality can be controlled by tuning the actuation and/or colloidal structure
size [73]. (g), (h) A autonomous robotic swimmer based on (c) and (d) [74].

fluids. In the experiments, the dimer such as the one shown in Fig. 3(a) is repeatedly reoriented by
a magnetic field. The effects of inertia are absent due to the high fluid viscosity (∼10 Pa s); the
Re ≈ 10−4, a value comparable to that of a swimming microorganism. By applying only magnetic
torques, the apparatus reciprocally actuates just one degree of freedom in the system, the dimer’s
orientation â. No net motion is observed for the Newtonian case since â(t ) is cyclic; this is as
expected. Yet when a small amount of polymer [71] or surfactants [72] are added to the Newtonian
solvent (corn syrup), the same cyclic stroke results in net propulsion in a direction set by the dimer’s
shape and boundary conditions.

Figure 3(b) shows dimer speed as a function of De for dilute polymeric solutions [71]. The first
observation is that the dimmer speed increases monotonically as De increases; that is, the more
elastic the fluid becomes, the faster the dimer propels itself. The dimer speed seems to obey a
De2 scaling or U ∼ ( f λ)2. It is worth noting that at low frequencies, assuming Oldroyd-B fluid
model, G′ ∼ f 2 where G′ is the fluid elastic modulus. Thus, the observed propulsion seems to be a
purely elastic effect, likely generated by the interaction of polymer molecules with the flow curved
streamlines [Fig. 3(a)]. Similar to the rod-climbing effect [see Figs. 1(a) and 1(b)], the combination
of polymer stretching with flow velocity gradients and curved streamlines generated by the actuated
dimer lead to a volume force (or “hoop stress”) N1/r. Because the dimer is asymmetric, so are
these hoop stresses, and that imbalance leads to the dimer’s net motion. These stresses are history
dependent and do not entirely cancel out over one forcing period, but instead have a small rectified
component that accumulates particularly as De increases.

Propulsion may also be enabled by other fluid rheological properties, such as shear-rate-
dependent viscosity. Indeed, Qiu et al. [75] have observed net propulsion in reciprocally swimming
microscallops immersed in shear-thinning and shear-thickening fluids in both experiments and
simulations. Recently, it has been shown that one can manipulate not only the speed but also the
direction of propulsion of reconfigurable magnetic “colloidal scallops” by carefully controlling the
actuation rates in shear-thinning fluids [Figs. 3(e) and 3(f)] [73]. The direction of propulsion changes
with both the size and structure of these colloidal assemblies because of the different viscous stresses
that they produce and experience. This viscous imbalance is thought to be responsible for particle
propulsion for Cr > 1.
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In the experimental investigations described above, the “swimmers” or particles are externally
actuated. That is, they are force but not torque free. Very recently, however, a robotic autonomous
dimer particle has been developed specifically for propulsion in viscoelastic media by local hoop
stresses [70] [Figs. 3(g) and 3(h)]. Remarkably, the robotic system passively adapts to propel itself
forward at different speeds, depending on the properties of the surrounding fluid. As a result, this
prototype can serve as a local rheometer for complex fluid environments allowing the estimation of
quantities such as first and second normal stress differences [74]. The passive sensing capability of
this robotic swimmer can lead to many applications in biology and human health.

In summary, there is growing evidence that fluid nonlinear rheological properties can be exploited
to break the scallop theorem and obtain propulsion for artificial swimmers. Such swimmers can
move through complex fluids with only reciprocal actuation, a simple body shape, and/or no moving
parts, a less complicated design than other propulsive strategies. Experiments with artificial particles
are also helpful in decoupling the biology from hydrodynamic effects [76–78], which permits a
more direct comparison with analytical works. It is important to note, however, that just because
kinematic reversibility is broken, it does not mean that one has achieved efficient propulsion;
it only means that propulsion is possible. For example, the dimmers described in [71,72] have
propulsive efficiencies [O(1%)] similar to those of nonreciprocal swimmers in Newtonian fluids,
including magnetic torque-driven helical microrobots (≈1% [79]) and self-propelling force-free
bacteria (≈2% [80]). That is, there is still much room for improvement. Further understanding of
factors controlling this efficiency could greatly simplify fabrication of microswimmers in many
complex, artificial environments or for biological settings where nonlinear rheology is ubiquitous.

IV. SWIMMING OF MICROORGANISMS IN COMPLEX FLUIDS

We now turn our attention to studies with living microorganisms. Emerging studies, some of
which are discussed in [5,6], are revealing the effects of fluid rheology on the swimming behavior
of microorganisms. The goal is to understand the nonlinear coupling between the microorganism’s
swimming kinematics and fluid rheological properties. To do so, at least experimentally, it is
advisable to work with model systems, both in the choice of microorganism and working fluid.
Model organisms are nonhuman species which are extensively studied to understand particular
biological phenomena and/or function. Examples include the zebra fish (Danio rerio), the bacterium
Escherichia coli, fruit fly (Drosophila melanogaster), and the nematode Caenorhabditis elegans,
among many others. The idea is that discoveries made in model organisms will provide insight into
the workings of other nonmodel organisms, including humans. In the case of swimming studies,
the vast wealth of genetic information available for these systems allows precise control over their
motility strategies. From a hydrodynamics standpoint, one would also wish to work with organisms
for which their kinematics and the velocity fields have been characterized, at least in the base case
(Newtonian fluids).

