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The effects of stratification parameter (Sr) and flow compressibility on mixing and
energy transfer of three-dimensional compressible Rayleigh-Taylor turbulence are studied
numerically for initial isothermal stratification at Sr. ranging from 0.5 to 3.0 and at
Atwood number At = 0.5. Flow compressibility plays an important role in the generation
of large-scale kinetic energy, which mainly comes from the conversion of potential energy
for small Sr and conversion of internal energy through pressure-dilatation work for large
Sr. The latter leads to that bubble heights increase rapidly and the bubbles are bigger at
large Sr. The overall statistics of normalized subgrid-scale (SGS) flux of kinetic energy is
nearly independent of Sr. The reverse SGS flux is much weaker than the direct SGS flux
at middle scales, and increases significantly with increase of Sr. The net upscale cascade
of kinetic energy can be identified at large scales, which is more obvious at larger Sr.
The compression motions enhance direct SGS flux and the expansion motions strengthen
the reverse SGS flux. The conditional average of SGS flux is nearly proportional to the
normalized filtered velocity divergence at Sr � 1.0 and the square of filtered velocity diver-
gence at Sr > 2.0 in compression regions. The spatially average values of the large-scale
pressure-dilatation are similar for different Sr and different times, and they have relatively
large negative values at small scales for large Sr.

DOI: 10.1103/PhysRevFluids.7.104608

I. INTRODUCTION

Rayleigh-Taylor (RT) instability occurs when a light fluid supports a heavy fluid and there is
an acceleration pointing to the light fluid. The small perturbations of the interface grow, interact
nonlinearly, and eventually become turbulence. RT instability is of great importance in many
engineering applications and natural phenomena, including inertial confinement fusion (ICF) [1,2]
and type Ia supernova [3,4]. Compressibility plays a crucial role in supernova and ICF, which has
been studied for many years [5,6].

For compressible RT instability, compressibility effects have two origins [7–10]: fluid com-
pressibility, also called intrinsic compressibility, and flow compressibility, corresponding to the
thermodynamic state of the system. The former is the inherent property of the fluid, which is
characterized by the ratio of the specific heats γ of fluid [9,11]. The latter is related to the
changes of fluid density [8,10,12], which is usually represented by stratification parameter Sr
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or Mach number (Ma), where Sr = Ma2. Flow compressibility results in an initial exponential
density with height for initial isothermal stratification and a initial linear temperature for initial
isopycnic stratification in the static state [7,13,14]. Its dynamic role is related to the expansion and
compression motions, which associates with fluctuating of density of the fluid elements in response
to change in pressure [15]. The expansion and compression motions can be quantified with turbulent
Mach number, velocity divergence and dilatational component of velocity [16,17]. Therefore, the
effect of stratification parameter or flow compressibility includes both static role and dynamic role.

The effect of flow compressibility on the spike height (the height of heavy fluid penetrating the
lighter fluid) and bubble height (the height of light fluid penetrating the heavier fluid) at nonlinear
stage in the two-dimensional (2D) single-mode RT instability has been widely studied, which
depends on the initial thermodynamic equilibrium and Atwood number (At ). Wieland et al. [13]
numerically studied the compressible single-mode RT instability for initial isothermal, isentropic,
and isopycnic background stratifications at At = 0.4 and different Mach numbers. They found that
the bubble and spike heights develop at greater rates with higher Mach numbers in the nonlinear
stage for initial isopycnic stratification, while they are suppressed for initial isothermal stratification.
Luo et al. [7] numerically simulated 2D single-mode RT instability for initial isothermal stratifica-
tion at different Mach numbers (Ma = 0.1 ∼ 1.0) and different Atwood numbers (At = 0.1 ∼ 0.9).
The bubble height is suppressed at small At and enhanced at large At with the increase in Ma,
which is consistent with the observation by Reckinger et al. [8]. Luo et al. [7] reported that the
initial density stratification caused by compressibility plays a stabilizing role and is dominant
at small Atwood number (At � 0.3), while the expansion-compression motions of flow play a
destabilizing role and are dominate at large Atwood number (At � 0.7). The competition between
two effects determines the overall effect of compressibility. The numerical results at a range of
Atwood number At = 0.1 ∼ 0.9 of Fu et al. [18] were consistent with Luo et al. [7]. In addition,
Fu et al. [18] reported a modified buoyancy-drag model for initial isothermal stratification, which
gives an accurate analytical prediction of nonlinear saturation of bubble evolution, and verifies that
expansion-compression motions play a destabilizing role for bubble evolution.

Luo and Wang [12] numerically studied the effects of Atwood number and stratification pa-
rameter on mixing heights in compressible 2D multimode RT turbulence, which are similar to the
results of the single-mode RT instability. George and Glimm [19] reported a time-dependent Atwood
number, which corresponds to the secondary growth rate of mixing height and self-similarity scaling
law for highly compressible RT turbulence. Jin et al. [20] gave an analytical model based on the
time-dependent Atwood number, which was verified at small At by numerical simulations. Jin
et al. [20] and George and Glimm [19] pointed out that the dominant effect of compressibility was
caused by the density stratification at small At . Some numerical results also showed that density
stratification is dominant at At = 0.25 [10,21]. Gauthier [10] found that the bubble height no longer
increases and spike height still grows at a very small rate during the freely decaying (FD) regime at
At = 0.25 and large stratification parameter Sr = 6.0. In addition, the degree of molecular mixing
grows continuously up to 0.99 during the FD regime, owing to that the mixing height stops growing
and no more pure fluid enters in the mixing layer.

The kinetic energy transfer in incompressible RT flow was studied in the past. Cook and
Zhou [22] numerically investigated the energy budget in incompressible RT turbulence. They found
that the net kinetic energy transfer is from large scales to small scales, and depends strongly on the
inhomogeneous direction. Because the diffusive mixing of the two unequal-density species leads to
nonzero velocity divergence [12,23], dilatation term also exists in incompressible RT turbulence.
They found that the energy transfer by the dilatation term is negligible, but its overall effect is to
transfer energy from high density region to low density region. Cabot and Cook [24] found that the
ratio of kinetic energy to released potential energy exhibits a gradual rise at late time, and finally
reaches about 0.5 at the end of simulation. Cabot [25] also found that this ratio is about 0.5 in 3D,
while it is 0.9 in 2D, which are basically consistent with 0.48 in 3D and 0.94 in 2D of Youngs [26].
Zhou et al. [27] investigated the scale-to-scale transport of kinetic energy in incompressible 2D RT
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turbulence, by using a filtering approach. They revealed the upscale transfer of kinetic energy from
small to large scales, due to the merging and grouping of buoyant structures.

Zhao et al. [14] numerically studied the kinetic energy transfer in compressible RT turbulence
for initial isopycnic stratification at small Mach numbers Ma � 0.55. They presented the energy
pathways between potential energy (PE), kinetic energy (KE), and internal energy (IE) in 3D
compressible RT turbulence: PE and IE are converted to KE at the largest scale via gravity and
pressure dilatation; the large-scale KE is then transferred to small scales by baropycnal work and
deformation work though subgrid-scale flux of kinetic energy; finally, the small-scale KE converts
to IE via viscous dissipation. The main difference between 3D and 2D RT turbulence is that
deformation work transfers kinetic energy downscale in 3D and upscale in 2D, which can be used to
explain the faster growth of the mixing height in 2D. In addition, baropycnal work and deformation
work exhibit a self-similar evolution in time.

Zhao et al. [28] numerically investigated the kinetic energy transfer in 3D compressible RT tur-
bulence for initial isothermal stratification at a Mach number of Ma = 1.0, using the single-species
two-density model. They pointed that compressibility plays an important role for the generation
and transfer of kinetic energy. There are two mechanisms for the generation of kinetic energy:
the conversion of potential energy to kinetic energy and the pressure-dilatation work related to the
compressibility of fluid elements. Energy transfer mainly depends on baropycnal work at large scale
and deformation work at small scale. In addition, the negative baropycnal work is enhanced in the
compression regions, while the positive baropycnal work is strengthened in the expansion regions.
Luo and Wang [12] analyzed the kinetic energy equation in 2D compressible RT turbulence at dif-
ferent stratification parameters (Sr = 0.1 ∼ 1.0) and Atwood numbers (At = 0.2 ∼ 0.8), and found
that the contribution of pressure-dilatation to the generation of kinetic energy is very important at
large Sr. With an increase of Sr, the conversion of potential energy to kinetic energy weakens due
to the density stratification, while pressure work increases owing to the significant expansion and
compression motions.

