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Development and long-term evolution of density staircases
in stirred stratified turbulence
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We formulate and analyze a model describing the development and evolution of density
staircases in stratified turbulence, using it to investigate the long-term evolution and merger
of layers and demonstrating an inverse logarithmic relationship for their decay. Starting
from the Boussinesq equations, including viscous stresses and density diffusion, we use
spatial averaging and simple closure assumptions to derive a system of equations de-
scribing the evolution of the density profile of a turbulent stratified fluid in terms of the
horizontally averaged buoyancy and turbulent kinetic energy. Subject to critical conditions
on the buoyancy gradient, the model predicts the development of a system of well-
mixed layers separated by sharp interfaces. A linear stability analysis determines critical
conditions for layer formation and demonstrates both a minimum and maximum initial
density gradient necessary for layering. Increasing the viscosity decreases the maximum
unstable wave number, thereby increasing the vertical length scale of layers. Increasing the
diffusivity has a similar effect, but can also suppress the instability entirely by decreasing
the unstable range of gradients. The long-term nonlinear evolution shows that the layers
undergo successive mergers, with each merger increasing the magnitude of steps in the
density staircase. In particular, by applying boundary conditions of fixed buoyancy, instead
of the previously adopted condition of zero buoyancy flux, we reduce the influence of the
boundaries at late times, allowing us to investigate the long-term evolution of layer mergers
in stratified turbulence in detail. For long times t , we infer a general law describing the
evolution of the number of layers N as 1/N ∼ ln t , suggesting a self-similar structure to
merger dynamics and a link to Cahn-Hilliard models of layering.

DOI: 10.1103/PhysRevFluids.7.104801

I. INTRODUCTION

The dynamics of stratified turbulent flows presents a rich variety of behavior. One of the most
striking examples is the spontaneous development of density staircases. Given an initially uniform
density gradient, stirring the fluid can lead to the formation of well-mixed layers, in which the
density is nearly constant, separated by sharp interfaces with strong density gradients. These layers
are long-lasting, and show little variation across wide horizontal areas. The interfaces are narrow,
but the density field across them is smooth, with a well-defined finite thickness. Experimental work
has produced such layered structures by dragging a rod or grid back and forth through an initially
stable gradient of salt concentration [1–3].

One of the fascinating aspects of staircase formation is its appearance in a number of ostensibly
different areas of physics. In an atmospheric context, rotating stratified flow can give rise to a
potential vorticity staircase, which manifests as strong zonal jets, such as the bands in Jupiter’s
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atmosphere [4,5]. In double-diffusive convection—a phenomenon of both geophysical and astro-
physical importance—layered structures can arise in both the fingering and diffusive regimes,
being observed both oceanographically [6,7] and in numerical simulations [8–11]. In the context
of hot magnetised plasmas, turbulence can generate permeable localized transport barriers that
globally organize into the so-called E × B staircase; this was established through gyro-kinetic
simulations [12] and later confirmed experimentally [13]. The formation of layers is antidiffusive,
with up-gradient transport, and so represents behavior contrary to the naively expected case of
homogenization. Understanding how layers can form and how they evolve over time is clearly
therefore a problem of considerable implicit scientific interest. Furthermore, layered systems exhibit
very different transport properties to those of familiar weakly inhomogeneous systems (see, for
example, Refs. [10,11]). Thus, understanding the physics of layering is also crucial to developing
an accurate description of transport in oceanographic and atmospheric flows, in stellar interiors, and
in magnetically confined plasmas.

Early work on layering in stratified fluids by Phillips [14] and Posmentier [15] proposed a
mechanism for the development of staircases based on the turbulent diffusion of buoyancy, with
a diffusion coefficient that could be negative. Specifically, Posmentier modeled the evolution of the
buoyancy profile b(z, t ) = (ρ0 − ρ)g/ρ0 (where ρ is the fluid density, ρ0 a reference density, and g
the gravitational acceleration) by the one-dimensional diffusion equation

bt = [ f (bz )]z = f ′(bz )bzz, (1)

where z is height, t is time, and the specified function f (bz ) relates the local flux of buoyancy to
the local buoyancy gradient bz. Throughout, we shall use subscripts of z and t to denote partial
derivatives. In the situation where the system is initialized from a state of uniform buoyancy
gradient, with bz = g0 a constant (a linear stratification), the initial state is unstable if

f ′(g0) < 0. (2)

If condition (2) holds, then a perturbation that increases the local buoyancy gradient bz acts
to decrease the buoyancy flux f , which further increases the buoyancy gradient through negative
diffusion, in accordance with Eq. (1). Posmentier proposed a flux-gradient relation, f (bz ), of the
form shown in Fig. 1, such that there is a critical value gc above which condition (2) is satisfied.
For a background gradient bz > gc, a small perturbation will grow in amplitude. If the perturbation
acts to increase bz, then it may grow without constraint, as inequality (2) is satisfied for all bz > gc.
However, if the perturbation acts to decrease bz, then the amplitude of the perturbation will grow
only until bz = gc locally, at which point the instability is arrested. Hence, perturbations can develop
into a stepped structure, with alternating regions of large and small buoyancy gradients—a process
commonly known as the Phillips effect. The argument advanced above is based on linear stability
considerations and hence provides information on the initial evolution to a layered state; when the
perturbations attain a sufficiently large amplitude, nonlinear dynamics will come into play. The
Phillips effect has been demonstrated to lead to layering in two-dimensional stratified Boussinesq
turbulence [16]. In the diffusive regime of double diffusive convection (as found in Polar oceans),
the Phillips effect acting on one component of density can lead to layering without the need for
double diffusive effects [17].

The model described by Eq. (1) provides a good starting point to describe a mechanism for
layering. However, it relies on specifying the buoyancy flux function, and hence cannot give a full
description of the physics from first principles, nor of the intricacies of layer evolution. For example,
Eq. (1) takes no account of the impact of the buoyancy on the velocity field nor does it provide a
mechanism to arrest the steepening of the interface, meaning that the buoyancy field eventually
develops discontinuities. A particular mathematical difficulty of the model is that the linearized
version of Eq. (1) becomes a negative diffusion equation for b in regions where f ′(bz ) < 0. The
growth rate of perturbations therefore diverges as the wave number increases, causing the problem
to be ill posed.
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FIG. 1. The solid lines show the flux-gradient relations used by Posmentier (black) and BLY (red). The
black dashed line shows the minimum value g = gc for which Posmentier’s flux satisfies the instability
condition (2). The red dashed lines show the boundaries of the finite region in which the flux in the BLY
model satisfies condition (2).

To look beyond the initial formation of layers and investigate their longer-term evolution, the
problem needs to be regularized. One possibility is to add a time delay, so the flux does not adjust
immediately to changes in the gradient but takes a finite time to react [18,19]. More specifically, the
flux F (t ) can be prescribed to depend on the buoyancy gradient bz(t − τ ) for some small delay time
τ . This removes the high-wave-number instability, but the solutions still develop discontinuities in
finite time.

Balmforth, Llewellyn Smith, and Young [20] (BLY) developed a more detailed model to address
these physical and mathematical issues. Using dimensional and physical arguments, they obtained
the following dimensionless model for the evolution of the horizontally averaged buoyancy b(z, t )
and turbulent kinetic energy e(z, t ):

bt = (
le1/2bz

)
z, (3)

et = (
le1/2ez

)
z − le1/2bz − εe3/2

l
+ P, (4)

where l = l (bz, e) is a suitably parameterised mixing length l and P = P(bz, e) is the energy
production term, for which BLY adopted the following form:

P = εe1/2

l
, (5)

where ε is a dimensionless mixing parameter. Equations (3) and (4) form a system of turbulent
diffusion equations, with the first term on each right-hand side representing eddy diffusion. In the
energy equation (4), the second term on the right-hand side is necessarily the same as the buoyancy
flux on the right-hand side of Eq. (3), accounting for the transfer between potential and kinetic
energy. The penultimate term in Eq. (4) describes the dissipation of turbulent kinetic energy.