Three main model organisms for swimming studies will be discussed here: the nematode C.
elegans, the green algae C. reinhardtii, and the bacterium E. coli. The swimming kinematics and the
resulting velocity fields for all these organisms are well established in Newtonian fluids [81,82,84].
Based on these data, one can consider C. elegans to be a model undulatory swimmer that resembles
Taylor’s waving cylinder, while C. reinhardtii and E. coli are considered to be “puller” and “pusher”
swimmers, respectively (Fig. 4). We will discuss these classifications in more detail shortly.

Equally important is to develop model fluids with known rheological properties. Ideally, working
fluids should emphasize a single rheological behavior such as elasticity or shear-thinning viscosity
behavior. Such model fluids have been extensively used in the field of rheology and non-Newtonian
fluid mechanics [14,24,39]. An example is the well-known “Boger” fluid, developed by Boger in the
1970s [85,86]. This fluid is highly elastic but maintains a nearly constant shear viscosity. These rhe-
ological features are approximated by the Oldroyd-B constitutive model (partially), and thus Boger
fluids have been widely used in the study of the effects of viscoelastic on fluid flows. Unfortunately,
some of the polymer and especially solvents involved in the formulation of typical Boger fluids
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FIG. 4. Model organisms for swimming studies. (a) The bacterium E. coli, (b) the green algae C.
reinhardtii, (c) the nematode C. elegans. Below each organism is their corresponding, time-averaged exper-
imentally measured velocity field. The flow data indicate that (a) behaves as a pusher [81], (b) as a puller [82],
and (c) as an undulatory swimmer [83].

are toxic to many microorganisms, limiting its application for swimming and biological studies.
Alternatives do exist, but adequately characterizing the rheological properties of the working fluids
is critical.

A. Undulatory swimming: From Taylor’s waving sheet to C. elegans

1. Purely viscous fluids

Nearly 70 years ago, Taylor [87,88] beautifully demonstrated that a slender body such as a
(nonextensible) waving sheet [Fig. 5(a)] could swim in an incompressible, Newtonian fluid by
generating traveling waves in the absence of inertia. The sheet oscillates in time according to

FIG. 5. (a) Schematic of two-dimensional waving sheet in a viscous fluid illustrating the traveling wave
of velocity c progressing in the x direction and the forward swimming speed (U ) in opposite direction.
(b) Application of resistive force theory (RFT) on C. elegan body illustrating the normal and tangential
components of the velocity U and force F , and the resulting net propulsive force.
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y(x, t ) = b sin(kx − ωt ), where b is the traveling wave amplitude, ω is the frequency, and the
wavelength � is 2π/k; the traveling wave speed is c = ω/k. For vanishing Re, the sheet oscillations
induce a speed UN = 0.5ωb2k + O(kb)4 [87]. That is, if the fluid is at rest relative to the sheet, then
the sheet is propelled in the direction opposite to that of the propagation of the distorting wave. Note
that fluid properties, such as viscosity, do not enter in Taylor’s speed equation for the waving sheet.
Taylor later considered the case of waving cylindrical tails, in which waves of lateral displacement
move down a filament [88]. While the analysis is limited to small amplitudes and fixed kinematics, it
provided one of the first predictions regarding the propulsion in viscous environments. It should be
noted that around the same time Lighthill showed that a deformable body could move in a viscous
fluid with a speed proportional to the square of the deformation amplitude [89]. Soon after (1953),
Hancock [90] (a student of Lighthill) built on Taylor’s results but took a different approach: he
distributed Stokes’ singularities, Stokelets and dipoles, along a waving filament’s center line, which
was the starting point for the well-known slender body theory (SBT) [91].

Many important investigations followed these pioneering works. Of particular importance is the
introduction of resistive force theory (RFT) developed by Gray and Hancock [92]. RFT assumes
that the hydrodynamics forces are proportional to the local body velocity such that the force exerted
by a body or flagellar segment is given by F = CN UN + CT UT . Here, C corresponds to the local
drag coefficient per unit length that depends on geometry and fluid viscosity, and N and T are
the normal and tangential components, respectively [see Fig. 5(b)]. It is the anisotropy between
the normal and tangential drag coefficients, with CN > CT , that lies at the origin of drag-based
thrust; for infinitesimally thin filament, Gray and Hancock found Cn/Ct = 2. While RFT is only an
approximate solution (each element is independent of the other), it has been widely applied with
good success in biological systems [1,93,94], and even in granular systems [49,95,96].

Later, Lighthill [97] reintroduced and extended the viscous slender body theory (SBT) presented
in Hancock’s 1953 manuscript [90] to improve RFT by pointing out the importance of long-range
hydrodynamics interactions and incorporation of slender body approximations. Such improvements
led to CN/CT = 1.5 for the case of an undulating filament moving in an unbounded fluid medium.
Experiments with C. elegans found very similar values with CN/CT ≈ 1.4 [84]. When incorporating
wall effects into the analysis, a significantly larger value of the drag coefficient ratio (CN/CT = 4.1)
is obtained [98]; that is, the propulsive speed is faster near walls. SBT formulation has become
almost standard for the analysis of undulatory swimmers at low Re, and many excellent analytical
and numerical works have emerged since then [1,45,46,48,52,93,99–105]. A major challenge,
however, is to extend this framework to fluids that display both solid and fluidlike behavior, such as
viscoelastic fluids.

2. Undulatory swimming in complex fluids

One of the first attempts to incorporate the effects of fluid elasticity on undulatory swimming used
a series of expansions similar to Taylor’s analysis and a second-order fluid constitutive model [106].
The analysis shows that fluid elasticity could either increase or decrease self-propulsion depending
on the value of Re. It is important to note that the second-order fluid model is a (second-order)
asymptotic approximation about the rest state of a given viscoelastic fluid and is only valid for
slow and slowly varying velocity fields. Thus, its applicability to Taylor’s waving sheet problem is
probably inadequate. Later, inspired by observations of spermatozoa swimming in mucus [107,108],
the effects of elasticity on beating flagella were considered using the (linear) Maxwell model [109]
[see also Eq. (4)]. It was shown that self-propulsion was not affected by fluid elasticity even at large
Deborah numbers (De), but the total work decreased with increasing De. These results should be
interpreted carefully since the Maxwell model is not valid for large deformations.

