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Turbulence near initial conditions
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Recent observations indicate that the evolution of homogenous turbulence near its initial
conditions is characterized by nonclassical, out-of-equilibrium scaling laws for the energy
spectrum and dissipation rate. Based on these two observations, this work derives expres-
sions for the evolution of the kinetic energy, interscale energy flux, and integral length
scale, for homogenous decaying turbulence cascades near initial conditions. As expected,
the predictions differ from those of the equilibrium Kolmogorov theory. Validation is
provided using data from direct numerical simulations.
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I. INTRODUCTION

A fundamental result of turbulence research is Kolmogorov’s dissipation scaling ε = Cεu3/L,
connecting the turbulent dissipation ε with the (normalized) kinetic energy of the flow u2 and the
integral lengthscale L. Cε is an assumed constant, known as the dissipation coefficient [1,2]. The
above scaling rests on two main assumptions [3–6]. First, that the rate of energy transfer from large
to small scales can be expressed as �a ∝ u3/L (the subscript a signifies that the interscale energy
flux is evaluated at an eddy size r of order L). Second, that the cascade is approximately static,
or in “equilibrium,” i.e., that � ≈ ε [7] (note that equilibrium is not used here in the context of
the detailed balance encountered in statistical physics). Although static cascades are uncommon,
the above framework is of immense importance, as it is expected that, even in highly unsteady
regimes, equilibrium is an asymptotic state of the turbulent eddies, when wave numbers k ∼ 1/r
and the global Reynolds number tend to infinity, i.e., when r � L and Re → ∞ [6]. Indeed, in
such conditions, approximate equilibrium and its repercussion, the self-preserving expression for
the energy spectrum known as the −5/3 law, i.e., E ∝ ε2/3L5/3(kL)−5/3, have been observed [6,8].

The above two main assumptions are therefore expected to be fulfilled in unsteady cascades,
albeit in different regions of space-time: the first assumption (�a ∝ u3/L) being valid when r ≈ L
while the second (� ≈ ε) when r � L. To bridge those and derive a “dissipation law” one would
need some information on the behavior of the ratio �a/ε (evaluated at r ≈ L). Evidently, equilib-
rium will be invalid at large eddies in unsteady regimes (see also the discussions in Bos et al. [9]
and Lumley [10]), i.e., �a/ε will not be equal to unity, but will rather vary depending on the type
of flow. We may thus expect a variety of dissipation scalings (i.e., nonunity Cε) and departures from
the equilibrium self-preserving relation E ∝ ε2/3L5/3(kL)−5/3 at finite wave numbers.

For the particular case of homogenous decaying turbulence, Goto and Vassilicos [11] and
Steiros [12] showed that, when sufficient time has passed from the onset of decay, the large scales
of the cascade are out of equilibrium, but evolve in a particular self-preserving manner. This type
of evolution was termed “balanced” as it was found to be caused by a proportionality of the terms
of the spectral energy budget equation. Such balance leads to �a/ε = const., where the constant
is less than unity, indicating the nonequilibrium state of the large scales (see also Ref. [9]). This

*k.steiros@imperial.ac.uk

2469-990X/2022/7(10)/104607(14) 104607-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.7.104607&domain=pdf&date_stamp=2022-10-19
https://doi.org/10.1103/PhysRevFluids.7.104607


K. STEIROS

behavior was found to create a nonequilibrium correction to Kolmogorov’s −5/3 law [12], while
retaining the classical dissipation scaling Cε = const. [11,12]. Closer to the initial conditions this
“balance” is broken [12] and a reproducible nonconstant scaling Cε ∝ Re−m

λ , with m ≈ 1, is instead
observed [11,13–17]. The results of Goto and Vassilicos [11] suggest that this non-Kolmogorov
behavior is accompanied by a nonclassical self-preserving relation for the energy spectrum, i.e.,
E = εL3 f (kL), while the theoretical arguments of Bos and Rubinstein [13] (see also Refs. [18,19])
suggest that the slope of the energy spectrum exhibits a subdominant −7/3 deviation from the −5/3
equilibrium value [note that the equilibrium spectrum is E ∝ ε2/3L5/3(kL)−5/3].

