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Resolvent analysis has found applications in several areas of fluid mechanics, providing
physical insight into both laminar and turbulent flows. In spite of such fact, the global
(3D) resolvent is computationally expensive, which limits the size of the domain and the
Reynolds number of the flows which can be considered. In this work, we derive a parabolic
resolvent approach, which enables a significant increase in the computational efficiency of
the calculation, for streaky structures in boundary layer flows. The computational speedup
depends on the size of the problem and could be of more than one order of magnitude for
the same accuracy as the global calculation. The method is derived based on an optimiza-
tion method via the Lagrange multipliers over the linearized boundary layer equations and
it is coupled to a Krylov-Arnoldi decomposition to the computation of suboptimals. The
application of the method is exemplified for two problems: a Falkner-Skan boundary layer,
where we obtain trends for both the optimals and suboptimals, and a turbulent boundary
layer, where characteristics such as the double peak in the spectrum and the characteristic
inner and outer length scales can be recovered when a variable eddy viscosity is considered.
In both cases, a scaling is found for the dominant gain, given in terms of the fourth
power of the Reynolds number, defined in terms of the relevant scale for the problem,
the displacement thickness, and the modified Rotta-Clauser parameter for the laminar and
turbulent boundary layers, respectively. For the laminar case, we further demonstrate that a
forcing limited to the free-stream region is capable of generating streaky structures inside
the boundary layer, a relevant feature for free-stream turbulence-induced transition.

DOI: 10.1103/PhysRevFluids.7.104611

I. INTRODUCTION

Resolvent analysis is based on an input-output formulation, derived in the frequency domain,
which has become of frequent use for several different applications in the fluid mechanics com-
munity, both for laminar-transitional and turbulent flows. The basic idea consists in performing
a Reynolds decomposition of flow variables and replacing the terms of the Navier-Stokes (NS)
equations that are nonlinear in fluctuations by a forcing term to an otherwise linear operator [1–3].
Such nonlinear forcing is treated as an unknown and the most amplified flow responses (outputs) to
such forcings (inputs) are sought. Given the non-normality of the NS operator [4–8], which leads to
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strong transient amplifications of the flow fluctuations, relevant flow features may be extracted from
this approach.

As an example, these optimal response modes of the resolvent operator may be used to deduce the
coherent structures in the flow. Recent works [9,10] have shown that, when the forcing corresponds
to white noise in the spatial direction, the optimal response modes of the resolvent operator
correspond to the spectral proper orthogonal decomposition (SPOD) modes. This result has been
used in several other applications for turbulent flows, where one could cite, for example, Refs. [9,11]
for a turbulent jet, Refs. [1,3,12] for channel and pipe flows, Ref. [13] for a boundary layer, among
others. The resolvent approach has also been used for active control [14] and estimation [15–17]
of fluctuations and to extract the forcing statistics [18,19] in turbulent flows. A global resolvent
approach has been recently used in a streamwise varying flow to better understand the nozzle
dynamics in a turbulent jet [20].

The resolvent method along with other approaches, such as transient growth, are also of im-
portance for applications in laminar-transitional flows, particularly due to the bypass transition
induced via free-stream turbulence (FST) [21–25]. FST leads to the appearance of elongated streaky
structures, with alternating high and low streamwise velocity fluctuations with respect to the base
flow [26,27]. References [28–30], for example, show that the optimal perturbation, in this case
obtained from a transient growth analysis, compares well with the FST-induced structures and may
be used to boundary layer transition predictions. This has been used in Ref. [31] to improve the
effectiveness of a closed-loop control scheme.

Calculation of resolvent modes for a parallel flow is straightforward, given its low computational
cost, and may be found, for example, in Refs. [32,33]. For the global, three-dimensional case,
different methods may be found in the literature. The effect of the resolvent operator can be
determined by solving a linear system by means of an linear upper (LU) factorization iteratively
as in Refs. [34,35]. Matrix-free, power-iteration schemes using the direct-adjoint equations are
faster computationally and have been applied in Refs. [36–38] via a generalized minimal residual
method to solve the linear system and in Ref. [39], which further computed suboptimal modes
via the application of a Krylov-Arnoldi decomposition. A further approach would consist of
a parabolization of the direct-adjoint optimization equations, as in Ref. [7]. Along these lines,
the parabolized direct-adjoint iterations have been used in several works for the computation of
optimal perturbations, such as Refs. [29,40,41] for Blasius, Falkner-Skan-Cooke, and compressible
boundary layers and in Refs. [42,43] for a supersonic jet by means of an one-way Navier-Stokes
approach which has the caveat of leading to a larger system. Finally, Ref. [44] applied a randomized
approach for handling the operator of a high-Reynolds-number turbulent flow.

In the class of matrix-free methods, an interesting approach may be found in Ref. [45] where,
similar to this work, a variational approach is used to estimate resolvent modes. In that approach, the
Euler-Lagrange equations are expanded in a convenient basis, which eliminates the need to perform
a matrix inversion (or LU decomposition), with the added advantage of avoiding the computation
of the adjoint equations and permitting the calculation of the resolvent for any frequency. For the
case evaluated in the work, the computational gains, when compared to the global calculation based
on an LU decomposition, are of one order of magnitude, with an accompanying reduction of 40–
75% in memory usage, with the caveat that the forcing reconstruction may deviate from the global
calculation, depending on the case.

In the current work, we build on the matrix-free methods using the direct-adjoint boundary layer
equations, setting the problem in terms of a global optimization for the forcing. In this work, we
focus on the resolvent analysis of elongated streaky structures, which have null frequency and
streamwise wave number, as it leads directly to a parabolic system [29]. For this case, the use
of a spatial marching is straightforward, without the need to use an auxiliary condition, as in the
parabolized stability equations [46], and without increasing the size of the problem, as in the one-
way Euler and Navier-Stokes equations. We further apply the Krylov-Arnoldi decomposition to the
calculation of suboptimal modes. This results in a method which is very efficient computationally
and therefore allows application to large domains in the wall-normal and streamwise directions.
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Two problems are studied for the application of the parabolic resolvent, both of which benefit
from its low computational cost which enables large domains to be considered. This first one is
a laminar boundary layer with pressure gradient (Falkner-Skan profile); This choice is motivated
by the fact that even though this problem has been extensively studied in terms of the optimal
perturbation (or initial condition), as in the works cited herein, not much is available in the literature
in terms of the optimal forcing, particularly for higher Reynolds numbers and different favorable
and adverse pressure gradients. Due to its low computational cost, the present parabolic resolvent
method allows a thorough parametric characterization of the global input-output behavior of streaks
in laminar boundary layers with pressure gradient. Furthermore, optimal forcing computations are
of relevance for free-stream turbulence transition as the receptivity mechanisms are yet unclear for
this problem [21].

The second flow we study consists of a turbulent boundary layer. Given the recent interpretation
of the resolvent operator, where the nonlinear terms of the Navier-Stokes equations are modeled
as a forcing term to an otherwise linear operator [2]; this has led the resolvent formalism to
be extensively used in the study of turbulent flows, permitting insight into the present coherent
structures. The current method allows the use of much larger domains in the streamwise and
wall-normal direction in a computationally efficient manner and therefore it is of interest to the
turbulence community.

The paper is organized as follows: Section II reviews the method for global resolvent calculations
and introduces the parabolic approach along with the optimization procedure for the computation
of suboptimals; in Sec. III the evaluated base flows are outlined; Sec. IV presents a comparison of
the computational cost of the method to the global calculation; the studies of the Falkner-Skan and
turbulent boundary layer are performed in Secs. V and VI; and conclusions are drawn in Sec. VII.