The parametrization of the length scale l (bz, e) is a crucial component of the model. In the initial
nonlayered state, the key length scale is that of the turbulent eddies induced by stirring, which
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is nondimensionalized to unity (l = 1). As a result of the stirring, a shorter length scale emerges
in regions where the buoyancy gradient is high. This is represented by the Ozmidov length scale
lO = (e/bz )1/2, defined as the characteristic size of the largest eddy that is not significantly affected
by buoyancy in a stably stratified fluid [21]. The parametrization for l (bz, e) interpolates between
these two scales, taking the stirring length when the stratification is weak and the Ozmidov length
in strongly stratified regions. The particular form chosen by BLY is

l (bz, e) = e1/2

(e + bz )1/2
, (6)

which appropriately transitions from the stirring length l ∼ 1 for bz � e to the Ozmidov length as
bz � e.

The system (3)–(6) is solved in the domain 0 < z < H . BLY prescribe no-flux boundary condi-
tions on both buoyancy and energy, as specified by

bz(0, t ) = bz(H, t ) = 0, ez(0, t ) = ez(H, t ) = 0. (7)

These no-flux conditions imply that the total energy is changed only by dissipation and stirring.
Models given by Eqs. (3) and (4), and extensions thereof, have been applied to a number of

different physical problems in which staircases have been observed, including double diffusive
convection [22] and potential vorticity staircases [23]. Three-component models of a similar form
have also been formulated to study E × B staircases in plasma drift-wave turbulence [24–26].

The coupling of the buoyancy b(z, t ) to the energy e(z, t ) in the BLY model described by Eqs. (3)
and (4) is found to suppress the high wave-number instability inherent in Eq. (1), thereby ensuring
that the problem is well posed. To prevent the formation of infinite buoyancy gradients, BLY’s model
specifies an N-shaped flux-gradient relation, so condition (2) is satisfied for only a finite range of bz.
This is shown by the curve labeled BLY in Fig. 1. The layering instability occurs only in the finite
range of g between the red dashed lines; interfaces thus steepen only to a finite value, at which point
the instability is arrested.

A reproduction of a numerical solution to the system described by Eqs. (3)–(7) with H = 2000
is shown in Fig. 2. Figure 2(a) shows the initial development of the layered region, while Fig. 2(b)
shows the long-time evolution of the solution. Layers initially start to develop across the interior of
the domain, beginning at a distance of ≈200 from the top and bottom of the domain. By t ≈ 2 × 104

(shown red in both panels), a pack of layers of a regular wavelength and amplitude has formed across
the full depth of the domain, with the exception of two smooth nonlayered regions extending from
the top and bottom of the domain to the interior pack of layers. Over time, the layers within the pack
undergo sporadic merger events, in which two adjacent interfaces move together and join to form a
single interface. At the same time, smooth regions, referred to herein as edge regions, expand from
the two boundaries of the domain toward the interior at a rate of z ∝ t1/2, engulfing layers from the
outside inwards. Eventually, the edge regions take up the entire domain, meeting in the middle to
form a single well-mixed layer across the full depth of the fluid. By totally engulfing the layered
region by t ∼ H2/4, the development of the edge regions limits investigation into the dynamics of
layer mergers beyond this time.

In this paper, we develop a BLY-style model and use it to investigate the long-term behavior of
layers in stratified turbulence. We begin by presenting a systematic derivation of a generalized form
of the model from the Boussinesq equations, using simple closure assumptions and retaining the
parametrizations used by BLY for the dissipation, stirring, and mixing length. We investigate the
predictions of our generalized model, establishing the general effects of viscosity and molecular
diffusivity on the conditions for layer formation. Diffusion and viscosity both have a stabilizing
effect on the system, reducing the range of unstable gradients and the maximum growth rates.

As an inroad toward investigating trends in long-term merger dynamics, we also demonstrate that
the adoption of different boundary conditions to those used by BLY can eliminate the expanding
edge regions, allowing the long-term dynamics of the layers to be apparent. As noted above,
the no-flux conditions of Eqs. (7) resulted in the development of edge regions that engulf the
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FIG. 2. Reproduction of numerical results using the BLY model described by Eqs. (3)–(7), showing the
initial development of the layered state, layer mergers, and expansion of the edge regions. The plots show the
spatial profile of the dimensionless buoyancy gradient g(z, t ) = bz(z, t ) across the depth of the layer at regular
time intervals. The scale bar at the top of the panel indicates the magnitude of g. Panel (a) reproduces the
simulation of Fig. 6 of BLY, while panel (b) shows the continued long-term evolution to t = 106. The edge
regions expand at a rate ∝ t1/2 into the interior, eventually destroying the entire layered region and filling the
domain. In both panels, the solution at t = 2 × 104 is shown in red, which denotes the first time at which
consistent layers exist across the entire region.

entire layered region by time t ∼ H2/4. We show that the alternative boundary conditions of fixed
buoyancy, equivalent to specifying the temperature at the top and bottom of the domain, prevents
the expansion of edge regions. The layered region is then changed only by merging behavior. The
removal of the time constraint imposed by the edge regions thus allows us to investigate long-term
trends in the dynamics of layer mergers. Each group of mergers approximately halves the number
of interfaces, until eventually only a single interface remains. We show that for long times, the
number of layers remaining, N (t ), is consistent with the scaling 1/N ∼ ln t . An inverse logarithmic
dependence of this form has been found previously to arise in solutions to the Cahn-Hilliard (CH)
equation for phase separation [27], and an analogy can be made between kinks (separating phases)
and interfaces (separating layers of density), allowing the CH equation to be used to model layering
(e.g., Ref. [28]). BLY demonstrated that the model described by Eqs. (3) and (4) can be reduced
asymptotically to the CH equation by perturbing the governing equations about the critical point
of marginal stability. The logarithmic timescale that we demonstrate here further consolidates and
extends this link.

The paper is organized as follows. Section II discusses the derivation of the diffusive model. To
begin our analysis of this system, we find uniform steady solutions in Sec. III A. We investigate
the linear stability of these steady states in Sec. III B, discussing how the stability is affected by
changing the viscosity and molecular diffusivity. In Sec. III C, we consider parameter values relevant
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to water, where the stratification is due to either a salinity gradient at constant temperature or a
temperature gradient at constant salinity and compare the differences between these two cases. In
Sec. IV, we investigate the long-term behavior of solutions. We begin in Sec. IV A by showing that
the adoption of fixed-buoyancy boundary conditions allows layer dynamics to be observed for very
long times without the intrusion of edge regions. In Sec. IV B, we discuss such long-term numerical
solutions of the model in detail, making comparisons with the linear stability predictions described
in Sec. III B, and investigating the long-term merger dynamics of the interfaces. We demonstrate that
the long-term dynamics of our model are consistent with predictions from CH models of layering.
Our conclusions and a discussion of possible extensions of the work are contained in Sec. V.