About 15 years ago, Lauga [52] showed that, for a two-dimensional (2D) waving sheet [Fig. 2(a)],
elastic stresses could significantly alter the organism speed and the work required to achieve net
motion. Using nonlinear constitutive models (e.g., Oldroyd-B, FENE-P), the author showed that the
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organism speed (U ) is given by the equation

U

UN
= 1 + β De2

1 + De2 . (8)

The Newtonian velocity is defined as UN , which is Taylor’s original result. In Eq. (8), β =
ηs/(ηp + ηs) is the ratio of the solvent viscosity to the solution (total) viscosity, as defined in Eq. (7).
Hence, for a given swimming gait U < UN ; that is, elastic stresses reduce the swimmer overall speed
relative to the Newtonian base case. Fu, Wolgemuth, and Powers found similar expression for the
case of 2D waving cylinder or filament [110] and extended to three-dimensional (3D) finite-size
bodies [67]. Unlike Taylor’s result, Eq. (8) depends on fluid material properties; similar to Taylor’s
result, Eq. (8) is for a given (fixed) kinematics. In reality, an organism could compensate the reduc-
tion in velocity by increasing its beating frequency and/or decrease in wavelength. Nevertheless,
Eq. (8) represents an important step forward since it provides a quantitative measure of the effects
of fluid elasticity on the swimming speed of microorganisms. It spurred much activity in the field,
some of which we will discuss here.

Numerical simulations have also been used to address the role of fluid elasticity on the
swimming behavior of microorganisms. In particular, Teran, Fauci, and Shelley [111] considered
two-dimensional swimming “free” sheets (i.e., with free head and tail) of finite length L in an
Oldroyd-B fluid. The simulations show that, for accentuated tail motions, the sheet swims faster at
De ≈ 1 than in a Newtonian fluid, that is, “swimmer” stroke frequency matches the fluid relaxation
time. As elasticity is increased, the filament swimming speed decreases as predicted by Eq. (8).
Further developments show that swimmer speed could increase or decrease in viscoelastic fluids
depending on swimmer gait and kinematics [112,113] as well as the filament material properties
(e.g., stiffness) [114]. But, do experiments corroborate these findings?

3. Experiments with C. elegans

The nematode Caenorhabditis (C.) elegans is a multicellular, free-living roundworm found in
soil environments. The nematode possesses a quasicylindrical body shape of length L ≈ 1 mm and
radius r ≈ 80 μm. Much is known about the nematode’s genetics and physiology; its genome has
been completely sequenced [115] and its cell lineage has been established [116]. These nematodes
are equipped with 95 muscle cells that are highly similar in both anatomy and molecular makeup to
vertebrate skeletal muscle [117]. Their neuromuscular system controls their body undulations which
allows C. elegans to swim, dig, and crawl through diverse environments. The wealth of biological
knowledge accumulated to date makes C. elegans ideal candidates for investigations that combine
aspects of biology, biomechanics, and the fluid mechanics of propulsion. This slender nematode can
serve as an experimental analog of Taylor’s waving cylinder problem [88,110].

Figure 6(a) shows an image of the nematode moving in a Newtonian buffer solution together with
the path of its body centroid over multiple beating cycles. Due to its size (L ∼ 1 mm), the swimming
nematode can be imaged using standard bright-field microscopy, an experimental advantage over
microscopic systems. The nematode swimming speed (U ) is calculated by differentiating the ne-
matode centroid position with respect to time. Figure 6(b) shows the nematode’s body (center-line)
postures as a function of time, obtained via image analysis. Note that the amplitude is larger at the
nematode’s head than at its tail, indicative of the traveling waves moving along the nematode’s body
[84,118].

An important consideration in swimming experiments with live organisms is the fluid medium.
Fluids must be constructed or developed such that they possess the desirable rheological property
(elasticity, shear thinning, etc.) but without being toxic to the organism. In the case of C. elegans,
Newtonian fluids of different shear viscosities μ are prepared by mixing two low molecular
weight oils (Halocarbon oil, Sigma-Aldrich), while viscoelastic fluids are prepared by adding small
amounts of carboxymethyl cellulose (CMC, Mw = 7 × 105) into deionized water. By varying the
polymer concentration in solution, one can tune the level of elasticity in the fluid and obtain fluid
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FIG. 6. The nematode C. elegans swimming in complex fluids. (a) Bright-field image of nematode moving
in Newtonian fluids over several beating cycles. The nematode’s centroid path shows periodic body oscillations.
(b) Nematode’s center-line postures over one beating cycle measured using image analysis and color coded by
time. (c) Nematode swimming speed U as a function of fluid viscosity for both Newtonian and VE fluid cases.
(d) Normalize swimming speed as a function of De. Inset shows that nematode wave speed is affected by
fluid viscosity but not by polymers. (e) Experimental and numerical velocity fields [83]. (f) Normalized power
expenditure by swimming nematode in shear thinning fluids. Nematode spends less power in shear thinning
fluids for Cr > 1.

relaxation times λ ranging from 0.4 s for the most dilute concentration (1500 ppm) to about 5.6 s
for the most concentrated solution (8000 ppm). This strategy provides a reasonable dynamic range
in fluid elasticity (about an order of magnitude). These CMC solutions are not purely elastic,
as they display shear-thinning viscosity behavior too. In order to compensate for the effects of
shear-rate-dependent viscosity, an aqueous solution of the stiff polymer xanthan gum (XG) that is
shear thinning but possesses negligible elasticity is used in experiments; more details can be found
in [118].