II. METHODS FOR COMPUTATION OF RESOLVENT MODES

A. Global resolvent modes

Here, we first describe the classical method for computation of resolvent modes. One starts by
considering the forced linearized Navier-Stokes equations. A Fourier decomposition of the forcing
and response is performed in terms of waves with a real frequency ω and a real spanwise wave
number β,

F(x, y, z, t ) = F̂(x, y, ω, β )ei(βz−ωt ), (1)

q(x, y, z, t ) = q̂(x, y, ω, β )ei(βz−ωt ), (2)

where q(x, y, z, t ) corresponds to the three velocity components and pressure. Substitution of the
ansatz (1) and (2) in the linearized incompressible Navier-Stokes equations permits an arrangement
in the form of an input-output system relating forcing terms and associated flow responses,

(−iωI − G)q̂ = PF̂, (3)

û = Hq̂. (4)

Operator G denotes the Navier-Stokes equations linearized around a base flow and û =
(û v̂ ŵ)T ; matrix P ensures that no forcing is applied to the continuity equation and matrix H
is used to select the velocity components from the state q̂. The resolvent operator is then defined as

R = HLRES
−1P (5)

where LRES = (−iωI − G), such that

û = RF̂. (6)
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The objective is to maximize the norm of the response with a forcing of minimum norm. This
can be accomplished via the adjoint resolvent operator through an eigenvalue problem,

R∗RF̂ = σ 2F̂, (7)

where R∗ = H∗(LRES
∗)−1P∗ is the adjoint resolvent operator.

In this work, Eq. (7) is solved via an iterative method; operators LRES and LRES
∗ are constructed

using sparse matrices with the streamwise and wall-normal derivatives obtained from finite differ-
ences and Chebyshev polynomials, respectively. The sparse matrices allow the use of a lower-upper
(LU) decomposition, which reduces memory requirements, such that the inverses LRES and LRES

∗

are not computed. For further details regarding the global resolvent calculation, the reader is referred
to Refs. [20,39].

B. Parabolic resolvent computation method

In this section, we describe our approach to compute resolvent modes which is based on the
linearized boundary-layer equations. We consider the general case where viscosity is dependent
on the wall-normal and streamwise coordinates [47–50], which is of particular importance for
application in turbulent flows. For this case, the nondimensional continuity and Navier-Stokes equa-
tions linearized around a two-dimensional base-flow, U(x, y) = [U (x, y) V (x, y) 0]T , are written as

∂u

∂x
+ ∂v

∂y
= 0, (8)

∂u
∂t

+ ∇u · U + ∇U · u = −∇p + ∇ · [νT (∇u + ∇uT )], (9)

where u = (u v w)T corresponds to the velocity fluctuations, which are nondimensionalized using
the free-stream velocity, U∞, and νT = (1 + νt )/Re is the total nondimensional viscosity corre-
sponding to the sum of the molecular and eddy viscosity contributions. The Reynolds number is
defined as Re = U∞δ∗

0/ν
∗ with δ∗

0 corresponding to the displacement thickness on the beginning of
the computational domain and ν∗ corresponding to the dimensional molecular viscosity; the flow is
periodic along the spanwise direction.

The application of an eddy viscosity model for a turbulent flow follows from Ref. [51], in order
to model the action of incoherent fluctuations on coherent structures. As a simplification, the eddy
viscosity model has been commonly applied for all the scales, as reviewed in Ref. [2]. In the context
of the resolvent method, where the nonlinear terms of the Navier-Stokes equations are treated as
an unknown forcing to an otherwise linear operator, one approach consists in modeling part of
the nonlinear forcing with an eddy viscosity, modifying the linear operator, as in Refs. [1,47,48].
This approach has obtained success in the literature, reproducing some of the trends observed in
turbulent flows, such as the double peak in the premultiplied spectrum [47]; however, other trends
are not reproduced, such as the peak phase speed [52]. The actual structure of the nonlinear forcing
has been recently computed [18] where the eddy viscosity model has been observed to mimic it
under certain conditions. In the current work, the use of an eddy viscosity model is made to keep the
generality of the approach for the case of a wall-normal dependent viscosity. Different approaches
could be considered, such as using only the turbulent mean, with a constant molecular viscosity, as
in Refs. [3,4].

In this work, we focus on algebraically growing disturbances, such is the case for streaky
structures in laminar and turbulent boundary layers, which are the most amplified fluctuations in
these cases [29,47]. The problem is written in the frequency-wave number (ω, β ) domain, where
solutions are assumed to take the ansatz

q(x, y, z, t ) = q̂(x, y, ω, β )exp[iβz − iωt], (10)

where the resulting stability equations are used to determine the spatial evolution of three-
dimensional, time-dependent disturbances q = (u, v, w, p)T , corresponding to velocity and
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pressure fluctuations. The streamwise variation is captured in the amplitude function q̂ alone and
we are restricted to low frequencies (ω � 1). Introduction of the ansatz of Eq. (10) in the linearized
boundary-layer equations leads to the parabolic boundary layer equations [28–30], which can be
written in matrix form as

Aq̂ + B ∂q̂
∂y

+ C ∂2q̂
∂y2

+ D ∂q̂
∂x

= 0. (11)

It should be noted that Eq. (11) is exactly parabolic such that application of a spatial marching is
straightforward. Nevertheless, this equation is not valid for wavy disturbances, where the spatial
wave number is nonzero. For such case, an auxiliary condition would be necessary, as in the
parabolized stability equations [46,53,54]. The operators in (11) are given as

A =

⎛
⎜⎜⎝

0 0 iβ 0
−iω + β2νT + dU/dx dU/dy 0 0

dV/dx −iω + β2νT + dV/dy 0 0
0 iβ∂νT /∂y −iω + β2νT iβ

⎞
⎟⎟⎠, (12)

B =

⎛
⎜⎝

0 I 0 0
V + ∂νT /∂y 0 0 0

0 V + 2∂νT /∂y 0 I
0 0 V + ∂νT /∂y I

⎞
⎟⎠, (13)

C =

⎛
⎜⎝

0 0 0 0
−νT 0 0 0

0 −νT 0 0
0 0 −νT 0

⎞
⎟⎠, (14)

D =

⎛
⎜⎝

I 0 0 0
U ∂νT /∂y 0 0
0 U 0 0
0 0 U 0

⎞
⎟⎠, (15)

where I is the identity matrix. The eddy viscosity acts as a wall-normal dependent Reynolds number;
for νt = 0, νT = Re−1 and the usual operators are recovered, as in Ref. [29], for example.

Equation (11) is integrated in the streamwise direction using a first-order explicit Euler method.
Discretization along the wall-normal direction is performed by means of Chebyshev polynomials.
Dirichlet boundary conditions are applied for the three velocity components on the wall and at the
maximum wall-normal location, ymax.

The current approximation does not allow the study of problems with high values of ω, as in such
cases the perturbation will have rapid variation in x which is not compatible with the boundary-layer
approximations. Such cases could be relevant for aeroacoustics problems (as in Ref. [13]) or for
the study of the interaction between oblique waves associated to nonlinear receptivity [55,56], for
example. Nevertheless, ω = 0 fluctuations are the most amplified and have been mostly studied in
the literature. In the work of Ref. [30], it is shown that for the frequency region where streaky
structures occur in boundary layers, parabolic calculations are within their range of validity.
Nevertheless, the amplifications with respect to varying frequency are evaluated in Sec. V, for a
Falkner-Skan boundary layer profile, confirming this assumption.

