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The present study numerically investigates the effect of the Prandtl number (0.1 �
Pr � 100) on the flow structures and heat transport mechanism in a two-dimensional
rectangular rough cell of aspect ratio 2, for more than 2 decades of the Rayleigh num-
ber (107 � Ra � 5 × 109). Large-scale diffuse structures transform into finer ones with
increase in either Ra or Pr. The height of roughness elements relative to the thermal
boundary layer (TBL) thickness establishes the level of perturbations introduced into the
system. A stronger thermal forcing or larger Pr facilitates a thinner TBL, which triggers a
quicker response from the elements in the emission of plumes. In comparison to the smooth
case, heat transport is enhanced significantly with the introduction of roughness. The near
invariance of the Nusselt number Nu with Pr in smooth cells is overcome in the rough cell,
where a monotonically increasing heat flux is obtained. A greater presence of plumes in
the domain is identified by an augmented volume fraction and thermal dissipation from
plumes. The flow intensity measured in terms of the global Reynolds number Re shows
significant improvement for 108 � Ra � 5 × 109 and 5 � Pr � 100 in comparison to the
smooth case.

DOI: 10.1103/PhysRevFluids.7.104609

I. INTRODUCTION

Thermal convection is ubiquitous in nature and finds its application in various industrial and
engineering applications. Rayleigh-Bénard convection (RBC), the bottom-heated and top-cooled
configuration, is a paradigmatic model [1–3] widely used to study thermal convection, where fluid
sets in motion when the temperature difference �T between the horizontal plates is sufficiently
high, enabling buoyant force to overcome viscous and thermal diffusion. With �T being signifi-
cantly high, there is an emergence of fascinating flow structures, which play a tremendous role in
controlling the vertical heat transfer rate and the associated mechanism in the convection cell.

The dynamics of RBC is mainly dictated by two nondimensional parameters, the Rayleigh
number (Ra = βg�T H3/να), and the Prandtl number (Pr = ν/α), where β is the isobaric thermal
expansion coefficient, g is the acceleration due to gravity, H is the height of the convection cell,
ν is the kinematic viscosity, and α is the thermal diffusivity of the fluid. While Ra specifies the
magnitude of the thermal forcing, Pr denotes the strength of the momentum diffusivity relative to
the thermal diffusivity. A fundamental issue in thermal convection is to determine how the global
heat transfer efficiency, given in terms of a nondimensional parameter, the Nusselt number Nu,
specifying the relative contribution of convection over conduction, behaves in response to the input
control parameters, Ra and Pr.

In addition to Ra, Pr has a strong effect on the prevalent dominating flow structures and the heat
transfer mechanism [4–6]. Verzicco and Camussi [7] demarcated two types of flow regimes in their
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study inside a cylindrical cell covering 0.022 � Pr � 15 for Ra � 2 × 107. The first regime was
observed for Pr � 0.35, where large-scale circulation (LSC) dominates and is the major benefactor
in vertical heat transfer. Owing to the remarkable contributions, LSC is considered as the “engine”
for low-Pr convection. Also, in this case, Nu was found to increase with Pr. The second regime
was observed for Pr > 0.35, where thermal plumes emerge as the major contributor in heat transfer
and the role of large-scale circulation is largely diminished. Here, Nu becomes independent of Pr
with the scaling exponent being 2/7. In general, for low-Pr fluids, a thicker thermal boundary layer
(TBL) is formed, due to which there is more of a tendency for diffusive heat transfer and hence fewer
and weak plume structures are formed. However, with an increase in Pr, the thermal boundary layer
becomes thinner, favoring the formation of a greater number of stronger and finer plumes.

Malevsky [8] also highlighted the influence of Pr by observing the probability density function
(PDF) of θ fluctuation along with its spectra. For low Pr, the increasing dominance of large-scale
structures with decreasing Pr leads to the Gaussian-like skirt of the PDFs, while at high Pr, the
emergence of small-scale structures in the form of isolated fine plumes is responsible for the
exponential-like shape. The above observation is in line with those of Yakhot [9] and Solomon and
Gollub [10,11], who credited the predominance of large-scale structures in giving Gaussian shape
to the PDFs while small-scale structures enforce the exponential shape. The spectra of temperature
fluctuations measured at different horizontal planes also revealed the Pr dependence, and they were
found to be steeper with decreasing Pr. Another interesting feature discovered by Malevsky [8] is
the increasing tendency for inverse kinetic energy transfer with the amplification of Pr. The same
was manifested from the steeper kinetic energy spectra at higher Pr with the slope of the inertial
subrange being close to −11/5 (Bolgiano and Obukhov (BO59) scaling [12,13]). In the literature,
BO59 scaling has been shown to be closely connected to the inverse energy transfer [14,15].

Huang and Zhou [16] in their two-dimensional (2D) study reported an anomalous Nu(Pr)
relation in comparison to a 3D cylindrical case for a moderate Ra � 109 and Pr ≈ 2–3 range,
where Nu settles for a minimum value rather than attaining maxima as in the 3D case. The reason
for the anomaly was attributed to the competition between the corner rolls and LSC creating
countergradient heat transport, which is a striking feature of 2D convection as the fluid lacks the
third direction to escape. Furthermore, heat transfer dependency on Pr was found to diminish with
increasing Pr. At higher values of Ra, Ra � 3 × 109, Pr dependency was qualitatively similar to that
observed for the 3D case. Yang et al. [17] also obtained a lack of Pr dependence in the heat transfer
rate for their experimental investigation inside a cylindrical cell for 2.63 × 108 � Ra � 3.89 × 1010

and 3.58 � Pr � 9.40. However, the Reynolds number Re showed significant dependence on Pr
(Re = Ra0.47Pr−0.72) such that its value dropped with an increase in Pr. They also observed that the
local temperature fluctuations weaken with increasing Pr.

van der Poel et al. [18] also highlighted the similar behavior of Nu(Pr) in 2D and 3D cases for
a large Pr, where Nu data for both the cases converged. The largest difference in Nu is seen at
intermediate Pr, which is associated with the difference in LSC dynamics in 2D and 3D cases. In
the 2D case, there is an emergence of a stronger LSC with corner rolls, whereas in the 3D case,
LSC is less pronounced with smaller rolls. They also observed the Pr dependence of the global
Re, where the flow strength was observed to be monotonically decreasing with growing Pr such
that it is always higher for 2D than 3D. However, for a higher Pr, the Re for both 2D and 3D
converged, which again highlights similar behavior in the two modes. Pandey et al. [19] reported
the similarities between 2D and 3D for large Pr convection. On observing the first ten most dominant
Fourier modes, close resemblances between 2D and 3D convection were revealed. Similar scaling
for kinetic [Eu(k) ∼ k−13/3] and temperature spectra (∼k−2) further highlighted that the behavior in
the two cases is alike. Li et al. [20] experimentally investigated the effect of Pr on heat transport
and flow structures in a quasi-2D rectangular convection cell for 6 × 108 � Ra � 3 × 1010 and
11.7 � Pr � 650.7. It was observed that a well-defined LSC exists for Pr up to 145.7. In this range,
the increase in Pr is accompanied by a lesser number of thermal plumes traversing through the
central region of the cell. For the two extremes, Pr = 345.2 and Pr = 650.7, LSC disappears, and
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in place of that, slender thermal plumes that move randomly in the cell emerge. The breakdown of
LSC also resulted in a regime transition in the Re(Ra, Pr) scaling law.