II. MODEL FORMULATION

We consider the evolution of a density-stratified fluid defined by the velocity u(x, t ) = (u, v,w)
and buoyancy b(x, t ) = g(ρ0 − ρ)/ρ0, where g is gravitational acceleration, and ρ(x, t ) and ρ0 are
the fluid density and a reference density, respectively. The fluid is subject to a body forcing �(x)
due to stirring (for example, by an oscillating rod or grid) at a speed U and length scale d . The
dynamics are modelled by the Boussinesq equations:

ut + u · ∇u = − 1

ρ0
∇p + bẑ + ν∇2u + 1

ρ0
�, (8)

bt + u · ∇b = κ∇2b, (9)

∇ · u = 0, (10)

where ν is the kinematic viscosity and κ the molecular diffusivity. The pressure p(x, t ) represents
the perturbation away from the reference hydrostatic pressure −ρ0gz. We nondimensionalize the
system through the scalings

t̂ = U

d
t, x̂ = 1

d
x, û = 1

U
u, b̂ = d

U 2
b, p̂ = 1

ρ0U 2
p, �̂ = d

ρ0U 2
�, (11)

where hats denote dimensionless variables. Note that the dimensionless buoyancy gradient b̂z =
d2bz/U 2 can be interpreted as a Richardson number, although the velocity used is that of a stirring
device, not an imposed shear. On substituting from Eq. (11) into Eqs. (8)–(10), and dropping hats,
we obtain the nondimensional Boussinesq equations:

ut + u · ∇u = −∇p + bẑ + Re−1∇2u + �, (12)

bt + u · ∇b = Pe−1∇2b, (13)

∇ · u = 0, (14)

where Re is the Reynolds number Ud/ν, and Pe is the Péclet number Ud/κ . Note that the Reynolds
and Péclet numbers are related by Pe = PrRe, where Pr = ν/κ is the Prandtl number. For the
purpose of developing our horizontally averaged model, we can assume either impermeability
conditions on the sidewalls of the domain, or, for the case of a rectangular cross section, a
horizontally periodic domain.

We now aim to develop, via suitable averaging processes and parametrizations, a model of the
form given by Eqs. (3) and (4). Oceanic observations of density staircases show that they exhibit
little variation over horizontal length scales much greater than the thickness of a typical layer [7].
Hence, a horizontally averaged model is an appropriate approximation to gain phenomenological
insight, while being significantly easier to solve computationally than the full Boussinesq equations.
Our derivation differs from that of BLY, whose equations were derived using scaling arguments
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alone, with terms parameterized by seeking dimensionally correct combinations of the dependent
variables.

Let

〈q〉 ≡ 1

A

∫
A

q(x, t ) dA (15)

denote the horizontal spatial average of a quantity q(x, t ) over a horizontal cross-section A at a given
height z of the domain; 〈q〉 is thus a function of z and t . Let uh = (u, v) represent the horizontal
velocity and ∇h the horizontal gradient operator. The variables will be considered in terms of
the sum of their horizontal mean and fluctuation components: b = 〈b〉 + b′, uh = 〈uh〉 + u′

h, w =
〈w〉 + w′.

Taking the average of the incompressibility condition (14) and applying either the condition of
impermeability or periodicity on the horizontal components of the velocity, we obtain

〈∇h · uh〉 + 〈wz〉 = 0, and hence 〈w〉z = 0. (16)

Thus, the horizontally averaged vertical velocity is uniform across the height of the domain.
Assuming impermeability conditions on the top and bottom boundaries, it follows that 〈w〉 = 0.
Thus there is no mean vertical velocity and w = w′.

Our aim is to obtain a model purely in terms of horizontal averages of the buoyancy b and kinetic
energy e = 1

2 u · u. To this end, we first apply an averaging process to Eqs. (12) and (13), and then
parameterize any terms involving products of fluctuations in terms of mean quantities. Taking the
horizontal average of Eq. (13) and applying Eqs. (16) gives

〈b〉t + 〈wb′〉z = Pe−1〈b〉zz. (17)

Expression (17) is a diffusion equation for the mean buoyancy 〈b〉, forced by the eddy flux
term 〈wb′〉z. The equation for b′ is obtained by subtracting the mean equation (17) from the full
equation (13) and using a quasilinear approximation to neglect the perturbation-perturbation term
u′

h · ∇hb′, giving

b′
t + w〈b〉z = Pe−1∇2b′. (18)

To parameterize the term 〈wb′〉 in Eq. (17) in terms of mean quantities, we use a scaling argument
to represent the derivatives algebraically. We assume that the mean of the square of the vertical
velocity is a constant multiple of the mean total kinetic energy 〈e〉 = 〈u · u〉/2, i.e.,

〈w2〉 = β2〈u · u〉/2 = β2〈e〉, (19)

for some dimensionless constant β. We assume that the turbulence varies on a mixing length scale
l (to be parameterized as a function of the dependent variables) and on the dynamical timescale
τ ∼ l/β〈e〉1/2, defined as the characteristic time to move a distance l vertically. These length and
timescales are designed to provide approximations of the characteristic values for the derivatives
∂t ∼ 1/τ = β〈e〉1/2/l and ∇2 ∼ −1/l2. Multiplying the fluctuation equation (18) by w, averaging
and rearranging gives the turbulent buoyancy flux as

〈wb′〉 = − l2〈w2〉
βl〈e〉1/2 + Pe−1 〈b〉z. (20)

Using Eq. (19), this flux can be written in terms of 〈b〉 and 〈e〉 as

〈wb′〉 = −β
l2〈e〉

l〈e〉1/2 + (βPe−1)
〈b〉z. (21)

Finally, combining Eqs. (17) and (21) gives the equation for the averaged buoyancy:

1

β
〈b〉t =

(
l2〈e〉

l〈e〉1/2 + (βPe)−1
〈b〉z

)
z

+ (βPe)−1〈b〉zz. (22)

The first term on the right-hand side of Eq. (22) represents the turbulent transport of 〈b〉, and
the second term molecular diffusion. We note that incorporating molecular diffusion has not only
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introduced the (βPe)−1〈b〉zz term but also altered the form of the turbulent flux so it now also
depends on Pe−1. To complete the model, we must couple Eq. (22) with an evolution equation for
the horizontally averaged kinetic energy 〈e〉, and provide a parametrization for the mixing length l .

We formulate the energy equation by taking the scalar product of the momentum equation (12)
with u, giving

et + ∇ · (ue) = ∇ · (up) + wb + Re−1(∇2e − |∇u|2) + u · �. (23)

The terms on the right-hand side of Eq. (23) represent, in order, the effect of pressure, the conversion
from potential to kinetic energy, diffusion of kinetic energy, viscous dissipation D = −Re−1|∇u|2,
and production through stirring P = u · �. Taking the horizontal average of Eq. (23) gives

〈e〉t + 〈we′〉z − Re−1〈e〉zz = 〈wb′〉 − 〈D〉 + 〈P〉. (24)

The fluctuation turbulent energy flux 〈we′〉 can be parameterized in a similar way to the buoyancy
flux. We subtract Eq. (24) from Eq. (23) to obtain an equation for the fluctuation energy, approximate
the derivatives, then multiply by w/2 and take the average as in Eq. (21) to parameterize the
fluctuation flux 〈we′〉. This leads to the following equation for the averaged energy:

1

β
〈e〉t =

(
l2〈e〉

l〈e〉1/2 + (βRe)−1
〈e〉z

)
z

− l2〈e〉
l〈e〉1/2 + (βPe)−1

〈b〉z + (βRe)−1〈e〉zz − 1

β
〈D〉 + 1

β
〈P〉.

(25)
In an exactly analogous manner to the derivation of the buoyancy equation (22), the inclusion of
viscosity and molecular diffusion has altered the energy flux and potential energy transfer terms, as
well as introducing a standard viscous diffusion term.

To close the system, a parametrization is required for the turbulent length scale l in terms of
the dependent variables 〈b〉 and 〈e〉. Following BLY, we adopt a length scale of the form given by
Eq. (6), but it should be noted that this is not the only possible parametrization for the length scale.
We anticipate that any monotonic function that interpolates between the stirring length when the
stratification is weak and a smaller length when the stratification is strong, would serve the same
purpose. We choose here to adopt the BLY length scale in the form of Eq. (6) as it allows us to
compare the results of our model directly with those of BLY, so that our study of the effects of
diffusion and different boundary conditions is not affected by the further complication of adopting
a different mixing length.