The filtering techniques are often used to analyze interscale transfer of kinetic energy in turbu-
lence. In constant density turbulence, the large-scale kinetic energy can be expressed as |ū�|2/2,
where u is velocity and f̄l is the filtered field of f at filter width l [see Eq. (21)]. There are
several different definitions of large-scale kinetic energy in the variable density (VD) turbulence
and compressible turbulence. Aluie proposed that the inviscid criterion, i.e., viscous effects are
negligible at large scales, is important for the scale decomposition in the VD turbulence [29].
He proved theoretically that Favre decomposition satisfies the inviscid criterion for arbitrarily large
density variations, which was verified numerically by Zhao and Aluie [30]. They also showed
that two other commonly used decompositions in the literature, including ρ̄�|u�|2/2 [31,32] and
|(√ρu)�|2/2 [22,33], can violate the inviscid criterion. Here, ρ is fluid density. In addition, Wang
et al. [34] investigated the effect of different filter types on the kinetic energy transfer in compress-
ible isotropic turbulence, by using top-hat filter, Gaussian filter, and sharp spectral filter. They found
that the results of top-hat filter and Gaussian filter are similar to each other.

In this study, we investigate the effect of flow compressibility on the mixing and energy transfer in
3D compressible RT turbulence for isothermal background stratification at stratification parameters
ranging from 0.5 to 3.0. We specifically focus on the generation of large-scale kinetic energy
and the subgrid-scale (SGS) kinetic energy flux at different stratification numbers Sr. The rest of
this paper is organized as follows. The next section presents the governing equations, initial and
boundary conditions, and computational method. Section III provides the simulation parameters and
statistics. Section IV describes the effect of compressibility on the mixing evolution. The effect of
compressibility on energy transfer at different stratification numbers is presented in Sec. V. Finally,
main conclusions are summarized in Sec. VI.
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II. GOVERNING EQUATIONS AND NUMERICAL SIMULATIONS

A. Governing equations

A set of reference scales can be introduced to normalize the hydrodynamic and thermody-
namic variables. The following reference variables are used: the reference length Lr = Lx, time
tr = (Lx/g)1/2, velocity ur = (Lxg)1/2, density ρr = (ρH,0 + ρL,0)/2, temperature Tr , pressure pr =
RρrTr/Mr , concentration cr , dynamic viscosity coefficient μr , thermal conductivity coefficient
κr , diffusion coefficient of species Dr , specific heat at constant volume Cv,r , and molar weight
Mr = (MH + ML )/2. g is the gravitational acceleration. ρH,0 and ρL,0 represent the densities on
both sides of the initial interface. MH and ML are the molar masses of the heavy and light fluids,
respectively. Subscripts H and L represent the heavy and light fluids, respectively [7,12].

The following dimensionless Navier-Stokes equations of compressible RT turbulence for a binary
mixing fluid model of the miscible Newtonian fluids are solved numerically [7,10,12]:

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (1)

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − 1

Sr

∂ p

∂xi
+ 1

Re

∂σi j

∂x j
− ρδi3, (2)

∂ρe
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+ ∂ρeu j

∂x j
=−(γr − 1)p

∂u j

∂x j
+ (γr − 1)
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σi jSi j + 	∗
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∂

∂x j

(
ρT

∂c

∂x j

)
+ γr

RePr

∂

∂x j

(
∂T

∂x j

)
,

(3)

∂ρc

∂t
+ ∂ρcu j

∂x j
= 1

ReSc

∂

∂x j

(
ρ

∂c

∂x j

)
, (4)

p

ρT
= 1

1 − A2
t

(1 + At − 2At c), (5)

where ui is the velocity component, ρ = ρH + ρL is the density, p = pH + pL is the pressure, T =
TH = TL is the temperature, and c = ρH/ρ is the concentrations of the heavy fluid. The viscous
stress σi j is defined by

σi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μθδi j, (6)

where μ = μH = μL is the dynamic viscosity. θ = ∂uk/∂xk is the normalized velocity divergence.
The internal energy per unit volume is defined by e = CvT , where Cv = cCv,H + (1 − c)Cv,L is the
specific heat at a constant volume. γr = Cp,r/Cv,r is a reference variable of the ratio of specific heat
at a constant pressure to that at a constant volume. 	∗

H,L = γHCv,H − γLCv,L is the dimensionless
difference in the specific heat at constant pressure [7,12], where γH,L is the ratio of specific heat of
heavy or light fluid.

The five reference governing parameters, including the stratification parameter Sr, Reynolds
number Re, Atwood number At , Schmidt number Sc, and Prandtl number Pr, are [7,12]

Sr = gLr

RT r/Mr
, Re = g1/2L3/2

r

μr/ρr
, At = MH − ML

MH + ML
, Pr = γrμrCv,r

κr
and Sc = μr

ρrDr
. (7)

Sr is related to the strength of flow compressibility (expansion and compression motions and density
stratification). c0 = √

pr/ρr = √
RT r/Mr is the isothermal speed of sound. The Prandtl number and

Schmidt number are assumed to be equal to 0.7 and 1.0, respectively. The Reynolds number is
10 000 in our simulations.
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(a) (b) (c)

FIG. 1. (a) The initial perturbation displacement z0, (b) the spectrum of initial perturbation displacement,
and (c) the initial density profiles 〈ρ〉xy for different stratification parameters Sr. The dotted lines are the
densities on both sides of the interface

B. Numerical simulations

We consider an isothermal background state with initial constant temperature of T0 = 1. The
density field for heavy and light fluids is exponential distribution. In our numerical simulations, the
initial perturbation displacement z0 is the superposition of sin and cos functions with different wave
numbers [35–37]:

z0(x1, x2) =
∑
kx,ky

ak cos (kxx1) cos (kyx2) + bk cos (kxx1) sin (kyx2)

+ ck sin (kxx1) cos (kyx2) + dk sin (kxx1) sin (kyx2), (8)

where, ak, bk, ck, dk are random perturbation amplitudes and the r.m.s. amplitude z0,rms = 0.01. The

range of perturbation wave number is 40 � k =
√

k2
x + k2

y �64. The interface perturbation in physical
space and its spectrum are shown in Figs. 1(a) and 1(b), respectively. For ideal short wavelength
perturbations, the influence of random initial perturbations can be ignored [35,37]. We have verified
it in the Appendix.

To smooth the flow field at the interface between two fluids, we introduce regularized Heaviside
functions, H±(x3) = [1 ± erf (x3/δ)]/2, where erf (x) = 2√

π

∫ x
0 e−s2

ds, δ = 4	 is the pseudointer-
face thickness, and 	 is the grid spacing [7,12]. Then, we obtain the initial density field in the
hydrostatic state:

ρ = (1 + At ) exp [−Sr(1 + At )(x3 − z0)]H+(x3 − z0)

+ (1 − At ) exp [−Sr(1 − At )(x3 − z0)]H−(x3 − z0). (9)

The initial density profiles 〈ρ〉xy [see Eq. (11)] for different stratification parameters Sr are shown
in Fig. 1(c). The initial pressure field and temperature field can be obtained by Eq. (2) and the
equation of state.

For numerical simulations, we apply an eighth-order central compact finite difference
scheme [38,39] on a uniform grid with 5122 × 1024 grid points in a rectangular box of Lr × Lr ×
2Lr ([−Lr, Lr]), where Lr = 1.0. An eighth-order numerical hyper-viscosity model is adopted to
ensure the stability of the algorithm [39]. A third-order Runge-Kutta scheme is applied for the time
marching [40]. A sufficiently large wave-absorbing layer at the top and bottom of the computational
domain is used to mitigate the effects of acoustic waves [7,8], which are generated at the interface
and propagate outward [41].

Our numerical simulations use uniform grid with periodic boundary conditions in horizontal di-
rection and no-slip boundary condition in vertical direction for the velocity. Gradient-free boundary
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TABLE I. The parameters and statistics at z = 0 and t/τ = 3.0 of the simulations.