C. The global optimization problem

A forcing term, which could also model the nonlinear terms of the NS equations, F̂ =
(0 fx fy fz )T , is introduced in the boundary layer equations (11), and these are written in a compact
form as

Lq̂ = F̂, (16)
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where the spatial, frequency, and wave-number dependencies have been absorbed into operator L
as

L = A + BDy + CD2
y + DDx, (17)

where Dy and Dx are derivative operators along the wall-normal and streamwise directions.
We proceed by defining the inner product between two square integrable vector functions,
�(x, y) = [ψ1(x, y) ψ2(x, y) ψ3(x, y) ψ4(x, y)]T and 
(x, y) = [φ1(x, y) φ2(x, y)

φ3(x, y) φ4(x, y)]T , as

〈�(x, y),
(x, y)〉 =
∫ x f

x0

∫ ∞

0
�(x, y)
(x, y)dydx, (18)

where the overline corresponds to the conjugate transpose, and x0 and x f account for the streamwise
domain. Discretization of Eq. (18) reads

〈�,�〉 = �HW�, (19)

where the superscript H corresponds to the Hermitian and W accounts for the integration of the four
components along the wall-normal and streamwise directions which correspond to a Chebyshev and
a Cartesian grid, respectively.

The kinetic energy of the fluctuations q̂ = (û v̂ ŵ p̂)T is then computed from

〈q̂, q̂〉q = q̂HWMqq̂, (20)

where matrix Mq defines a measure of the disturbance and accounts only for the velocity fluctua-
tions inside the boundary layer, an approach which allows avoiding unphysical results for very low
values of β (see Ref. [33]).

Similarly, the norm for the forcing is obtained from

〈F̂, F̂〉 f = F̂H
1 WM f F̂2, (21)

where M f ensures that only the momentum equations are forced, and the forcing here is allowed to
extend throughout the wall-normal direction. Nevertheless, restrictions regarding the spatial support
of the forcing may also be imposed via modifications of operator M f .

The figure of merit for the optimization is taken as the total kinetic energy gain of the perturba-
tions inside the domain per unit of forcing, as

G = 〈q̂, q̂〉q

〈F̂, F̂〉 f
, (22)

maximizing the gain in Eq. (22) is equivalent to maximizing the fluctuation energy subject to unit
forcing norm, i.e., 〈F̂, F̂〉 f = 1.

By maximizing Eq. (22), resolvent modes for algebraically growing disturbances are readily
obtained. The constrained maximization of the cost function, where the constraint is given by
the forced parabolic boundary layer equations (16), is solved by transforming the problem into a
nonconstrained optimization by means of Lagrange multipliers [57] and searching for stationary
points. We define an augmented functional as

J = G − Re(〈q̂∗,Lq̂ − F̂〉), (23)

where q̂∗, the Lagrange multiplier, is referred to as the adjoint variable.
Taking the variation of Eq. (23), one reaches

δJ = 〈q̂, δq̂〉q − �(〈q̂∗,Lδq̂ − δF̂〉 − 〈δq̂∗,Lq̂ − F̂〉), (24)

where δJ corresponds to the sensitivity of the Lagrangian functional to infinitesimal changes, δq̂,
δF̂, and δq̂∗. When the variation becomes zero, this corresponds to a stationary point. The third term,
〈δq̂∗,Lq̂ − F̂〉, is equal to zero, if q̂ is a solution of the state equation, given that it corresponds to
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the inner product between the adjoint and the state equation. Setting the second term to zero results
in the adjoint problem with corresponding boundary and initial conditions. This is derived in what
follows.

The operators are moved to the left side of the inner product by considering the definition of the
adjoint,

〈q̂∗,Aq̂〉 = 〈A∗q̂∗, q̂〉, (25)

where the star ∗ denotes the adjoint. For matrix operators, the adjoint becomes simply a conjugate
transpose, or Hermitian. The derivatives are moved from the direct to the adjoint variable by
integrations by parts, leading to

δJ = 〈q̂, δq̂〉q − Re(〈(A∗ − B∗
y − D∗

x )q̂∗ − B∗q̂∗
y + C∗q̂∗

yy − D∗q̂∗
x , δq̂〉 + 〈q̂∗, δF̂〉) + b.c. (26)

The first and second terms are combined in order to define the adjoint equations for this particular
optimization, which is forced by the direct solution,

L∗q̂∗ = (A∗ − B∗
y − D∗

x )q̂∗ − B∗q̂∗
y + C∗q̂∗

yy − D∗q̂∗
x = Mqq̂. (27)

The term b.c. in (26) corresponds to four integrals which, once set to zero, supply the boundary
and initial conditions for the adjoint boundary layer equations, leading to∫ x f

x0

〈B∗q̂∗, δq̂〉|ymax
0 dx =

∫ x f

x0

(V û
∗
δû + ( p̂

∗ + V v̂
∗
)δv̂ + V ŵ

∗
δŵ + v̂

∗
δ p̂)|ymax

0 dx = 0, (28)
∫ x f

x0

〈C∗q̂∗, δq̂y〉|ymax
0 dx =

∫ x f

x0

(−û
∗
δûy − v̂

∗
δv̂y − ŵ

∗
δŵy)|ymax

0 dx = 0, (29)
∫ x f

x0

〈C∗q̂∗
y , δq̂〉|ymax

0 dx =
∫ x f

x0

(−û
∗
yδû − v̂

∗
yδv̂ − ŵ

∗
yδŵ)|ymax

0 dx = 0, (30)
∫ ∞

0
(( p̂

∗ + Uû
∗
)δû + U v̂

∗
δv̂ + U ŵ

∗
δŵ)|x f

x0 dy = 0, (31)

where ymax corresponds to the maximum wall-normal location being considered.
Therefore, for this particular optimization, the boundary and terminal conditions for the adjoint

velocities are set to zero,

û
∗ = v̂

∗ = ŵ
∗|y=0 = 0, (32)

û
∗ = v̂

∗ = ŵ
∗|y=ymax = 0, (33)

and

û∗(x = x f ) = v̂∗(x = x f ) = ŵ∗(x = x f ) = 0. (34)

Finally, Eq. (26), which corresponds to the variation of the cost functional, reduces to an inner
product between the adjoint and the variation of the forcing term, which can be written as

δJ = 〈q̂∗, δF̂〉 =
∫ x f

x0

∫ ∞

0
q̂∗(x, y)δF̂dydx. (35)

The term δJ may be also computed using the definition of the directional derivative, on this case,
of δF̂ along the gradient of J ,

δJ = 〈∇FJ, δF̂〉 =
∫ x f

x0

∫ ∞

0
∇FJδF̂dydx, (36)

where ∇FJ is the gradient of the functional with respect to the forcing. From Eqs. (35) and (36) we
find that this gradient is equal to the adjoint variable,

∇FJ = q̂∗. (37)
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Since the term Lq̂ − F̂ in Eq. (23) is equal to zero, the gradient of J with respect to the forcing
corresponds to the gradient of the total energy gain with respect to the forcing. This is a standard
procedure in adjoint optimization methods and the reader is referred to Ref. [57] for further details
concerning its derivation.

Once the gradient is available, the steepest descent method can be used to compute the optimal
forcing and resulting modes, which are equivalent to the dominant resolvent modes for α = 0,

F̂n+1 = F̂n + γ∇FJδF̂n, (38)

where γ is a parameter that defines how much of the gradient is used to compute the updated value
of the forcing. The method described here is a modification of the procedure introduced in Ref. [31]
for the computation of actuation shapes for closed-loop flow control and can be summarized in the
following algorithm:

(1) Start with a random force field and null initial conditions and integrate the direct problem up
to the desired position.

(2) The solution of the direct problem is used to force the adjoint equations, which are solved
from the final to the initial position, with null terminal conditions.

(3) The resulting adjoint field corresponds to the gradient of the cost function with respect to the
forcing and can then be used to update the forcing towards its optimal value.

(4) With the new force field, start from the first step and continue up to convergence of the total
energy.