To parameterize the dissipation 〈D〉 and source 〈P〉, we also follow BLY. For the dissipation, the
only combination of e and l that provides the correct dimensions for D is D = εe3/2/l , where ε is a
dimensionless number that we treat as a parameter. This parametrization of dissipation is commonly
used in k–ε models of turbulence (e.g., Ref. [29]). The parametrization for the source term P is less
obvious, but we use BLY’s equipartition form for energy production, which is formulated such that
the eddy speed e1/2 adjusts to the velocity scale of the stirring device on the eddy turnover timescale
l/e1/2, and which provides an N-shaped flux-gradient relation. The dimensionless parameter β in
Eqs. (22) and (25) acts simply as a scale factor on the time derivative, effectively setting a new
dimensionless time variable t̃ = βt , with new dimensionless parameters defined similarly: P̃e =
βPe, R̃e = βRe, and ε̃ = βε. With these rescalings, all factors of β disappear from Eqs. (22) and
(25), including in the parametrizations for the terms 〈D〉/β and 〈P〉/β.

By adopting these rescaled forms of time and the dimensionless parameters, and dropping tildes
and angled brackets from Eqs. (22) and (25), we obtain the full model as

bt =
(

l2e

le1/2 + Pe−1 bz

)
z

+ Pe−1bzz, (26)

et =
(

l2e

le1/2 + Re−1 ez

)
z

− l2e

le1/2 + Pe−1 bz + Re−1ezz − ε(e − 1)
e1/2

l
, (27)

l = l (bz, e) = e1/2

(e + bz )1/2
. (28)
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The system (26)–(28) forms a coupled nonlinear diffusion model describing the evolution of the
horizontally averaged buoyancy b(z, t ) and energy density e(z, t ), dependent on turbulent fluxes
parameterised using a mixing length l (bz, e). The second term in the energy equation (27) is
necessarily the same as the turbulent buoyancy flux and accounts for transfer between potential
and kinetic energy. The final term in Eq. (27) represents the combined effects of viscous dissipation
and the energy source from stirring. When e = 1, dissipation balances production. If e < 1, there is
a net source of energy; if e > 1, there is a net sink. The BLY model can be recovered from the system
(26)–(28) by setting Pe−1 = Re−1 = 0, which turns off both viscous and molecular diffusion.

III. CONDITIONS FOR INITIAL LAYER DEVELOPMENT

In this section, we consider the initial development of layers and investigate the effects of
viscosity and diffusion on the system through varying the inverse Reynolds number Re−1 and inverse
Péclet number Pe−1. We saw in Sec. II that these parameters appear not only as standard diffusion
terms, but also in the flux terms in Eqs. (26) and (27).

We begin, in Sec. III A, by seeking steady solutions that have uniform bz and e. We then proceed
to analyze their linear stability in Sec. III B, finding that larger values of Pe−1 and Re−1 both
suppress the instability. In Sec. III C, we consider the combined effects of changing Pe−1 and Re−1

together, using values relevant for water, with the stratification provided either by a salinity gradient
at constant temperature, or a temperature gradient at constant salinity.

A. Uniform-gradient steady states

To begin our linear stability analysis, we return to the full system governed by Eqs. (26)–(28)
and seek uniform steady states b = g0z, e = e0, where g0 and e0 are constants. For such basic states,
the buoyancy equation (26) is trivially satisfied, and the energy equation (27) becomes

0 = − l2e0

le1/2
0 + Pe−1

g0 − ε
e1/2

0

l
(e0 − 1). (29)

On substituting for l from Eq. (28) and rearranging, we obtain the steady energy equation:

re2
0g0 + (e0 − 1)(e0 + g0)e0 + Pe−1(e0 − 1)(e0 + g0)3/2. (30)

Figure 3 shows the exact solutions to Eq. (30) as solid lines for a range of values of Pe−1 and r.
In Fig. 3(a), we fix r = 50 while varying Pe−1. In every case, e0 = 1 at g0 = 0, corresponding to
a dimensional energy of U 2/2—the energy is set by the stirring speed. As g0 increases, the energy
decreases monotonically. For small values of Pe−1, the solutions are similar to the BLY solution
(shown black), but for larger Pe−1 the profile is significantly shallower, with e0(g0) decreasing more
gradually.

Figure 3(b) also shows the steady-state energy e0(g0), this time fixing Pe−1 = 0.1 while varying
r. Here we see that larger values of r produce profiles where e0(g0) decreases more steeply. For
large values of r (small ε), the combined viscous dissipation and stirring term εe1/2

0 (e0 − 1)/l
in the steady-state Eq. (29) is O(ε). For the equation to be satisfied, the buoyancy flux term
−l2e0g0/(le1/2

0 + Pe−1) must therefore also be small. This requires either e0 or g0 to be sufficiently
small, producing the sharp decrease in e0(g0) shown in the figure.

B. Stability and conditions for layering

We now proceed to investigate the linear stability of the uniform-gradient steady states found in
Sec. III A. To do this, we will consider results derived by BLY for a more general system and show
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FIG. 3. Steady-state energy plotted against buoyancy gradient. In (a), r = 50 is fixed and Pe−1 varies; in
(b), Pe−1 = 0.1 is fixed and r varies.

how they apply to our model. The system described by Eqs. (26) and (27) can be written in the form

gt = fzz, (31)

et = (κez )z + p, (32)

where the functions f (g, e), p(g, e) and κ (g, e) are defined as

f =
(

l2e

le1/2 + Pe−1 + Pe−1

)
g, (33)

p = − l2e

le1/2 + Pe−1 g − ε
e3/2

l
+ ε

e1/2

l
, (34)

κ = l2e

(le1/2 + Re−1)
+ Re−1. (35)
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BLY presented a linear stability analysis of the general system governed by Eqs. (31) and (32),
which can be applied for any given specification of f (g, e), p(g, e), and κ (g, e). Considering the
more general form of Eqs. (31) and (32) thus allows us to apply the linear stability results obtained
by BLY to our generalized situation, allowing for viscosity and molecular diffusion, as given
by Eqs. (33)–(35). The general form also means that the results remain valid if we change any
parametrizations in the system, such as presenting a different formulation of the mixing length l .

BLY showed that the steady state g = g0, e = e0, is linearly unstable if

F ′(g0) := fgpe − fe pg

pe
< 0, (36)

where the partial derivatives fg(g, e), fe(g, e), pg(g, e), pe(g, e) are evaluated in the steady state
(g0, e0), and F ′(g0) is defined as the total derivative of f with respect to g, evaluated at (g0, e0(g0)).
In essence, this represents the Phillips effect [cf. condition (2)], but generalized to a more complex,
physically derived diffusion problem. BLY further proposed that, for layering to occur, the flux-
gradient relation F ′(g) should be N-shaped, so there is instability only for an intermediate range of
g, with very low and very high gradients being stable.

The system given by Eqs. (31) and (32) contains two time derivatives, so the linear stability
analysis produces two growth rates. The first is positive if condition (36) is satisfied. The second,
‘energy mode’, growth rate is equal to pe, and allows for the possibility of an instability arising from
the energy equation alone, without any interaction with the buoyancy equation. This could happen
if the forcing were too strong or the buoyancy gradient were negative, for example. For the model
to be an accurate representation of the layering mechanism, it is necessary that the only instability
comes from the Phillips effect. Hence the energy mode must be stable, so we require pe < 0.

For the functions relevant to our model [Eqs. (33)–(35)], the condition pe < 0 is satisfied for
all values of (g0, e0), Pe−1, and Re−1. Hence the energy mode is damped, with the only instability
arising from the Phillips effect. Note that the inverse Péclet number Pe−1 affects f and p, while the
inverse Reynolds number Re−1 is contained only in κ . Because the condition for instability (36)
depends only on f and p, this means that varying Re−1 independently of Pe−1 does not change
whether or not the system is unstable, but only affects the range of unstable wave numbers.