With the exceptional potential illustrated by various roughness studies [21–25] in RBC to achieve
the asymptotic heat transfer scaling [26,27], there has been an increased interest in capitalizing on
this enhanced understanding to achieve incessant 1/2 scaling and to emulate and understand real-life
flows occurring in nature. To do so, studies with multiscale roughness [24,25,28], as opposed to
simplified monoscale roughness, are gaining popularity owing to their ability to sustain the local
1/2 scaling for a wider Ra range and also elicit a response similar to what may be observed in
real-life flows.

The efficacy of a roughened surface is dependent on its geometric parameters [22,24,29], the
height and the width of a roughness element. A height of the roughness elements that is comparable
to the TBL is known to yield enhancement in heat transfer. However, when the TBL is too thick such
that roughness elements are submerged beneath it, suppression of the heat transfer rate is observed.
Similarly, a width of the roughness elements that is too narrow or wide reveals flow characteristics
similar to those observed in a smooth surface. A major deduction is that to obtain a maximized heat
transfer rate, optimization or tuning of the geometric parameters is required, which explains the role
played by the selection of the roughness geometry and its parameters. The present work employs an
irregular multiscale triangular roughness with an emphasis on facilitating a natural selection of the
roughness elements so that the roughness mimics the roughnesses observed in real life, even though
it is 2D.

Zhang et al. [29] simulated 2D flow with uniform triangular roughness for 107 � Ra � 1011 with
constant Pr = 1. It was reported that it takes a critical height hc of the roughness elements to realize
enhancement in heat transport. Below hc, rough surfaces inhibit heat transport. However, hc was
observed to decrease with Ra, which explains the prevalence of augmentation of the heat transfer
rate at higher Ra. Toppaladoddi et al. [22], using optimized roughness parameters for sinusoidal
roughness in a 2D cell of double aspect ratio, obtained a heat transfer scaling exponent of 0.483 for
4 × 106 � Ra � 3 × 109. They interpreted it as the attainment of the ultimate scaling. However,
Zhu et al. [23] refuted the above claim by exploring a wider 108 � Ra � 1012 range. They reported
that the roughness-facilitated 1/2 scaling is temporary, and the classical 1/3 scaling returns at a
higher Ra range. To overcome the saturation of the much-sought-after 1/2 scaling, Zhu et al. [24]
introduced three scales of roughness. The above provision allowed them to sustain 1/2 scaling for
a wider Ra range, 108 � Ra � 1011. It was hypothesized that different roughness length scales
introduce thermal boundary layer perturbations at different Ra. Large-scale elements are activated
at a lower Ra, while smaller elements require a larger thermal forcing to assist enhancement in heat
transport. To investigate the influence of the spatial arrangement of roughness elements on the heat
transport mechanism and flow structures, Dong et al. [30] performed 2D simulations in a square
cavity with rough horizontal walls. They observed that the Nu scaling exponent varies depending
on how the roughness elements are populated (dense or sparse). However, the Reynolds number was
observed to be insensitive to the spatial arrangement in the employed roughness models.

Xie and Xia [31] experimentally explored the influence of Pr on Nu(Ra) scaling in a cylindrical
rough cell with periodically distributed pyramid-shaped elements for 7.5 × 107 � Ra � 1.31 ×
1011 and 3.57 � Pr � 23.34. They classified the flow into three regimes based on Nu(Ra) scaling.
Regime I experienced no influence of the roughness on Nu(Ra), whereas regimes II and III revealed
enhanced heat transport scaling. The transition from regime I to regime II happens with the TBL
becoming thinner than the roughness height, whereas the transition from regime II to regime III
is accompanied by the viscous boundary layer (BL) becoming thinner than the roughness height.
Furthermore, they reported that the larger the Pr is, the greater enhancement in heat transfer is
possible when a larger aspect ratio of the roughness elements is considered. The reason for the same
was anticipated to be linked with the stronger clustering of thermal plumes.

Recently, Yang et al. [32], while working with a 2D square rough cell, observed the effect of Pr on
the critical height hc of the roughness elements above which an enhancement in heat transfer with
respect to a smooth cell can be obtained. They explored 107 � Ra � 109 and 0.01 � Pr � 100,
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FIG. 1. Schematic of the 2D rectangular convection cell featuring irregular triangular roughness on the hor-
izontal plates. A blown-up view of a small portion of the bottom plate depicts peak, throat, and valley regions
associated with the roughness elements. Here, h and λ are the height (amplitude) and width (wavelength) of
the roughness elements, respectively.

where hc(Pr) revealed three distinct regimes. The regime at low Pr dominated by LSC shows a
decrement of hc with increasing Pr. The regime at moderate Pr, characterized by strong competition
between the corner rolls and the LSC with the advent of thermal plumes, experiences an increment
of hc with the magnified Pr. Lastly, the regime at high Pr features fine plumes with the weakening
of the large-scale flows, where hc follows a decreasing trend with Pr. To the best of our knowledge,
the effect of Pr in a multiscale roughness setup has not been explored, which calls for an in-depth
study exploring how flow structures evolve and are altered at different Ra and Pr in the rough cell.

The remainder of this paper is organized in the following manner. Section II provides details
about the problem setup and the numerical method used, while Sec. III includes a discussion of the
Nusselt number scaling law, the effect of Pr on the heat transport mechanism, the plume statistics,
and the flow intensity. The results for both smooth and rough cells are discussed appropriately.
However, the major emphasis is laid on the roughened cell while elucidating the flow behavior for
varying Pr and Ra. Lastly, the findings of this paper are summarized in Sec. IV.