D. Suboptimal modes using Krylov-Arnoldi

The method described in the previous section is quite efficient computationally and in general
rapidly converges to the dominant resolvent modes. It corresponds to a power iteration method to
obtain the leading resolvent mode [38,39]. However, its drawback lies in the fact that only the first
mode can be computed, with the suboptimal modes and eigenvalues not available. These can be
computed by means of the Krylov-Arnoldi decomposition [35,39]. A more thorough description of
this method can be also found in Ref. [58].

The direct-adjoint iterations converge to the leading mode with an error which is associated to
the eigenvalue separation, reducing by a factor of (λ1/λ2)2 after each iteration, where λn are the nth
order eigenvalues [39]. Alternatively, eigenvalues can be estimated based on a subspace spanned by
a sequence of vectors f̂n, based on Krylov-Arnoldi iterations, which is briefly summarized here.

It can be shown that singular values and singular vectors of the resolvent operator, L, can be
obtained from an eigenvalue decomposition of L∗L [35,39]. We therefore seek for a low-rank
representation of L∗L. We start by defining matrices Fs = [ f̂1, f̂2, . . . , f̂n], corresponding to a
Krylov subspace, and Ws = [ŵ1, ŵ2, . . . , ŵn] = [L∗L f̂1L∗L f̂2...L∗L f̂n]. The elements of Ws thus
correspond to the adjoint fields obtained from one direct and one adjoint computation. As for
the forcing matrix Fs, its elements are obtained by means of the Arnoldi algorithm, the elements
f̂n consist in using ŵn−1 made orthonormal to all previous f̂n−1. This is obtained by means of a
Gram-Schmidt orthonormalization,

f̂n = ŵn−1 − F0,...,n−1θ̂ (39)

with

F0,...,n−1 = [ f̂1, f̂2, . . . , f̂n−1] (40)

and

θ̂i = (
F H

0,...,n−1WchebF ∗
0,...,n−1Wchebŵn−1

)
. (41)

By construction,

L∗L f̂n = ŵn (42)
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such that

L∗LFs = Ws. (43)

A QR decomposition is then performed on Fs,

Fs = QR (44)

with Q a unitary matrix and R upper triangular. Matrix H f is defined as

H f = Q∗R−1 (45)

and eigenvalues and vectors of L∗L within the Krylov subspace are obtained from an eigendecom-
position of H f ,

H f � = �2�. (46)

Forcing modes are then obtained from

Vi = Q� (47)

with the corresponding response modes obtained from a solution of the direct equations with the
corresponding suboptimal forcing. In summary, the Krylov-Arnoldi method can be combined with
the direct-adjoint iterations from the previous section, leading to a computational efficient way of
computing parabolic resolvent optimal and suboptimal modes. The algorithm is outlined as follows:

(1) Start with a random force field that defined the first column of Fs.
(2) The direct problem is solved using the forcing fn at the corresponding nth and null initial

conditions to integrate the direct equations from x0 to x f .
(3) The solution is used to force the adjoint equation, which is integrated from x f to x0, with null

terminal conditions.
(4) The corresponding column of Ws is given by q̂∗

n , nth solution of the adjoint equation.
(5) The subsequent column of matrix Fs is given by wn, normalized with respect to the previous

column, using Eqs. (39)–(41). This is used as a forcing for the direct equations, continuing the
method from (2).

The algorithm is performed for a sufficient number of iterations in order to ensure that the
suboptimal modes will be converged. Suboptimal forcings and eigenvalues are then obtained from
(44) to (47), with the corresponding suboptimal modes obtained from the solution of the direct
equations for each of the forcings considered.

III. EVALUATED BASE FLOWS

A. Falkner-Skan boundary layer

Some of the base flows considered here belong to the Falkner-Skan family of the boundary layer
flows, including cases with both adverse and favorable streamwise pressure gradients. The free
stream streamwise velocity obeys a power law, U∞(x) = Cxm, and the spanwise component of it is
null, W∞ = 0. We introduce the similarity parameter

η(xd , yd ) =
√

m + 1

2

√
U∞
νxd

yd (48)

and the stream function

�d =
√

2

m + 1

√
U∞νxd f (η), (49)

with the dimensional velocities U d = ∂�d/∂yd and V d = −∂�d/∂xd . Here, the superscript d
denotes dimensional values. The boundary layer profiles are then derived from the solution of the
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nonlinear differential equation (see, e.g., Ref. [59])

f ′′′ + f f ′′ + βH (1 − f
′2

) = 0, (50)

where

βH = 2m

m + 1
. (51)

This equation is subjected to the boundary conditions given by f = f ′ = 0, at η = 0 and f ′ → 1
when η → ∞. Equation (50) may be solved via a shooting method. The resulting velocity profiles
in the streamwise and wall-normal directions are then given as

U d (x, y) = f ′(η)U∞(x), (52)

V d (x, y) = −
√

m + 1

2

√
ν

U∞x

[
f + m − 1

m + 1
η f ′

]
U∞(x). (53)

The displacement thickness can then be computed as

δ∗ =
[∫ ∞

0
(1 − f ′)dη

]
[(m + 1)U∞/2νxd ]−1/2, (54)

which implies that its value in the beginning of the domain is given as

δ∗
0 =

[∫ ∞

0
(1 − f ′)dη

][
(m + 1)U0/2νxd

0

]−1/2
, (55)

such that xd
0 is a fixed position where the streamwise velocity is U0 and the corresponding Reynolds

number is Re. The value of η in terms of the nondimensional coordinates is then

η(x, y) =
[∫ ∞

0
(1 − f ′)dη

][U∞
U0x

]1/2

y, (56)

where the spatial nondimensional coordinates are x, y, and z, for the streamwise, wall-normal and
spanwise directions which, in this work, consider the displacement thickness in the beginning of the
computational domain (δ∗

0 ) in their nondimensionalization.

B. Turbulent boundary layer

The second base flow for the application of the parabolic resolvent calculation consists of a
turbulent boundary layer with a variable eddy viscosity. The self consistent expression proposed
by Ref. [60] is considered and a corresponding variable eddy viscosity is computed following the
approach described in Ref. [47]. The mean flow is given as

U = uτ [U +
i (y+) − U +

log(y+) + U +
e (Re) − U +

w (μ)], (57)

where uτ is the wall friction velocity, μ = y/� where � is the Rotta-Clauser outer length scale,
� = δ∗/U +

e , and the + superscript indicates quantities which are nondimensionalized using inner
variables (i.e., l = ν/uτ and uτ , the characteristic length and velocity); as for the laminar case,
the Reynolds number is defined in terms of the free stream velocity, displacement thickness and
molecular viscosity. The explicit expressions for the free-stream (U +

e ), inner layer (U +
i ), log

layer (U +
log), and wake function (U +

w ) velocities may be found in Ref. [47] and are included in
the Appendix A, for completeness. Quantities which are presented without the + superscript are
nondimensionalized with the outer scales which, in this case, correspond to the displacement
thickness and the free-stream velocity. The characteristic velocities and lengths both for the inner
and outer scales are considered in the beginning of the computational domain.
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FIG. 1. Mean velocity scaled in outer (a) and inner (b) units and corresponding Reynolds stresses in inner
units (c) for Re = 10 000.

The total viscosity is related to the total shear stress as

τ

ρ
= νT (y)

∂U

∂y
. (58)

The total shear stress may also be computed by integrating the mean momentum equation in the
wall-normal direction,

τ

ρ
= u2

τ +
∫ y

0

(
U

∂U

∂x
+ V

∂U

∂y

)
dy, (59)

where the wall-normal component may be obtained from the continuity equation,

V = −
∫ y

0

(
∂U

∂x

)
dy. (60)

Finally, the term ∂U/∂x is obtained by deriving Eq. (57) with respect to x. The total viscosity can
then be computed from (58) and (59). The scaling of the streamwise domain has also been proposed
in Ref. [60] and is included in the Appendix. For further details concerning this procedure, the
reader is referred to Ref. [47].