Figure 4(a) shows flux-gradient relations f (g) for a range of values of Pe−1 for the illustrative
case r = 50. The plots display the clear N shape required for the layering instability for values of
Pe−1 < 0.113 (a critical value that depends on r). As Pe−1 increases, the N shape flattens. For all
Pe−1 > 0.113, f (g) is a monotonically increasing function. Thus, with all other conditions identical,
a sufficiently high density diffusion (sufficiently large Pe−1) eventually suppresses the layering
instability.

Figure 4(b) shows the loci on which F ′(g0; r) = 0 for a range of values of Pe−1. These lines
correspond to the top of the peak and bottom of the trough of the N shape in Fig. 4(a). It is clear
that for any value of r, the unstable range of g0 is greatest when Pe−1 = 0. As Pe−1 increases, the
unstable range of g0 at fixed r decreases, and the critical value of r above which instability occurs
increases. The loci in Fig. 4(b) illustrate that when the stratification is too weak, no layering is
possible—physically, it seems reasonable that without a strong enough gradient, mixing will simply
destroy the stratification and lead to homogeneous turbulence. On the other hand, when the gradient
is too large, the stratification cannot be sufficiently disturbed by the mixing, so no layers form.
Using the expressions for f and p given by Eqs. (33) and (34), we find that the outermost (black,
Pe−1 = 0) locus is represented by

r(g0) = 4 − 3g0 ± 2
√

1 − 12g0

3g0
. (37)

The case with the − sign represents the left-hand part of the locus; the + sign represents the right-
hand part. The tip of the locus is at g0 = 1/12, where both expressions are equal. Across all values
of r and Pe−1, this is the maximum possible gradient for layering. For r → 0, expression Eq. (37)
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FIG. 4. (a) Flux-gradient relations for a selection of values of Pe−1, for r = 50, calculated by substituting
the steady-state energy e0 [found as exact solutions of Eq. (30)] into the buoyancy flux f (g, e) given by Eq. (33).
The N-shaped curve required for the layering instability is displayed by the smaller values of Pe−1. (b) Loci of
F ′(g0; r) = 0, for a range of Pe−1. For each value of r, the gradients g0 inside the curve are unstable.

reduces to the two asymptotes:

g1(r) ∼ 2

3r
, g2(r) ∼ 2

r
. (38)

Thus, for any finite value of r, there is a positive range of g0 for which the stratification is too weak
for layering, as well as a finite range of g0 for which layering is possible. We can see from Fig. 4 that
increasing the value of Pe−1 shrinks the locus of marginal stability, both by increasing the critical
value of r for instability (i.e., the tip of the curve) and by decreasing the unstable range of g0 for
each value of r.

The plots in Fig. 5 show how the growth rate of perturbations depends on the wave number.
In Fig. 5(a), Re−1 = 0 is fixed and Pe−1 varies, while Fig. 5(b) has Pe−1 = 0 while Re−1 varies.
The parameters are linked by the relation Pe = PrRe, so Fig. 5(a) shows the limit of Pr = 0 and
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FIG. 5. Growth rate plotted as a function of wave number for r = 50 and g0 = 0.0218. In (a), Re−1 = 0 is
fixed and Pe−1 varies; in (b), Pe−1 = 0 is fixed and Re−1 varies. Since the parameters are linked by Pe = PrRe,
(a) corresponds to the limit of Pr = 0, and (b) to Pr → ∞. The dashed black curve represents the diffusionless
system. The lower set of curves represents the damped energy mode.

Fig. 5(b) the limit of Pr → ∞. In both cases, there is one set of unstable modes, as well as a second
stable set of growth rates representing the energy mode. We see that, in accordance with the stability
criteria discussed in Sec. III B, higher values of Pe−1 suppress the instability entirely. Furthermore,
increasing Re−1 has no effect on the criterion for instability, but alters the range of unstable wave
numbers.

To summarize, the introduction of either molecular diffusivity or viscosity suppresses the lay-
ering instability. Viscosity does not change whether or not a steady state is unstable, but reduces
the unstable range of wave numbers and, consequently, the wave number of maximum growth
rate. Hence, we expect larger values of Re−1 to produce staircases with thicker layers and fewer
interfaces. Incorporating molecular diffusivity has the same effect of decreasing the unstable range
of wave numbers but can also suppress the instability entirely by reducing the unstable range of
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TABLE I. Prandtl and Schmidt numbers of water at various temperatures (in degrees Celsius) and salinities
(in parts per thousand). The values of Pr are taken from Refs. [30,31] and those of Sc from Ref. [32].

Temperature (◦C) Salinity (‰) Pr Sc

0 0 13.18 1620
0 20 13.22 1680
0 40 13.34 1750

10 0 9.32 831
10 20 9.39 884
10 40 9.52 934
20 0 6.95 480
20 20 7.04 514
20 40 7.17 547

buoyancy gradients. We conclude that introducing diffusion to the system will make staircases less
pronounced by increasing the gradient in layers and decreasing the gradient in interfaces.

C. Implications for typical values of Pe−1 and Re−1

To examine simultaneously the combined effects of viscosity and diffusion, we consider some
realistic parameters for both temperature- and salt-stratified water. Here, temperature/salt stratified
means that the density gradient is caused by a variation in temperature/salt alone. Note that for a
temperature-stratified fluid,

Pe = PrRe, (39)

where Pr = ν/κ is the Prandtl number. For a salt-stratified fluid with solutal diffusivity κS , the
analog of Pr is the Schmidt number Sc = ν/κS . Some characteristic values of Pr and Sc are shown in
Table I for typical conditions relevant to both oceanic and laboratory settings. For a reasonable range
of temperatures and salinities, Pr ∼ 10, while Sc ∼ 100-1000. Hence, for a given Reynolds number,
the Péclet number is 10–100 times smaller for salt-stratified water than for the temperature-stratified
case. For the ranges shown in Table I, variations in salinity have only a small effect on Pr and Sc
compared to variations in temperature. In a typical turbulent terrestrial flow, Re � O(1000), but
Fig. 5 shows that even for Re−1 = 0.1, the growth rate profile is very close to that for Re−1 = 0. As
such, to demonstrate fully the effect of parameter choices we will consider a range of larger values
of Re−1.

Figure 6 shows plots of growth rate versus wave number for three values of Re−1 and for a
range of values of Pr and Sc; the Péclet number follows from the relations Pe−1 = (PrRe)−1 and
Pe−1 = (ScRe)−1. In Fig. 6(a), we take values relevant for temperature-stratified water. Instability
occurs only for sufficiently small Re−1; all the solutions for Re−1 = 10 are stable. Larger values
of Pr increase both the range of unstable g0 and the maximum growth rate, as they give smaller
values of Pe−1. For the case of Re−1 = 1, the system is unstable only for the higher values of Pr
chosen. In Fig. 6(b), parameter values are taken to be relevant for salt-stratified water; here, all
the values considered lead to instability. There is little difference between the results for the four
different Schmidt numbers, but increasing Re−1 does decrease the range of unstable g0 and the
maximum growth rates. This is because the Schmidt numbers are large and hence the inverse Péclet
numbers are small; e.g., for Re−1 = 0.1, the values of Sc used correspond to Pe−1 = O(10−4).
In contrast, the values of Pr used in the temperature-stratified case correspond to Pe−1 = O(10−2).
Hence, changing the background temperature, and therefore Pr, has a much greater effect on Pe−1 in
the temperature-stratified case than changing Sc in a salt stratification. The existence of the layering
instability is therefore more sensitive to the background temperature, and requires larger Reynolds
numbers, in a temperature-stratified fluid than in a salt-stratified fluid.
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FIG. 6. Growth rate plotted as a function of wave number for (a) temperature- and (b) salt-stratified fluids
for r = 50, gi = 0.0218, with three different choices of Re−1 and a range of values of Prandtl and Schmidt
numbers. The values of Pr and Sc are chosen to be representative of water under common terrestrial conditions,
as seen in Table I. For comparison with Fig. 5, note that in (a), Pe−1 = (PrRe)−1, and in (b), Pe−1 = (ScRe)−1.