Sr At Gr	 Mt Reλ,z (Reλ,x + Reλ,y )/2 λz/η (λx + λy )/2η

0.5 0.5 0.745 0.114 65.7 24.7 14.5 9.5
1.0 0.5 0.745 0.153 61.9 22.3 14.1 9.0
2.0 0.5 0.745 0.192 52.7 18.8 13.1 8.2
3.0 0.5 0.745 0.214 45.9 16.8 12.0 7.5

condition for concentration is used in vertical direction. The temperature is kept fixed at the top and
bottom boundaries [7,10].

III. THE SIMULATION PARAMETERS AND STATISTICS

The mole fraction of heavy fluid for the binary mixing fluid model is [12]

X = (1 − At )c

1 + At − 2At c
. (10)

We define three spatial averages of a variable ϕ:

〈ϕ〉xy(z, t ) = 1

LxLy

∫ Ly

0

∫ Lx

0
ϕ(x, y, z, t )dxdy, (11)

〈ϕ〉m(t ) = 1

LxLy(HB + HS )

∫ HB

−HS

∫ Ly

0

∫ Lx

0
ϕ(x, y, z, t )dxdydz, (12)

〈ϕ〉(t ) = 1

2LxLyLz

∫ Lz

−Lz

∫ Ly

0

∫ Lx

0
ϕ(x, y, z, t )dxdydz, (13)

where HB and HS are respectively the bubble and spike heights based on the 1% threshold values
of mean mole fraction [12,23]. 〈·〉xy denotes the horizontal average value. 〈·〉m and 〈·〉 denote the
volume average in the mixing region and volume average in the computational domain, respectively.

The turbulent Mach number, the horizontal and vertical Taylor Reynolds numbers at a given
vertical coordinate z are respectively defined as [12,23]

Mt (z) = Sr1/2

√〈u′
iu

′
i〉xy

〈γ p/ρ〉xy
, Reλ,i(z) = Re

〈ρ〉xyλi
[〈

u′2
i

〉
xy

]1/2

μ
(no sum on i), (14)

where u′
i = ui − 〈ui〉xy. The horizontal and vertical Taylor microscales are given by λi(z) =

[ 〈u′2
i 〉xy

〈(∂u′
i/∂xi )2〉xy

]1/2 ( no sum on i).
The parameters and statistics at z = 0 and t/τ = 3.0 of the simulations are summarized in Ta-

bles I, where the characteristic timescale is defined as τ = √
Lr/(At g) [7,23,28]. The mesh Grashoff

numbers, Gr	 = 2At g	3/(μr/ρr )2 = 2At	
3Re2/L3

r [24], are 0.745 and are below 1, which can
ensure that the solutions are well resolved in our numerical simulations. In addition, we calculate the
Kolmogorov length scale η(z) = [〈μ/(Reρ)〉3

xy/〈ε/ρ〉xy]1/4, where the local viscous dissipation rate
of kinetic energy is ε = σi j (∂ui/∂x j )/Re. The time evolution of Kolmogorov length scale η(0)/Δx
at z = 0 and its profiles as functions of H∗ at t/τ = 3.0 for different stratification parameters Sr are
shown in Fig. 2. Here, H∗ = z/HB if z � 0, while H∗ = z/HS if z � 0 [12]. We see that η(z)/Δx is
greater than 1.5 for any time, height, and Sr. The Taylor Reynolds numbers and Taylor microscales
decrease with the increase of Sr, which is consistent with 2D compressible RT turbulence [12]. The
turbulent Mach number Mt increases with an increase of Sr. It is worth noting that the values of Mt

are only 0.192 and 0.214 for Sr = 2.0 and 3.0, respectively, which are relatively small.
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(a) (b)

FIG. 2. (a) Time evolution of Kolmogorov length scale η(0)/Δx at z = 0 and (b) mean profiles of Kol-
mogorov length scale η(H∗)/Δx as functions of H∗ at t/τ = 3.0 for different stratification parameters Sr.

IV. MIXING EVOLUTION

Figure 3 illustrates the contours of mole fraction X for Sr = 0.5 at t/τ = 1.0, 2.0, 3.0, 4.0. The
development of RT turbulence is clearly observed: the perturbations of different wave numbers
grow independently in the beginning; then, the spikes or bubbles compete or merge with each other;
and they gradually develop to turbulence in the late stage. At t/τ = 1.0, diffusion and linear growth
dominate. The nonlinear effects are very strong, and the structures of bubbles and spikes are complex
at t/τ = 2.0. Some statistics become self-similar at t/τ � 2.0, including the molecular mixing
degree (Fig. 8), Kolmogorov length scale (Fig. 2), the turbulent Mach number, Taylor Reynolds
numbers, and the mean profiles of mole fraction. The observation is similar to our previous results
in compressible 2D RT turbulence at t/τ � 2.0 and at At = 0.5 [12].

Mixing heights can be expressed in many different ways. Figure 4 presents the time evolution of
bubble and spike heights for three different definitions at different stratification parameters Sr. The
bubble and spike heights in Fig. 4(a) are defined as follows [10,35,42]:

hB = 3
∫ Lz

0
X (1 − X )dz and hS = 3

∫ 0

−Lz

X (1 − X )dz. (15)

In Figs. 4(b) and 4(c), HB/S,0.05 and HB/S,0.01 are the bubble and spike heights based on the 5%
and 1% threshold values of mean mole fraction [42–44]. The spike heights decrease slightly with
the increase of Sr, and the effects of stratification parameters on bubble heights are different for
three different definitions. The stratification parameter has little effect on HB,0.01, expect for Sr =
3.0. However, the stratification parameter has a relatively weak promoting effect on HB,0.05 and
significantly promotes the development of hB. The difference of the influence on differently defined

FIG. 3. The contours of mole fraction for Sr = 0.5 at (a) t/τ = 1.0, (b) t/τ = 2.0, (c) t/τ = 3.0 and
(d) t/τ = 4.0.
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(a) (b) (c)

FIG. 4. Time evolution of bubble and spike heights for three different definitions at different stratification
parameters Sr: (a) hB/S defining as Eq. (15), (b) HB/S,0.05 using the 5% threshold values, and (c) HB/S,0.01 using
the 1% threshold values.

bubble heights is due to the different shape of bubbles. Figure 5 shows the contours of mole fraction
for different stratification parameters at t/τ = 3.0. We can see that the bubbles become bigger with
the increase of Sr. In other words, assuming that the top of the bubble is at the same height for
different Sr, there are more light fluids at the same distance from the top at large Sr. Therefore, the
bubble height with big bubble at large Sr is greater than that at small Sr. In addition, the nearly
proportional relation between differently defined bubble heights in incompressible RT turbulence is
not observed in compressible flow [42–44].

Figure 6 shows the mean density profile with height z at Sr = 2.0, 3.0 and different times. For the
stratification parameter Sr = 3.0, we can’t see the density difference at the top of the bubble in the
density profile, and there is basically no inverse gradient for density profile at t/τ � 2.5. However,
mixing can continue to develop until the end of the simulations. The mixing heights and density
profiles are significantly different from the incompressible density stratified RT turbulence [45–47].
There are three reasons for the growth of bubble height without density difference of the mean
density profile at the top of the bubble: the first is that the density in the bubble is lower than
that outside the bubble in the local range of the bubble top (this effect will be weaken with the
decrease of density outside the bubble until it disappears); the second is upward inertia of bubble;
the third is the strong expansion and compression motions, which convert the internal energy to
kinetic energy (Fig. 11), making the light fluid continue to move upward. The first two reasons
also exist in incompressible stratified RT turbulence, and the last one is unique in compressible
RT turbulence. The expansion and compression motions increase with the increase of Sr, and they
play a more significant role compared with the initial density stratification in the developing of RT
instability at large Sr and Atwood numbers. In addition, we notice that the density outside the bubble

FIG. 5. The contours of mole fraction for different stratification parameters at t/τ = 3.0 and different
stratification parameters Sr: (a) Sr = 0.5, (b) Sr = 1.0, (c) Sr = 2.0, and (d) Sr = 3.0.
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(a) (b)

FIG. 6. The mean density profiles at different times and stratification parameters Sr: (a) Sr = 2.0 and
(b) Sr = 3.0.

increases with time because it is compressed [12]. The similar density profile occurs for Sr = 2.0 at
t/τ � 3.0.