Propulsion speed: Newtonian vs viscoelastic. With the methods in place, it is now possible to
address the question of whether fluid elasticity hinders or enhances the propulsion speed of live
organisms. The nematode’s swimming speed as a function of fluid viscosity for both Newtonian
and viscoelastic (CMC) solutions is shown in Fig. 6(c). For relatively low viscosity values, the
swimming speed is independent of μ and the values of U are nearly identical for both cases. For
μ > 30 mPa s, however, the swimming speed (U ) decreases with increasing μ even for Newtonian
fluids; recall that Taylor’s result for the waving sheet is independent of fluid properties [87,88].
This decrease in U is most likely due to the nematode’s finite power. The speed data show that
U decays slower than μ−1/2, suggesting that the nematode does not swim with constant power.
Importantly, the values of U for viscoelastic fluids are found to be 35% lower than the Newtonian
fluid of same shear viscosity [Fig. 6(c)]. Thus, it appears that fluid elasticity hinders propulsion
speed of an undulatory swimmer in agreement with analytical results [52,110].

The effects of fluid elasticity on the nematode’s swimming behavior are best illustrated by
plotting the normalized swimming speed U/UN as a function of the Deborah number (De = λ f ), as
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in Eq. (8). Here, UN is the Newtonian speed. Figure 6(d) shows that the normalized swimming speed
decreases monotonically with De, and reaches an asymptotic value of 0.4 as De is further increased.
That is, it appears that elastic stresses introduce resistance to propulsion, therefore decreasing the
nematode’s swimming speed; more details are given in [118]. The experimental data seem to agree
relatively well with analytical predictions [52,110] and Eq. (8). Of course, such agreement is not
necessarily expected because there are significant differences between the experiments and the
calculations. For example, the analysis is two dimensional (2D) while the nematode is allowed to
swim in 3D although only planar swimming was considered in the experiments. Most importantly,
while the calculations impose a particular prescribed kinematics or waveform, the nematode is free
to choose its own. In fact, we find that the nematode’s wave speed c decreases as a function of
fluid viscosity for both Newtonian and VE cases, as shown in Fig. 6(d), inset. Nevertheless, the
agreement is rather remarkable and may point to generic features in this problem.

So what could explain the decrease in swimming speed for nematodes moving in viscoelastic
fluids? We may find clues in the velocity fields produced by the swimming nematodes. Figure 6(e)
shows experimental and numerical velocity fields for swimming C. elegans in Newtonian fluids
[83]; the numerical velocity field was obtained using boundary element methods (BEM) along
with time-resolved nematode’s body postures obtained in experiments. The agreement between
the numerical and experimental velocity fields is quite remarkable, and it allows us to inspect the
base flow. A common feature of the velocity fields is regions of fluid recirculation that are aligned
along the nematode’s body. These recirculation regions persist throughout the bending cycle, but
their exact location varies. The flow structures presented here and elsewhere [84] show that the
nematode’s velocity field is complex and does not strictly fall into the pusher-puller category. The
velocity fields also show curved streamlines and high-velocity gradients, which can locally stretch
polymer molecules and lead to the production of extra elastic stresses. These extra stresses can
lead to additional resistance to propulsion and hinder swimming speed. In fact, it was originally
thought that these elastic stresses were produced in extensional regions of the flow, which in
turn dramatically increase the local extensional viscosity of the medium. Numerical simulations,
however, showed that not to be the case; rather, they found large elastic stresses produced near the
head of the swimmer where the amplitude is higher [114].

While much effort has been devoted to understanding the effects of fluid elasticity on swimming
behavior of undulatory swimmers, shear-thinning effects have received much less attention. That is
an oversight since shear-thinning behavior is very common in polymeric solutions. Using Taylor’s
waving sheet along with a Carreau fluid model, Vélez-Cordero and Lauga [119] showed that the
“swimmer” is more efficient in the shear-thinning fluid even though its speed remains the same
as in the Newtonian case. A numerical simulation by Montenegro-Johnson, Smith, and Loghin
[120] showed that for large amplitude waves the swimming speed increases in shear-thinning fluids.
These recent studies have shown that even relatively simple non-Newtonian fluid behavior can have
a significant impact on the swimming kinematics of microorganisms. In experiments, shear-thinning
viscosity seems to have little to no effect on the swimming speed of C. elegans (as in [119]), but
it modifies the velocity fields produced by the swimming nematode [121]. Velocimetry data show
significant enhancement in local vorticity and circulation. Figure 6(f) shows that the work or cost
of swimming required for nematodes to move in shear-thinning fluids is less than that of purely
viscous fluids for Cr > 1 [121,122]. So, it may be “easier” for C. elegans to swim in shear-thinning
fluids.