II. NUMERICAL DETAILS

Governing nondimensional transport equations for incompressible, buoyancy-driven flows in the
spirit of Boussinesq approximation are obtained as

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ ∂ (uiu j )

∂x j
= − ∂ p

∂xi
+

√
Pr

Ra

∂2ui

∂x j∂x j
+ θδib, (2)

∂θ

∂t
+ ∂ (u jθ )

∂x j
= 1√

Ra Pr

∂2θ

∂x j∂x j
, (3)

where ui = (u, v) is the velocity in the Cartesian direction xi = (x, y), θ = (T − TC )/(TH − TC )
is the nondimensional temperature where TH and TC are the temperatures of the bottom and top
plates, respectively, p is the pressure, b is the buoyancy direction, and δ is the Kronecker delta.
The above set of equations are nondimensionalized using reference scales for length, velocity,
temperature, and time as vertical height H , free-fall velocity

√
βg�T H , �T = TH − TC , and

(H/βg�T )1/2, respectively. All the simulations are carried out in a 2D rectangular cell of aspect
ratio 
 = L/H = 2 covering 107 � Ra � 5 × 109 for 0.1 � Pr � 100. Figure 1 shows a schematic
diagram of the convection cell with the applied boundary conditions and the detailed roughness
geometry implanted on the top and bottom plates. The horizontal plates consist of irregular rough
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surfaces with triangular elements. All the walls admit the no-slip velocity boundary condition. While
the lateral walls are kept adiabatic, the top and bottom horizontal plates are maintained at constant
temperatures.

The height h and width λ of the roughness elements, as shown in Fig. 1, are generated using
a standard random number generator with uniform distribution. Both h and λ are set to vary
independently such that they scale between 1 and 10% of the cell height. Though the base and
height of an element are arbitrarily chosen, the present roughness setup cannot accommodate all
possible combinations of λ and h owing to the finite axial length of the convection cell, which is an
essential feature of truly random roughness. Thus the present roughness setup can be interpreted as
irregular multiscale roughness which is random only to a limited extent. Note that the effective
height (Heff = Vfluid/L) of the convection cell, as described by Zhu et al. [24], is taken as the
characteristic length scale while describing Ra for the rough cases.

A nonstaggered finite-volume method in conjunction with the diffuse-interface immersed bound-
ary method (DIIBM) [33] is used to solve the governing conservation laws. While the nonlinear
convective terms are approximated using the second-order Adams-Bashforth scheme, the buoyancy,
pressure, and diffusive terms are treated using the second-order Crank-Nicolson scheme. A two-step
predictor-corrector technique is employed in the solver. In the first step, the provisional velocity field
is calculated using the known pressure field, and in the second step, it is corrected by solving the
Poisson equation, which enforces mass balance indirectly. All the resulting sparse linear systems are
solved using the biconjugate gradient stabilized method (BiCGSTAB) preconditioned by a highly
scalable block-diagonal version of the modified strongly implicit (MSI) procedure. To speed up the
computation, the standard message-passing interface (MPI) libraries are used for parallelization of
the solver. Further details of the numerical technique are given by Peter and De [34] and De et al.
[35]. Note that the present numerical setup has been used for a number of complex flows that involve
stationary [28,36,37] and moving boundaries [38,39].

A grid that is uniform in the horizontal direction and nonuniform in the vertical direction is
employed such that the regions close to rough surfaces are resolved sufficiently. For adequate
spatial resolution, the Kolmogorov length scale [η ≈ Pr1/2/(Ra Nu)1/4] is resolved. Also, grid
independence of the simulations, which is discussed later, is ensured for the accuracy of the results.
In Table I, details of the simulation parameters are listed for the rough cases. Note that we have
also performed adequately resolved simulations for the smooth case for the same input parameters
to enable a direct comparison with the rough cases. From Table I, it can be observed that for
Pr = 0.1 cases, the flow adequately resolves the Kolmogorov length scale such that for the most
demanding case, Ra = 5 × 109, �xmax/η and �ymax/η are 0.97 and 1, respectively. For Pr � 1
cases, the resolutions in the horizontal and vertical directions are kept at at least 0.85 times the
Kolmogorov length scale. Note that the reference Nusselt number for calculation of η is taken from
Chand et al. [28]. For temporal resolution, the time increment �t is chosen in such a way that it is
smaller than the Kolmogorov time scale [ητ = √

Pr/(Nu − 1)] and the maximum Courant number
is always less than 0.2. For the most demanding case (Ra = 5 × 109 and Pr = 0.1), the ratio �t/ητ

is as small as 8.78 × 10−6, and it never exceeds 0.01 for all simulations. The simulations are started
from the conduction state, and once a statistically stationary state is reached, sampling of the data
is carried out.

To check the effect of resolution on the solution, four progressively refined meshes (Mi, i = 1–4)
are tested for convergence of global Nu, and variance of temperature fluctuations, 〈σ 2

θ 〉V , at
Ra = 5 × 109 for Pr = 1 and 100. The global Nusselt number and variance are calculated as

〈Nu〉V,t = √
Ra Pr〈vθ〉V,t − 〈∂yθ〉V,t and 〈σ 2

θ 〉V = 〈〈θ (x, t )2〉t − 〈θ (x, t )〉2
t 〉V . The details of the

mesh refinement study are listed in Table II. It can be observed that for the Pr = 1 case, the
maximum variation in 〈Nu〉V,t and 〈σ 2

θ 〉V between any two successive grids does not exceed 1.4 and
7.6%, respectively. For Pr = 100, the maximum variation is 1.76 and 7.2% in 〈Nu〉V,t and 〈σ 2

θ 〉V ,
respectively. A slightly higher variance of higher-order moments is also observed by Toppaladoddi
et al. [25] while considering different flow realizations with fractal roughness. Note that mesh M3,
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TABLE I. Details of simulation parameters for different Ra cases. Starting from the left, Pr is the
Prandtl number, Nx and Ny are the grid resolution in the x and y directions, �xmax/η and �ymax/η are
the ratio of the maximum grid spacing in x and y directions, respectively, to the Kolmogorov length scale
[η ≈ Pr1/2/(Ra Nu)1/4], and 〈Nu〉V,t is the calculated global Nusselt number. Note that for Pr � 1, the Nu is
listed for the increasing order of Pr, i.e., for Pr = 1, 5, 10, 20, 50, 100, respectively.