According to the different definitions of bubble and spike heights, we can define the following
different ratios of bubble heights to spike heights:

βh = hB

hS
, β0.05 = HB,0.05

HS,0.05
, and β0.01 = HB,0.01

HS,0.01
. (16)

Figure 7 displays the time evolution of three ratios for different stratification parameters Sr. These
ratios increase with the increase of Sr, which is consistent with 2D compressible RT turbulence [12].
β0.01 is least affected by Sr, while βh is the most affected by Sr. The difference between three ratios
is mainly due to the different effects of the stratification parameters on the three bubble heights. It
is worth noting that βh develops linearly with time at t/τ > 2.0. By fitting the curve at 2.0 � t/τ �
4.0, we find that the 2/3 power of the slope is proportional to Sr, i.e., k2/3

s ∼ Sr, where ks is the
slope of βh.

For compressible RT turbulence with isothermal initial equilibrium, the density of light or
heavy fluid is exponentially distributed, so it is difficult to calculate the mixed mass given in
incompressible RT turbulence [27,48]. However, the molar mass of light or heavy fluid is constant
in our simulations. Therefore, the normalized mixed molar mass Ψ and molecular mixing degree Θ

are defined as [10,27,48,49]

Ψ = 〈Mc(1 − c)〉m

〈〈M〉xy〈c〉xy〈1 − c〉xy〉m
and Θ = 〈X (1 − X )〉m

〈〈X 〉xy〈1 − X 〉xy〉m
, (17)

(a) (b) (c)

FIG. 7. Time evolution of three ratios of bubble height to spike height defining as Eq. (16) at different
stratification parameters Sr: (a) βh, (b) β0.05, and (c) β0.01.
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(a) (b)

FIG. 8. Time evolution of (a) the normalized mixed molar mass Ψ and (b) the molecular mixing degree Θ

at different stratification parameters Sr.

where, M is the molar mass of the mixed fluid, and 1/M = c/MH + (1 − c)/ML. Figure 8 presents
the time evolution of Ψ and Θ for different stratification parameters Sr. The stratification parameter
has no obvious effect on Ψ and Θ , which is consistent with 2D compressible RT turbulence [12].
Ψ and Θ increase slowly at t/τ > 2.0 and gradually approach constants about 0.75 and 0.8,
respectively. They are close to the results of incompressible RT turbulence [27,48].

Considering that the bubble is bigger at large Sr, which has an impact on molecular mixing,
we further study the molecular mixing degree at different vertical heights. Figure 9 shows the mean
profile of molecular mixing degree Θxy = 〈X (1−X )〉xy

〈X 〉xy〈1−X 〉xy
as functions of H∗ at different Sr. Stratification

parameter promotes the molecular mixing at −1 < H∗ < 0.5, but suppresses the molecular mixing
at 0.5 < H∗ < 1.0. This is because the large bubbles and simple vortex structures reduce the contact
areas between light fluid and heavy fluid, which leads to less mixing of two fluids at 0.5 < H∗ < 1.0.
This phenomenon may be more obvious at higher Atwood numbers and stratification parameters.

FIG. 9. The mean profiles of molecular mixing degree Θxy as functions of H∗ at t/τ = 3.0 for different
stratification parameters Sr.
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(a) (b) (c)

FIG. 10. Time evolution of (a) potential energy variation ΔPE = PE − PE0, (b) kinetic energy, and
(c) internal energy variation ΔIE = IE − IE0 at different stratification parameters, where PE0 and IE0 are the
potential energy and internal energy at t/τ = 0. The ratios −ΔPE/KE and −ΔIE/KE are plotted in the inset.

V. ENERGY TRANSFER

A. Conversion between different forms of energy

There are three different forms of energy in compressible RT turbulence: potential energy
(PE), kinetic energy (KE), and internal energy (IE). Potential energy is continuously converted to
kinetic energy with a conversion efficiency of about 50% in three-dimensional incompressible RT
turbulence [25,26]. The work done by pressure and viscosity in compressible fluid can lead to the
conversion of kinetic energy and internal energy [28,34].

The kinetic energy is governed by [12,28]

∂

∂t

(
1

2
ρu2

i

)
+ ∂

∂x j

(
1

2
ρu2

i u j + 1

Sr
pu j − 1

Re
uiσi j

)
= p

Sr
θ − σi j

Re

∂ui

∂x j
− ρu3. (18)

Taking the volume average over the computational domain and using boundary conditions, we
obtain

dKE

dt
= I − Φ − ε, (19)

where KE = 〈 1
2ρuiui〉 is the kinetic energy, I = −〈ρu3〉 is the energy transfer rate from potential

energy to kinetic energy, ε = 〈σi j (∂ui/∂x j )〉/Re is the viscous dissipation and Φ = −〈pθ〉/Sr is the
pressure-dilatation work. pθ/Sr is positive in the expansion region and negative in the compression
region, which indicates the energy exchanges between internal energy and kinetic energy caused by
pressure work [12,34,50]. The volume average of internal energy is governed by [12]

dIE

dt
= Sr(γr − 1)(Φ + ε), (20)

where IE = 〈ρe〉 is the internal energy.
In Fig. 10, we show the time evolution of potential energy variation ΔPE = PE − PE0, kinetic

energy and internal energy variation ΔIE = IE − IE0 at different stratification parameters, where
PE0 and IE0 are the potential energy and internal energy at t/τ = 0. The ratios −ΔPE/KE and
−ΔIE/KE are plotted in the inset. The kinetic energy increases with time and decreases with the
increase of Sr, because density stratification weakens velocity fluctuations and the average density
is small at large Sr [12]. The potential energy variation ΔPE is negative and the absolute value
increases with the increase of time and Sr at Sr � 2.0. The potential energy is constantly converted
to kinetic energy, but density stratification weakens this process. However, ΔPE has a positive value
at t/τ > 3.0 for Sr = 3.0, which is obviously different from the incompressible RT turbulence and
the compressible RT turbulence at Sr � 2.0. In Fig. 10(c), ΔIE is negative for Sr � 2.0. ΔIE is
negative at the beginning and then becomes positive for Sr � 1.0.

104608-11



TENGFEI LUO AND JIANCHUN WANG

(a) (b)

(c) (d)

FIG. 11. Time evolution of the terms in the equation of kinetic energy (19) for different stratification
parameters (a) Sr = 0.5, (b) Sr = 1.0, (c) Sr = 2.0, and (d) Sr = 3.0.

In the later stage, −ΔPE/KE gradually increases to 2 or 1.8, −ΔIE/KE decreases to −1 or −0.8
at Sr = 0.5 or 1.0, respectively. This observation indicates that the kinetic energy mainly comes
from the potential energy. About 50% of the transformed potential energy is lost in the form of
kinetic energy, and about 50% of the transformed potential energy is lost in the form of heat, which
is consistent with the 3D incompressible RT turbulence [25,26]. At Sr = 2.0, −ΔPE/KE increases
from 0.2 to 0.9 and −ΔIE/KE decreases from 0.8 to 0.1. The kinetic energy mainly comes from
internal energy at the beginning and gradually tends to come from potential energy with the increase
of time. At Sr = 3.0, −ΔPE/KE is very small and becomes negative, and −ΔIE/KE exceeds 1.0
at t/τ � 3.0. This observation indicates that most of internal energy is first converted to kinetic
energy, and then kinetic energy is converted to potential energy. This process increases the kinetic
energy of the flow field and promotes the further development of the mixing height (Fig. 4) at large
Sr. In addition, potential energy is transformed into kinetic energy only in the vertical direction,
while the horizontal and vertical components of pressure dilatation act as source of kinetic energy
at large scales [14], which may be one of the reasons for the big bubbles at large Sr.

Figure 11 presents the time evolution of each term in Eq. (19) for Sr = 0.5, 1.0, 2.0, 3.0. dKE/dt
is always positive, indicating that kinetic energy increases with time, which is consistent with
Fig. 10. dKE/dt increases at t/τ < 2.0 and has different trends for different Sr at t/τ � 2.0.
The viscous dissipation ε is always positive, which converts kinetic energy to internal energy. It
maintains a relatively large value and decreases with the increase of Sr. Both ε and Φ lead to the
changes of average kinetic energy and internal energy.