In summary, experiments with the nematode C. elegans show that fluid elasticity hinders its
swimming speed [118] while shear-thinning viscosity had no effect on U [121]. The data indicate
that the more elastic the fluid is, the slower the nematode will swim (until an asymptote is
reached). This trend is predicted by both numerical simulations [111,114] and theory [52,110],
but the agreement is only qualitative. There is still room for refining both experiments and analysis,
particularly in resolving time-dependent, 3D flows. For example, it is still unclear how the nema-
tode’s body material properties (tissue viscosity, body elasticity, and bending stiffness) couple with
fluid rheology [114,123,124] and the ensuing swimmer kinematics. Experiments with C. elegans
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swiming in viscous fluids show that nematode’s Young’s modulus and tissue viscosity increase as
fluid viscosity increases [123], and simulations describe how soft swimmers “soft” filaments can
swim faster than stiffer ones, a result corroborated (at least in part) by an analysis of the Taylor
swimming sheet [112]. The governing dimensionless parameter is the Sperm number defined as
Sp = (ηω/κk3)1/3, where η is the fluid total viscosity, ω is the swimmer beating frequency, k is
wave number, and κ is the swimmer bending stiffness. Fluid stresses are negligible for Sp � 1 (stiff
limit), but they become increasingly important as Sp increases beyond unity. The challenge before us
is to understand and describe how the (active) nematode’s kinematics emerge from the interactions
with its fluid environment. The idea would be to incorporate neuroactivity and neuromuscular
models and data into swimming models to understand how observed C. elegans’s motility behavior
is related to sensory inputs [125,126].

B. Pulling and pushing in complex fluids

We now turn our attention to two archetypal modes of swimming, namely, pusher and pullers
[Figs. 4(a) and 4(b)]. These types of swimmers are a mathematical construct [from Eq. (2)]
developed to describe the flow field generated by real microorganisms. As noted by Hancock [90],
at low Re flow disturbances driven by the kinematic motion of a swimming microorganism depend
linearly upon the stresses exerted by the moving body on the fluid; the velocity fields of such
flow disturbances are described as linear superpositions of fundamental solutions of the Stokes’
equation and decay with inverse powers of r (or swimmer length scale). The first solution, referred
to as a “Stokeslet,” arises from the net force on the fluid and decays as 1/r. The next solution, known
as a “stresslet” flow, is induced by the first force moment exerted by the body on the fluid and decays
more rapidly (1/r2); higher-order solutions decay even more rapidly (1/r3). The combination of
these basic solutions can yield flows with complex and qualitatively different behaviors, exhibiting
contrasting near- and far-field behaviors [81,82,127].

Consider, for example, a neutrally buoyant force-free microswimmer propelling itself along its
axial direction e (unit vector). The swimmer produces a force dipole p = αe in the fluid. Two
different types of force dipoles can in general arise. Swimmers described by a negative force dipole
(α < 0) are called “pullers” [Fig. 4(b)]; they draw fluid in along the elongated direction and push
fluid out from the sides. The actuation for pullers occurs near the particle head, and a prime example
is the algae Chlamydomonas reinhardtii [Fig. 4(b)]. Swimmers described by positive force dipole
(α > 0) are called “pushers” [Fig. 4(a)] in the sense that they repel fluid from the body along their
axis and draw fluid in to the sides. A pusher swims by an actuating stress along the posterior of
its body, and examples include the bacteria Escherichia coli [Fig. 1(b)] and Bacillus subtilis. Then,
broadly speaking, the kinematics of microorganisms can be classified into two main types: pushers
(E. coli) and pullers (e.g., C. reinhardtii). Note that other organisms such as the alga Volvox carteri
may fall between this pusher or puller distinction. While this pusher-puller classification is limited
and simplified, it provides a dichotomy for a reasonable framework.

1. Pulling in viscoelastic fluids

The alga Chlamydomonas reinhardtii is a model system in biology and has been widely used
in studies of motility [2]. The algae has ellipsoidal cell body that is roughly 10 μm in size
and two anterior flagella each of length L ≈ 10 μm, Structurally, the two flagella possess the
same conserved “9 + 2” microtubule arrangement seen in other organisms’ axonemes including
mammalian sperm cells. The algae executes cyclical breaststrokelike patterns with asymmetric
power and recovery stokes at frequencies f ≈ 30–60 Hz to generate propulsion [Fig. 7(a)]. This
swimming gait generates far-field flows corresponding to an idealized puller [2,82].

Motile cilia and flagella are important sensors of their environment. The dynein-dependent
sliding of microtubules and subsequent relaxation that governs the bending of cilia and flagella can
be significantly affected by the characteristics of the external fluidic environment such as viscosity
and elastic stresses. Increasing fluid viscosity, for example, can activate Ca2+ influx pathways
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FIG. 7. The puller swimmer C. reinhardtii swimming in Newtonian and viscoelastic fluids. (a) Time-
averaged flagellum strokes over one beating cycle. Fluid viscoelasticity dramatically constricts the the algal
flagellar beating waveform, compared to the control case. (b) Strain energy density (polymeric stresses) for C.
reinhardtii for both Newtonian and VE strokes at De = 2. Note that Newtonian stroke produces significantly
more elastic stresses than the VE stroke. (c) Fluid elasticity hinders cell swimming speed (top) but leads to
a sharp increase in beating frequency (bottom). (d) Combination of experiments and simulations show that
Newtonian stroke moves faster than a VE stroke in VE fluids (top) but spends more energy (bottom).

that, in turn, increase cilia beating frequency [128]. Thus, one expects extracellular conditions to
affect motor function and flagellar waveforms. For example, sperm flagellum shows high-amplitude
waveforms in low-viscosity fluids, while relatively rigid waveforms with large tail amplitudes are
found in high-viscosity fluids [129]. Notably, experiments by Suarez and colleagues have shown
that fluid non-Newtonian rheology can significantly modify mammalian sperm flagellar kinematics
[48,56], which translates into faster swimming speed and enhanced ability to penetrate the vestments
encasing the egg [12].