Pr Nx × Ny �xmax/η �ymax/η 〈Nu〉V,t

Ra = 107

0.1 1321 × 1081 0.49 0.43 10.5
�1 1001 × 601 0.20 0.25 (10.9,13.75,15.52,

17.31,18.86,19.31)
Ra = 108

0.1 1561 × 1081 0.85 0.89 23.64
�1 1201 × 601 0.38 0.55 (27.40,31.57,38.32,

39.15,44.60,47.2)
Ra = 109

0.1 3241 × 2281 0.84 0.86 55.02
�1 2041 × 1081 0.52 0.70 (77.34,81.21,90.28,

101.135,114.05,120.65)
Ra = 5 × 109

0.1 4681 × 3241 0.97 1 105.57
�1 2521 × 1561 0.73 0.85 (147.63,165.28,170.161,

177.36,190.21,204.05)

the chosen one for the simulations, is a perfect blend of adequate spatial resolution and accuracy
of the solution. The mesh refinement study clearly establishes the employment of requisite spatial
resolution of the flow field along with the robustness of the current numerical setup. Further details
of the numerical setup, which include comparison tests, different flow realizations, and the near-wall
resolution, can be found in the Appendix.

III. RESULTS AND DISCUSSION

In the following, we discuss the quantification of the vertical heat transfer by Nu and its
dependence on Ra and Pr in Sec. III A, followed by identification of the prevalent heat transfer
mechanism for different sets of input parameters, Ra and Pr, in Sec. III B. The increased presence of
plumes in the rough cells is recorded from the augmented volume fraction of plumes in Sec. III C,
which is followed by quantification of flow strength and its dependence on input parameters in
Sec. III D. Note that to present our argument, a number of ensemble averages of a random variable

TABLE II. Details of the grid independence study performed at Ra = 5 × 109 for Pr = 1 and 100. Here,
M3 is the adopted mesh, Nx × Ny is the grid resolution, 〈Nu〉V,t is the calculated mean Nusselt number, and
〈σ 2

θ 〉V is the global variance of temperature fluctuations.

Pr = 1 Pr = 100

Mesh Mi Nx × Ny 〈Nu〉V,t 〈σ 2
θ 〉V (×10−3) 〈Nu〉V,t 〈σ 2

θ 〉V (×10−4)

M1 2101 × 1381 147.12 2.36 200.64 7.036
M2 2301 × 1453 149.18 2.318 200.52 6.832
M3 2521 × 1561 147.63 2.494 204.05 7.324
M4 2771 × 1681 148.64 2.389 203.98 7.192
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+ + + +

10-1 100 101 102

50
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150
200

+ van der Poel et al. (2013)
Li et al. (2020)

107     108     109     5x109

Rough
Smooth

FIG. 2. The variation of Nu as a function of Pr is shown at different Ra for both the smooth and rough
cells. Note that the power-law fit for Pr � 1 is indicated by solid and dashed lines for rough and smooth cells,
respectively.

φ(x, y, t ) are used suitably such that 〈φ〉t represents the time average, 〈φ〉V,t implies the volume and
time average, and 〈φ〉A,t is the horizontal line and time average.

A. Nusselt number dependence on Ra and Pr

The scaling relation of the global heat transfer rate with imposed thermal forcing is at the heart
of thermal convection. It is calculated as 〈Nu〉V,t = √

Ra Pr〈vθ〉V,t − 〈∂yθ〉V,t . In Fig. 2, the Nusselt
number dependence on Pr is explored for both the rough and smooth cells at different Ra. We
observe that the heat transfer rate is lowest for Pr = 0.1. A distinct heat transport mechanism
prevalent in the rough cell is manifested in the Nu(Pr) relation. For the smooth cell, Nu is invariant
for Pr � 1. This observation is in line with observations reported in various previous studies
[7,16,18]. Also, for comparison, we have plotted the data of van der Poel et al. [18] and Li et al. [20].
It can be observed that the present data agree well with the reference data of van der Poel et al. [18]
for a smooth cell of unit aspect ratio at Ra = 108 and 0.1 � Pr � 20. Also, the data of Li et al. [20]
(quasi-2D study) exhibit weak Pr dependence (Ra = 109), but the value of Nu is slightly higher.
The slightly higher value can be attributed to the quasi-2D nature of the problem as Nu is observed
to have a higher value in 3D than in 2D [7,16,18]. In contrast to the trend followed by Nu(Pr) for the
smooth cell, the heat transfer rate in the rough cell does not saturate for high-Pr flows. Here, higher
Pr flows are seen to offer an augmented heat transfer rate. It is quite an interesting result, where the
roughness configuration is seen to alter the role of Pr in the heat transfer process. Also, it is clearly
evident that Nu in the rough cell is higher in comparison to the smooth cell except for the low-Pr
cases at the lowest Ra = 107.

To establish a Nu(Pr) = APrm relation for Pr � 1, the least-squares fitting is applied to the data.
Note that the data for low Pr (<1) are not included because of the lack of enough data points to
reveal the flow behavior, which is different from the flow behavior observed for moderate to large
Pr flows. The details of the fitting parameters are listed in Table III for both the rough and smooth
cells. It can be observed that the prefactor A is amplified with increasing Ra, whereas the scaling
exponent m drops for both rough and smooth cells. Note that the scaling exponent m is a measure
of how rapidly Nu varies with Pr. The drop in m with increasing Ra is an indicator of the declining
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TABLE III. Prefactor and exponent of the least-squares fit Nu(Pr) = APrm at different Ra for Pr � 1 for
both the rough and smooth cells.

Rough Smooth

Ra A m A m

107 11.215 0.129 12.856 0.029
108 27.267 0.123 25.775 0.017
109 73.247 0.106 50.919 0.008
5 × 109 146.91 0.067 79.896 0.009

effect of Pr on Nu for higher Ra. However, m being significantly higher for the rough case indicates
that the state of Nu becoming invariant with respect to Pr is largely deferred in comparison to the
smooth cell.

Next, the relation of Nu as a function of Ra is observed at different Pr. In Figs. 3(a) and 3(b), the
Nusselt number variation as a function of Ra is presented for rough and smooth cells, respectively.
Furthermore, the compensated plots of Nu Ra−1/3 for the rough cell and Nu Ra−2/7 for the smooth
cell are shown as a function of Ra in Figs. 3(c) and 3(d), respectively. Note that the solid lines
in Figs. 3(a) and 3(b) represent the power-law fitting to Pr = 0.1, 1, and 100. The lines of best
power fit are not shown for other Pr cases to avoid clutter. From Figs. 3(a) and 3(b), again, distinct
Nu behavior in rough and smooth cells is evident. For the rough case, Nu exhibits Pr dependence.