The energy transfer rate I is positive for Sr � 2.0, which indicates that potential energy is
converted to kinetic energy all the time. Note that I is negative at 2.4 < t/τ < 3.6 for Sr = 3.0,
which is related to the fact that the mean density profiles have no inverse gradient for t/τ � 2.5
(Fig. 6). This observation indicates that kinetic energy is converted to potential energy. This
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(a) (b) (c)

FIG. 12. Time evolution of (a) total production of kinetic energy I − Φ, (b) the ratios of the pressure-
dilatation work to the total production −Φ/(I − Φ ), and (c) the viscous dissipation to total production ε/(I −
Φ ) for different stratification parameters Sr.

phenomenon exists in the case of large Atwood numbers and large stratification parameters. I
decreases with the increase of Sr, which is caused by the initial density stratification. In contrast to
I , the pressure-dilatation work −Φ increases with the increase of Sr. The pressure-dilatation work
fluctuates around 0 at very small Sr [12,14]. As the stratification parameter increases, the fluctuation
weakens and the pressure-dilatation work −Φ gradually tends to be positive value. I or −Φ may
be a negative value at some parameters and times. However, I − Φ is always positive as shown in
Fig. 12. Thus, I − Φ can be regraded as the source of kinetic energy.

Figure 12 presents the time evolution of total production of kinetic energy I − Φ, the ratios of
the pressure-dilatation work to the total production −Φ/(I − Φ ) and the viscous dissipation to total
production ε/(I − Φ ). The total production of kinetic energy I − Φ decreases with the increase of
Sr, which is consistent with 2D compressible RT turbulence [12]. Overall, the ratio −Φ/(I − Φ )
increases with the increase of Sr. −Φ/(I − Φ ) at Sr = 0.5 is similar with 2D compressible RT
turbulence at Sr = 0.1. It is essentially less than 0.5 at t/τ � 2.0 for Sr = 1.0 in the present study,
but 85% of the kinetic energy is from the pressure-dilatation work at Sr = 1.0 in 2D compressible
RT turbulence [12]. The observation indicates that the effect of pressure-dilatation work on kinetic
energy generation is weaker than that in 2D compressible RT turbulence. At large stratification
parameter Sr = 3.0, −Φ/(I − Φ ) fluctuates around 1, and reaches a maximum value about 1.5 at
t/τ = 3.0, because of negative I . The ratio ε/(I − Φ ) increases with the increase of Sr, which is
also consistent with 2D RT turbulence [12]. The large ε/(I − Φ ) means that the growth of kinetic
energy is relatively slow at large Sr. ε/(I − Φ ) reaches 60% for Sr = 0.5 and exceeds 80% for Sr =
3.0 at t/τ � 3.0. These values are much greater than 0.1 in 2D compressible RT turbulence [12].
Although pressure-dilatation work is weaker in converting internal energy to kinetic energy, the
viscous dissipation is stronger in converting kinetic energy to internal energy, as compared to the
situation of 2D compressible RT turbulence.

Let us make a brief summary of the main results of this section: (i) The kinetic energy comes
from two sources: the conversion of potential energy and conversion of internal energy through
pressure-dilatation work. Kinetic energy mainly comes from potential energy at small Sr (Sr � 1.0)
and internal energy at large Sr (Sr � 2.0), which is the result of the combined effect of initial density
stratification and expansion-compression motions. (ii) For large stratification parameter Sr = 3.0,
internal energy is first converted to kinetic energy, and then kinetic energy is converted to potential
energy. This process may promote the further development of bubble height and produce the big
bubbles. (iii) The effects of Sr on the −Φ and I in 3D compressible RT turbulence are consistent
with 2D RT turbulence. However, compared with 2D RT turbulence, the contribution of pressure-
dilatation work −Φ to kinetic energy generation is significantly smaller at a given Sr in 3D flow.
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B. The scale-to-scale transfer of kinetic energy

A filtering technique can be used to analyze interscale transfer of kinetic energy in compressible
RT turbulence [14,28]. For a given field f , the filtered field f̄ is

f̄ (x) ≡
∫

d3rGl (r) f (x + r), (21)

where Gl (r) ≡ l−3G(r/l ) is the filter function, G(r) is a normalized window function, and l
represents the filter width. The Favre filtered field is defined as f̃ ≡ ρ f /ρ̄. A top-hat filter is used
and calculated in one dimension by [51]

f̄i = 1

4n

(
fi−n + 2

i+n−1∑
j=i−n+1

f j + fi+n

)
, (22)

where the filter width is l = 2n	x.
The Favre filtered equation for the average of the large-scale kinetic energy can be derived

as [14,28,52,53]

∂

∂t

〈
1

2
ρ̄ũ2

i

〉
+ 〈Jl〉 = 〈Il〉 − 〈Φl〉 − 〈Πl〉 − 〈εl〉, (23)

where Jl is the space transport of large-scale kinetic energy, Il is the energy injected by gravity, Φl

is the large-scale pressure-dilatation term, Πl is the SGS kinetic energy flux, and εl is the viscous
dissipation term. They are defined as

Jl ≡ ∂

∂x j

(
1

2
ρ̄ũ2

i ũ j + 1

Sr
p̄̃u j + ρ̄τ̃i j ũi − ũiσ̄i j

Re

)
, Il ≡ −ρ̄ũ3, Φl ≡ − p̄

Sr

∂ ũi

∂xi
,

Πl ≡ −ρ̄τ̃i j
∂ ũi

∂x j
= −ρ̄τ̃i j S̃i j, εl ≡ σ̄i j

Re

∂ ũi

∂x j
, (24)

where the SGS stress is ρ̄τ̃i j = ρ̄(ũiu j − ũiũ j ), and the filtered strain-rate tensor is S̃i j = (∂ ũi/∂x j +
∂ ũ j/∂xi )/2.

Figure 13 presents the average of kinetic energy transfer terms on the right-hand side of Eq. (23)
for stratification parameters Sr = 0.5, 1.0, 2.0, 3.0 at t/τ = 3.0. For Sr � 2, the kinetic energy
is mainly injected from PE at the largest scale [14,29], so Il is almost constant and is nearly
independent of l . But Il is approximately a negative constant at all scales for Sr = 3 because
of negative I [Fig. 11(d)]. This observation indicates that the conversion of kinetic energy to
potential energy also exists at large scales. The observations are different with previous studies
on compressible RT turbulence [14,28], which can be attributed to the facts that the stratification
parameter Sr is not large enough for initial isothermal stratification [28] and ρ is constant for initial
isopycnic stratification [14].

The SGS kinetic energy flux 〈Πl〉 and the viscous dissipation term 〈εl〉 are basically positive and
decrease with the increase of Sr, which are related to the generation I − Φ and dissipation of kinetic
energy. 〈εl〉 is strong at small scales and can be negligible at large scales [14,28,29,34]. 〈εl〉 can be
well normalized with ε for different Sr as shown in Fig. 14. 〈εl〉/ε exhibits a scaling behavior of
(l/Δx)−3.5 at large scales l/Δx � 50. Zhao and Aluie also found that the decay of kinetic energy
dissipation is faster than l−2 at large scales for At = 0.8 in RT turbulence [30]. This decay of viscous
dissipation with scale is much greater than (l/Δx)−1.5 in forced anisotropic turbulence (FAT) [54]
and in homogeneous isotropic turbulence (HIT) [34], suggesting that the correlation between small
scales and large scales is weaker, and the effect of viscosity on large-scale kinetic energy transfer
is much smaller in RT turbulence, as compared to the situations of FAT and HIT. It is worth noting
that the large-scale pressure-dilatation term 〈Φl〉 is close to 〈Il〉 at large scales about l/Δx > 100,
indicating the ∂

∂t 〈 1
2 ρ̄ũ2

i 〉 is small at large scales. This observation is consistent with the studies for
initial isopycnic stratification of Zhao et al. [14].
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(a) (b)

(c) (d)

FIG. 13. The average of the terms in filtered equation of kinetic energy (23) at t/τ = 3.0 for different
stratification parameters (a) Sr = 0.5, (b) Sr = 1.0, (c) Sr = 2.0, and (d) Sr = 3.0.