Recently, the effects of fluid elasticity on flagellar kinematics and cell motility have been
systematically investigated in experiments [130] and simulations [131] using the green alga C.
reinhardtti. Experiments are performed in a thin fluid film in order to avoid issues with solid
boundaries. Two main fluids are used: (i) a Newtonian buffer solution and (ii) viscoelastic (VE)
polymeric solutions. The dilute polymeric solutions are aqueous solutions of high molecular weight
polyacrylamide, a flexible polymer. By carefully varying polymer concentration, we can construct
solutions with relaxation time λ, ranging from 6 ms to 0.12 s. That translates into Deborah numbers
(De = f λ) ranging from 0.3 to 6 if one takes f = 50 Hz, that is, over one order of magnitude in
elastic effects. Newtonian fluids with viscosity values ranging from 1 to 10 cP (10× the viscosity of
water) are produced to investigate purely viscous effects. Similar to the experiments with C. elegans,
we compare results from VE and Newtonian fluids at similar viscosity values to isolate elastic from
viscous effects. More information about methods and fluid characterization can be found in [130].

Results show that C. reinhardtii flagellar kinematics is significantly affected by both viscous
and elastic stresses [Fig. 7(a)]; these modified kinematics in turn affect fluid flow and stress fields
[Fig. 7(b)]. Both flagella beating frequency and cell swimming speed decrease as fluid viscosity
increases (not shown, see Fig. 2 in [130]). That is, the cell swimming kinematics is significantly
affected by even linear viscous stresses, similar to [128]. Figure 7(a) shows that the shape beating
forms (over one cycle) for the Newtonian case differs from the VE case even at similar viscosity
values (μ = 6 cp). The VE case shows flagellar movement severely restricted (less mobile) or
bundled together near the cell body. Most of the bending or movement seems to occur away from the
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cell body with large localized bending at the distal tips. How do these kinematic changes translate
into cell swimming speed?

Similar to C. elegans, the cell-normalized swimming speed (U/UN ) decreases as De (or fluid
elasticity) increases, as shown in the top panel of Fig. 7(c). The decay of U/UN vs De resembles
the theoretical predictions and Eq. (8) [52,110]. But the agreement may be coincidental since the
cell beating frequency f is found to increase, sharply, for De � 2, as shown in the bottom panel
of Fig. 7(c). This is curious since one would expect the swimming speed to increase as ω in-
creases, illustrating the nontrivial response of cell flagellum to external fluid stresses. Unfortunately,
experiments alone are insufficient to fully understand this nontrivial response and the governing
mechanism that lead to a particular waveform. Is the emerging waveform a result of a passive
response solely based on the material properties of the flagellum? Or is it an active response based
on motor response to external load? Or a combination of both?

2. Numerical simulations with pullers in VE fluids

Numerical simulations together with experimental data can provide information that goes beyond
what can be experimentally measured or numerically calculated alone. In particular, it can provide
data on local polymeric and elastic stresses and insights into the question of flagellum active vs
passive response to flow stresses. To that end, Thomases, Guy, and colleagues recently developed the
first 3D numerical model [131] of a microorganism swimming in a complex fluid with swimming
kinematics derived solely from experimental data [Fig. 7(b)]. A numerical tool was designed to
prescribe the exact kinematics (obtained from experiments) to separate the effects of gait and fluid
rheology. Numerical simulations were validated by comparing the resulting swimming speed from
the simulations to those from experiments. With the model and methods in place, it is possible to
visualize the elastic stress accumulation in the fluid medium and to measure the energy expended
by the C. reinhardtii.

To isolate the effect of fluid elasticity on swimming behavior and flagellar kinematics, experi-
mental data on the gaits of C. reinhardtii swimming in Newtonian and VE fluids are used as inputs
to numerical simulations. Thus, simulations are able to independently change swimming kinematics
(gait and stroke) and fluid rheology (viscosity and elasticity). Figure 7(b) shows polymeric (elastic)
stress fields (elastic strain energy density) for Newtonian and VE strokes beating in a VE fluid at
De = 2. Both strokes are obtained from experiments at similar viscosity values (≈2.5 cP); they are
then placed or immersed in a numerical VE fluid simulated using the Oldroyd-B model [Eq. (7)].
Results show that most of the polymeric stresses are produced along the flagellum and near the
distal tips; polymeric stresses are relatively low around the alga’s body. Surprisingly, the simulations
show that the Newtonian stroke induces higher elastic stress than its VE counterpart, as shown in
Fig. 7(b). These elevated stresses are responsible for the larger power needed by the swimmers using
the Newtonian stroke to propel in VE fluids, even though they swim faster [Fig. 7(d)]. That is, the
VE stroke is more energy efficient (but slower) suggesting that the swimmer may change its stroke
(or gait) to the fluid properties based on energy availability.

In summary, these results show that fluid material properties, in particular viscoelasticity, can
significantly affect flagellar kinematics (stroke) and cell speed [130,131]. The mechanism responsi-
ble for observed changes in kinematics is still unclear. Numerical simulations suggest, however, that
such changes are an active response, but we still do know to what extent or the precise mechanisms.
On the other hand, these findings suggest that one may control the ciliary or flagellar beating and
tune transport properties (e.g., clearance of mucus) by manipulating fluid rheology. This opens up
the possibility of using ciliary response to fluid properties to treat airway disease related to impaired
cilia motility, such as primary cilia dyskinesia and cystic fibrosis, where “thickened” mucus due
to large amounts of DNA, actin, and bacterial biofilms leads to reduced mucociliary clearance and
breathing difficulty.
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FIG. 8. E. coli in polymeric solutions. (a) Experiments by Schneider and Doetsch show that cell swimming
speed increases as fluid viscosity increases [133]. (b) Numerical simulations with helical bodies in VE fluids
showing the effects of body geometry on propulsion [137]. (c) Experimental cell trajectories showing the
suppression of tumbling in VE fluids [138]. (d) Rotational diffusivity for different polymeric solutions indicates
the tumbling suppression is a viscous effect. (e) Increase in cell speed and the concomitant decrease in cell
wobbling as a function of elasticity for a fixed viscosity (μ = 10 cP). (f) Schematic of hoop stresses acting on
E. coli cell. (g) Snapshots of DNA molecules being stretched by E. coli’s swimming action.