In order to illustrate the results, Fig. 1 presents the mean flow for Re = 10 000 along with the
Reynolds stress scaled in inner units, which can be computed from

−〈u′v′〉
u2

τ

=
τ/ρ − ν ∂U

∂y

u2
τ

. (61)

Similarly to the laminar flow case, for the turbulent boundary layer profile we consider the inlet
velocity and displacement thickness as reference quantities for the computation of the resolvent
modes.

IV. VALIDATION AND COMPUTATIONAL COST

In this section, the parabolic resolvent method is compared to the more usual approach to
compute resolvent modes, which is based in matrix calculations.

A. Computational cost and comparison to the parabolic resolvent

Performing the singular value decomposition (SVD) in a locally parallel problem is straightfor-
ward and results may be found in the literature for a wide range of geometries (see, for example,
Refs. [12,13,33]. The wall-normal direction is discretized with a Chebyshev grid, such that matrix
R is [4ny × 4ny], for the three velocity components and pressure, with ny Chebyshev points. The
resulting size of the problem permits a direct computation of the SVD.
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FIG. 2. Comparison between eigenvalues for different nx × ny combinations for (a) global and (b) parabolic
calculations, where N is the mode number. The case with nx × ny = 200 × 200, for the parabolic calculation
is plotted in both figures as a reference case.

On the other hand, for the global resolvent problem, R is [4nynx × 4nynx], where nx is the stream-
wise discretization (taken as finite differences, in this work). The extra dimension requires dedicated
algorithms for the computation of the modes, such as the shift-and-invert Arnoldi algorithm [61].
The bottleneck of the problem is the inversion of matrix K = (iωB − A), which is explicitly
made sparse and computed by means of the LU factorization. The overall cost of the solution
corresponds to such factorization [35], which is of the order of ≈ N3, where N = 4nynx. The use
of finite differences for the streamwise derivatives and sparse matrices significantly decreases the
computational expense; however, the memory requirements are still large, scaling with N2. This
trend causes the global computation to be intractable as the size of the domain increases, as is the
case for nonparallel flows with large Reynolds numbers. For further details concerning the global
resolvent computations, the reader is referred to Refs. [34,35].

For the parabolic resolvent approach, the streamwise direction is solved by means of a spatial
marching (in this work taken as an explicit Euler method), which is computationally inexpensive. At
each station, Eq. (16) is solved, which has the same computational cost as solving a locally parallel
problem.

We now compare the results for a laminar (Falkner-Skan) boundary layer without the presence
of a pressure gradient, i.e., a Blasius profile. The case considered extends from Re0 = 300 to
Re = 1000, for (ω, β ) = (0, 0.1). The domain extends up to ymax = 60 in the wall-normal direction.
The characteristic length scale is considered as the displacement thickness in the beginning of
the domain. Figure 2 presents the 10 first eigenvalues for different grid combinations, for the
parabolic and global calculations. The case with nx × ny = 200 × 200, for the parabolic calculation
is considered as a reference result, for this particular evaluation.

It is clear that the grid convergence is much more rapid for the parabolic calculation. If one
considers the criterion of doubling the number of grid points with approximately unaltered results a
requirement for convergence, we observe that the global calculation requires nx × ny = 2000 × 50
to converge the first two modes, whereas the same result is obtained with nx × ny = 50 × 50 for
the parabolic case. The global resolvent calculation, for such grid, requires approximately 30 times
more computational time and 2000 times more memory than the parabolic approach.

The velocity fluctuations for these two converged cases are compared in Fig. 3 at the end of the
computational domain, where Re = 1000. The behavior of the fluctuations in the x − y is shown in
Fig. 4. There is a compelling match between the two approaches both for the eigenvalues and shape
of the resulting optimal fluctuations; a similar trend is also seen for the corresponding optimal
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FIG. 3. Comparison between the envelope of the velocity fluctuations in panels (a)–(c) and behavior in the
y-z plane in panels (d) [(e)] for the global [parabolic] resolvent for Re = 1000, β = 0.1, and ω = 0 at the end
of the computational domain. In panels (d) [(e)], the contour represents the streamwise velocity fluctuation and
the arrows correspond to the velocity field composed of the spanwise [wall-normal] velocity fluctuations.
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FIG. 4. Comparison between global [in panels (a)–(c)] and parabolic [in panels (d)–(f)] velocity fluctua-
tions for u, v, and w in the x-y plane. The computation was performed for Re = 1000, β = 0.1, and ω = 0, for
a neutral pressure gradient
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FIG. 5. Most amplified eigenvalue for Re = 5000 in the end of the computational domain and m = −0.07,
0.0, and 0.4 in panels (a)–(c), respectively. The color bar was adjusted for each plot in order to facilitate the
evaluation of the results.

forcing, which is not shown for brevity. Although not shown for the sake of brevity, good agreement
was also observed between the global and parabolic resolvent methods for the gains, forcing, and
response for the other spanwise wave numbers and pressure gradients evaluated. The results display
the usual behavior for the optimal fluctuations in a boundary layer: The optimal velocity fluctuations
correspond to streaks and streamwise vortices, with the optimal mode presenting a strong dominance
over the suboptimals.

V. RESOLVENT ANALYSIS OF FALKNER-SKAN BOUNDARY LAYERS

A. Reynolds β-ω dependencies

In this section, the behavior of the eigenvalues and modes, computed from the parabolic resolvent
approach, is shown for the Falkner-Skan boundary layer mean profile. For all the cases, the Reynolds
number at the start of the computational domain is equal to Re0 = 300. Figure 5 presents the
behavior of the most amplified eigenvalue as a function of β and ω, for Re = 5000 at the end
of the computational domain, for adverse, zero, and favorable pressure gradients, corresponding to
m = −0.07, 0.0, and 0.4.

For all three cases, the most amplified mode occurs at ω = 0, a feature which is also observed for
the other Reynolds numbers and suboptimals evaluated. This behavior had already been observed
in the literature for the optimal fluctuation, as shown in Ref. [29] for zero, in Ref. [41] for favorable
or adverse pressure gradients, and in Ref. [38] for the optimal forcing case. Here we extend this
result for the case of the optimal and suboptimal responses. It should also be noted that, for this
case, the amplified frequencies are limited to ω � 0.02, where the parabolic method is expected
to be very accurate, as shown in Ref. [30]. If the frequency range were continuously increased,
Tollmien-Schlichting waves would start to be amplified at a sufficiently high value of ω. For these
high frequencies, which are out of the scope of the current work, the parabolic method would be
inaccurate and a different approach would have to be used. From now on, only ω = 0 fluctuations
will be considered, as they are expected to dominate the dynamics of this flow. It should also
be noted that the parabolic calculation is expected to be less accurate the higher the evaluated
frequency, so the method is limited to small ω values.

A β-Re parametric study was performed for ω = 0, with Re corresponding to the displacement-
thickness-based Reynolds number at the end of the domain of interest, and the results are
summarized in Fig. 6 for the most amplified eigenvalue, for adverse, zero, and favorable pressure
gradients. For the three cases, the most amplified spanwise wave number, βmax, is observed to be
proportional to 1/Re or, equivalently, 1/

√
Rex, where Rex = U∞xd/νd , at the end of the compu-

tational domain. This feature had been observed in Ref. [28] for the optimal initial condition in
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FIG. 6. Contour plots of the most amplified eigenvalue as a function of β-Re for adverse, zero, and
favorable pressure gradients, respectively, for ω = 0. The dashed curve represents the most amplified β for
each Reynolds number. The color bar and vertical axis were adjusted for each plot in order to facilitate the
evaluation of the results.

a zero-pressure gradient case and here is extended for the optimal forcing in favorable or adverse
pressure gradient cases.

