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This article describes the dynamics of small inertial particles centrifuging out of a single
vortex. It shows the importance of caustics formation in the vicinity of a single vortex: both
for particle collisions and void formation. From these single-vortex studies we provide
estimates of the role of caustics in high Reynolds number turbulence, and in the case
of clouds, estimate how they may help in rain initiation by bridging the droplet-growth
bottleneck. We briefly describe how the Basset-Boussinesq history force may be calculated
by a method which does not involve huge memory costs, and we provide arguments for its
possible importance for droplets in turbulence. We discuss how phase change could render
cloud turbulence fundamentally different from turbulence in other situations.
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I. INTRODUCTION

A. The flow situations

The dynamics of finite-sized particles or droplets in turbulent flow is relevant in a wide range
of natural and industrial settings. In the dispersal of pollutants due to a volcanic eruption or from
industrial flue gases, in a sandstorm, or a cloud, or when a river carrying sediment disgorges itself
into the ocean, we encounter such interaction. We are interested here in spherical particles, which
are so small that to a very good approximation they are in Stokes flow relative to the surrounding
fluid.

Why is the dynamics, in flow, of individual Stokesian particles interesting? First, such dynamics
is often not passive, in that the particle could be inertial, with finite acceleration relative to the flow.
Such particles therefore may not follow fluid streamlines, and this is responsible for a variety of
complex behavior. In background turbulent flow, particle inertia leads to clustering [1], caustics
formation [2,3], and, in some cases, coalescence and growth [4–8] (the general features of such
flows are reviewed in Ref. [9]; see also the reviews by Refs. [10,11] of properties relevant to
clouds). Further, the particles mentioned are often of density different from the fluid, and sediment
or rise under gravity [12–15]. Notice that we use the term “particles” to stand for droplets as well,
except when growth by coalescence or phase change is relevant, when we will refer to droplets.
This interchangeable notation is applicable when droplets are sufficiently small for surface tension

*sravichandran@iitb.ac.in
†rama@icts.res.in

2469-990X/2022/7(11)/110512(18) 110512-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9299-7570
https://orcid.org/0000-0003-4250-9334
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.110512&domain=pdf&date_stamp=2022-11-08
https://doi.org/10.1103/PhysRevFluids.7.110512


S. RAVICHANDRAN AND RAMA GOVINDARAJAN

to ensure that they remain spherical in shape. When particles are not in dilute suspension, their
interactions lead to new physics, including instabilities; see, e.g., Refs. [16,17]. But here we discuss
dilute suspensions, where interparticle interactions can be ignored.

We are particularly interested in droplets in atmospheric clouds. Clouds are a crucial part of
the Earth’s energy balance. Current estimates suggest that clouds are responsible for a significant
fraction of both the albedo (i.e., reflecting away of incoming solar “short-wave” radiation) of the
planet, as well as the greenhouse effect (i.e., trapping of outgoing “long-wave” radiation) [see, e.g.,
Ref. 18]. The respective magnitudes of these contributions from different patches of cloud depend
on their altitude, extent and thickness, as well as the droplet size distribution within. The size of each
droplet in a cloud is a changing function of time, since droplets can whittle away by evaporation
or grow by condensation, depending on whether their immediate neighbourhood is subsaturated or
supersaturated in water vapor. The energy released during these transformations plays a crucial role
in the dynamics of clouds, and in processes such as turbulent entrainment and mixing.

The dynamics of inertial droplets are also thought to be responsible for the rapid onset of rain
in warm (i.e., ice-free) clouds [1,2,19,20]. The millimeter-size droplets required for rain initiation
cannot be formed either by vapor diffusion which is too slow for droplets larger than O(10) micron,
or by gravitational collisions-coalescence which is not sufficiently rapid for droplets smaller than
O(50) micron. The range O(10–50) micron is called the “droplet growth bottleneck,” and is thought
to be “bridged” by the dynamics of inertial droplets in turbulent flow. It is known, for instance, that
the presence of a few [one-in-a-million, see, e.g., 19] large droplets leads to a significantly more
rapid generation of rain-sized droplets. We posit here that these large droplets may arise due to
turbulence-induced collisions of 10 micron droplets due to the action of small but powerful isolated
vortices.

In the rest of this review, in Sec. I B we introduce the basic equations governing the dynamics of
inertial droplets and then discuss the formation of caustics due to particle inertia, neglecting higher
order effects, in Sec. II. We describe the effects of a nominally higher-order correction, namely the
Basset history term, in Sec. III, showing that its effects are negligible for raindrop growth due to
gravitational settling. We then discuss the effects of condensation of water vapor onto droplets on
the dynamics of clouds in Sec. IV, including some of our own contributions to the study of the
interactions of droplet inertia, turbulence and phase change.

B. The Maxey-Riley equation

The dynamics of a heavy sphere in unsteady Stokes flow is described by the famous Maxey-Riley
(MR) equation [21]

ẏ = v(t ), (1)

v̇ = − 1

St
(v − u) − 3√

2βSt

{
1√
πt

[v(0) − u(0)] + 1√
π

∫ t

0

v̇(s) − u̇(s)√
t − s

ds

}
+ 1

Fr2 eg, (2)

where y and v, respectively, are the position and velocity of the particle at time t , and the dots
refer to differentiation in time along the particle trajectory. We prescribe that the density ratio
β ≡ ρp/ρ f � 1, where ρp and ρ f , respectively, are the densities of the particle and the fluid. Here,
the Froude number Fr−2 ≡ gT 2

f /L f , where g is the acceleration due to gravity and Tf and L f are
characteristic flow time and length scales, respectively, and the Stokes number St ≡ τ/Tf , where

τ ≡ 2βa2

9ν
, (3)

is the particle timescale, a being the radius of the particle and ν the kinematic viscosity of the
fluid. Equation (2) is in general nonlinear, since u = u[y(t )], the velocity of the fluid at the particle
location, can depend nonlinearly on y. The Faxen correction terms due to the curvature of the
velocity field on the scale of the particle have been neglected in this representation of the MR
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equation. This is reasonable because Stokesian particles in turbulence tend to be far smaller than
the structures in the flow. Most often [3,22,23] in the absence of gravity, this equation is further
truncated, after the first term on the right-hand side, reducing it to the simplified Maxey-Riley (SMR)
equation:

v̇ = − 1

St
(v − u). (4)

The Basset-Boussinesq history term (“Basset-history” or “BBH,” for short), i.e., the second term
on the right-hand side of Eq. (2), has been dropped in this approximation. At first sight, this seems
to be reasonable for particles of small Stokes number, since we have retained all terms up to O(St)
and neglected terms of O(St3/2) and higher. We shall proceed with this assumption in the next
section and examine it thereafter.