+ + + +

107 108 109 10100.1

0.12

0.14

0.16 (d) Smooth

         0.1     1     5    10     20     50     100 
Symbol

+

+

+

+

107 108 109 1010

60

120

180
240

(a) Rough

+

+

+

+

107 108 109 1010

40

80
(b) Smooth

+
+

+
+

107 108 109 1010

0.05

0.1

0.15 (c) Rough

FIG. 3. In (a) and (b), Nu variation with Ra is shown at different Pr for the rough and smooth cells,
respectively. Note that the solid lines representing the power-law fit are shown only for Pr = 0.1, 1, and 100
to avoid clutter. The compensated plots of Nu Ra−1/3 and Nu Ra−2/7 as a function of Ra are shown in (c) and
(d) for the rough and smooth cells, respectively. In (a) and (c), Nu data reported by Xie and Xia [31] for
pyramidal roughness elements with h/λ = 1 and h/λ = 1.9 are also shown for comparison at Pr = 4.3.
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TABLE IV. Prefactor and exponent of the least-squares fit Nu(Ra) = BRan at different Pr for both the
rough and smooth cells.

Rough Smooth

Pr B n B n

0.1 0.026 0.37 0.171 0.268
1 0.012 0.423 0.097 0.301
5 0.021 0.4 0.144 0.284
10 0.032 0.384 0.157 0.279
20 0.038 0.379 0.145 0.284
50 0.044 0.377 0.145 0.284
100 0.040 0.383 0.152 0.282

For a higher Pr at a given Ra, a greater value of Nu is evident, whereas for the smooth case, Nu
is nearly the same for Pr � 1. To gain insights into the growth rate of Nu(Ra), the details of the
scaling exponent and prefactor for Nu(Ra) = BRan are listed in Table IV . It can be observed that
the scaling exponent n is least for Pr = 0.1, while for Pr = 1, it is highest (valid for both smooth
and rough cells). Furthermore, it can be observed that the scaling exponent n is always higher for
the rough cases at any Pr. For smooth surfaces, n assumes a value close to 2/7. In the higher end of
Pr, the scaling exponent n is observed to be nearly constant and invariant with respect to Pr in both
cells. The compensated plots shown in Figs. 3(c) and 3(d) reveal how closely the scaling laws Ra1/3

and Ra2/7 are followed at different Pr for the rough and smooth cells, respectively. The flatter the
data points are at a particular Pr, the better is their agreement with the perceived scaling exponent.
From Fig. 3(d), it is evident that for the smooth cell, the scaling exponent of n = 2/7 is followed
closely. However, the data points for the rough cell at a fixed Pr follow an increasing trend with
the increasing Ra [see Fig. 3(b)], which reveals that n is higher than 1/3. The above observations
highlight that Pr assumes an active role in the presence of roughness in significantly enhancing
the heat transfer rate in comparison to the smooth case, where Nu is lower and nearly invariant
for moderate to large Pr. Furthermore, note that in Figs. 3(a) and 3(c), experimental Nu(Ra) data
reported by Xie and Xia [31] for pyramidal-shaped roughness elements are shown for cases with
aspect ratios h/λ = 1 and 1.9 of the roughness elements at Pr = 4.3. Similar to our observation,
they have also reported an augmented heat transfer scaling exponent in the presence of roughness.
A higher value of the Nu scaling exponent is observed for a roughness configuration with a greater
h/λ. van der Poel et al. [18], in their study involving a comparison of 2D and 3D results, reported
a higher heat flux in 3D for the same input parameters, Ra and Pr. The lower Nu in the present 2D
simulations compared with that reported by Xie and Xia [31] agrees well with the observation of
van der Poel et al. [18].

Note that the scaling exponent obtained in this paper is greater than 1/3 but the ultimate 1/2
scaling is not realized. In contrast to the roughness studies by Zhu et al. [24] and Toppaladoddi
et al. [22], where a scaling exponent close to 1/2 is achieved, the roughness parameters (h and λ)
are not optimized in this paper. Here, irregular roughness elements are incorporated such that there
is no bias for any particular combination of h and λ. This highlights a possible reason for Nu scaling
exponents deviating from 1/2.

B. Flow topology and heat transfer mechanism

Prevalent flow structures in RBC have a close connection with the primary heat transfer mech-
anism. In addition to the applied thermal forcing, which is represented by Ra, the Prandtl number
serves as an important input parameter that influences flow structures [4,5]. It is a widely accepted
notion that in a rough convection cell, flow dynamics and structures are altered in comparison
to a smooth convection cell [23,24,40,41], which enhances the heat transfer rate when thermal

104609-9



SHARMA, CHAND, AND DE

boundary layer thickness becomes comparable to the height of the rough surface. The efficacy of
employing rough surfaces has recently been concluded to be dependent on thermal forcing [23]. For
periodic rough surfaces, the enhanced heat transport scaling exponent ceases to exist at a higher Ra
range when flow perturbations due to rough surfaces diminish. Efforts to prolong the propitious
effect of rough surfaces in enhancing heat transfer led to the introduction of multiscale rough
surfaces [24], which provided augmented heat transport for an even larger Ra range. The success
of the multiscale surfaces at large thermal forcing is attributed to the thermal plumes triggered by
small-scale elements. Till now, the majority of roughness studies have explored the response of a
rough cell for varying Ra. However, there are only a few studies involving a rough cell that take into
account the role of Pr in connection to the flow structures and heat transfer mechanism.

In Figs. 4(a)–4(i), snapshots of the instantaneous temperature field are shown for the rough cell
for Ra = 108, 109, and 5 × 109 at Pr = 0.1, 10, and 100. The evolution of flow structures with
increasing Ra and Pr can be observed from the temperature fields. For low Pr = 0.1, a thick thermal
boundary layer (TBL) over the rough surface is evident at Ra = 108 [see Fig. 4(a)]. There are only
a few plumes, which are of larger size, emanating mainly from the taller roughness elements. There
is no significant contribution from small-scale elements as they are buried deep inside the thermal
boundary layer, incapable of promoting plume emission. As Ra increases, the fluid layer of very
high (low) temperature on the bottom (top) surface becomes thinner [see Figs. 4(d) and 4(g)]. This
leads to an increased number of roughness elements now protruding into the TBL, the effect of
which is evident in terms of a surge in plume nucleation sites. At Ra = 5 × 109, flow structures
appear to be extremely fine and are highly localized. It can be observed that nearly all the roughness
elements are involved in the plume nucleation and emission process.