Evidently, near its initial conditions, the finite wave numbers of a decaying turbulence cascade
achieve a particular organization, one which is not that of equilibrium, nor that of balance, pointing
towards a nonclassical, but reproducible, evolution of turbulence at these early stages. The aim of
this article is to derive analytical expressions for various flow quantities (i.e., interscale energy flux,
kinetic energy, integral lengthscale) during this early stage, and shed some further light on the flow
physics, in addition to the ones discussed in the previous works of Goto and Vassilicos [11] and
Bos and Rubinstein [13]. The structure of the article is as follows. Section II briefly summarizes the
recent discoveries on the evolution of out-of-equilibrium decaying turbulence. Section III derives a
novel expression for the large-scale energy flux when the new dissipation scaling holds. Section IV
explores the limitations of the recently proposed [11] early-decay energy spectrum expression E =
εL3 f (kL). Section V combines the above two results (energy flux and energy spectrum expressions)
to derive predictions of various flow quantities. Finally, Sec. VI provides a concluding summary.
Throughout the paper, the various conclusions and intermediate steps of the analysis are validated
using data from periodic box direct numerical simulations.

II. PRELIMINARY CONSIDERATIONS

In the ensuing analysis we consider homogenous turbulence and validate our conclusions using
datasets of forced and decaying periodic box simulations (see Appendix A for the methodology
details). The turbulence quantities that will be discussed are the kinetic energy of the cascade
K (t ) ≡ 3

2 u2 = ∫ ∞
0 E (k, t )dk, the kinetic energy dissipation rate ε(t ) = 2ν

∫ ∞
0 k2E (k, t )dk, the

interscale energy flux �, the integral lengthscale L(t ) = 3π
4

∫ ∞
0 k−1E (k, t )dk/K (t ) and the Taylor

microscale λ = u
√

15ν/ε, with L/λ 
 1 for high Reynolds cascades. In the above, E (k, t ) is the
three-dimensional energy spectrum. Given two lengthscales, we consider two Reynolds numbers,
i.e., ReL = uL/ν and Reλ = uλ/ν, with ν the kinematic viscosity. In the following, the subscript
zero (for instance, in ReL0) signifies that the quantity is either time-averaged in forced turbulence
or corresponding to its ensemble-averaged value at the instant when the forcing is dropped for
the decaying turbulence case. The superscript > (for instance, in K>) signifies that the integral
quantity is high passed, i.e., it is integrated from wave number k to infinity. Having defined the
important quantities, we now start with a brief description of some recent findings on the evolution
of out-of-equilibrium cascades.

The direct numerical simulation (DNS) of Goto and Vassilicos [20] showed that, prior to the
onset of decay, when homogenous turbulence is still steadily forced the flow quantities do not
remain constant in time, but undergo intense quasiperiodical oscillations about a mean value [see,
for instance, Ref. [21] and Fig. 9(b) in Appendix A]. It was also observed that these oscillations
occur in such a way so that, at all times, dissipation follows the “new” scaling ε ∝ u2/L2, which
can be readily shown [7] to be equivalent to Cε ∝ Re−1

λ (using the definitions of Cε = εL/u3 and the
Taylor microscale). This trend can be seen in the appropriately plotted quantities of Fig. 1(a). After
the forcing is removed and turbulence is left to decay, dissipation continues for some time to follow
the new dissipation scaling. In experimental grid turbulence, this “initial” region occurs near the grid
[see Fig. 1(b)]. At these initial transient stages, turbulence decays very abruptly and does not follow
the milder power-law evolution that is known to characterize its later, “classical” region [22–25]. It
is noteworthy that this steep “nonclassical” evolution also occurs at the early stages of eddy-damped
quasinormal Markovian (EDQNM) decaying turbulence simulations and is thus not related to the
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TURBULENCE NEAR INITIAL CONDITIONS

FIG. 1. Validation of the new dissipation scaling Cε ∝ Re−1
λ using data from the literature. (a) Forced

periodic box simulation data from Ref. [21]. Runs of different starting Re are plotted. (b) Decaying grid
turbulence data from Ref. [16]. The arrow denotes an increasing distance from the grid. Note that at the distance
corresponding to Reλ ≈ 140, the grid case shifts to Cε = const.

lack of homogeneity or anisotropy that might contaminate the early decay stages of experimental
investigations [24].