We ask first how turbulence, in the absence of gravity, determines particle dynamics. This
question may be answered in some degree by obtaining, in detail, the dynamics near a single
Lamb-Oseen vortex, as we do in Sec. II where we discuss the role and importance of single-vortex
caustics. We then investigate the relevance of our findings to homogeneous and isotropic high
Reynolds number turbulence.

II. DYNAMICS NEAR A LAMB-OSEEN VORTEX AND THE CAUSTICS QUESTION

We begin this discussion by defining caustics as situations where two or more particles arrive
simultaneously at the same place with different velocities. It is believed that caustics are important
for enhanced particle collisions [e.g., Refs. 2,4,24] which in turn are a crucial ingredient, in the
case of droplets, for growth by coalescence. Collisions are an important reason why we have rain
at all, and the background turbulence in clouds, with its associated vorticity, is considered to be a
lead player in this. A natural way to divide a turbulent flow in the context of particle dynamics is
into regions of vorticity and regions of strain, since inertial particles are known to centrifuge out
of the former and collect in the latter [25,26]. It is well known that caustics form when particles
centrifuging out of different vortices collide with each other [2]. But are single-vortex caustics
possible? This was answered in the affirmative by Ref. [27] and is discussed in the following. In
this study we limit ourselves to particles which are far heavier than the fluid they are embedded in,
but the analysis can easily be modified to include a finite density ratio, which in itself can make the
dynamics more interesting. In the following, when we use the term “caustics,” we are referring to
single-vortex caustics.

Patches of vorticity occur in a range of shapes and sizes in turbulence, but a given patch of
vorticity, if far away from other patches, will axisymmetrize into a Lamb-Oseen vortex in whose
cross-section vorticity varies as a Gaussian:

ω = ωv exp

[
− r2

d

r2
v

]
, (5)

where ωv = �/(πr2
v ) is the vorticity at the vortex center, rd is the dimensional radial distance from

the center of the vortex and rv is the characteristic size of the vortex at a given time. In fact, as
was pointed out by an anonymous referee of another paper, a Lamb-Oseen vortex can be termed the
“drosophila” of turbulence, a building block from whose behavior we may glean general principles
much as one does in biology using that organism. In two-dimensional turbulence, it was verified
[28] that vortex patches tend to be circular and display a Gaussian cross-section of vorticity [see
also Ref. 29]. There is increasing evidence in high Reynolds number simulations that intermittent
vortices tend to be tubelike.

In two dimensions, in the neighbourhood of a Lamb-Oseen vortex, the SMR equation in
cylindrical-polar (r − θ ) coordinates reads [27]

r̈ + ṙ = ζ 2

r3
, (6)
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ζ̇ + ζ = 1 − e−Stvr2
, (7)

where we have nondimensionalized the equations with the special length scale

L ≡
(

�τ

2π

)1/2

, (8)

the particle timescale τ , and denoted ζ ≡ r2θ̇ as the nondimensional angular momentum of the
particle. Note that L encompasses properties of the flow and the particle. The ratio of L and the
vortex size rv is also a ratio of timescales of particles and vortex, and appears in the form of a vortex
timescale-based Stokes number,

Stv ≡ ωvτ

2
= �τ

2πr2
v

. (9)

Now, the Stokes number in turbulent flow is normally defined in terms of the large timescale Tf in
the flow, which is much bigger than the timescale of the small vortices. Particles could thus be of
small Stokes number St in terms of the large scale and large Stokes number Stv in terms of a single
small-scale vortex. We are interested in vortices in this regime.

A. Point vortex, inner solution: The formation of caustics

We note that for a point vortex, i.e., when rv = 0, Eqs. (6) and (7) become parameter free. The
solution in this limit describes the dynamics of Stokesian particles of any Stokes number near any
point vortex irrespective of its strength. Equation (7) is now easily solvable and yields

ζ = 1 − (1 − ζ0)e−t . (10)

Here and in the following, a subscript 0 indicates the value of the quantity at the initial time.
Note that ζ ∼ O(1), and for the analysis below we will prescribe ζ0 �= 0. Equation (6) supports
a boundary-layer structure, and, for a point vortex, we may solve exactly for the dynamics close to,
and very far away from, the vortex center. The inner solution, for small distances from the vortex
center, is only relevant at short times, since this region is empty of particles once they get centrifuged
out. Following the standard procedure for singular perturbation problems, we define inner variables

Ri ≡ r

δi
and Ti ≡ t

εi
, (11)

which are O(1), with δi, εi � 1. Substituting these, and Eq. (10) in Eq. (6), we find that the lowest
order balance requires εi ∼ δ2

i . Since these are arbitrary constants defined by us, we may set εi = δ2
i .