Table II shows maximum growth rates and their corresponding wave numbers for characteristic
values of Pr and Sc in oceanic configurations, as well as for two smaller choices of Pr. There is
only a very slight difference between the results for Pr = 1 and Pr = 0, so a more detailed study of
the small Pr region of parameter space is unlikely to reveal any new behavior. From Table II and
Figs. 4–6, we see that increasing density diffusion decreases the area in (g0, r) parameter space that
is unstable. Increasing density diffusion or viscosity decreases the range of unstable wave numbers
for each background gradient, as well as decreasing the wave number of maximum growth rate and
the maximum growth rate itself.
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TABLE II. Predicted dimensionless wave numbers of the mode of maximum growth rate mmax and the
corresponding dimensionless growth rates for characteristic values of Pr, Sc, and Re−1, with r = 50, g0 =
0.0218. For Pr � 1, there is little difference from the Pr = 0 case. Plots of wave number versus growth rate are
shown for selected parameter choices in Fig. 6.

Re−1 Pe−1 mmax n = Hm/2π L = 2π/m Growth rate

BLY case 0 0 0.14 45 44 1.6 × 10−3

Pr = 10 0.1 0.01 0.12 40 51 1.1 × 10−3

Pr = 10 1 0.1 0.018 5.8 350 2.6 × 10−6

Pr = 10 10 1 No unstable wave numbers

Sc = 1000 0.1 10−4 0.14 43 46 1.5 × 10−3

Sc = 1000 1 10−3 0.076 24 83 5.0 × 10−4

Sc = 1000 10 10−2 0.024 7.7 26 4.7 × 10−5

Pr = 1 0.001 0.01 0.13 41 48 1.2 × 10−3

Pr = 1 0.01 0.1 0.027 8.6 230 6.6 × 10−6

Pr = 1 0.1 1 No unstable wave numbers

Pr = 0 0 0.01 0.13 41 48 1.2 × 10−3

Pr = 0 0 0.1 0.027 8.6 230 6.9 × 10−6

Pr = 0 0 1 No unstable wave numbers

IV. LONG-TERM EVOLUTION OF LAYERED SOLUTIONS

In this section, we present solutions to the model given by Eqs. (26)–(28), focusing on the
long-term dynamics. In Sec. IV A, we demonstrate that by adopting fixed-buoyancy boundary
conditions, the expanding edge regions that appear in solutions to the BLY model [Eqs. (3)–(7)] are
avoided, allowing the observation of layer dynamics to long times. An investigation of the long-term
dynamics is presented in Sec. IV B, where we show how the predictions of Sec. III C are manifest in
the solutions at long times. Furthermore, we demonstrate a general trend for the long-term behavior.

A. The effects of fixed-buoyancy boundary conditions on the long-term behavior

We begin by investigating the effects of fixed-buoyancy boundary conditions on the system. For
simplicity, and to isolate the effects of the boundary conditions, we take Pe−1 = Re−1 = 0 in this
section, reducing the model described by Eqs. (26) and (27) to the BLY system. Once the effects
of Eqs. (3) and (4) exactly. Once the effects of the boundary conditions are understood, we will
reincorporate finite molecular diffusivity and viscosity.

The no-flux boundary conditions [Eqs. (7)] ensure that the total energy is changed only by
dissipation and stirring. For a temperature-stratified fluid, this is equivalent to the upper and
lower boundaries being insulated and impermeable. The no-flux conditions admit an approximate
similarity solution describing the growth of the edge region towards the center of the domain,
represented by bz = g(z/t1/2), e = e(z/t1/2). This prediction was confirmed numerically by BLY,
who demonstrated that the edge regions expand into the interior at a rate of z ∼ t1/2. For such a
similarity solution to exist, it is necessary that boundary conditions are imposed on the buoyancy
gradient g = bz rather than on the buoyancy itself, b. Hence it is of interest to determine how the
edge regions behave, and indeed if they even exist, if different boundary conditions are imposed.

In the case of a temperature-stratified fluid, a common experimental setup is a fluid layer between
two conducting plates held at constant temperatures. For a statically stable gradient, we consider a
hot plate above a cold plate, and adopt the Dirichlet conditions

b(0, t ) = 0, b(H, t ) = g0H, (40)
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forming a uniform stable stratification. Here, g0 is the initial uniform background buoyancy gradient,
and H is the fluid depth. Without loss of generality, the buoyancy on the bottom boundary can be
taken as zero, as the equations depend only on buoyancy gradients. In contrast to the choice of
no-flux boundary conditions, the fixed-buoyancy conditions given by Eqs. (40) allows us to take
a uniform background buoyancy gradient g(z) = g0, which we use as a basic state for the system,
creating a uniform stratification. Taking this solution to be a steady basic state gives e(z) = e0(g0),
uniform throughout the domain. Thus a no-flux (Neumann) condition on the energy is possible:

ez(0) = ez(H ) = 0. (41)

Alternatively, we can choose to fix the energy on the boundaries with the Dirichlet condition

e(0, t ) = e(H, t ) = e0. (42)

In considering appropriate initial conditions, we begin by noting that Eq. (40) admits steady-state
solutions with both bz and e uniform with height, for either choice of condition on the energy
(Eq. (41)) or (42). Assuming that b = g0z and e = eB, we find steady solutions to Eqs. (26) and (28)
by setting time derivatives to zero. Taking a uniform buoyancy gradient and uniform energy means
that all the spatial derivatives also vanish, leaving a quadratic equation for eB(g0), with solution

eB(g0) = 1

2
(1 − g0(1 + r) +

√
(1 − g0(1 + r))2 + 4g0), (43)

where r = 1/ε [20]. For the case of no stratification (g0 = 0), the steady-state energy eB = 1 is as-
sociated with the nondimensional stirring length scale. As g0 → ∞, eB → 0, thereby demonstrating
the damping of motion as the stratification is increased.

For the buoyancy initial condition, we take a uniform gradient steady state plus a sinusoidal
perturbation of amplitude a and wave number 2πn/H :

b(z, 0) = g0

[
z − a sin

(
2πnz

H

)]
, (44)

e(z, 0) = eB(g0), (45)

where eB(g0) is given by Eq. (43). We set the amplitude to be a = 0.001. The integer n is chosen
to produce the maximum linear growth rate for perturbations about this steady state (cf. Sec. III B),
ensuring that layers develop quickly from the perturbations, with little interference from other wave
numbers. BLY used the parameter values g0 = 0.0218, r = 50, H = 2000, and demonstrated that,
for these values, the dominant wave number corresponds to n = 45. To facilitate comparison with
BLY’s results, we will adopt the same values.

All the numerical solutions of the full nonlinear system were obtained using the MATLAB pdepe
solver. Figure 7 shows the short- and long-time evolution of solutions to Eqs. (26)–(28). All plots
have 4000 spatial mesh points. The early evolution plots have 1000 time steps, while long-time
solutions were calculated using a series of nine integrations, each with 1000 time steps. There are
1000 linearly spaced time steps between each time labeled on the vertical axis, giving a piecewise
linear time axis, with the size of a time step increasing by a factor of 10 or 100 between each label.
The solutions are not sensitive to finer spatial resolutions or integration tolerances, and the pdepe
solver chooses time steps dynamically to ensure that the solutions are well resolved in time.