When turbulence has sufficiently departed from its initial conditions (e.g.. 10 to 15 mesh sizes
downstream of the grid in experimental turbulence or a few turnover times after the onset of decay
in DNS [11,14,16]), the dissipation scaling switches abruptly to the classical scaling, i.e., ε ∝ u3/L,
which is equivalent to Cε = const. For instance, Fig. 1(b) shows that Cε suddenly flattens at a critical
distance downstream of a turbulence grid. Recent DNS and EDQNM simulations [11,24] suggest
that, in decaying turbulence, the switching from the new to the classical dissipation scaling occurs
when the initial “bump” in the energy spectrum disappears [see also Fig. 2(b)], while the flow model
of Bos [26] suggests that the switching occurs when the initially dominant turbulence production
term in the energy budget equation has sufficiently decayed.

Following this “switching,” homogenous turbulence enters its well-studied classical regime
where decay occurs in a power-law manner [23,24] and Cε = const. Steiros [12] recently showed
that both these results occur because the cascade, far from its initial conditions, relaxes into a
“balanced” nonequilibrium state where �a/ε = const., where the constant is less than unity, and

FIG. 2. (a) Normalized interscale energy flux of the largescales �a (solid lines) and dissipation coefficient
(dashed lines) as a function of the number of turnover times since the stop of the forcing. Two DNS domain
sizes are plotted, corresponding to “high” (red) and “low” (blue) Re (see Appendix A). The gray stripe marks
the transition from the new to the classical dissipation scaling and corresponds to the neighborhood of the
maximum value of dL2/dt (see Sec. V). (b) Normalized power spectral density for the high Re case during the
time that the new dissipation scaling holds (t̂ < 3).
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where energy is “simply” transported in the cascade (see also the discussion in Bos et al. [9]). In
the decaying DNS datasets used in this study [see Fig. 2(a)] the “new” dissipation scaling persists
for approximately three turnover times (defined as t̂ = ∫ t

0 u/Ldt) from the point the forcing stops
(t = 0), after which the system shifts to Cε = const. and the “balanced” regime.

III. LARGESCALE ENERGY FLUX

Consider the conventional cascade picture where, on average, large scales supply smaller ones
with kinetic energy at a rate �a, eventually arriving to the dissipative scales where it is converted
into heat. The demarcation between large scales and the rest of the cascade is assumed to occur at
a normalized wave number κ = κa of order unity with κ = kL. Given that cascade equilibrium and
balance imply �a/ε ≈ 1 and �a/ε = const. (but less than unity), respectively, it is interesting to
inspect how the ratio �a/ε behaves when the new dissipation scaling ε = Cu2/L2 (equivalent to
Cε ∝ Re−1

λ ) holds. Note that, in the above expression, C is a constant with dimensions [m2s−1]. Its
relationship with the system’s flow quantities is investigated below.

The rate of energy transfer from large scales is conventionally expressed as

�a = Cxu3/L, (1)

where �a is evaluated at κa and Cx is a coefficient of proportionality. Figure 2(a) shows that
expression (1) holds for decaying periodic-box turbulence if κa is taken shortly after the peak in
the power spectral density [Fig. 2(b)], which is typically linked to large coherent structures. In
particular, here �a is calculated for κa ≈ 3.3, with the spectral peak being centered around κ = 2.
The same expression has been shown to hold for forced turbulence as well [11,20]. The combination
of expression (1) with the new dissipation scaling ε = Cu2/L2 then yields the relation

�a/ε = CxuL/C.

The above expression is expected to hold for both forced and early decaying turbulence, i.e.,
while the effect of the initial conditions persists. The initial conditions should therefore appear in the
above formula, i.e., in the constant C. To see that, we first consider the forced-case scenario, where
a time averaging would yield ε = �a, with the overline denoting the time-averaging operation (the
large-scale dissipation is neglected). Moreover, we expect that the cascade time lag breaks any
correlation between �a and ReL in forced turbulence [see Fig. 10(b) in Appendix A for validation
of this assumption]. Thus, time averaging of the above expression in the form Cxε/C = �a/(uL),
yields Cx/C = (uL)−1. This is approximately Cx/C ≈ uL