At this order, there is no further information on what exactly εi and δi individually are, but this
information is not necessary either. Equation (6) reduces at the lowest order to

R′′
i = ζ 2

0

R3
i

, (12)

where primes refer to differentiation with respect to Ti. Equation (12) is an autonomous nonlinear
ordinary differential equation, whose solution is

R2
i =

[
ζ 2

0

R2
i0

+ R′2
i0

]
T 2

i + 2Ri0R′
i0Ti + R2

i0. (13)

Now caustics are formed when two sets of particles starting out at different R0 arrive at the same
radial location Rc at a particular time Tc, with the subscript c denoting caustics. The caustics time
for a given set of initial conditions may be obtained from Eq. (13). For example, if two particles,
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FIG. 1. Fermat’s spiral describing the centrifugation of a heavy particle in the outer region of a vortex. As
time goes on, the radial distance covered per cycle reduces and the time taken to cover each cycle increases.

initially at R01 and R02, have the same ζ0 and start out with zero radial velocity, then we have

Tc = R01R02

ζ0
. (14)

We arrive at the conclusion that the inner solution supports the formation of caustics for a point
vortex. Notably, all terms in Eq. (14) are O(1), which means that the caustics time tc = εiTc is very
short.

B. Outer solution: No caustics

At large time, all particles evacuate the vicinity of the vortex, and occupy the region at large r.
Moreover, Eq. (10) gives ζ = 1. The outer equations may be obtained in a similar manner as above
by defining outer variables, this time as Ro = δor and To = εot where δo, εo � 1 to get, at the lowest
order,

R′
o = 1

R3
o

, (15)

the primes now referring to differentiation with respect to To. Note that the subscript o stands for the
outer equation, and is not to be confused with the subscript 0 for initial conditions. The balance this
time yields εo = δ4

o . Equation (15) may be solved immediately to yield R4
o − R4

o0 = 4To. At large
times Ro � Ro0, so we may neglect the latter in comparison to the former. When put back in the
physical variables, we have r4 = 4t , with r2θ̇ = 1. In other words θ/r2 = 1/2, i.e., a particle far
away from the vortex will execute a Fermat’s spiral, shown in schematic in Fig. 1, thus centrifuging
ever more slowly out of the vicinity.

It is evident that from Eq. (15) that a given radial distance away from the vortex is associated
with a unique particle radial velocity Ṙo. This means that particle dynamics may be described in
the outer region in terms of a field for the particle velocity, namely Ṙo = Ṙo(Ro, θ, To). This in turn
means there is no possibility of caustics in this region.
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FIG. 2. The range of initial locations (the region between the red dashed lines, where r0 = rci and the blue
dashed lines, where r0 = rc) broadens as the Stokes number Stv [Eq. (9)] increases. For each curve, caustics
occur in locations bounded by these vertical asymptotes. Thus, for Stv � 2.3, no caustics occur. These curves
were obtained using inertial finite-time Lyapunov exponents (iFTLEs, see Ref. [30]) in the radial direction, the
values of which are plotted as the ordinate.

C. The complete solution for single-vortex caustics

The singular perturbation study above is carried out just to be instructive. The complete SMR for
a particle near a Lamb-Oseen vortex, Eqs. (6) and (7), are trivial to solve numerically and we have
done so. From the lowest-order singular perturbation theory, we saw for a point vortex that caustics
happen at early times and r � 1 and never at late times and r � 1. We may thus expect that the
limit for caustics will happen at a caustics radius rc ∼ O(1). In fact, for a range of initial conditions
[27] we find that the caustics radius is given by

r2
cd ∼ �τ, or rc ∼ 1, (16)

where the subscript d denotes a dimensional quantity. For a Lamb-Oseen vortex of finite size too, the
complete solution of the SMR equation shows caustics, see Fig. 2. The difference is that while for a
point vortex, particles starting from any r < rc participated in caustics, for the Lamb-Oseen vortex
we have caustics occurring for particles starting within rci � r � rc, where rci is an inner limit for
caustics formation, which decreases as the Stokes number Stv increases, as seen from Fig. 2. Further,
all caustics happen at times of O(τ ), and the region within rc is devoid of particles at later times,
irrespective of the value of rci. In other words, the region rd � (�τ )1/2 where caustics form is also
the region which gets voided extremely quickly (on the particle timescale) of particles due to rapid
centrifugation. This will be important for our calculations below of void volumes. Another finding
is that in the case of single-vortex caustics, there is a direct and strong correlation between collisions
and the formation of caustics. Collisions are overwhelmingly the result of caustics formation, and so
caustics are crucial for droplet growth. There is a sharp increase in the number density of particles
just outside rc, which is one reason for enhanced collisions, as seen in, e.g., Refs. [7,27]. This
highly clustered band then centrifuges out slowly on the Fermat spiral timescale. Incidentally, we
do have rare occurrences of collisions without caustics, when the centers of two particles come
closer together than the sum of their radii. More details are available in Refs. [7,27].
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FIG. 3. Schematic of single-vortex caustics. The vortex is shown by the filled blue circle. Caustics can
happen only inside rc, and an example of an inner light green ring of particles just about to overtake the outer
dark green ring is shown. Particles within the caustics radius rc get centrifuged out very rapidly, thus evacuating
this region. Just beyond, an intensely clustered ring of particles collects and continues centrifuging out at a far
slower rate. This is a singular perturbation problem with distinguished limits at radii well within and well
outside the caustics radius.