As expected, higher Reynolds numbers are associated with larger eigenvalue of the optimal fluc-
tuation. Favorable and adverse pressure gradients have respectively a stabilizing and destabilizing
effect. Increasing the Reynolds number has the added effect of leading to smaller β values for
the optimal fluctuation, which is associated to larger structures in the wall-normal direction. This
trend adds a computational difficulty as the wall-normal domain considered has to be larger to
accommodate such structures which would further hinder the use of a global resolvent approach.

We now evaluate the effect of the Reynolds number on the gains for the case when the same
streamwise separation is considered, which emulates the effect of a change in the streamwise
velocity, U∞, for the same physical domain. It can be shown that the nondimensional streamwise
coordinate may be written as

xd

δ∗
0

= xd

L

1

c2
Re0

L

xd
0

, (62)

where L is the physical length of the domain, xd
0 is the dimensional value where the optimization

starts, and c is the displacement thickness written in terms of the Blasius length scale (see, e.g.,
Ref. [59]). By fixing L and xd

0 , the corresponding distance xd/δ∗
0 can be found for different Reynolds

numbers. In this analysis, the domain where the optimization is performed extends from xd
0 /L = 0.1

up to xd/L = 1 which, in no dimensional variables, corresponds to 1/c2Re0 < xd/δ∗
0 < 10/c2Re0.

Figure 7 presents the most amplified gain for three sample Reynolds numbers, Re0 = 1000, 2000
and 3000 and the three pressure gradients considered in this study, m = 0, 0.4, and −0.07, normal-
ized by Re2

x as a function of β, where Rex is computed in the end of the computational domain.
Where the energy gain, G, can be shown to be equivalent to λ2

1. For the same pressure gradient, the
curves for the different Reynolds number coalesce, indicating that the optimal gain scales with Re2

x
or, equivalently, with Re4, in the end of the computational domain. These results indicate that the
effect of the optimal forcing in the laminar boundary layer is Reynolds independent, as previously
observed [30]. Note that since the forcing and the velocity fluctuations have different dimensions,
the numerical value of the gain, G, depends on the reference length and velocity, taken here as δ∗

0
and U0.

B. Shape of the most amplified modes and forcings

In this section, the modes and forcings for Re = 7000 and the most amplified β are shown. As
before, only the ω = 0 case is considered, as it corresponds to the most unstable frequency; similar
conclusions may be drawn for different Reynolds numbers. The three components of the optimal

104611-15



SASAKI, CAVALIERI, HANIFI, AND HENNINGSON

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7
10-3

FIG. 7. Gains, G for the case of an adverse (black), zero (blue), and favorable (red) laminar boundary
layer computed for three different Reynolds numbers, corresponding to Re0 = 1000, 2000, and 3000, in the
beginning of the computational domain, in the solid line, circle, and cross symbols, respectively. Similar results
have been observed independently of the Reynolds number considered. The gains have been normalized by Re2

x .

forcing up to mode 3 are shown in Fig. 8 and the corresponding responses are given in Fig. 9,
for the case of the zero pressure gradient. Similar observations can be made to the other pressure
gradient cases, for their corresponding most amplified β. The dashed line in the plots highlights
the boundary layer thickness. The envelope of the velocities and forces is given at x = 27 000, in
Fig. 10. The corresponding kinetic energy of the velocity fluctuations as a function of the streamwise
direction is shown in Fig. 11.

The optimal and suboptimal responses are dominated by the streamwise component of the
velocity fluctuation which is contained inside the boundary layer. The three first modes correspond
to streaky structures with a different wall-normal support and streamwise behavior. The most
amplified mode grows up to end of the domain, whereas the second and third modes saturate at a
given streamwise component, at a moment when a second streaky structure appears. Such behavior
is clear when evaluating the energy of the fluctuations in the streamwise direction, as presented in
Fig. 11.

In all the cases, the wall-normal and spanwise components of the optimal force dominate its
dynamics, in a mechanism which is related to lift-up [62]. It should also be noted that the forcing
components extend outside of the boundary layer, within the free-stream region. Finally, unlike
the optimal perturbation scenario, where the wall-normal and spanwise velocity components decay
along the chord, for the optimal forcing case these components also grow along this direction,
as they are continuously driven by forcing components. Both of these trends are relevant for the
receptivity of free-stream turbulence. Similar trends can be observed for the other Reynolds numbers
and pressure gradients evaluated.

C. Relevance for free-stream turbulence receptivity

Free-stream turbulence is among the most complicated scenarios for transition as both the
boundary layer and the FST characteristics change in the downstream direction. The fluctuations
grow algebraically inside the boundary layer due to the lift-up effect [63,64] given the non-normality
of the Navier-Stoker operator [8,65]. Even though the resulting fluctuations are in good agreement

104611-16



PARABOLIC RESOLVENT MODES FOR STREAKY …

1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

10-5 1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

0

0.5

1

1.5

2

2.5

3

3.5

10-3

1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-4

-2

0

2

4

6

10-5

1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-3

-2

-1

0

1

2

3

10-3

1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-0.03

-0.02

-0.01

0

0.01

0.02

1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-1

0

1

10-4 1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-3

-2

-1

0

1

2

3

10-3

1 2 3 4 5

104

0

50

100

150

200

250

300

350

400

450

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

FIG. 8. Shape of the three most amplified forces in the wall-normal and streamwise direction for fx , fy,
and fz, and Re = 7000, with (ω, β ) = (0, 0.04). The dashed line indicates the boundary-layer thickness.

with those predicted from an optimal perturbation analysis [28,30,31], the receptivity between the
free-stream disturbances and their effect inside the boundary layer is not yet fully understood [21].

The results of Figs. 8 and 9 indicate that streaky structures occurring inside the boundary layer
result from the optimal forcing which extends throughout the streamwise direction and up to the
free-stream region in the wall-normal direction. The receptivity mechanism can therefore be related
to such optimal forcing. In order to assess the effect of a force which is limited to the free-stream
region, in an idealized scenario for free-stream turbulence fluctuations, we add a restriction to the
force, limiting it to be outside of the boundary layer. Since we are only interested in the optimal
forcing, we here consider Eq. (38), for the steepest descent method, multiplying the gradient by
W

nx×ny

bl , a matrix which is zero for points inside the boundary layer and one for points outside of it.
The resulting (restricted) optimal force and response are shown in Fig. 12 along with the behavior
of the total kinetic energy in the streamwise direction for Re = 7000, β = 0.04, ω = 0, and the
β − Re parametric study for the zero-pressure-gradient case; similar observations were also made
for the other pressure gradients evaluated.

We observe that the restricted force results in fluctuations similar in shape to those of the
optimal force, i.e., streaky structures which grow along the streamwise direction. As expected, the
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FIG. 9. Shape of the three most amplified responses in the streamwise and wall-normal direction for u, v,
and w, and Re = 7000, with (ω, β ) = (0, 0.04). The dashed line indicates the boundary-layer thickness.

resulting kinetic energy is lower than that of the optimal (unrestricted) force. The β − Re parametric
study indicates that the most amplified β is smaller than for the corresponding unrestricted force,
which in turn is associated to larger structures; however, the 1/Re tendency is also observed here.
These results help shed a light on the transition associated to the structures induced by free-stream
turbulence, indicating that a force limited to the free-stream region is capable of generating streaky
structures inside the boundary layer, which are the initial trigger for bypass transition. On the
scenario of free-stream turbulence, the actual forcing present in the flow would present a nonzero
projection on the optimal forcing, which extends up to the free-stream region, therefore leading to
the appearance of the streaky structures in the flow. Furthermore, even though the amplitude of the
forcing in the free stream is expected to be small at the component corresponding to α and ω equal
zero, and the oblique mechanism [55] could generate such a mode, making it more relevant.