3. Running and tumbling in polymeric fluids

As we have seen so far, the two-way coupling between swimmer kinematics and fluid rheological
properties can give rise to many unexpected behaviors for microorganism swimming in complex
fluids. We now explore the case of the bacterium E. coli, an archetypical model organism for motility
studies [3]. E. coli are rod-shaped cells (1 to 2 μm in size) with 3 to 4 helical flagella that rotate and
bundle together as the they swim forward at speed of approximately 10 μm/s (in buffer solution).
Notably, E. coli moves using run-and-tumble dynamics that is diffusive at long times [3,132]; the
“run state” is characterized by forward swimming while the “tumble state” is characterized by
changes in cell direction due to motor reversal. Their velocity field is well approximated by an
idealized pusher [81].

Nearly 50 years ago, Schneider and Doetsch investigated the effects of non-Newtonian fluid
viscosity on the swimming behavior of E. coli [133]. Surprisingly, they found an increased in
cell swimming speed with increasing fluid viscosity in aqueous solutions of poly-vinyl-pyrrolidone
(PNP, Mn = 360 kDa) and of methyl-cellulose (MC, Mn unknown); Mn is the number-averaged
molecular weight. The data reproduced from their original manuscript in Fig. 8(a) show an increase
in bacterium swimming speed with polymer concentration and a peak; note that the abscissa is in
units of inverse viscosity. It was argued at the time that E. coli was able to move faster in polymeric
solutions because they swim through polymer network pores, and thus only experience the solvent
viscosity [134]. Numerical simulations based on this argument were able to reproduce some of
the experimental results [135]. As discussed in [136], the proposed mechanism is not physical;
the estimated pore size for the polymers used in the experiments are far too small, approximately
80 nm for PNP (Mw = 106 kDa) assuming random coil, for an E. coli cell of cross section ≈1 μm
to move through it, among other issues. That prompted Martinez, Morozov, Poon, and colleagues
[136] to revisit the experiments of Schneider and Doetsch. They carefully prepared a fresh set of
fluids using the same type of polymers as the original study. They found that, for low Mw polymers,
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E. coli swimming kinematics can be explained by Newtonian hydrodynamics alone. The authors
argued that impurities in the polymeric solutions may have been responsible for the increased in cell
swimming speed with μ observed by Schneider and Doetsch. They showed that only the case with
the highest Mw polymeric solution (near overlap concentration) showed an increase in swimming
speed due to local shear-thinning effects [136]. They developed a minimal model that captures their
experiments in the Newtonian (dilute) and shear-thinning (semidilute) regimes remarkably well.

The effects of fluid elasticity on E. coli swimming behavior, however, were less clear. Simulations
of helical structures in viscoelastic fluids (Oldroyd-B model) show that elastic stresses can either
enhance or hinder the structure propulsion speed and efficiency, depending on geometry (pitch,
radius) and rotation rate [137,139] [Fig. 8(b)]. A local maximum in propulsion speed as a function
of De is found in the simulations, a result that is similar to experiments in scaled-up mechanical
systems [77]. The question is whether these findings translate to living microorganism.

To address the question above, our laboratory performed a systematic experimental investigation
on the effects of fluid elasticity on the swimming behavior of E. coli [138]. Similar to the studies with
C. reinhardtii, experiments are performed in a thin film using Newtonian and polymeric solutions.
Polymeric solutions are prepared using high molecular weight polymers (Mw = 10 × 106) and are
dilute, c < c∗ where c∗ is the overlap concentration; for more details on methods and protocols,
please see [138]. Figure 8(c) shows E. coli trajectories in both Newtonian and VE fluids using
tracking techniques. While the typical run-and-tumble dynamics is observed in the Newtonian case,
we find a very different behavior in VE fluids: tumbling is suppressed as cell trajectories become
more ballistic. It turns out, however, that this tumbling suppression is not due to fluid elasticity.
Figure 8(d) shows E. coli rotational diffusivity as a function of fluid viscosity μ for several polymeric
solutions of different Mw (and thus elasticity levels). The data show minimal differences among the
different fluids suggesting that the suppression of tumbling (or rotational diffusivity) is a viscous
effect.

Fluid elasticity does seem to affect the E. coli swimming speed. Figure 8(e) shows cell swimming
speed (top) as a function of polymer molecular weight (Mw) for a fixed viscosity μ = 10 cP. The
data show a clear increase in cell as polymer Mw (or elasticity) is increased, even though the fluid
viscosity is kept relatively constant by adjusting polymer concentration below c∗. This means that
the increase in speed is not a viscous effect and likely due to elasticity. Intriguingly, the enhancement
in cell swimming speed is accompanied by a decrease in cell wobbling, as shown in Fig. 8(e),
bottom. Cell wobbling is oscillations of the cell body along its path, a behavior typical of swimming
E. coli. These two-dimensional lateral oscillations of the cell body are projections of the cell’s
three-dimensional helical trajectory. The bacterium E. coli can wobble by as much as 20◦ to 30◦
about its path center line. The question is whether the decrease in wobbling is mechanistically
related to the increase in bacteria speed in VE fluids. One could argue that the presence of curved
streamlines in the E. coli velocity field [Fig. 8(f)] could lead to polymer stretching and the production
of elastic hoop stresses in a mechanism that is similar to the one responsible for the rod-climbing
effect. As discussed in the Introduction, these stresses point inward in the radial direction (r) towards
the cell body and perpendicular to the cell’s swimming direction. These hoop stresses then cause
the cell body to align with the projected direction of motion, thus reducing wobbling. Visualization
of individual fluorescently labeled DNA polymers reveals that the flow generated by individual E.
coli is sufficiently strong to stretch polymer molecules and induce local elastic stresses in the fluid
[Fig. 8(g)]. Hence, we believe that hoop stresses are responsible for suppressing cell wobbling,
which in turn leads to faster cell swimming speeds.