The calculation of the caustics time in Eq. (14) was made for two heavy spherical particles of
identical size and therefore equal time constant τ . In the case of two particles with different τ ,
Eq. (13) can be rewritten in dimensional form for each particle, and the caustics radius and time
calculated. In Ref. [7, Fig. 3 therein], we showed that even very small differences in the Stokes
numbers can vastly change the “polydisperse caustics radius,” denoted here by rcp and quantified in
Fig. 4. The particle starting at a smaller distance from the vortex center is denoted by the subscript
1 and the other one by 2. If the outer particle is larger, then the initial conditions determine whether
the smaller one can overtake it. The differences in Fig. 4 between the two initial conditions therefore

FIG. 4. Nondimensional polydisperse caustics radii as a function of the ratio of timescales ξ = τ2/τ1 of
outer to inner particle. Small differences in size lead to large variations. Left: particles initially following
circular streamlines; right: particles initially stationary. See text for a discussion of relevance.
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merit further study. When the inner particle is larger, rcp is larger by two orders of magnitude than
rc. At first sight, it appears that our findings in the earlier section are thus rendered irrelevant. This
is emphatically not the case: our conclusions hold for a distribution of particle sizes, unless this
distribution is extremely wide. The relevant caustics radii are still the individual rc’s. Well beyond
this, each particle follows its outer solution of executing an ever-more slowly widening Fermat
spiral, and approach velocities between particles, and therefore collision rates, are extremely low.
Nevertheless, rcp is technically the caustics radius for polydisperse particles. A tangible effect of
polydispersity is that the bigger droplet’s radial velocity being larger than the smaller one’s, it can
collide with and collect more droplets rather easily, and so polydisperse caustics afford a “rich get
richer” scenario, by which droplets which are already larger are strongly favoured to grow more
easily.

We shall use these findings on dynamics near one vortex in the next subsection to estimate
particle collision due to caustics in high Reynolds number turbulence. We shall see that vortices
of smaller and smaller scale contribute more and more significantly to the total number of caustics
events.

D. An estimate of single-vortex caustics in high Reynolds number turbulence

A vast amount of new knowledge is being accrued about high Reynolds number turbulence
under homogeneous isotropic conditions, though these do not include the thermodynamics of phase
change. As we shall see in Sec. IV, due to the heat released during condensation, small-scale vortic-
ity is likely to be more prevalent in a cloud than in the common homogeneous isotropic turbulence,
but our analysis here based on “normal” turbulence will provide a possibly conservative estimate
of droplet growth due to caustics near a single vortex. For this we rely heavily on the excellent
study by Buaria and Pumir [31], showing how extreme vorticity follows universal behavior at high
Reynolds number. They have studied Taylor microscale-based Reynolds numbers Rλ up to 1300,
but their demonstration of universality allows for extrapolation to higher Rλ. Such extrapolation is
of course subject to validation against future simulations. The vorticity field is known to be far more
intermittent than the strain field, and we shall find this to be very important. Following Ref. [31],
we define � ≡ ωiωi. At the small scales, we have [31]

rv

ηK
	 (

�t2
K

)−γ /4 	
(

tK�

r2
v

)−γ /2

, (17)

where ηK and tK are the Kolmogorov length and timescales, uv is a typical velocity of a vortex of
size rv , and γ is a parameter obtained from direct numerical simulations. Here � ∼ rvuv ∼ �1/2r2

v ,
where uv is a velocity scale of the vortex. As Rλ → ∞, it is expected that γ → 1, but in our range
of interest, we may take γ 	 0.8.

What follows is an order of magnitude calculation for vorticity at small scales. For caustics to
form, our single-vortex calculations have shown that we must have the caustics radius rc to be larger
than the vortex radius rv . Using Eqs. (16) and (17), we have the simple requirement for caustics,
that

� � 1

τ 2
, or �min = 1

τ 2
, (18)

where �min is the squared vorticity amplitude of the largest sized vortex that can give rise to caustics.
In other words, vortices of Stv � 1, i.e., of timescale equal to or faster than the particle timescale,
participate in caustics. This estimate is exactly in line with the observations of Ref. [32], in direct
numerical simulation of particulate channel flow, that significant voids due to centrifugation are
formed for vortices whose turnover time is comparable to the particle timescale. From Eq. (9), this
is equivalent to

2π

ωv

= τp, or Stv = π,
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which is comparable to the critical Stokes number of 2.3 for caustics to occur (see Fig. 2). Our
contention is that what the authors of Ref. [32] see in their simulations is a consequence of the
caustics radius, and of Eq. (18).

As the Reynolds number increases, so does the intermittency in � [31], and the fastest, or most
extreme, timescale text in the flow reduces, according to

text ∼ tK R−ξ

λ , (19)

where ξ is an O(1) number, changing very slowly with Rλ. Again, for our purposes, ξ 	 0.8. Buaria
and Pumir show that when � is scaled by t−2

ext , the tails of its probability density over a range of Rλ

from 140 to 1300 collapse into a single curve.
To simplify our estimate, we assume all particles are of uniform size. The void area Avoid around

a vortex, within which there are no particles, is comparable to the area of the caustics region, i.e.,

Avoid ∼ �τ ∼ uvrvτ ∼ �1/2r2
vτ ∼ x(1−γ )/2η2

K

τ

tK
, (20)

where we have used Eq. (17), and defined x ≡ �t2
K . Knowledge of the probability density p(x) of x

enables us to obtain the void fraction due to particle evacuation in the flow. Due to homogeneity, we
can obtain the void area fraction on any plane, and this would be the same fraction in other planes,
and therefore in the entire volume. Assuming stationarity, p(x)�x|x1 is the fraction of the volume
of the flow which is occupied by vortices with x in the range x1 to x1 + �x. Similarly, on any planar
cross section in the flow the fraction of area A(x) occupied by vorticity in the corresponding range
would be p(x)�xx1. This area is split into an average of A(x)/r2

v vortices, where r2
v is the area of a

vortex in order of magnitude. On a plane of unit area, since∫ ∞

0
p(x)dx = 1, we have

∫ ∞

0
A(x)dx = 1, (21)

and the void fraction may be obtained, using Eq. (20), as

fvoid =
∫ ∞

xmin

p(x)

r2
v

Avoid(x) dx = τ

tK

∫ ∞

xmin

p(x)x1/2 dx. (22)

Note the lower limit of the integral, xmin = �mint2
K , the minimum x for caustics, below which no

void is created. This void fraction is attained on very fast timescales, and may be taken as the
instantaneous fraction for a given vorticity field.