VI. RESOLVENT ANALYSIS OF A TURBULENT BOUNDARY LAYER

We start by computing the optimal force and response for range of spanwise wave numbers
and Reynolds numbers, where the Reynolds number on the beginning of the domain is fixed at
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FIG. 10. Envelope of the forces and velocities for the three first modes, at x = 27 000 and Re = 7000, for
(ω, β ) = (0, 0.04). Note that the v/w and fy/ fz components have been multiplied by a constant factor, which
is given in the legends, in order to enable the comparisons to be made in a single plot.

Re = 10 000, which is equivalent to Reθ = 7385, defined in terms of the momentum thickness,
Reθ = U∞θ/ν. Here, the eddy viscosity model, computed following the approach described in
Sec. III B, is considered. As before, only slow streamwise variations, captured by the envelope
function q̂(x, y, β, ω) in Eq. (10), can be considered by this method, and they are the most amplified
ones [47]. Only the ω = 0 case is considered as it also corresponds to the most amplified frequency.
In this section, only the parabolic resolvent calculation is considered as the same computations
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FIG. 11. Kinetic energy along the streamwise direction for the first three modes for the zero pressure
gradient boundary layer of Re = 7000, for (ω, β ) = (0, 0.04).
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FIG. 12. Resulting optimal force [(a)–(c)], response [(d)–(f)]. Kinetic energy of the fluctuations compared
to the unrestricted case (g), for Re = 7000, β = 0.04, ω = 0, and β − Re parametric study when the forcing
location is restricted to the free stream (h). In subplot (h), the dashed black and red lines indicate the most
amplified β for the restricted and unrestricted forces, respectively.

with the global approach would be much more computationally costly due to the number of points
necessary to resolve the eddy viscosity in the wall-normal direction and higher Reynolds numbers
used. The dominant eigenvalues are shown in Fig. 13 as a function of the spanwise wavelength,
both in the outer and inner scales, λz = 2π/β and λ+

z = (2π/β )(Re/U +
e ), respectively, and the

eigenvalues have also been premultiplied either by β or β+, as usual in wall-bounded turbulence
[66]. We also show the behavior of the premultipled eigenvalues when considering the modified
Rotta-Clauser parameter, �θ = θU∞/uτ , as the characteristic length scale, as in Cossu et al. [47].
For completeness, the behavior of the suboptimal modes is included in Appendix B.

For the nonpremultiplied case, the spectrum presents a single peak, corresponding to the outer
peak. For the premultiplied case, a second (inner) peak appears and is less sensitive to Reynolds
number variations, as previously shown in Ref. [1]. For all the Reynolds numbers evaluated, when
scaled in viscous units, the inner peak is observed to occur at λ+

z ≈ 80, in accordance with previous
evaluations for this flow [47]. The double peak structure is similar to that observed in other
works [48,67,68], and characteristic of high-Reynolds turbulent flows. The outer peak presents
increasing eigenvalues with the Reynolds number of the flow and it also moves toward larger
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FIG. 13. Dominant eigenvalues computed for a turbulent boundary layer with eddy viscosity for different
Reynolds numbers as a function of the spanwise wavelength, for ω = 0. The eigenvalues have been pre-
multiplied by β/β+ in panels (c) and (d), respectively. In panel (e), the modified Rotta-Clauser parameter
is considered as the characteristic length scale and the eigenvalues are premultiplied by β�θ .
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FIG. 14. Outer [(a), (b)] and inner [(c), (d)] peak streamwise velocity fluctuations for the Reynolds numbers
evaluated. In panels (a) and (c), the wall-normal coordinate is nondimensionalized with the displacement
thickness on the end of the computational domain and in panels (b) and (d), the viscous length scale is
considered. The horizontal axis in the plots has been adjusted for each case in order to facilitate the evaluation
of the results.

(higher λz) structures. As in Ref. [47], it is observed that the modified Rotta-Clauser length given
by �θ = θU∞/uτ may be used as an approximate characteristic length scale for the flow, where
the maximum wavelength, when scaled by this parameter, may be obtained from λzmax/�θ ≈ 0.4,
and equivalently, when written in terms of the boundary layer thickness, the outer peak occurs at
βδ99 ≈ 1, in accordance with previous studies of turbulent boundary layer flows [69].

Figure 14 presents the streamwise velocity fluctuations at the outer and inner peaks for all
the Reynolds numbers evaluated. We observe that the position of the maximum coalesces when
the outer (viscous) length scales are used for the outer (inner) peak fluctuations, where the
displacement thickness on the end of the domain may be used as the characteristic length scale
for the outer peak fluctuations. Although not shown, the maxima also coalesce for the outer
peak fluctuations when the modified Rotta-Clauser parameter is taken as the characteristic length
scale.

Similarly to the analysis in Sec. V A, we consider a fixed streamwise domain and evaluate
the effect of the Reynolds number on the amplification of the dominant gain for three Reynolds
numbers, Re = 20 000, 24 000, and 29 500. The dominant gain as a function of β is shown in
Fig. 15, where it has been normalized by the fourth power of a modified Reynolds number, defined
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FIG. 15. Dominant gain, corresponding to the outer peak, scaled with Re4
∗ for three Reynolds numbers with

the same streamwise domain as a function of β�θ .

as per Ref. [47], as Re∗ = U∞�θ/νTmax , where νTmax corresponds to the maximum value of the total
viscosity. Similarly to the laminar case, the gains scale with the fourth power of a modified Reynolds
number. Although there is no clear choice of scaling parameters for a spatially developing turbulent
boundary layer, the use of the maximum turbulent viscosity and the Rotta-Clauser parameter causes
the gains to coalesce, indicating that the outer peak is also Reynolds independent. The wave number
of the peak is also observed to coalesce, occurring at β�θ ≈ 10 for all the evaluated cases, when
the streamwise domain is fixed and the data are not premultiplied.

Figure 16 presents the behavior of the optimal velocity fluctuations at the inner and outer peaks
for the case of Re = 14 000 (Reθ = 8888); similar results are observed for the other Reynolds
numbers evaluated. In both cases, the optimal response consists of spanwise vortices (v and w) and

FIG. 16. Velocity fluctuations for the optimal response at the inner (a), in viscous units, and outer (b),
in outer units, peaks for a turbulent boundary layer of Re = 14 000 (Reθ = 8888). The color depicts the
streamwise velocity and the arrows represent the vector field produced by the spanwise and wall-normal
velocity components. In subplot (b), the dashed line indicates the boundary layer thickness.
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streaks (u). The structures at the inner peak are centered at y+ ≈ 10, in accordance with other works
[47,48]. The streamwise velocity fluctuations of the outer peak are centered inside the boundary
layer whereas the streamwise vortices are at higher wall-normal positions with their center close to
the boundary layer edge, as noted in Ref. [47].

VII. CONCLUSIONS

The resolvent formulation has become an important tool for applications in fluid mechanics,
both for laminar and turbulent flows. Its input-output formulation, derived in the frequency domain,
allows a simplified description of fluid problems, where the nonlinearities of the Navier-Stokes
equations are replaced by a forcing to an otherwise linear operator, an approach which has led to
several physical insights within the fluid mechanics community. The application of the resolvent
approach for 1D (parallel) base flows is straightforward; nevertheless, the use for 2D or 3D
problems is limited by computational constraints due to the resulting large matrices which need
to be manipulated.