−1
, i.e., C ∝ uL (the forced turbulence data

of Ref. [21] confirm this simplification). Consequently, the energy flux of the large scales becomes

�a/ε = ReL

ReL0
, (2)

and using the formula �a = Cxu3/L one obtains

ε = CxuL
u2

L2
. (3)

The derived prefactor uL was empirically found in the forced turbulence DNS of Goto and Vassili-
cos [21] [see, for instance, Fig. 1(a)]. For decaying turbulence, we achieve a similar result if, instead
of time averaging, we perform ensemble averaging at time t = 0, where turbulence is still forced.
Thus, we have 〈ε〉 = 〈�a〉 at t = 0 and we obtain

ε = Cxu0L0
u2

L2
, (4)

which affirms the dependence of the constant to the initial conditions. Similarly to the forced case,
the prefactor u0L0 was found to be necessary to collapse the various decaying turbulence DNS runs
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TURBULENCE NEAR INITIAL CONDITIONS

FIG. 3. Normalized parameter G(t ) = �a/(εReL ) (solid lines) and �a/ε (dashed lines) as a function of the
number of turnover times, for decaying periodic turbulence of high (red) and low (blue) Re (see Appendix A
for numerical details) The gray stripe corresponds to neighborhood of dL2/dt = 0, which marks the change of
the dissipation scaling (see Sec. V).

in Ref. [11]. We also note that Bos and Rubinstein [13] proposed a link between the above expression
and the nonequilibrium energy spectrum initially proposed in Ref. [19]. We thus conclude that, in
close proximity to the initial conditions, a homogenous turbulence cascade (forced or decaying)
exhibits the out-of-equilibrium behavior �a/ε = uL/u0L0. To interpret the later expression, we
may consider forced turbulence and combine expression (4) with Eq. (1) to obtain

�a ∝ C0ε
3/2L2, (5)

where C0 = (νu1/2
0 L1/2

0 )−1. Any fluctuation of the left-hand side (energy flux), will cause a similar
fluctuation in ε after a cascade time lag. However, in forced periodic box turbulence ε is found to
be anticorrelated with L [see Fig. 10(a) in Appendix A] and thus, ε and L will move in opposite
directions. Equation (5) then will resist any change in �a, suggesting a regulatory motion in the
cascade that cancels fluctuations.

In summary, the interchangeable expressions ε ∝ u0L0
u2

L2 and �a = εuL/u0L0 hold until a
critical time has passed in homogenous decaying turbulence and then the system shifts to the
interchangeable expressions ε ∝ u3/L and �a ∝ ε. The effect of initial conditions on the early
decay regime is expressed through the coefficient u0L0. The above are supported by the decaying
turbulence DNS data used in this study, shown in Fig. 3. The physics behind �a ∝ ε are understood
(they express a spectral balance in the cascade, see, for instance, Ref. [12]). On the other hand, the
physics behind the �a = εuL/u0L0 are not perfectly understood, but were postulated to be linked to
a spectral imbalance in the cascade (see Bos and Rubinstein [13]) and cascade regulation, possibly
induced by the influence of the coherent structures in the flow (see Goto and Vassilicos [11]). Both
of the above arguments are supported by the current work. In the following, we use the novel
expression �a/ε = uL/u0L0 to derive predictions for several integral quantities of the turbulence
cascade, but before that, we investigate the limitations of a recently proposed energy spectrum
scaling, valid for turbulence near initial conditions. It is noted that the scaling law Cε ∝ Re−m

λ with
m = 1 is used in this study. Small deviations from that value (for instance, m = 15/14 in Ref. [13])
are not expected to change the conclusions of this article drastically.

IV. ENERGY SPECTRUM

In accordance with the Kolmogorov theory, we might expect that as Re → ∞ and kL → ∞
the cascade approaches a state of equilibrium where � ≈ ε. Indeed, the results of the authors of
Refs. [27,28] indicate that unsteady cascades continually tend to equilibrium until a wave number
k = O(λ−1), i.e., at large separations from L. At such small scales, dimensional analysis yields the
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FIG. 4. Power spectral densities of the high-Re decaying periodic box dataset (see Appendix A for
numerical details) normalized using (a) GGV’s compensation and (b) Kolmogorov’s compensation, while the
new dissipation scaling holds (t̂ < 3). Warmer colors correspond to larger decay times.

equilibrium result E ∝ ε2/3L5/3κ−5/3, with κ = kL [6]. A natural question then is how the energy
spectrum behaves at larger scales in unsteady turbulence, in between the integral lengthscale and
the equilibrium scales of the cascade.