Figures 7(a) and 7(b) show the integration carried out with no-flux (Neumann) boundary condi-
tions on the energy [Eq. (41)]. The initial perturbation grows into a regular pattern of spikes in the
buoyancy gradient g(z, t ), separating regions in which the fluid is well mixed and the gradient is
small. The spikes represent smeared interfaces separating the well-mixed layers. At this stage, the
evolution is similar to that arising from the no-flux buoyancy boundary conditions [Eqs. (7)] (cf.
Fig. 2). A key difference, however, is that the region in which layers form extends across the full
depth of the domain, with little influence from the boundaries (an aspect that becomes increasingly
important at later times). Initially, we see 45 spikes (layer interfaces) in the buoyancy gradient profile
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FIG. 7. Time evolution of the buoyancy gradient g(z, t ) = bz(z, t ) for fixed-buoyancy boundary conditions
[Eq. (40)] and initial conditions given by Eqs. (44) and (45) with wave number n = 45, background buoy-
ancy gradient g0 = 0.0218, dissipation parameter r = 50, and domain thickness H = 2000. Zero-energy-flux
boundary conditions [Eq. (41)] are adopted in (a) and (b); fixed energy conditions [Eq. (42)] are adopted in
(c) and (d). The scale bar at the top left of each panel indicates the magnitude of the gradient g(z, t ).

g(z, t ). The wave number of this initial pattern of layering matches that of the initial perturbation
m = 45(2π/H ). The interfaces begin to merge at t ≈ 1.6 × 105, with mergers happening evenly
across the domain. After the first merger, the spike height (i.e., the maximum gradient in an
interface) is approximately double that of the initial spikes. After subsequent mergers take place, the
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height of the spikes remains constant, with successive mergers doubling the width of each spike, as
the maximum unstable gradient has been reached. The state at t ≈ 1 × 1016 is not the final state of
the system—the solution will continue to evolve through mergers until eventually a single interface
remains.

Figures 7(c) and 7(d) show the integration carried out with fixed-energy (Dirichlet) boundary
conditions [Eq. (42)] instead of no-flux (Neumann) conditions [Eq. (41)], with all other parameters
and conditions identical to those used in the simulation shown in Figs. 7(a) and 7(b). As with
the Neumann conditions, the initial perturbation develops into 45 spikes, which undergo mergers.
However, the first mergers now appear at the earlier time of t ≈ 15 000, first near the boundaries,
and progress inward toward the center of the domain until all but one spike has merged with its
neighbors by t ≈ 110 000. After the initial development of the layers, the outermost interfaces
move to the boundaries, resulting in a thicker layer. This thicker layer provokes the second spike
from the boundary to merge with the third, creating another thicker layer. In turn, this provokes a
merger of the next two spikes, with the process continuing into the interior. After this first group
of mergers, the dynamics are very similar to those in Figs. 7(a) and 7(b). Successive mergers take
place evenly across the domain, and the most notable difference from Figs. 7(a) and 7(b) is the time
at which mergers happen—which is a consequence of the different times at which the first mergers
are complete.

The key conclusion to be drawn is that, for fixed-buoyancy boundary conditions, the evolution of
layers is largely unaffected by the boundaries (except at early times, in the case of fixed-energy
boundary conditions). The layered region evolves independently through merger events until a
single interface remains in the middle of the domain. This behavior differs from the situation of
BLY, where edge regions move into the interior (cf. Fig. 2), gradually engulfing the layers until a
uniform state exists across the entire domain. Further numerical simulations with more complex
initial conditions show that even for initial conditions that do produce edge regions, fixed-buoyancy
boundary conditions prevent the intrusion of the edge regions into the interior.

B. Evolution to late times

We now turn our attention to the long-term nonlinear evolution of solutions to the full system
[Eqs. (26)–(28)] for nonzero values of Pe−1 and Re−1. As discussed in Sec. IV A, we take boundary
conditions given by Eqs. (40) and (41) to prevent the development of expanding edge regions and
provide a clean framework in which to analyze the dynamics of layers. For the buoyancy, we take
initial condition given by Eq. (44), namely, a uniform buoyancy gradient perturbed by the wave
number of maximum growth rate. For numerical convenience, we initialize the energy with the
steady state energy corresponding to Pe−1 = 0—this is appropriate because the values of Pe−1 that
we consider are sufficiently small that the true steady-state energy is close to the energy for Pe−1 =
0. In the numerical solutions, the energy adjusts rapidly to its true steady-state value.

One aim of our numerical simulations is to demonstrate how the predicted wave numbers of
maximum growth rate, and the growth rates themselves, are manifest in the nonlinear solutions;
these predictions are detailed in Table II. First, we show solutions for parameters relevant to typical
temperature- and salt-stratified water at Re−1 = 0.1. Next, we consider two choices of parameters
that predict, and produce, significantly fewer layers, thereby demonstrating the behavior of larger-
scale layers and interfaces. We conclude this section by investigating the trends in the long-term
evolution of layers and the occurrence of mergers, inferring a general law describing the number of
interfaces with time.

In Sec. III C, we showed the effects of changing parameter values on the initial development of
layers. Figure 8 demonstrates the effects of changing Pe−1 and Re−1 on solutions of Eqs. (26)–(28),
for values chosen from Table II. In each case, we take the dissipation parameter r = 50, and choose
the background buoyancy gradient to be g0 = 0.0218. This value of g0 is chosen to be approximately
in the middle of the unstable range of buoyancy gradients predicted for this value of r, for a wide
range of choices of Pe−1, as seen in Fig. 4(b).
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FIG. 8. Long-time evolution of the buoyancy gradient g(z, t ), resulting from the system (26)–(28) with dif-
fusion; in the basic state g0 = 0.0218. Panel (a) shows a typical temperature-stratified case with Pe−1 = 0.01,
Re−1 = 0.1, and n = 40 initial interfaces; (b) a typical salt-stratified case with Pe−1 = 0.0001, Re−1 = 0.1,
n = 43; (c) Pe−1 = 0.001, Re−1 = 1, n = 24; (d) Pe−1 = 0.1, Re−1 = 1, n = 6. In each case, the dissipation
parameter r = 50. The scale bar at the top left of each panel indicates the magnitude of the gradient g(z, t ).

Figure 8(a) shows a typical temperature-stratified case with Pe−1 = 0.01 and Re−1 = 0.1, chosen
such that Pr = Pe/Re = 10. In the initial condition given by Eq. (44), we take n = 40, giving a
predicted linear growth rate of 1.15 × 10−3. The initial perturbation grows into a series of 40 layers
across the entire fluid depth, which undergo a set of mergers by t ≈ 0.5 × 106. Successive merger
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events take place until there are four interfaces remaining by t = 1018. The maximum gradient in
an interface (shown in the plot as the height of a spike) is initially g = 0.056, increasing to g = 0.91
in the first set of mergers. After the first mergers are complete, successive mergers do not increase
the maximum gradient but instead create thicker interfaces, conserving the total density difference
across an interface following a merger.

Figure 8(b) shows a typical salt-stratified case with Pe−1 = 0.0001 and Re−1 = 0.1, such that
Sc = Pe/Re = 1000. Here we take n = 43 in the initial condition (44), giving a growth rate of
1.5 × 10−3, approximately one and a half times greater than that in the temperature-stratified case
shown in Fig. 8(a). The system initially develops into 43 layers, which merge by t ≈ 0.9 × 106,
taking almost twice as long as for the temperature-stratified case. Thus, the increased linear growth
rate of perturbations does not imply that mergers happen more quickly. The maximum interfacial
gradient is initially g = 0.064, increasing to g = 0.12 after the first mergers—these gradients are
both slightly larger than for the temperature-stratified case, reflecting the fact that smaller values of
Pe−1 give a larger range of unstable buoyancy gradients in the linear analysis of Sec. III B.