The idea is to find the squared amplitude of vorticity �min beyond which vortices will participate
in caustics, and then use Eqs. (20) and (22) to obtain the fraction of volume in the turbulent
flow occupied by voids. A small fraction of the droplets which have evacuated these voids would
participate in caustics events, giving opportunity to coalesce and make bigger drops. It is an
oft-quoted estimate of Ref. [19] that all we need for a runaway growth of droplets into raindrops
is a very small minority of larger drops, of the order of one in a million drops. This is consistent
with our finding of “rich getting richer” by single vortex caustics. Using this, we may estimate the
generation of caustics by intermittent vortices in turbulent flows. This exercise is carried out in the
following section to give us an estimate of the minimum turbulence levels which can produce rain.

E. Cloud estimates

In cloud physics we often encounter the term “droplet growth bottleneck.” This is outlined as
follows. A nascent cloud consists of large numbers of cloud condensation nuclei (CCN), typically
aerosol particles of the order of 1 micron in size, in a background slightly supersaturated in water
vapor. Water vapor at these concentrations can only condense into liquid water on CCNs, and
will not undergo spontaneous condensation in their absence. It is known that diffusion of water
vapor and condensation onto CCNs results, in a very short time, in cloud droplets of size ∼10
microns. But beyond this size, their growth by condensation is too slow to create raindrops, as seen
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FIG. 5. Droplet growth (a) by condensation in a quiescent environment supersaturated by 5% in water
vapor, and (b) by gravitational settling and the associated collisions and coalescence. The initial radius of
the larger drop is 21/3as for the blue solid line and 1.01as for the red dashed line. With as = 10 microns,
N = 109/m3 and F = 1, and air-water properties, the time shown is in seconds.

in Fig. 5(a). This estimate is made accounting for radial diffusion of water vapor onto to a droplet in
a background which is 5 percent supersaturated, allowing for the reduction in supersaturation near
the droplet caused both by condensation and the resulting increase in temperature. We mention that
this level of supersaturation in higher than seen in most clouds. A falling droplet of instantaneous
radius a, which is larger than the average radius a0, has another growth mechanism accessible to it:
being larger, it will sediment faster than the smaller droplets, since its dimensional terminal velocity

vtd = gτpeg, or in nondimensional terms, vt = − St

Fr2 . (23)

From this, and Eq. (3), we see that the bigger drop sediments faster than the average by a factor
(a/a0)2, and can therefore participate in what we would call “gravity induced caustics” events, i.e.,
catch up with and overtake smaller droplets. The justification for assuming that a droplet always
falls at its terminal velocity is given as follows. If we drop the history term in Eq. (2) but retain
the gravity term, then this equation may be readily solved, as is often done in undergraduate fluid
mechanics, to give

v = vt [1 − e−t/St] + v0e−t/St. (24)

In a short time, of O(St), the particle attains its terminal velocity, and we may assume this process
to be instantaneous.

Consider a large three-dimensional box of quiescent fluid, with N identical small droplets per unit
volume of size as uniformly distributed in space. The subscript s stands for “small.” The suspension
is dilute, so the droplets do not interact with each other. Equation (24) tells us that all these droplets
are sedimenting steadily at their terminal velocity vts. Now consider one larger droplet of radius
a, slightly bigger than as. This droplet falls faster than the smaller ones, and will thus collide with
the smaller droplets below it, which are within a cylinder of radius a + as from the center of the
large drop. We take it that a fraction F of collisions result in coalescence, allowing the bigger drop
to keep growing. Since the suspension is dilute, we may take it that the mean collision time is far
greater than the timescale of the big droplet. Using Eq. (23), the growth of the larger droplet is then
given by (from the collision rate [20, in, e.g., Eq. (2) thereof])

dy

dt
= πFNgτsa2

s

3

(y − 1)(y + 1)3

y2
, (25)
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FIG. 6. Schematic of the droplet-growth bottleneck in clouds. Droplets smaller than about 10 microns
grow by diffusion and condensation, and those bigger than 50–100 microns by gravitational settling and the
associated collisions and coalescence. Turbulence is said to bridge this gap. While growth in the higher end
of this size range could be enhanced by preferential concentration, we propose single-vortex caustics as being
effective near intermittent vortices for the smaller end of this range.

where y = a/as. Figure 5(b) shows that the growth due to gravity by the above equation, assuming
every collision results in coalescence, i.e., F = 1. The smaller droplets are taken to be 10 microns
in radius, with a high number density of N = 109/m3, which corresponds to cumulonimbus clouds.
The droplet size is seen to diverge at a finite time, but we note that that when the drop is bigger than
≈50 micron [e.g., Ref. 33], it will no longer be in Stokes flow, and Eq. (25) would cease to be valid.
If two smaller drops coalesce to form the initial large drop, then its radius would be 21/3as. Such a
drop would grow to 10as in about 4 min, whereas a drop initially at 1.01as would take twice that
long. With a smaller N , and with F < 1, the growth rate would be proportionately slower. Since rain
is estimated to happen within about 10 min of the initiation of condensation, and unlike assumed
above, collision efficiencies for these small droplets are F � 1 [20, quoting Pruppacher and Klett],
such growth is too slow to create raindrops. We caution the reader again that the analysis above
is constrained by the applicability of the SMR Eqs. (2). Large droplets have larger drag forces
acting on them with the drag increasing as |v|2 for sufficiently large droplets. By accounting for
finite Reynolds number effects, it has been shown by others that droplets which are already of size
50–100 microns can grow rapidly by gravitational collisions and coalescence to millimeter size.
We are thus confronted with the “droplet growth bottleneck” question, which asks how droplets
grow rapidly from about 10 to 50 microns. Preferential concentration in strain-dominated regions
in turbulence is often presented as the answer. But in simulations of turbulence, such preferential
concentration has only been seen to take place for particles of Stokes number of order unity, based
on the Kolmogorov timescale. Cloud droplets of 10 micron radius typically have Stokes numbers
much smaller than unity in this scale. Figure 6 summarizes this problem. Below, we make a case
for single-vortex caustics to be effective in the early part of the growth process beyond the diffusion
range.