It can be observed that for a given thermal forcing, an increase in Pr leads to the emergence of
finer flow structures with a thinner TBL [see Figs. 4(b), 4(e), and 4(h)]. For Pr = 100 [Figs. 4(c),
4(f), and 4(i)], there is strong clustering of fine mushroom-shaped plumes near the rough surfaces.
It is interesting to note that for a thermal forcing as low as Ra = 108 [Fig. 4(c)], plume emission
sites are significantly higher for Pr = 100 in comparison to lower-Pr cases [see Figs. 4(a)–4(c)].
The reason for the increased number of plume nucleation sites can be attributed to the activation of
the small-scale roughness elements. The thinner TBL, in the case of large Pr, allows early activation
of the small-scale elements. Hence stronger and increased flow perturbations are perceived in the
flow at higher Pr even for a lower Ra. Another interesting observation is that though flow structures
become finer with increasing Ra, they still manifest contrasting features for varied Pr. For instance,
at the highest Ra = 5 × 109 and Pr = 100, plumes are visibly finest and immensely localized in
comparison to other Pr cases.

To compare the flow structures with a smooth convection cell for the same input parameters, we
observe the snapshots of instantaneous temperature field data for the two extreme values of Pr (=0.1
and 100), as shown in Figs. 4(j)–4(o). The progression of large-scale flow structures into fine-scale
intense structures is evident here also when either thermal forcing or Pr is increased. However,
the intensity of the emitted plumes is relatively weaker than observed for the rough cells. Also,
there is trivial plume-bulk interaction in contrast to the rough cells, where the localized emission of
plumes, i.e., from the tips of the roughness elements, promotes better plume-bulk interaction. The
existence of a strong temperature gradient at the tip of the roughness elements is responsible for the
stimulation of intense plume emission. In line with the general expectation, it can be observed that
bright detached flow structures (plumes) visibly span a larger portion of the convection cell for the
roughened cells. The prominent presence of plumes in a rough cell, which are comparatively more
energetic than those observed in a smooth cell, is an indication of enhanced heat transfer.

An estimate of the intensity of thermal plumes can be obtained by observing the mean instan-
taneous vertical velocity of the plumes. The procedure for demarcation of the fluid volumes into
plume- or background-dominated regions is described in detail in Sec. III C. The mean vertical
velocity vplm is obtained by taking volume average of the absolute vertical velocity over the plume
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FIG. 4. (a)–(i) Snapshots of the instantaneous temperature field for the rough convection cell are shown
at Ra = 108 [(a)–(c)], Ra = 109 [(d)–(f)], and Ra = 5 × 109 [(g)–(i)] for Pr = 0.1, 10, and 100. (j)–(o) The
temperature field is shown for the smooth cell at Ra = 108 [(j) and (k)], Ra = 109 [(l) and (m)], and Ra =
5 × 109 [(n) and (o)] for the extreme values of Pr, Pr = 0.1 and Pr = 100.

regions as described below:

vplm = 1

V�

∫
�

|v|dv such that � : |v′θ ′|/
′ > δ. (4)

Note that � refers to the regions which satisfy the plume criterion, V� is the volume of the plume
regions, 
′ signifies the instantaneous global maximum of |v′θ ′|, and δ is the threshold parameter
whose value is chosen as 5% for identifying plumes. In Fig. 5, vplm is shown as a function of Pr
at Ra = 108 and 5 × 109 for both smooth and rough cases. It can be observed that, in general,
vplm is comparable for the rough and smooth cases at Ra = 108. At a lower Ra, viscous forces
remain largely stronger that hinder the emergence of the energetic plumes even from the rough
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FIG. 5. The variation of the mean vertical velocity of plumes vplm as a function of Pr is compared between
the rough and smooth cells for Ra = 108 and Ra = 5 × 109.

surfaces. For the flow at the lowest Pr = 0.1, there is clearly a significant reduction in vplm because
of the formation of a thicker TBL, which obstructs not only the motion of flow inside the roughness
cavities but also the formation of potent plumes. The true benefits of roughness are realized with
the increase in thermal forcing, where the protrusion of roughness elements over the TBL yields
stronger plumes and a greater number of plumes. The same is evident for 5 × 109, where vplm is
found to be significantly higher for the rough case. A higher vplm serves as an indicator of the
increased plume strength, which is realized with roughness at a higher thermal forcing.

C. Plume statistics

Thermal plumes are one of the most important flow structures that act as thermal carriers
in transporting heat in the bottom-heated configuration. The introduction of rough surfaces is
intimately linked to augmenting the emission of extra thermal plumes, which ultimately manifests
in the form of enhanced heat transfer compared with the smooth case. To detect plume-dominated
regions from the turbulent background, Emran and Schumacher [42] suggested that plumes are
associated with a strong correlation between vertical velocity (v′) and temperature (θ ′) fluctuations.
Temperature fluctuation is calculated as θ ′(x, t ) = θ (x, t ) − 〈θ (x)〉A,t , whereas vertical velocity
fluctuation is defined as v′(x, t ) = v(x, t ) as 〈v〉A,t = 0. The criteria for detection of plume and
background regions employed in this paper are modified as

Vpl = x ∈ V : |v′θ ′|/
′ > δ, Vbg = x ∈ V : |v′θ ′|/
′ � δ. (5)

Here, Vpl and Vbg represent the volume fractions of plume- and background-dominated regions,
respectively, 
′ is the instantaneous global maximum of |v′θ ′|, and δ is a free parameter controlling
the threshold scale. Note that to account for the previously ignored yet significant anomalous
motion of the plumes, i.e., the downward motion of hot plumes or upward motion of cold plumes,
the absolute value of |v′θ ′| is used as opposed to the signed correlation proposed by Emran and
Schumacher [42]. This provision is important as a 2D configuration lacks an extra direction for
the fluid to escape. This explains the need to incorporate the nonintuitive motion of plumes. If the
conventional plume detection method is used, then plumes exhibiting anomalous motion, in other
words, negative v′θ ′, go undetected and are misinterpreted as background regions.