Figures 8(c) and 8(d) show the evolution of the system for parameter choices that produce
significantly smaller wave numbers of maximum growth rate. In both cases, we take Re−1 = 1.
Figure 8(c) has Pe−1 = 0.001, which predicts a wave number of maximum growth rate correspond-
ing to n = 24. Here, the evolution resembles that in Figs. 8(a) and 8(b), with the main difference
being the initial number of layers. The predicted growth rate is 5 × 10−4, approximately half that
for the temperature-stratified case. The first set of mergers is complete by t ≈ 4 × 105—similar to
both Figs. 8(a) and 8(b), demonstrating again that the linear growth rate cannot be used to predict a
timescale for mergers. Figure 8(d) has Pe−1 = 0.1, giving n = 6 as the most unstable wave number.
The linear growth rate of 2.6 × 10−6 is significantly smaller than in any of the other plots, and clear
layers are not apparent until t > 106. The first mergers occur at t ≈ 108. The interfaces are very
thick, with small gradients: the maximum interfacial gradient is g = 0.03, a factor of 3 smaller than
for the cases shown in Figs. 8(a)–8(c).

The plots in Fig. 9 show how the interfaces change over long timescales; they are derived
from several numerical simulations across a range of parameters chosen to cover the full unstable
range shown in Fig. 4(b). The parameters used to produce these results are given in Table III.
Figure 9(a) shows the maximum buoyancy gradient across the whole solution at each time; this
corresponds to the gradient at the center of the sharpest interfaces (and is representative of all
interfaces). Figure 9(b) shows how the number of interfaces decreases with time; merger events
can be seen as sharp downward steps in the profiles. In Fig. 9(a), the early phase of the evolution
is marked by a smooth increase in the gradient from the initial perturbation to a value at which
the first interfaces appear. The maximum gradient then remains unchanged for a prolonged period,
until the first mergers occur. At this point, the maximum gradient increases sharply before settling
again at a new value. In most cases, this second increase in gradient has approximately the same
magnitude as the first. However, for the red and yellow lines (beginning at max(bz ) = 0.015 and
0.8, respectively) the second increase is significantly smaller. Once the stable maximum gradient is
reached, it remains unchanged, even with further mergers, as can be seen by comparison of Figs. 9(a)
and 9(b). However, the density difference across two merging interfaces must be conserved, so
the remaining interface is thicker than either of the two interfaces that formed it. This increase in
interface thickness can be seen clearly in Figs. 8(a)–8(d).

In Fig. 9(b), each solid line begins at the time when the initial layered state is fully formed
[corresponding to the end of the first step up in Fig. 9(a)], and tracks the number of interfaces,
including those on the boundaries. The interfaces are determined by locating all peaks in the
buoyancy gradient with a magnitude above a critical value, chosen to be the steady gradient of
the initial interfaces seen in Fig. 9(a). BLY briefly state that the timescale for successive mergers
becomes exponentially long. However, the expanding edge regions in the BLY solutions prevent
a thorough investigation of long-term merger behavior. Our choice of boundary conditions allows
us to examine the long-term evolution of the solutions and, in turn, quantify this dependence more
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FIG. 9. Plots showing variation in the interfaces over time. Panel (a) shows the maximum gradient at each
time, corresponding to the gradient at the center of the sharpest interface. Panel (b) shows the number of
interfaces at each time, plotted against ln(t ). The dashed lines show the best fits to relation Eq. (46). The
parameters used for each curve are reported in Table III.

TABLE III. Parameter values for the plots in Fig. 9, and corresponding values of α and β for the trend law
(46).

Line r Pe−1 Re−1 H n α β

50 0.01 0.1 2000 40 0.0080 −0.059
100 0.1 0.1 2000 12 0.015 −0.098
15 0 0 2000 15 0.011 −0.044
50 0.01 0.1 6000 119 0.0027 −0.018
50 0.001 0.1 4000 87 0.0037 −0.022
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precisely. In Fig. 9(b), the dashed lines are fitted according to a least squares regression and show a
good fit with the general relation

1

N
∼ α ln t + β, (46)

representing an inverse logarithmic dependence for the number of layers over time, N (t ). As shown
in Fig. 9, the relation (46) captures the overall trend for N (t ) over several orders of magnitude
of time, potentially indicating a self-similar structure to successive layer mergers. Expression (46)
indicates the existence of a general law for how interfaces in stratified turbulence evolve, with the
coefficients α and β dependent on the viscosity and diffusivity of the fluids. Values of α and β

for each case are given in Table III. Analysis of layering in the Cahn-Hilliard (CH) equation has
demonstrated such a logarithmic timescale [27], which has been confirmed by several numerical
studies (e.g., Refs. [33,34]). BLY showed that their model could be transformed into the CH
equation through an asymptotic analysis about the point of marginal stability in g0 − r space (the
tip of the black curve in Fig. 4(b)). Figure 9(b) demonstrates such a logarithmic timescale across the
entire unstable range of parameters, confirming the relevance of CH dynamics to models of layering
that employ the Phillips effect.

V. DISCUSSION

In this paper, we have made four primary developments in the analysis of layering in stratified
turbulent flow. First, we have presented a general horizontally averaged model derived from the
Boussinesq equations using a spatial averaging approach. Our formulation retains the effects of
viscosity and molecular diffusivity, and explicitly clarifies the closure assumptions required. Second,
we have demonstrated how the layering instability is affected by molecular diffusivity and viscosity.
Third, we have demonstrated the importance of boundary conditions on the long-term evolution of
the solutions. Finally, we have shown how the long-term distribution of layers changes through
merger events, with the inference of a general power law dependence describing the number of
layers as a function of time.

To understand the essential conditions for layer formation, we investigated the linear stability
of uniform gradient, uniform energy steady states. Increasing Pe−1 suppresses the instability by
decreasing the range of unstable gradients. Increasing Re−1 does not affect which gradients lead to
instability, but does decrease the range of unstable wave numbers, so the instability occurs only at
larger scales. Since for temperature-stratified water, Pe−1 is two orders of magnitude larger than for
salt-stratified water, the latter is more susceptible to layering.

We have shown that fixed-buoyancy boundary conditions ensure that the layered regions extend
across the entire depth of the domain for all time. This contrasts with the case of fixing the buoyancy
gradient, which allows layer-free edge regions to expand into the interior, gradually engulfing the
layers [20]. In our numerical solutions, multiple layer merger events take place in groups, with
the general property that the maximum gradient across an interface approximately doubles after the
first group of mergers. In subsequent mergers, the gradient does not increase further. Instead, the
thicknesses of the interfaces increase, conserving the total density difference across the interface.
Our analysis of the solutions over long times shows that after the initial development of layers, the
number of interfaces conforms to the law 1/N ∼ ln t , thereby generalizing the link to CH dynamics
shown by BLY.

To expand on this work, we plan to test the predictions experimentally. Previous experimentation
[2,3] has shown that layering occurs above a critical Richardson number (defined as Ri = N2d2/U 2,
where U and d are the speed and scale of a stirring rod, and N the Brunt-Väisälä frequency of
the stratification). Note that with all other parameters fixed, Ri is proportional to the buoyancy
gradient g = bz. Hence, a minimum Richardson number is tantamount to a single critical value
of the buoyancy gradient g above which layering takes place. In addition to this lower bound,
our work has illustrated the possibility of a maximum buoyancy gradient above which layering
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does not occur. This property, which arises because a sufficiently strong gradient will suppress the
instability, remains to be demonstrated experimentally. An experimental investigation into these
critical conditions on both maximum and minimum gradients for layer development could also be
used to constrain the model parameters, such as the dissipation coefficient r.

Our analysis and derivation of a horizontally averaged model provides a basis for generalization
to other systems in which layering occurs. In particular, the two-component model for buoyancy and
energy can be expanded to a double-diffusive system by the inclusion of an additional equation for
the second component of buoyancy. This produces a three-component model for temperature and
salinity (or any other two components of density), and energy. Two specific problems suggest
themselves. The first is to study a three-component model with an external forcing, as used here.
This will provide insights into the second problem, in which the turbulent motions arise naturally
from the convective instability of the basic state; here, the prescription of the mixing length in the
stirred state becomes the crucial issue. This work is ongoing and will be reported in a future paper.
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