We make estimates for droplet collisions due to caustics in a cumulonimbus cloud, assuming
that cloud turbulence is unchanged by phase change, and assuming that the collapse of the tails
of the vorticity probability density seen by Ref. [31] may be extended to higher Rλ. In a cumu-
lonimbus cloud we have Re 	 108, i.e., Rλ 	 104, and turbulent dissipation ε 	 0.1 m2/s3 [11].
This yields the large length and velocity scales to be L f 	 300 m and Uf 	 3 m/s, and Kolmogorov
scales ηK 	 3 × 10−4 m, uK 	 0.03 m/s, and therefore tK 	 0.01 s. We shall see below that this
mechanism is likely to be active in clouds of lower turbulence levels as well. The probability
density function for squared vorticity amplitude is provided in Fig. 2(a) of Ref. [31]. We use this
to generate the estimates shown in Table I, for three values of Rλ. Consistent with estimates for
turbulent dissipation ε provided for clouds by Ref. [11], we prescribe ε = 0.01 and 0.001 m2/s3

for Rλ = 1300 and 650, respectively. With these, and assuming constant dissipation for large scales,
(down to the Kolmogorov scale), we obtain the Kolmogorov time and length scales shown in the
table. Now a 10 micron droplet in a cloud has a timescale τ 	 2 ms. Using Eq. (18), we obtain
the minimum squared vorticity amplitude, above which caustics can form, and display these in the
table. We note that all vortices which can form single-vortex caustics in a cloud are far smaller
than the Kolmogorov scale, i.e., they are intense intermittent vortices. This points to the need for
simulations which resolve well below the Kolmogorov scale, up to ηext. The highest Rλ for which
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TABLE I. Estimates of squared vorticity amplitude of the vortex of the largest timescale that can participate
in caustics, and the volume fraction devoid of droplets as functions of the Taylor microscale Reynolds number.
Turbulence data provided in Fig. 2(a) of Ref. [31] is used, along with extrapolation to large Rλ as suggested in
that study. Calculations are based on a particle timescale of 2 ms, corresponding to a water droplet of 10−6 m
radius in air.

Rλ tK ηK xmin = �mint2
K fvoid

650 0.1s 10−3 m 2500 ∼10−10

1300 0.027s 5 × 10−4m 200 ∼10−4

104 10−2s 3 × 10−4m 25 O(1)

such well-resolved direct numerical simulations have been performed in homogeneous isotropic
turbulence is 1300. Already at this Reynolds number a large fraction of all vorticity is contained in
the intermittent range ηK � η > ηext. From Fig. 2(a) of Ref. [31], and using Eqs. (20) and (22), we
can obtain the fraction of the flow devoid of particles for Rλ = 650 and 1300. The case of Rλ = 104,
consistent with deep convective clouds, is treated differently. Since direct numerical simulations are
not available, we can get at best a crude estimate. We assume here that the collapse of the probability
density curves seen in Fig. 3(a) of Ref. [31] extends up to this Reynolds number. Under this
assumption, we have p(x × t2

K/t2
ext )|104 = p(x∗ × t2

K/t2
ext )|1300, yielding x∗/x = 0.005. This provides

us the transformation to use the probability density function of Rλ = 1300 to obtain an estimate
for Rλ = 104. But there is a source of error here. The collapse of data is valid only for the tails of
the distribution, whereas x∗ in this case works out to be 0.131. Second, the data for low x∗ are not
easy to read off in the data of Ref. [31]. To make allowances for this we obtain only an order of
magnitude estimate for void fraction at Rλ = 104, as being of O(1). Our scaling leads us to expect
that a significant fraction of all droplets at this Reynolds number will be participating in caustics
events, leading to rapid rainfall initiation. But indeed nothing short of actual cloud simulations
which are resolved well past the Kolmogorov scale at this high Reynolds number will provide us
the real estimate. In particular, the collapse with Rλ seen up to 1300 may not persist up to another
order of magnitude increase.

The presence of voids in the spatial distribution of inertial particles is well-known [34,35]. In
particular, Bec and Chétrite [35] suggest a model in which vortices eject particles of timescales
comparable to their turnover times, and they show that this model is able to reproduce observed
statistics of spatial distributions of particles. Our ideas are similar, except that our calculations are
based on an exact model for the flow and its coupling with particle inertia.

Clouds are not always this turbulent and an Rλ of 1300 may not be unrealistic in some cloud
situations. So we restrict our further discussion to lower Reynolds numbers. In a volume of a
cubic meter within a cumulonimbus cloud, there are O(109) droplets of 10 micron radius, so by
our estimate, 105 drops per cubic meter may be termed as caustics droplets. In other clouds this
may be an order of magnitude lower, since N is lower. We have found [7,27] that caustics droplets
that do undergo collisions do so on timescales comparable to the inertial particle timescale τ , and
within a distance comparable to the caustics radius

√
�τ of the vortex. Allowing for a collision

efficiency F of 0.01–0.1 we expect about 1 in every hundred thousand or a million droplets to
coalesce with another, and become a factor of 21/3 larger in radius than average. These larger drops
have a correspondingly higher Stokes number, and larger caustics radius, so they can be thrown out
further and attain higher momentum than the average droplet, with enhanced probability for further
collisions and growth due to both turbulence and gravity. The argument, following Kostinski and
Shaw [19], is that it is the initial collisions that are crucial in determining the “luck” of the droplets
that ultimately become rain, since the later collisions become progressively more likely. Therefore,
a mechanism such as ours that explain the initial collisions can be a crucial part of the story. We may
conclude that, by this mechanism, single-vortex caustics are extremely unlikely to initiate rainfall
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at Rλ of 650, but at 1300 and beyond, they can initiate rain, with increasing rapidity for higher
Reynolds numbers.