Figure 15 presents the contours of mole fraction X , normalized temperature T ∗ = (T − T0)/Sr,
energy injected by gravity Il , large-scale pressure-dilatation Φl , SGS flux of kinetic energy Πl/Π

′
l at

filter width l/Δx = 12 for Sr = 1.0, 3.0 at z = 0 and t/τ = 3.0. The heavy fluid moves downward,
the potential energy is converted to kinetic energy, and the temperature increases. The upward

FIG. 14. Normalized average of the viscous dissipation term εl/ε at t/τ = 3.0 for stratification parameters
Sr = 0.5, 1.0, 2.0, 3.0.
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FIG. 15. The contours of mole fraction X , normalized temperature T ∗ = (T − T0)/Sr, energy injected by
gravity Il , large-scale pressure-dilatation Φl , SGS flux Πl/Π

′
l at filter width l/Δx = 12 for Sr = 1.0(a − e),

and Sr = 3.0( f − j) at z = 0 and t/τ = 3.0.

moving light fluid causes the conversion of kinetic energy to potential energy, and the temperature
decreases. At a small stratification parameter, the strong positive and negative pressure-dilatation
are distributed adjacent to each other in the interface of light and heavy fluids, owing to the diffusive
mixing of the two unequal-density species [12,23]. And its spatial average value is nearly zero. The
downward moving heavy fluid tends to be compressed, and the upward moving light fluid tends to
exist in the state of dilatation [12]. Therefore, Φl is generally positive in heavy fluid regions and
is generally negative in the light fluid. As Sr increases, the pressure-dilatation is weakened in the
interface and is enhanced inside light or heavy fluid, owing to the strong expansion and compression
motions at large Sr. The conversion between internal energy and kinetic energy becomes stronger at
large Sr. The positive SGS flux of kinetic energy is much larger than the negative SGS flux, which
is irregularly distributed in the flow field.

C. SGS kinetic energy flux

Figure 16 shows the normalized average of the SGS flux of kinetic energy at different stratifica-
tion parameters Sr. 〈Πmax〉 is the maximum value of average SGS flux, for example 〈Πmax〉 is the
〈Πl〉 at filter width l/Δx = 22 for t/τ = 3.0. The normalized average values of SGS kinetic energy

(a) (b)

FIG. 16. (a) Normalized average of the SGS flux of kinetic energy 〈Πl〉/〈Πmax〉 at t/τ = 3.0 and (b) the
time evolution of 〈Πmax〉/(I − Φ ) at stratification parameters Sr = 0.5, 1.0, 2.0, 3.0.
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(a) (b)

FIG. 17. (a) Normalized r.m.s. values of SGS flux Π ′
l /(I − Φ ) at t/τ = 3.0 and (b) the time evolution of

the r.m.s. values of SGS flux at filter width l/Δx = 22 at stratification parameters Sr = 0.5, 1.0, 2.0, 3.0.

flux 〈Πl〉/〈Πmax〉 nearly collapse onto the same curve at t/τ = 3.0, especially at middle scales,
indicating that 〈Πl〉 is not only self-similar in time [14], but also similar for different Sr. Although
the sources of large-scale kinetic energy are different, the kinetic energy cascade is similar. I − Φ

as the source of kinetic energy can be used to normalize the SGS flux. The maximum values of
normalized SGS flux 〈Πmax〉/(I − Φ ) basically appear at the same filter width for different Sr at
a given time. They vary approximately linearly with time at t/τ � 3.0, which decrease slightly
as Sr increases. Note that upscale cascade of kinetic energy exists at large scales l/Δx > 100,
and becomes stronger with the increase of Sr, owing to the strong negative SGS flux at large Sr
shown in Fig. 18, but it is much weaker than downscale cascade at middle scales. The scales of
upscale cascade increase with the development of RT turbulence, which is consistent with previous
studies [14,28].

The normalized root-mean-square (r.m.s.) value of SGS flux is defined as Π ′
l =√〈(Πl − 〈Πl〉xy)2〉. We depict Π ′

l /(I − Φ ) at t/τ = 3.0 and Π ′
l /(I − Φ ) at filter width l/Δx = 22

with time in Fig. 17. The behavior of r.m.s. value of SGS flux Π ′
l /(I − Φ ) is similar to that of

its average value, which is basically independent of Sr and has the maximum value at filter width
l/Δx = 22 for t/τ = 3.0. Π ′

l /(I − Φ ) at filter width l/Δx = 22 increases with time at t/τ � 2.0
and gradually approaches a constant about 0.9 ∼ 0.98 for Sr � 2.0. At Sr = 3.0, Π ′

l /(I − Φ )
reaches 0.9 at t/τ = 2.4 and continues to increase slowly.

(a) (b)

FIG. 18. Normalized average of the positive and negative components of SGS flux at t/τ = 3.0 for
stratification parameters Sr = 0.5, 1.0, 2.0, 3.0: (a) 〈Π+

l 〉/〈Πmax〉 and (b) 〈Π−
l 〉/〈Πmax〉. In the inset, the ratio

〈Π+
l 〉/(〈Π+

l 〉 − 〈Π−
l 〉) is depicted.
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We decompose the SGS flux Πl into a positive component Π+
l and a negative component Π−

l :

Π+
l = 1

2 (Πl + |Πl |), Π−
l = 1

2 (Πl − |Πl |). (25)

Figure 18 shows the normalized average of the positive and negative components of SGS flux
for different stratification parameters Sr at t/τ = 3.0. The stratification parameter has little effect
on positive component 〈Π+

l 〉/〈Πmax〉 at middle scales. The magnitude of negative component
〈Π−

l 〉/〈Πmax〉 increases with the increase of Sr, demonstrating that flow compressibility promotes
upscale cascade of kinetic energy from small scales to large scales. Because the reverse SGS flux
is much weaker than the direct SGS flux at small and middle scales, the SGS flux is basically
independent of Sr. In addition, we notice that the largest positive component occurs at filter width
l/Δx = 22, which is consistent with the SGS flux shown in Fig. 16. However, the maximum
absolute value of negative component is at filter width l/Δx = 64, which is larger than l/Δx = 22
of positive component, indicating that reverse SGS flux of kinetic energy tends to appear at the
larger scales than direct SGS flux. We plot the ratio 〈Π+

l 〉/(〈Π+
l 〉 − 〈Π−

l 〉) in the inset, which
can represent the relative intensity of direct SGS flux and reverse SGS flux of kinetic energy.
〈Π+

l 〉/(〈Π+
l 〉 − 〈Π−

l 〉) decreases with the increase of filter width l/Δx and is greater than 0.5 at
l/Δx < 100, demonstrating a net downscale cascade of kinetic energy at small and middle scales.
However, it is less than 0.5 and decreases with the increase of Sr at l/Δx > 100. This observation
indicates the upscale cascade at large scales and is consistent with Fig. 16.

D. Effect of velocity divergence on SGS flux of kinetic energy

To study the effect of velocity divergence on SGS flux of kinetic energy, we consider the
following conditional average of the positive and negative components of SGS flux of kinetic
energy: 〈Π+

l | θl > 0〉m/(I − Φ ), 〈Π+
l | θl < 0〉m/(I − Φ ), 〈Π−

l | θl > 0〉m/(I − Φ ), and 〈Π−
l |

θl < 0〉m/(I − Φ ). We plot them for different stratification parameters Sr at t/τ = 3.0 in Fig. 19.
The trends of these curves with filter width are similar to the normalized average of the positive and
negative components shown in Fig. 18. We observe that 〈Π+

l | θl < 0〉m/(I − Φ ) is greater than
〈Π+

l | θl > 0〉m/(I − Φ ). However, 〈Π−
l | θl < 0〉m/(I − Φ ) is less than 〈Π−

l | θl > 0〉m/(I − Φ ).
Therefore, the compression motions (θl < 0) enhance direct SGS flux of kinetic energy from large
scales to small scales, while the expansion motions (θl > 0) strengthen the reverse SGS flux of
kinetic energy from small scales to large scales. This effect is opposite to the effect of velocity
divergence on the baropycnal work. The expansion motions enhance the positive baropycnal work,
while the compression motions strengthen the negative baropycnal work [28].

We observe that the conditional average of the positive component 〈Π+
l | θl > 0〉m/(I − Φ ) and

〈Π+
l | θl < 0〉m/(I − Φ ) are basically independent of Sr. However, the magnitude of the conditional

average of the negative component 〈Π−
l | θl > 0〉m/(I − Φ ) increases with the increase of Sr, which

is consistent with the normalized average of the negative component of SGS flux. In addition, at
large scales l/Δx � 100, the absolute value of 〈Π−

l | θl > 0〉m/(I − Φ ) is large than 〈Π+
l | θl >

0〉m/(I − Φ ), while the conditional average of negative component is less than positive component
for θl < 0. This observation indicates that the net upscale cascade at large scales only exists in the
expansion regions, owing to the strong reverse SGS flux of kinetic energy from small scales to large
scales.