In this work, we developed a matrix-free approach for the optimization of the forcing, which
is based on direct-adjoint iterations, derived from an optimization using the boundary-layer equa-
tions via the Lagrange multipliers method, which results in a parabolic resolvent calculation. The
method is further combined with the Krylov-Arnoldi decomposition to enable the computation
of suboptimal modes in a fast, computationally efficient manner. A comparison of the current
approach against the more usual global resolvent method, using a LU decomposition for sparse
matrices, demonstrates that more than one order of magnitude of reduction may be obtained in
the computational cost and more than three orders of magnitude of reduction may be obtained for
the memory requirements of the calculation, for the same accuracy of the results, thus making the
method a promising approach for application in both laminar and turbulent high-Reynolds flows.

The use of the parabolic resolvent is exemplified for the Falkner-Skan boundary layer where we
extend the results found in the literature for the optimal perturbation for the case of the optimal
and suboptimal forcings for flows with pressure gradient. Trends for the resulting gain and optimal
β are derived where higher Reynolds and adverse pressure gradients are associated to larger gains
and smaller β values which, in turn, require larger wall-normal domains for adequate computations.
We here extend the findings of Ref. [28] for boundary layers with pressure gradient via an optimal
forcing calculation, where the optimal spanwise wave number is also observed to be proportional
to 1/Re. We further note that the gains scale with Re4 when the same streamwise domain is
considered. It should be noted that the parametric studies involving β, ω, Re, and pressure gradient
performed here would be much more costly computationally using the global resolvent approach,
which could be prohibitive, depending on the application. We further highlight the importance of
the work for free-stream turbulence receptivity. First we demonstrate that a forcing restricted to the
free-stream region is able to generate streaky structures which would trigger transition downstream;
the parametric study performed for this flow indicates the most amplified β is also proportional to
1/Re but associated to smaller β and larger structures compared to the unrestricted case. Second we
observe that the v and w fluctuations resulting from the optimal forcing grow along the streamvise
direction, as they are continuously driven by the forcing components. Both of these features are
believed to be related to a scenario involving free-stream turbulence transition and had not been yet
reported.

Furthermore, the computations indicate that streaky structures, associated to ω = 0 correspond
to both optimal and suboptimal fluctuations where the suboptimals saturate at different streamwise
positions. This trend, which had not yet been observed for the suboptimal modes, is thought to be
related to the sensitivity of the optimal perturbation with respect to the position where it is generated.
These results help shed a light in other studies, such as Ref. [31], where the difficulty in obtaining
active flow control of streaky structures is associated to the inability of actuators in reproducing the
optimal structure in the flow.
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As outlined in the introduction, the resolvent method has become a tool of frequent use for
the study of turbulent flows which could benefit from the current method, given its computational
efficiency, which allows computations at very high Reynolds numbers, for flows with a streamwise
variation. We present an example of application for a turbulent boundary layer, using the base
flow described in Ref. [60], with the addition of a wall-normal direction-dependent eddy viscosity.
Application of the parabolic resolvent for this flow leads to the appearance of two peaks in the
premultiplied spectrum associated to inner and outer peak fluctuations. We are able to recover the
scaling of the fluctuations in terms of viscous units and the Rotta-Clauser modified parameter or the
displacement thickness as the relevant length scales for inner and outer fluctuations, respectively,
which leads the resulting fluctuations to coalesce in the wall-normal direction. We further note that
the outer peak gains scale similarly to the laminar boundary layer, with a modified Reynolds number
to the fourth power, indicating that it is Reynolds independent. Finally, we note that streaks and
streamwise vortices are the most amplified structures in this flow where, for outer layer structures,
the vortices are centered close to the boundary layer edge with a significant support above it, akin
to observations made for laminar boundary layers.

Finally, the method outlined in the current work is restricted to small values of ω. Analysis of
cases with high values of ω would require the adaptation of the parabolized stability equations.
Such a study, which is out of the scope of the current work, could be of relevance for aeroacoustics
problems and the nonlinear interaction between oblique waves, for example, as both of these cases
are associated to higher values of ω.
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APPENDIX A: TURBULENT BOUNDARY LAYER PROFILE

For the sake of completeness, the explicit expressions used for the turbulent boundary layer
profile proposed in Ref. [60] are reported here:

U +
w (μ) =

[
1

κ
E1(μ) + w0

]
1

2

[
1 − tanh

(
w−1

μ
+ w2μ

2 + w8μ
8

)]
(A1)

where w0 = 0.6332, w−1 = −0.096, w2 = 28.5, w8 = 33 000, and

E1(μ) = −γ − ln(μ) + 0.99999193μ − 0.24991055μ2 + 0.05519968μ3 − 0.00976004μ4

+ 0.00107857μ5, (A2)

with γ = 0.57721566, corresponding to the Euler constant. The other velocity components are then
given as

U +
log(y+) = 1

κ
ln(y+) + B, (A3)

U +
e (Re) = 1

κ
ln(Re) + C, (A4)

where κ = 0.384, B = 4.17, and C = 3.3;

U +
i (y+) = 0.68285472 ln(y+2 + 4.7673096y+ + 9545.9963)
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FIG. 17. Eigenvalues computed for a turbulent boundary layer of Re = 14 000 (Reθ = 8888), for β = 0.5
and ω = 0.

+ 1.2408249 arctan(0.01028083y+ + 0.024404056)

+ 1.2384572 ln(y+ + 95.232690) − 11.930683

− 0.50435126 ln(y+2 − 7.8796955y+ + 78.389178)

+ 4.7413546 arctan(0.12612158y+ − 0.49689982)

− 2.7768771 ln(y+2 + 16.209175y+ + 933.16587)

+ 0.37625729 arctan(0.033952353y+ + 0.27516982)

+ 6.5624567 ln(y+ + 13.670520 + 6.1128254), (A5)

where, as in the main document, the + superscript refers to quantities which are nondimensionalized
in inner variables, i.e., friction velocity and viscous length scale.

The x-dependent Reynolds number may be obtained as

Rex = Reθ

(
6.7817ln2(Reθ ) + 3.6241ln(Reθ ) + 44.2971 + 50.5521

ln(Reθ )
+ 27.9533

ln2(Reθ )
− 55.6211

ln3(Reθ )

− 85.5817

ln4(Reθ )

)
. (A6)

From Rex, the streamwise extent nondimensionalized by the momentum thickness is obtained
from

x

θ
=

(
κ2

ln2(Rex )
− κ2{4ln(κ ) − 2 + 2κC − 4ln[ln(Rex )]}

ln3(Rex )

)−1

. (A7)

The momentum thickness can be readily computed at each streamwise station and used to fix the
nondimensionalization to the displacement thickness in the first point of the considered domain.

APPENDIX B: SUBOPTIMAL MODES FOR THE TURBULENT BOUNDARY LAYER PROFILE

For completeness, the optimal and suboptimal modes are presented here for the turbulent bound-
ary layer case, computed via the parabolic resolvent approach. As in Sec. VI, the Reynolds number
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FIG. 18. Behaviour of the optimal [in panels (a)–(c)] and first suboptimal [in panels (d)–(f)] mode in the
x-y plane for a turbulent boundary layer of Re = 14 000 (Reθ = 8888), for (ω, β ) = (0, 0.5) and the three
velocity components.

on the beginning of the computational domain is Re = 10 000 (Reθ = 7385) and the boundary layer
extends up to Re = 14 000 (Reθ = 8888); the spanwise wave number β = 0.5 is considered as a
sample case. Similar trends are observed for other cases considered.

FIG. 19. Behavior of the optimal [in panels (a)–(c)] and first suboptimal [in panels (d)–(f)] mode in the
wall-normal direction for a turbulent boundary layer of Re = 14 000 (Reθ = 8888), for (ω, β ) = (0, 0.5) and
the three velocity components.
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Figure 17 presents the 10 first eigenvalues, confirming the strong dominance of the first mode.
The optimal and first suboptimal are shown in Fig. 18, in the x-y plane, and the corresponding
behavior along the wall-normal direction is given in Fig. 19.
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