For the case of decaying homogenous turbulence far from initial conditions, Steiros [12] recently
showed that the out-of-equilibrium scales of the cascade reach a state of “balance” where the energy
spectrum evolves as E ∝ ε2/3L5/3κ−5/3g(κ ), with g(κ ) a power-law correction which tends to unity
(equilibrium) for increasing wave numbers. Closer to the initial conditions, however, the spectral
balance and the corresponding correction are invalid. In that case, Goto and Vassilicos [11] provided
evidence that the energy spectrum instead follows the self-preserving expression E (k, t ) ∝ εL3 f (κ )
[see the reproduction of the data of Goto and Vassilicos in Fig. 2(b)]. This type of self-preservation
can also be inferred from George’s earlier work [29] [see Eqs. (27) and (33) therein], and will be
henceforth referred as George, Goto, and Vassilicos type (GGV) to distinguish it from the K41
self-similarity.

Figure 4 plots the energy spectra from the DNS dataset using a −5/3 compensation for the early
decay times when the new dissipation scaling is still valid (the out-of-equilibrium early decay effects
are expected to only slightly perturb the −5/3 slope, see Ref. [13]). The GGV compensation indeed
provides a better collapse of the spectra than the K41 normalization at the relatively small wave
numbers. However, at larger wave numbers (i.e., at the “bump” which is located at wave numbers of
order λ−1) the K41 normalization collapses the spectra better as equilibrium is being approached.
In both cases, the discrepancy in the collapse [for higher wave numbers in Fig. 4(a) and lower wave
numbers in Fig. 4(b)] is not random, but is exacerbated as decay progresses. The reason for that is
explained in Appendix B.

The above arguments lead to the cascade picture shown in Fig. 5 where the energy spectrum
follows the GGV self-similarity for κa < κ < κb, while larger normalized wave numbers are
characterized by an approximate equilibrium. We note that in both George’s [29] and Goto and
Vassilicos’ [11] works the GGV range was postulated to extend to and include the smallest,
dissipative scales of the cascade. However, Figs. 4 and 6(a) show that (i) there is a tendency
towards equilibrium at small scales (and thus the K41 inertial range scaling) and (ii) the even
smaller, dissipative eddies evolve according to the universal Kolmogorov prediction [6], i.e., the
GGV range is an out-of-equilibrium phenomenon, which is followed by the “universal” equilibrium
range at smaller scales. Still, we note that a cascade equilibrium will form at scales of negligible
size compared to that of the integral lengthscale, and thus the GGV range will extend to very large
κ = kL, i.e., κb → ∞, at high Reynolds number cascades.

We conclude this section by noting that the GGV-type self-similarity implies that the (relatively
small) dissipation in the range κa < κ < κb will be proportional to the total dissipation of the
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TURBULENCE NEAR INITIAL CONDITIONS

FIG. 5. Proposed cascade picture when the new dissipation scaling holds. Between large and small scales
lies an intermediate range of scales which exhibits two types of self-similar behaviors: first a “GGV type”
followed by a K41 type.

cascade, i.e., εab ∝ ε. This is readily demonstrated by taking the definition of dissipation for
homogenous turbulence, i.e., εab = 2νL−3

∫ κb

κa
κ2Edκ (with κ = kL), and inserting E ∝ εL3 f (κ ).