In Fig. 6, the variation of volume fractions of plume (Vpl ) and background (Vbg) regions as a
function of Ra is shown for different Pr at thresholds δ = 5 and 10%. Note that the two different
thresholds both identify plumes reasonably well and are used to see their effect on the volume
fractions. It can be observed that for all Pr cases, irrespective of δ, Vpl drops with increasing Ra,
while Vbg climbs in order to compensate for the diminishing Vpl . The results are in agreement with

104609-12



INFLUENCE OF PRANDTL NUMBER IN TURBULENT …

107 108 109 1010

0.2

0.4

0.6

0.8

1
(a)

107 108 109 1010

0.2

0.4

0.6

0.8

1
(b)

FIG. 6. The variation of the volume fraction of plumes (Vpl ) and background (Vbg) as a function of Ra is
explored for different Pr at thresholds (a) δ = 5% and (b) δ = 10% for the rough cell.

the general consensus that the higher the thermal forcing is, the greater are the extent and role of the
turbulent background. Note that in general, the higher the Pr is, the smaller is the value of Vpl , which
is in line with the observation that plume structures emerge as finer structures as Pr is increased and
are likely to cover a relatively smaller fraction of the cell volume.

The increased plume emission in the rough case is expected to exhibit a higher Vpl than its
smooth counterpart. In Fig. 7, a direct comparison is made between Vpl of smooth and rough cells
for different Pr as a function of Ra at δ = 5 and 10%. It is clearly evident that the rough cases
have significantly higher Vpl for all Pr when Ra � 108. At Ra = 107 and Pr = 0.1 and 1, the heat
transfer rate remains comparable in the two types of cells. However, for Pr = 50 and 100, Nu is
significantly higher in the rough cases. At the lower Pr, owing to a thicker TBL, fluid is stuck inside
the cavities and is unable to effect perturbations in the flow, which explains the inability of a rough
cell to augment the heat transfer. However, at a higher Pr, a greater number of roughness elements
introduce perturbations in the system because of a thinner TBL, which ultimately yields a larger Nu.

Furthermore, the variation of thermal dissipation, εθ = (Ra Pr)−1/2|∇θ |2, contributed by the
plume (εpl ) and background (εbg) regions with Ra is explored in Fig. 8, for different Pr at δ = 5

107 108 109 1010

0.1

0.2

0.3
0.4(b)

107 108 109 1010

0.1

0.2

0.3

0.4
0.5(a)

Rough              
Smooth
Prandtl number      0.1      1       50    100

FIG. 7. The plume volume fraction Vpl as a function of Ra is compared between the rough and smooth cells
for different Pr at (a) δ = 5% and (b) δ = 10%.
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FIG. 8. The thermal dissipation contributions from plumes (εpl ) and background (εbg) are shown as a
function of Ra at different Pr. The top row shows the data based on the δ = 5% criterion, while for the bottom
row, δ is 10%. Note that (a) and (c) show data for εpl , while (b) and (d) represent data for εbg.

and 10%. The dissipation contributions are calculated as

εpl =
〈 ∫

Vpl

εθ (x, t )dV

〉
t

and εbg =
〈 ∫

Vbg

εθ (x, t )dV

〉
t

,

where εθ (x, t ) is the local nondimensional thermal dissipation rate. We observe that plume and
background regions tend to contribute less to εθ as Ra is increased. The same is evident from the
monotonic decrease in both εpl and εbg with increasing Ra for all Pr. Note that the decay of the net
thermal dissipation rate (εpl + εbg) is in accordance with the exact relation 〈εθ 〉V = 〈Nu〉V /

√
Ra Pr.

For a fixed thermal forcing, a lower-Pr flow exhibits higher εpl and εbg, while they drop significantly
as Pr increases. Another observation is that irrespective of δ or Pr, εbg is higher than εpl . It is a
general expectation that a higher Vbg should yield a higher εbg. Now, if we refer to Fig. 6, it can
be readily observed that Vbg exceeds Vpl almost for all cases irrespective of δ, which explains the
perceived dominance of εbg. Also, a direct comparison between smooth and rough cells is made for
εpl as a function of Ra and Pr at δ = 5 and 10%, as shown in Fig. 9. It can be observed that in line
with the higher Vpl in the rough cell, εpl is found to be substantially higher in the rough cell than in
the smooth cell at all Ra and Pr. Note that the decay rate of εpl in the rough cell is smaller than that
observed for the smooth cell. This essentially highlights that the extra plume contributions received
from roughness elements are sustained for the entire explored Ra range.

D. Reynolds number dependence on Ra and Pr

The flow strength developed in the convection cell due to the applied thermal forcing exhibits a
strong dependence on the type of fluid used and has close links to the heat transport process. The
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FIG. 9. The variation of εpl as a function of Ra is compared between the rough and smooth cells at different
Pr based on (a) δ = 5% and (b) δ = 10%.

intensity of the flow is usually described in terms of the Reynolds number [18,29], which can be
quantified as

Re = √〈u · u〉V,t Ra/Pr.

In Fig. 10 , the Reynolds number dependence on Pr is shown for both smooth and rough cells
at different Ra. It can be observed that for a fixed Pr, a higher Ra yields a stronger flow strength.
However, for a fixed Ra, increasing Pr is seen to attenuate the flow intensity. Upon comparing Re
between smooth and rough cells, enhanced flow strength in the rough cell is clearly evident for
108 � Ra � 5 × 109 and 5 � Pr � 100. For lower Pr = 0.1 and 1, the enhancement of Re due to
rough surfaces is observed only in the higher Ra range (�109). The reason for not realizing an
enhanced Re for lower Ra is associated with the immobility of fluid inside the cavities, where the
flow is largely viscosity dominated. However, at higher Pr, owing to the thinner TBL, cavity regions
are easily ventilated by the bulk flow, promoting stronger fluid motion, which is responsible for an

10-1 100 101 102
10-1

100

101

102

103

104

 107     108     109     5x109

Rough
Smooth

FIG. 10. The Re dependence on Pr is explored for different thermal forcings in rough and smooth cells.
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FIG. 11. The variation of Re with Ra is shown at different Pr for (a) rough and (b) smooth cells. Note that
the solid black lines correspond to the least-squares fit to the data.

increased Re. Note that contrary to our previous observation that Nu loses its dependence on Pr in
the smooth cell, Re(Pr) dependence is not lost in either of the cells.

In Fig. 11, Re dependence on Ra is observed for both the rough and smooth cell configurations.
The increasing trend of Re with Ra is clearly evident here for both the smooth and rough configu-
rations. From Fig. 11, it is easy to observe that at the highest value of Ra, Ra = 5 × 109, a higher
Re exists for the rough cell at all Pr when compared with the smooth cell. To establish a relation
of the form Re(Ra) = ARan, we have applied the least-squares fitting to the data. The details of the
scaling exponent and prefactor are listed in Table V. In general, it can be observed that the scaling
exponent n increases as Pr is increased, while the prefactor A diminishes with Pr in both the cells.
Most importantly, at any fixed Pr, n is higher for the rough cells. The increased exponent highlights
that the flow strength is largely influenced by the introduction of rough surfaces.