In summary, these results show how local shear-thinning effects [136] and elastic stresses
[138] can significantly affect the swimming behavior of E. coli. Despite progress, the mechanism
responsible for suppression of tumbling and the changes in cell speed in VE fluids is still being
debated; there is no consensus just yet. For example, recent numerical simulations find that elasticity
can indeed lead to an increase in cell swimming speed due to azimuthal swirl in its gait that decreases
the extensional wake behind the swimmer [140], while an experimental investigation shows that
wobbling is indeed reduced by normal stresses but its not the main cause for increase in swimming
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speed. Rather, speed enhancement is due to shear-thinning effects similar to [136]. Very recently,
an intriguing study by Cheng and colleagues showed that E. coli can swim faster in suspensions of
colloidal particles [141]. They argued (and demonstrated) that as bacteria cells swim near particles,
they experience a torque that aligns the flagella with their body leading to faster swimming. A
similar mechanism may be at play when cells move near polymer molecules. This study, as well a
recent numerical simulation [142], shows how nonlocal effects must be considered particularly as
the length scale of fluid microstructure is of the same order as the cell length scale; the continuum
approach breaks down under those conditions. Clearly, there is still much that we do not know
regarding the effects of fluid rheology on the swimming behavior of E. coli.

V. CONCLUSIONS AND OUTLOOK

Swimming in complex fluids is a rich, nonlinear problem that still is not fully understood. The
two-way coupling between swimmer kinematics and fluid rheological properties can give rise to
many unexpected behaviors, as shown here. In some instances, fluid rheology can aid propulsion
but in others it may be detrimental. It is, therefore, difficult to make general statements regarding
propulsion speed and/or energy expenditure because much depends on how the swimmer interacts
with the polymers and particles in the fluid. Nevertheless, the field has made much progress in
characterizing and modeling such interactions with the goal of developing general understanding of
motility. Opportunities for those interested in joining the community are still plenty. I will discuss a
few below.

Perhaps one of the most outstanding questions is whether the gait or kinematic changes observed
in the experiments are a passive or active response (or a combination of both). For example, we
show that elastic stresses can significantly affect and change the beating waveform of C. reinhardtii,
relative to what is commonly observed in simple, Newtonian fluids (Fig. 7). Yet, we are not sure
whether the alga cell is actively responding to fluid stresses. It has been shown in experiments [123],
simulations [131], and analysis [124] that organisms’ motility behavior can vary widely depending
on flagellum or organism (passive) material properties. One avenue to address this question (active
vs passive response) is to combine experimental data with numerical simulations [131] in order to
decouple swimming kinematics from fluid rheological effects. Moving forward, it is desirable to
include accurate models for the flagellum active forces (e.g., dynein motor activity), for instance, in
the fluid-swimmer formulation. Could these types of formulations capture the emerging flagellum
waveforms?

Albeit described only briefly [136,141,142], the importance of resolving nonlocal effects can-
not be understated. While there is enough separation of scales for microorganism swimming in
Newtonian fluids, that may not be the case for fluids containing polymers and/or solids. This
can be quantified by the Knudsen number, Kn = L f /Ls, where L f and Ls are the characteristic
length scales of the fluid and swimmer, respectively. Consider, for example, E. coli Ls ∼ O(1) μm
moving in water L f ∼ O(0.1) nm. In such case Kn O(10−4), and the system can be adequately
described by the continuum approach. The picture is different even in polymeric solution; polymer
radius of gyration Rg, for high Mw molecules can be as high as 300 nm. Then, Kn = 0.3 for the
same E. coli indicating that a molecular, statistical approach may be more adequate to describe
such swimmer [6,142]. Of course, a natural length scale to consider is the one associated with the
velocity decay rv . Considering again the E. coli, we can estimate rv by first noting that the velocity
decays as 1/r2 (for a pusher dipole). The flagellum helix diameter a is approximately 0.25 μm
and it rotates at an angular speed � of about 170 rad/s. We can estimate the velocity decay to
10% of the maximum speed next to the rotating flagellum (a�) to be (a2/r2)a� = 0.1a�. This
gives a length scale rv = a

√
10 = 0.75 μm. Hence, the Kn = Rg/rv = 0.4. This is a similar result

as using the Ls ∼ O(1) μm suggesting that the use of statistical approach is warranted. For a more
comprehensive discussion on this topic, please see [5].

Finally, while there has been much progress in understanding swimming of single organisms in
complex fluids, much less is known about their collective motion. Only a few investigations are
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available: numerical simulations predict that elasticity can significantly affect the size of clusters
in nondilute swimmer suspensions [143,144], while experiments with sperm show that polymers
can even promote collective swimming [145]. Recently, large oscillatory vortices were found in
bacterial suspensions inside droplets containing viscoelastic fluids (DNA suspensions) [146]. It is
still unclear, however, how polymers mediate microorganism hydrodynamic interactions and affect
collective motion.
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