III. BASSET-BOUSSINESQ HISTORY

In the above we had worked with the SMR equation, whereas particle dynamics are described by
the MR Eq. (2). We notice that the next term in the power series of St is the Basset-history force,
being a half-power of Stokes smaller than the Stokes drag term. This term is usually neglected, not
because we are convinced about its smallness of magnitude, but simply because it is too hard to
compute, if one were to follow the naive approach of performing the integral at every instant of time
for every particle [36]. It is clear that this approach is not feasible for any large flow. For example,
a cloud contains a billion droplets per cubic meter, and performing this integral for every single
droplet, each time from t = 0 to the present time, involves not only linearly increasing computation
time for each time interval, but also impossibly large storage, since one would need to store, for
every particle, its acceleration and also that of the fluid at the location of the particle at all past
instants. We proposed a novel approach [37] to solving this problem. The main advance provided
by this approach is that memory costs are drastically reduced, and the memory burden is constant
in time. It also involves significantly lower time costs. The reader is referred to Ref. [37] for more
details, but the basic idea is explained here. For several simple flow situations, our approach affords
explicit analytical solutions to the MR equation which were unknown hitherto, and a numerical
method for the general case. This was made possible by noticing that the term within the square
brackets in the MR Eq. (2), is just the negative of the half (fractional) derivative in time of q ≡
v − u. Following the idea of Vishal Vasan, we now write a heat equation in a fictional coordinate x,
as

qt ≡ qxx, (26)

so the MR Eq. (2) may be rewritten simply as

v̇ = − q
St

+ 3

(2βSt)1/2
qx + 1

Fr2 eg. (27)

Note that Eq. (27) is valid only on the x = 0 boundary of Eq. (26), and forms its boundary condition.
An excellent case for study here is that of a particle sedimenting under gravity in a quiescent
ambient. Equation (24) showed how a particle attains its terminal velocity, given by Eq. (23), within
a few particle timescales. In Ref. [37], however, we show how the BBH force alters the particle’s
behavior in a fundamental way. By our approach, we can write down the complete analytical
solution of Eq. (27), which includes the effects of the BBH, for this problem. For long times, the
solution may be expressed as

v = vt − 3vt

√
St

2βπt
+ O(t−3/2). (28)

Accounting for the BBH term does not change the terminal velocity, but the particle approaches it
algebraically, i.e., slowly, rather than by the exponentially vanishing transients we obtained without
history.

In particular, in Ref. [37] we solved the complete MR Eq. (27) to obtain the effect of BBH on
the growth by collision and coalescence of a larger droplet sedimenting through a sea of identical
smaller droplets. The particle density ratio β chosen there, O(10), was relevant to other settings
of droplet-laden flows, but not directly to clouds, where β = 103. For a dilute suspension, the
intercollision time is large enough that we may assume Eq. (28) to be valid. The result for β = 103

is plotted in Fig. 7 and compared against the estimate given by Eq. (25).
Thus, while neglecting the Basset history term may in general lead to incorrect results, Fig. 7

shows that for the small droplet number densities and large density ratios typical of clouds, the
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FIG. 7. Growth in time of an initially larger droplet as it sediments through a uniform distribution of smaller
droplets, accreting them as it does so. Black solid line: with Basset history. Red dashed line: without Basset
history.

BBH term is indeed negligible, and the algebraic growth of settling velocity [Eq. (28)] does not
affect the result.

IV. INERTIA–THERMODYNAMICS COUPLING

Thus far, we have concerned ourselves with the influence of the flow on the droplets and
neglected the influence of the droplets on the flow. Typically, neglecting the momentum coupling
due to the droplets on the flow is justifiable when the volume fractions are sufficiently small.
In clouds, however, although the volume fraction is only O(10−6), droplets can have a profound
effect on the flow. This is because droplets in clouds also act as nuclei for condensation, and the
accompanying heat release and the consequent buoyancy modification cannot be neglected.

Droplets, as we have seen, are evacuated from the vicinity of strong vortices. Since droplets
also act as condensation nuclei, due to their evacuation, we expect practically no condensation
to occur in the void regions surrounding strong vortices in a supersaturated parcel (such as a
rising cumulus cloud). What happens in a supersaturated environment when most CCN evacuate
the vicinity of strong vortices is that condensation takes place selectively outside these voided
spaces, and latent heat is released outside, and the regions occupied by droplets becomes warmer.
So strong vortices are now situated within cold patches which are about the size of the caustics
radius. If the temperature differences within and outside the patches are large enough, then the flow
changes qualitatively due to the presence of droplets. This is because buoyancy effects kick in, and
baroclinic torque is created. As a result, such flows with phase change display a larger amount of
kinetic energy in the small scales than turbulent flows without. The increase in kinetic energy is
due to the conversion by baroclinic torque of the increased potential energy due to temperature
inhomogeneity, which in turn is due to selective condensation outside void regions. A sample result
is shown in Fig. 8, which is taken from Ref. [38]. There, we showed that this effect can occur if the
vortex strengths and droplet sizes are such that the product of the inertial Stokes number Stv and
the condensation Stokes number Sts is sufficiently large. In a model simulation consisting of just
two vortices, we found that if StvSts >∼ 102, the flow with phase change is qualitatively different
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FIG. 8. The vorticity at t = 50, similar to Figs. 16 and 17 of Ref. [38]. The domains are 20 × 20 in the x
and y directions, and vorticity contours are plotted between the values (−1, 1). The nondimensional Reynolds
number in the simulations is Re = 2 × 104, the phase-change timescale is Sts = |ω|τs = 200 and the droplet
Stokes number is St = |ω|τ = 1, where |ω| is the vorticity scale of the flow, and τs and τ are the timescales of
condensation and droplet inertia respectively. The simulations were performed using a pseudospectral method
in the ω − ψ formulation in two dimensions, with 2/3rds dealiasing and a second order exponential time-
differencing (ETD-2) scheme. The details may be found in Ref. [38].

from the flow without. The reader is referred to [38] for a scaling argument for why this product is
important. Intuitively, we may argue that if the condensation timescale is too small, condensation
will be complete before droplets have a chance to centrifuge out of vortices. However, if the droplet
timescale is too small, then their inertia will be too weak to create void spaces. We may now make
an estimate, using data from very large simulations, whether this mechanism can operate in typical
conditions in cumulus clouds in the Earth’s atmosphere.