Figure 20 depicts the isosurfaces of SGS flux of kinetic energy at Πl/Π
′
l = 2.0 for the filter

width l/Δx = 22 at t/τ = 3.0, for different stratification parameters Sr = 0.5, 1.0, 2.0, 3.0. The
isosurfaces are colored based on the normalized filtered velocity divergence θl/θ

′
l . We see that

the structures of isosurfaces Πl/Π
′
l = 2.0 are similar for different Sr. The positive θl/θ

′
l is mainly

distributed in the upper half of the mixing layer, while the negative θl/θ
′
l is mainly distributed in the

lower part. This is related to the expansion motions of upward moving light fluid and compression
motions of downward moving heavy fluid [12]. It is worth noting that the adjacent distribution of
red and blue is mainly due to the mixing of the fluids at small Sr [12,23]. As stratification parameter
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(a) (b)

(c) (d)

FIG. 19. Conditional average of the positive and negative components of SGS flux of kinetic energy at
t/τ = 3.0 for stratification parameters Sr = 0.5, 1.0, 2.0, 3.0: (a) 〈Π+

l | θl > 0〉m/(I − Φ ), (b) 〈Π+
l | θl <

0〉m/(I − Φ ), (c) 〈Π−
l | θl > 0〉m/(I − Φ ), and (d) 〈Π−

l | θl < 0〉m/(I − Φ ) .

increases, the large expansion regions increase slightly, owing to strong expansion motions in the
mixing layer [12].

Figure 21 displays the isosurfaces of SGS flux at Πl/Π
′
l = −0.5 for the filter width l/Δx = 22 at

t/τ = 3.0, for different stratification parameters Sr = 0.5, 1.0, 2.0, 3.0. The isosurfaces are colored
based on the normalized filtered velocity divergence θl/θ

′
l . The structures are more sparse, with

smaller length scales, as compared with the isosurfaces Πl/Π
′
l = 2.0. The observations reveal that

direct SGS flux is stronger than reverse SGS flux of kinetic energy, which is consistent with the
statistical result in Fig. 18 and the results in compressible homogeneous isotropic turbulence [34].
At Sr = 0.5, the positive and negative θl/θ

′
l are nearly equally distributed. The expansion motions

increase gradually on the isosurfaces Πl/Π
′
l = −0.5 as stratification parameter increases. We see

the larger structures of isosurfaces Πl/Π
′
l = −0.5 at Sr = 3.0, indicating that expansion motions

enhance the reverse SGS flux of kinetic energy at large Sr, which is consistent with the statistical
result in Fig. 19. In addition, we see that the both strong expansion motions and compression
motions are mainly distributed in the upper half of the mixing layer at Sr � 2.0, which is different
with isosurfaces Πl/Π

′
l = 2.0 in Fig. 20.

Figure 22 displays the average of normalized SGS flux Πl/(I − Φ ) conditioned on the normal-
ized filtered velocity divergence θl/θ

′
l at different filter widths l/Δx = 16, 24, 32, 48 for different

stratification parameters Sr = 0.5, 1.0, 2.0, 3.0 at t/τ = 3.0. In compression regions θl/θ
′
l < 0,

the conditional average of SGS flux 〈Πl/(I − Φ ) | θl/θ
′
l 〉 is little affected by the filter width

for 16 � l/Δx � 32 at Sr � 2.0 and 16 � l/Δx � 48 at Sr = 3.0, except the situation that the
magnitude of filter width and velocity divergence are large due to the lack of samples. However,
〈Πl/(I − Φ ) | θl/θ

′
l 〉 decreases as the filter width increases in expansion regions θl/θ

′
l > 0. In

addition, the conditional average of SGS flux becomes stronger in compression regions θl/θ
′
l < 0
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FIG. 20. Isosurfaces of SGS flux at Πl/Π
′
l = 2.0 for the filter width l/Δx = 22 at t/τ = 3.0, for different

stratification parameters (a) Sr = 0.5, (b) Sr = 1.0, (c) Sr = 2.0, and (d) Sr = 3.0.

and weaker in expansion regions θl/θ
′
l > 0 with the increase of Sr, owing to that compression

motions enhance direct SGS flux and the expansion motions strengthen the reverse SGS flux.
An algebraic relation for the conditional average of SGS flux 〈Πl/(I − Φ ) | θl/θ

′
l 〉 in compres-

sion regions θl/θ
′
l < 0 can be introduced:

〈Πl/(I − Φ ) | θl/θ
′
l 〉 =

{
α1(θl/θ

′
l ), Sr � 1.0,

α2(θl/θ
′
l )2

, Sr � 2.0,

where α1 = 0.6 and α2 = 0.23. It is worth noting that this relation is better for −4.0 � θl/θ
′
l < 0

and not good for −6.0 � θl/θ
′
l � −4.0 at Sr = 2.0, which seems to be a transition between θl/θ

′
l

and (θl/θ
′
l )2. The (θl/θ

′
l )-square scaling of 〈Πl/(I − Φ ) | θl/θ

′
l 〉 is proposed at high turbulent Mach

numbers Mt � 0.6 in compressible homogeneous isotropic turbulence by Wang et al. [34,53] and
observed in compressible forced anisotropic turbulence [54]. However, the turbulent Mach numbers
are only 0.192 for Sr = 2.0 and 0.214 for Sr = 3.0 at t/τ = 3.0 in our numerical simulations.

SGS kinetic energy flux is a key physical quantity in LES of turbulence. If direct SGS flux
is relatively large, the SGS model needs to provide sufficient dissipation. If reverse SGS flux is
relatively large, the SGS model also needs to provide appropriate reverse SGS flux of kinetic energy.
In addition, energy backscatter can cause simulations to become numerically unstable. The reverse
SGS flux increases with the increase of Sr, especially in expansion regions. Moreover, the reverse
SGS flux is more likely to occur in the upper half of the mixing layer, because the upward moving
bubbles are expanded. This observation puts forward higher requirements for the SGS model of
compressible RT turbulence. Some traditional models, such as Smagorinsky model based on eddy
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FIG. 21. Isosurfaces of SGS flux at Πl/Π
′
l = −0.5 for the filter width l/Δx = 22 at t/τ = 3.0, for different

stratification parameters (a) Sr = 0.5, (b) Sr = 1.0, (c) Sr = 2.0, and (d) Sr = 3.0.

viscosity hypothesis, are not suitable for computing energy backscatter. Therefore, it is necessary
to develop highly accurate SGS models to simulate compressible RT turbulence, including dy-
namic spatial gradient models (DSGM) [55], dynamic iterative approximate deconvolution models
(DIAD) [56], dynamic nonlinear algebraic models [57], and artificial-neural-network-based SGS
models [58–64].

E. Large-scale pressure-dilatation term

In the filtered equation for the average of the large-scale kinetic energy of compressible flow,
the average of the large-scale pressure-dilatation term 〈p̄∇ · ũ〉 can be decomposed to 〈p̄∇ · ū〉 and
〈 1

ρ̄

∂ p̄
∂x j

(ρu j − ρ̄ū j )〉. The former is the mean pressure dilatation, which is almost flat as a function
of filter width and affects only the large-scale dynamics in compressible RT turbulence [14,28].
The latter is the baropycnal work, transferring kinetic energy from large scales to small scales,
which decays with filter width and becomes very little at small scales [14,28]. Although they are
important in studying the physical mechanism of kinetic energy transfer, the filter variables ū j , ρu j ,
and ∇ · ū are not closed in the large eddy simulation (LES). In addition, they have been analyzed in
detail in compressible RT turbulence [14,28]. Therefore, we mainly analyze the large-scale pressure-
dilatation term p̄∇ · ũ [34], which can be directly calculated from LES of compressible turbulence.