This result is validated in Fig. 6(b), where it is shown that, while the new dissipation scaling
holds, the ratio εab/ε stays relatively constant. A physical explanation for this behavior is that
the majority of εab(t ) is expected to occur at the largest wave numbers of the GGV self-similar
range, i.e., close to κb. The eddy turnover time at κ ≈ κb will thus regulate both εab and �b, the
latter being the energy flux at κb (see Fig. 5). We may thus expect that εab ∝ �b (i.e., that their
ratio is time independent). Neglecting the dissipation of the large scales (i.e., for κ < κa) we have
�b ≈ ε − εab (i.e., equilibrium at κb). The combination of the above yields εab = �ε with � a
coefficient of proportionality when the new dissipation scaling is valid. We note that the integration
boundaries κa and κb are expected to be time-invariant when the new dissipation scaling holds. For
κa, this occurs because the GGV range starts immediately after the spectral peak [see Fig. 2(b)].
The DNS data show that, while the peak diminishes with time, it always stays centered around the
same normalized wave number κ = 2. We thus expect κa to stay constant in time. At the same time,
we might expect κb (i.e., the end of the GGV range) to be roughly proportional to L/λ, as argued
above. Using the definition of the Taylor microscale, it can be readily shown that the new dissipation

FIG. 6. (a) Periodic box DNS of decaying turbulence corresponding to two Reynolds numbers (high black
and low blue, see Appendix A), plotted using Kolmogorov’s dissipation scaling. Both cases collapse as kη → 1,
with η being the Kolmogorov microscale. (b) Normalized dissipation against number of turnover times, for
periodic box decaying turbulence. The threshold κb for the calculation of εab is taken to be equal to 35 and 20
for the “high” (red line) and “low” (blue line) Reynolds number cases, respectively, which corresponds to the
point where the GGV-type self-similarity has drastically deteriorated (see Fig. 4).
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scaling Cε ∝ Re−1
λ is equivalent to L/λ = const. Thus, it is expected that κb also stays constant in

time when the new dissipation scaling holds.

V. CASCADE EVOLUTION

We now combine the previous two results (i.e., expressions for the large-scale energy flux and
energy spectrum) to calculate several flow quantities of homogenous decaying turbulence near its
initial conditions. We first integrate the Lin equation

∂E (k, t )

∂t
= −∂�(k, t )

∂k
− 2νk2E (k, t ),

from k to ∞ to obtain the scale-by-scale energy balance

∂K>

∂t
= � − ε>. (6)

The K41 equilibrium considers that the time-dependent term ∂K>

∂t is negligible, leading to the
usual equilibrium expression � ≈ ε (given that large-scale dissipation is very small). For scales
which are not of negligible size, however, ∂K>

∂t will not be close to zero in unsteady regimes and its
evolution will determine the dynamics of turbulence.

By assuming a GGV-type self-similarity for the energy spectrum, Goto and Vassilicos [11]
expanded ∂K>

∂t and drew several conclusions regarding its evolution. Extending their analysis, here
we will use the new expression �a = εuL/u0L0 to “close” the energy budget equation and obtain
predictions for several flow quantities.

Given the result of the previous section εab = �ε we may obtain an expression for the coefficient
of proportionality in the GGV energy spectrum expression E = C′εL3 f (κ ). In particular, by using
the definition of the dissipation for homogenous turbulence we have

L−3
∫ κb

κa

2νκ2C′εL3 f (κ )dκ = �ε,

and thus, the consistent expression is

E (k, t ) = �εL3

2νI2
f (κ ), (7)

where I2 = ∫ κb

κa
κ2 f (κ )dκ is a constant, as both κa and κb are taken to be time invariant when the

new dissipation scaling holds (see the last paragraph of the previous section). Integrating the above
expression, we obtain the high-pass kinetic energy for wave numbers larger than k

K>(k, t ) = �εL2

2νI2
I0(κ ), (8)

with I0(κ ) = ∫ κb

κ
f (κ )dκ . The above expression for K> assumes that κb → ∞ even though we

showed in the previous section that the dissipative scales cannot be included in the GGV range.
However, given that κb 
 1 and the drastic decrease in energy density with increasing wave
numbers, the above expression can be thought to be an excellent approximation. By differentiating
the above expression with respect to time one obtains

− I2

�

∂K>

∂t

1

ε
= CxReL0I0(κ )

3
+ κ f (κ )

4ν

dL2

dt
, (9)

where we used expression (4) for the term d (εL2)/dt and dK/dt = d ( 3
2 u2)/dt = −ε. Expres-

sion (9) is essentially identical to the one derived by Goto and Vassilicos [11]. In the following,
we combine it with the novel expression (2) to derive our predictions.
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FIG. 7. (a) 1
ν

dL2

dt and (b) Cε for “high” (red) and “low” (blue) Re cases of decaying periodic box turbulence

(the forcing stops at t = t0). The thick part of the lines marks the range where dL2

dt grows.