The typical inertial timescale in cumulus clouds, where the typical droplet has a radius of O(10)
micron, is O(10−3)s. The timescale for phase change depends on the concentration of droplets and
weakly on the ambient temperature, and can be estimated to be O(10) s, using

τs = Cρ0
s

4πNa
,

where C ≈ 107m s kg−1 is a thermodynamic constant, N is the number density of droplets of radius
a, and ρ0

s is the saturation vapor density at some base temperature T0. Thus, the product of these
timescales is O(10−2) s2. The Kolmogorov timescale, for a dissipation rate of ε = 10−2 m2s−3,
typical of cumulus and cumulonimbus clouds [11], is τk = O(10−3/2) s, giving the Kolmogorov
“vorticity scale” ωk = 103/2 s−1. The product of the inertial and phase-change Stokes numbers is

Stp × Sts = ω2
kτpτs = O(10).

Thus, the mechanism in Ref. [38], of flow dynamics being changed due to droplets, is not expected
to operate for typical Kolmogorov vortices. However, intermittent vortices, we have seen, have
vorticities orders of magnitude larger, and thus the product above will be sufficiently large. And
since the void fraction becomes significant only at high Reynolds numbers, this is an additional
requirement. Our study points to the creation of a larger fraction of smaller and stronger vortices
(increased intermittency) if this mechanism were to be in operation. Since, as we have argued, the
primary requirement for the mechanism to operate is the strong vortices associated with intermittent
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behavior, this modification of the turbulence is self-sustaining. Explicit evidence for this is the
subject of an ongoing study.

Before we end, we mention how phase change can bring about two beautiful cloud formations:
mammatus and asperitas, described in Refs. [14] and [39], respectively. As small droplets sediment
below the clouds, evaporation can create cooling and a denser layer of air can form just below the
clouds. Once this layer becomes pronounced enough, Rayleigh-Taylor instability can take place,
giving rise to startling lobe formations, which are called mammatus clouds. When shear is added to
this mix, we get a more disordered cloud formation with sharper structures below the cloud base,
with some alignment in the shear direction. These are the rare and recently notified asperitas clouds.

V. SUMMARY, CONCLUSIONS, AND DISCUSSION ABOUT FUTURE WORK

In this article we have examined the consequences of inertial particles (or droplets) centrifuging
out of vortical structures in turbulent flow. We have restricted our attention to small spherical
droplets or particles in the unsteady Stokes limit in dilute suspension, whose dynamics may be
described by the Maxey-Riley equation where Faxen correction terms have been neglected. Given
the increasing evidence that turbulence at the small scale contains a significant fraction of tubelike
vortices we have treated the Lamb-Oseen vortex as the building block of turbulence, and written
down, in Eqs. (6) and (7), the MR equations for a particle in this flow. When taken to the point
vortex limit, these equations can be shown to support a boundary-layer structure. Single-vortex
caustics can form only when rd < rcd 	 (�τ )1/2. Thus, caustics formation is only relevant for
vortices whose size rv < rc, which we have shown here to consist of vortices smaller than the
Kolmogorov scale. Our arguments do not change significantly by vortex stretching, as in the case of
Burgers vortices where we have shown that greater stretching rates lead to faster caustic formation
[8]. This is important, given the prevalence of vortex stretching in turbulent flows [40,41].

The connection we find between caustics formation and vortex evacuation enables us to calculate
void fractions in the flow, made up of circular (cylindrical in three dimensions) patches around
strong vortices which are devoid of particles. Evacuating particles have a much bigger chance
of colliding with other particles at short times and, in the case of droplets, coalesce and grow.
Using turbulence data at very high Reynolds numbers in conjunction with these ideas, we make the
audacious propositions that single-vortex caustics could be important in rain initiation, and that rain
initiation needs Rλ > 103.

We then showed, extending the computation of Ref. [37] to a density ratio β = 103 representative
of clouds, that the omission of the Basset-history term is justifiable. While neglecting the BBH term
alters the manner in which terminal velocity is attained by a falling droplet is algebraic rather than
exponential, the effect of this for dilute suspensions with cloud-like density ratios is small. Finally,
we describe how cloud turbulence, due to phase change, can be different from turbulence in other
situations.

Several leads for future work emerge from this discussion. First of all, larger and larger Reynolds
number direct numerical simulations, which solve the Navier-Stokes equations along with droplet
dynamics and the thermodynamics of phase change, are urgently needed, to understand rain initia-
tion in clouds and many other basic physical processes in clouds. Since it is unimaginable that such
simulations can include the dynamics of each droplet, a clever superdrop method which includes
the physics of caustics is crucial to develop. We note that there are many other flow situations where
BBH will be important, and our conclusion above is only applicable to particles which are far denser
than the fluid, and moreover in dilute suspension. Indeed, the effects of the history term are striking
when the density ratio is smaller. For example, carbonaceous matter sinking through the ocean has
density comparable to the background fluid, and correct estimates of carbon sequestration by this
process, and its part in mitigating climate change, could be important.

The formation of different cloud shapes contains, apart from breathtaking beauty, much physics,
including hitherto undescribed instabilities, and again this area is just opening up for studies. Our
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findings are also relevant in sprays and industrial flows, and the effects of zones devoid of particles
in such flows need to be studied.
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