Figure 23 shows the normalized spatial average of the large-scale pressure-dilatation term
〈Φl〉/(I − Φ ) for different stratification parameters Sr at t/τ = 2.5, 3.0, 3.5. We see that the
curves of 〈Φl〉/(I − Φ ) as functions of filter width l/Δx are similar at different Sr and times
t/τ . 〈Φl〉/(I − Φ ) is approximately constant at small scales l/Δx � 8, which is small for Sr � 1.0

104608-21



TENGFEI LUO AND JIANCHUN WANG

(a) (b)

(c) (d)

FIG. 22. Average of normalized SGS flux Πl/(I − Φ ) conditioned on the normalized filtered velocity
divergence θl/θ

′
l for different filter widths l/Δx = 16, 24, 32, 48 at t/τ = 3.0 for different stratification

parameters (a) Sr = 0.5, (b) Sr = 1.0, (c) Sr = 2.0, and (d) Sr = 3.0.

and has a relatively large negative value for Sr � 2.0. It is worth noting that the positive value of
〈Φl〉/(I − Φ ) at large scales does not indicate the conversion of kinetic energy to internal energy for
small Sr, which is due to that baropycnal work 〈 1

ρ̄

∂ p̄
∂x j

(ρu j − ρ̄ū j )〉 has a large positive value at large
scales and converts kinetic energy from large scales to small scales [14,28]. However, 〈Φl〉/(I − Φ )
has a large negative value at small scales for large Sr, indicating that the internal energy is converted
to kinetic energy at large scales [14,28]. Thus, the large-scale pressure-dilatation term is important
in LES of compressible RT turbulence at large Sr.

Figure 24 displays the time evolution of average of the large-scale pressure-dilatation term
〈Φl〉/(I − Φ ) at given filter width l/Δx = 4, 32, 128 for different stratification parameters Sr. The
changes of 〈Φl〉/(I − Φ ) at different filter width l/Δx with time are similar for a given Sr, which

(a) (b) (c)

FIG. 23. Normalized average of large-scale pressure-dilatation term 〈Φl〉/(I − Φ ) for stratification param-
eters Sr = 0.5, 1.0, 2.0, 3.0 at different times: (a) t/τ = 2.5, (b) t/τ = 3.0, and (c) t/τ = 3.5.
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(a) (b) (c)

FIG. 24. Time evolution of the normalized average of large-scale pressure-dilatation term 〈Φl〉/(I − Φ )
at given filter width l/Δx for stratification parameters Sr = 0.5, 1.0, 2.0, 3.0: (a) 〈Φl〉/(I − Φ ) at l/Δx = 4,
(b) 〈Φl〉/(I − Φ ) at l/Δx = 32 and (c) 〈Φl〉/(I − Φ ) at l/Δx = 128.

are consistent with the fact that the curves of 〈Φl〉/(I − Φ ) as functions of filter width are parallel
to each other in Fig. 23. Overall, their values decrease with the increase of Sr. 〈Φl〉 at small
scale l/Δx = 4 is approximately equal to 〈p̄∇ · ū〉, owing to the baropycnal work is close to 0 at
small scales[14,28]. Therefore, 〈Φl〉/(I − Φ ) at l/Δx = 4 is basically consistent with −Φ/(I − Φ )
shown in Fig. 12.

The root-mean-square values of large-scale pressure-dilatation term are defined as Φ ′
l =√〈(Φl − 〈Φl〉xy)2〉. We plot Φ ′

l at t/τ = 3.0 and at a given filter width l/Δx = 32 in Fig. 25.
Φ ′

l basically keeps constant at small scales l/Δx � 20 and nearly decreases in the form of power
function of the filter width at l/Δx > 50. In addition, The curves of Φ ′

l are parallel to each other.
Φ ′

l at l/Δx = 32 increases with time at t/τ < 2.0 and is almost constant at t/τ > 2.0. The values
of the r.m.s. values of pressure-dilatation at a given filter width decrease with the increase of Sr.

VI. CONCLUSIONS

In this paper, numerical simulations of 3D compressible Rayleigh-Taylor turbulence are car-
ried out for isothermal background stratification at Atwood number At = 0.5 and stratification
parameters Sr = 0.5, 1.0, 2.0, 3.0, corresponding to different flow compressibility. The effects of
stratification parameters on bubble heights are different for different definitions, which is due to
that the bubbles become bigger for large Sr. Meanwhile, the different shape of bubbles also affects
the different vertical height molecular mixing degree for different Sr, although the total molecular

(a) (b)

FIG. 25. (a) The r.m.s. values of large-scale pressure-dilatation Φ ′
l at t/τ = 3.0 and (b) the time evolution

of the r.m.s. values of large-scale pressure-dilatation at filter width l/Δx = 32 at stratification parameters Sr =
0.5, 1.0, 2.0, 3.0.
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FIG. 26. Three initial perturbation displacement z0: (a) I.C.a, 40 � k =
√

k2
x + k2

y � 64, (b) I.C.b, 40 �
k =

√
k2

x + k2
y � 64, and (c) I.C.c, 30 � k =

√
k2

x + k2
y � 45.

mixing degree averaged in the mixing layer is independent of Sr. In addition, the bubble heights also
increase rapidly at large Sr because of the conversion of internal energy to kinetic energy.

Flow compressibility plays an important role in the production of kinetic energy at large scales,
which comes from two sources: the conversion of potential energy and conversion of internal energy
through pressure-dilatation work. Whether they act as sources or sinks depend on the stratification
parameters Sr. At small Sr, kinetic energy mainly comes from potential energy, while the conversion
of internal energy to kinetic energy may play the role of source or sink at a given time. On the
contrary, internal energy is the main source at large Sr. The conversion of kinetic energy to potential
energy occurs, owing to the initial exponential density stratification. Therefore, with the increase
of Sr, the ratio of released potential energy to kinetic energy (−ΔPE/KE) decreases from 2 to a
negative value, while the ratio of released internal energy to kinetic energy (−ΔIE/KE) increases
from −1 to a value greater than 1.

The injected kinetic energy at large scales is transferred from large scales to small scales through
deformation work (SGS flux Πl ) and baropycnal work. The overall statistical properties of normal-
ized SGS flux of kinetic energy are basically independent of Sr. The reverse SGS flux increases
with increase of Sr, but it tends to appear at the larger scales and is much weaker at middle scales
than the direct SGS flux. The compression motions enhance direct SGS flux of kinetic energy from
large scales to small scales, while the expansion motions strengthen the reverse SGS flux of kinetic
energy from small scales to large scales. The average of normalized SGS flux conditioned on the
filtered velocity divergence is nearly independent of filter width for 16 � l/Δx � 32 in compression

(a) (b) (c)

FIG. 27. Time evolution of spike and bubble heights using the 5% threshold values at stratification
parameters Sr = 0.5, 2.0 and Reynolds number Re = 10000: (a) I.C.a, 40 � k =

√
k2

x + k2
y � 64, (b) I.C.b,

40 � k =
√

k2
x + k2

y � 64, and (c) I.C.c, 30 � k =
√

k2
x + k2

y � 45.
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(a) (b) (c)

FIG. 28. Time evolution of the terms in the equation of kinetic energy at stratification parameters
Sr = 0.5, 2.0 and Reynolds number Re = 10 000: (a) I.C.a, 40 � k =

√
k2

x + k2
y � 64, (b) I.C.b, 40 � k =√

k2
x + k2

y � 64, and (c) I.C.c, 30 � k =
√

k2
x + k2

y � 45.

regions, which is nearly proportional to the filtered velocity divergence θl/θ
′
l at Sr � 1.0 and the

square of θl/θ
′
l at Sr > 2.0. In addition, the net upscale cascade at large scales only exists in the

expansion regions, owing to the strong reverse SGS flux of kinetic energy. The kinetic energy
at small scales is eventually dissipated through viscosity and is converted to internal energy. The
normalized average of viscous dissipation term εl/ε is almost independent of Sr.

The normalized average values of the large-scale pressure-dilatation 〈Φl〉/(I − Φ ) are similar for
different Sr and different times t/τ . Overall, their values decrease with the increase of Sr. 〈Φl〉/(I −
Φ ) has a relatively large negative value at small scales l/Δx � 8 for large Sr, which can play an
important role in LES of compressible RT turbulence. The present results are helpful for developing
advanced LES models in compressible RT turbulence.
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APPENDIX: EFFECTS OF INITIAL PERTURBATION ON COMPRESSIBLE RT TURBULENCE

Three initial perturbation displacement fields z0 are randomly generated and shown in Fig. 26. We
numerically simulate RT turbulence at Reynolds number Re = 10 000 and stratification parameters
Sr = 0.5, 2.0 with 2562 × 512 grid points in a rectangular box of L2

r × 2Lr ([−Lr, Lr]), where Lr =
1.0. The mesh Grashoff numbers Gr	 is 5.96. The spike and bubble heights using the 5% threshold
values are shown in Fig. 27. Figure 28 presents the time evolution of each term in equation of kinetic
energy (19). It is observed that the initial perturbation displacement fields have a negligible effect
on the numerical results.
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