IV. SUMMARY AND CONCLUSIONS

This paper attempts to find the role of Pr in influencing flow structures and the prevalent
heat transport mechanism in a two-dimensional rough rectangular convection cell. We show the
importance of the choice of fluid, in addition to the applied temperature forcing, in realizing an
augmented heat transfer rate from the roughened cell. The distinct role played by Pr in the presence
of roughness is evident in the form of a monotonic increase in Nu with increasing Pr. The result is

TABLE V. Prefactor and exponent of the least-squares fit Re(Ra) = ARan at different Pr for both the rough
and smooth cells.

Rough Smooth

Pr A n A n

0.1 0.895 0.51 12.176 0.382
1 3.358 × 10−3 0.679 9.158 × 10−3 0.629
5 1.477 × 10−4 0.741 5.798 × 10−4 0.670
10 3.377 × 10−5 0.777 3.708 × 10−4 0.640
20 5.764 × 10−6 0.816 4.751 × 10−5 0.697
50 1.007 × 10−6 0.841 2.458 × 10−6 0.783
100 7.937 × 10−8 0.928 6.119 × 10−7 0.798
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a significant improvement compared with the nearly invariant Nu observed in the smooth cell. At a
lower Pr, a thick layer of hot (cold) fluid is observed above the top (bottom) plate, while a higher
Pr is associated with a thinner thermal boundary layer (TBL). For the former, large-scale diffuse
structures are prevalent, while for the latter, fine mushroom-shaped structures are discharged from
the near-wall regions. At a lower Ra, since roughness elements are embedded beneath the TBL,
plume emission from them is thwarted. The creation of numerous nucleation sites and subsequent
frequent plume emission are observed at higher Pr as more and more roughness elements puncture
the TBL. At a given Ra, since a high-Pr flow boasts a thinner TBL, roughness elements become
thermally active quickly. This results in augmented Nu at higher Pr.

In comparison to the smooth case, plumes are observed to span a wider extent of the domain in
the rough cell. Also, they are more localized and intense, which finally yields greater heat transport.
A comparison of the mean vertical velocity of plumes in smooth and rough cells at a sufficiently
high thermal forcing corroborates the finding that roughness-facilitated plumes are more energetic.
At a lower Ra = 108, where viscous force dominates, mean plume vertical velocities corresponding
to rough and smooth cells are comparable though a higher fraction of plumes is recorded in the
rough configuration. The level of flow perturbations effected by rough surfaces can be controlled
by either increasing Ra or increasing Pr or both. A direct comparison of flow intensity measured in
terms of the global Reynolds number between rough and smooth cells reveals that Re is superior
for the rough cell for a larger Ra or Pr. The diminished flow intensity for extremely low Ra or Pr
can be attributed to the entrapment of fluid inside the roughness cavities, where the flow is largely
viscosity dominated.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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APPENDIX: DETAILS OF NUMERICAL SETUP

1. Comparison tests

The results reported by Zhu et al. [23] for sinusoidal roughness on horizontal plates with both
h/H and λ/H being 0.1 are reproduced in Fig. 12 to check the capability of the present numerical
setup. It can be seen from Fig. 12(a) that Nu(Ra) agrees well with an average and maximum

This paper

This paper
Zhu et al. (2017)

Zhu et al. (2017)

FIG. 12. (a) The mean Nu(Ra) and (b) and (c) vertical mean temperature (〈θ〉A,t ) profiles for the sinusoidal
roughness (h = λ = 0.1) are compared with the corresponding data obtained by Zhu et al. [23]. Note that the
height of the shaded portions indicates the amplitude of the roughness elements.
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FIG. 13. Schematics showing the rough surfaces used on the top and bottom plates for the different flow
realizations (a) R1, (b) R2, (c) R3, and (d) R4 at Ra = 1.5 × 109.

variation of 3 and 7%, respectively, which is reasonable given the complexity of the problem, the
difference in the numerical methods, and the large range of Nu data. In Figs. 12(b) and 12(c),
we show vertical mean temperature profiles for Ra = 2.2 × 108 and 2.2 × 109, respectively. It
can be observed that the profiles compare accurately with the reference data, which highlights the
effectiveness of the present setup in handling rough surfaces.

2. Mean Nu for different flow realizations

To determine whether different flow realizations (R1, R2, R3, and R4) corresponding to different
distributions of roughness elements yield a converged mean Nusselt number, we have simulated
the flow at Ra = 1.5 × 109 and Pr = 0.7. Figure 13 shows the roughness elements used on the
horizontal plates for different flow realizations. Note that the admissible range for variation of
amplitude and width of roughness elements (1–10% of H) is kept the same in all the realizations. In
Table VI, the details of the mean Nusselt number corresponding to different realizations are listed
along with the wetted area of the rough surfaces. It can be observed that 〈Nu〉V,t converges quite
well such that the maximum variation between any two realizations does not exceed 2.1%.

3. Near-wall resolution

To ensure adequate resolution of the rough elements, a sufficiently fine grid close to the walls
is used. Figures 14(a)–14(c) show the grid resolution for three roughness elements of extreme
dimensions at Ra = 108. It can be seen that the elements contain a sufficient number of cells to
resolve them. The excellent resolution of the rough surface is further reflected from the volume

TABLE VI. Global Nusselt number for different realizations at Ra = 1.5 × 109 along with the total wetted
area Awet of the rough surfaces.

Realization 〈Nu〉V,t Awet

R1 96.05 10.01
R2 95.74 9.74
R3 94.04 9.64
R4 94.80 10.19
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(c)(b)

Element
Shortest         0.01   0.070
Intermediate  0.04   0.035
Tallest            0.10   0.040

(a)

0.6 0.75 0.90

0.1
(e) Roughness elements created 

by zero level set function

0.6 0.75 0.90

0.1
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FIG. 14. In (a)–(c), the mesh resolution for three extreme roughness elements on the bottom plate is shown
at Ra = 108. From (a) to (b) to (c), the height of the elements increases. Also, note that (a)–(c) do not follow
the same scale. In (d), a segment of the bottom rough surface created using the linearized elements is shown,
whereas (e) illustrates the reconstruction of the surface using the zero level set function.

rendering of the zero level set function [33,36,43] shown in Fig. 14(e), which matches perfectly with
the exact linearized object [see Fig. 14(d)]. The errors in the reconstruction of the exact roughness
volume are 0.07 and 0.005% for the coarsest and finest meshes used in this paper, respectively.
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