A. Integral lengthscale

In the energy budget Eq. (6) the time-dependent term can be substituted by expression (9),
evaluated at κ = κa. By noting that dissipation is negligible for κ < κa, ε> can be also substituted
with ε. To model the interscale energy flux �a, we utilize the novel expression (2). The result is an
expression for dL2/dt , i.e.,

1

ν

dL2

dt
= A − BReλ, (10)

where A = 4
I2

1
�

− 1
3 CxReL0I0

κa f (κa ) and B = 4I2
�κa f (κa )

√
Cx

15ReL0
are positive constants dependent on the initial

conditions (note that the definition of the Taylor microscale was also used).
Equation (10) will be valid in the early decay, while turbulence follows the new dissipation scal-

ing. After turbulence has transitioned to the classical dissipation scaling, the cascade will evolve in
a “balanced” state [11,12] where the classical dissipation scaling holds and an equation resembling
the ε equation of the k − ε can be derived (see Steiros [12]), i.e.,

dε

dt
= −C0

ε2

3
2 u2

,

where C0 can be calculated by assuming a turbulence invariant (e.g., C0 = 1.7 for Loitsyanskii’s and
C0 = 1.83 for Saffman’s invariants [12]). By inserting the classical dissipation scaling ε = Cεu3/L
(valid in the balanced decay [11,12]) to the above expression and using the definition of the Taylor
microscale λ = u

√
15ν/ε one obtains

1

ν

dL2

dt
= B′Re2

λ, (11)

with B′ = 2C2
ε

15 ( 2
3C0 − 1) a positive constant for both Saffman’s and Loitsyanskii’s invariants (note

that the current DNS datasets were found to be very close to Loitsyanskii’s invariant). By comparing
Eqs. (10) (for the early decay) and (11) (for the later, balanced decay) we may conclude that the
transition from the new to the classical dissipation scaling occurs when the slope of dL2

dt changes
sign. The above is validated in Fig. 7(a) using the two decaying periodic box datasets. In accordance
with Eq. (10), dL2

dt is a linear decreasing function of Reλ, for as long as the new dissipation scaling

holds [see Fig. 7(b)]. When the system transitions to the classical scaling (i.e., Cε = const.), dL2

dt

becomes an increasing function of Reλ, in agreement with Eq. (11). The maximum value of dL2

dt
marks the state change.
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B. Turbulence kinetic energy

By combining expressions (4) and (10) we may obtain an expression for the evolution of the
turbulent kinetic energy during decay when the new dissipation scaling holds. The elimination of
time yields (the definition of the Taylor microscale λ2 = 15νu2/ε is also used)

du2

dL2
= −u2

C1L2 − C2uL3
, (12)

where C1 = 6I2/(�ReL0Cx )−2I0

κa f (κa ) and C2 = 6I2
�κa f (κa )ReL0Cxu0L0

. It can be checked by substitution that a
solution to the above equation is

C1 − 1

uL
= C2 −

( u

C

)C1−1
, (13)

with C a positive constant of integration. The combination of Eqs. (4) and (13) yields the generalized
logistic equation [30]

du2

dt
∝ −u4

[
1 −

(u

c

)C1−1]2

, (14)

with c a positive constant. Evidently, at the initial stages of decay when the new dissipation scaling
holds, the kinetic energy will not follow a power law, in agreement with the EDQNM simulations
of Ref. [24].

C. Interscale energy flux

In the previous section we derived expression (10) for dL2/dt . Using the definition of the Taylor
microscale, it becomes

1

ν

dL2

dt
= 4

3

CxI0(κa)ReL0

κa f (κa)

(
1

�
− 1 − 1

�

ReL

ReL0

)
,

where � = �ReL0CxI0(κa)/(3I2) is a constant. By inserting the above to expression (9) and using
� to substitute I2 we obtain

1

ε

∂K>

∂t
= −�

I0(κ )

I0(κa)
− κ f (κ )

κa f (κa)

(
1 − � − ReL

ReL0

)
.

To estimate I0(κ ) = ∫ κb

κ
f (κ )dκ and κ f (κ ) we may assume that the energy spectrum follows,

approximately, a power law in the GGV self-similar range, i.e., f (κ ) ∝ κ−p. The recent results
of Ref. [13] showed that, when the new dissipation scaling holds, the spectral slope will be only
minimally perturbed from the equilibrium value p = 5/3, as also suggested by the DNS data of
Fig. 2(b). For large Reynolds numbers we expect κb → ∞, and given the power-law behavior of
f (κ ) the above expression is simplified to

1

ε

∂K>

∂t
≈ −

( κ

κa

)1−p(
1 − ReL

ReL0

)
,

which yields an asymptotic stationarity of K> as κ grows larger than κa. Noting that ∂K>

∂t = � − ε,
the above expression becomes

�

ε
≈ 1 −

( κ

κa

)1−p(
1 − ReL

ReL0

)
, (15)

for κ � κa and p close to 5/3. Equation (15) predicts equilibrium (i.e., � ≈ ε) in two cases: first
for asymptotically small scales (i.e., for κ/κa → ∞) at any time. Second, at the initial time t0 = 0
(i.e., when ReL = ReL0), at any wave number. The second case of equilibrium occurs because both
� and ε are ensemble-averaged and at t = 0 the cascade is still forced. Conservation of energy
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FIG. 8. Validation of expression (15) using the high-Re decaying turbulence DNS, for t̂ < 3. The ReL0 is
appropriately corrected, as explained in the text. The dissipation is calculated as 2νL−3

∫ ∞
κ

κ2Edκ .

dictates that a forced turbulence cascade which is free to explore all possible states, will be, on
average, in equilibrium.

However, Fig. 3 shows that for κ = κa the interscale flux is slightly smaller than the dissipation
at t0 = 0 (e.g., �a/ε = 0.92 for the high Reynolds case). This small discrepancy is probably due
to insufficient ensemble averaging in the DNS (see Ref. [11]), which naturally is not an issue in
experimental grid turbulence. The repercussion is that the Reynolds number of the DNS dataset at
t0 = 0 will not correspond to the properly averaged ReL0 value that Eq. (15) requires. Nevertheless,
we may obtain a correction for ReL(t0) in the following way: we note that, in an appropriately
averaged cascade, at the initial instant of decay (where turbulence is still forced) an ensemble-
averaged equilibrium is expected, i.e., �a = ε at ReL = ReL0 and κ = κa. Given then that at t = 0
we have �a = 0.92ε, Eq. (15) yields a “corrected” initial condition ReL0 = ReL(t0)/0.92, where
ReL(t0) is the improperly averaged Reynolds number that we measure in the DNS dataset.

Figure 8 validates expression (15) for the time when the new dissipation scaling is valid (i.e., t̂ <

3). The spectra collapse after κa ≈ 3, supporting the validly of expression (15). ReL(t0) is corrected
as described in the previous paragraph (i.e., multiplied by 1/0.92), but we note that this correction
improves the collapse only slightly. The slope was found to be close to −2/3, a further indication
that, at the early stages of decay, the energy spectra are only slightly perturbed from the equilibrium
−5/3 exponent, as predicted in Ref. [13]. It is noteworthy to mention that the standard expression
1 − �/ε, which is expected to describe the interscale energy flux during equilibrium or balanced
nonequilibrium decay [6,12], does not produce an acceptable collapse of the curves.

VI. CONCLUDING REMARKS

This work presents a theoretical and numerical investigation of homogenous turbulence near
initial conditions when the new dissipation scaling ε ∝ u0L0u2/L2 holds. This occurs when homoge-
nous turbulence is still forced, or shortly after the forcing is removed. Under these conditions, it is
shown that the large-scale energy flux �a obeys a nonequilibrium relation, while the nonequilibrium
portion of the spectrum (but for smaller scales than the integral lengthscale) evolves in a nonclassical
self-preserving manner. By combining these two expressions (i.e., for the energy flux and energy
spectrum), nonequilibrium formulas for the integral lengthscale, turbulence kinetic energy, and
energy flux across scales are derived whose predictions are supported by data from DNS of
homogenous decaying turbulence. It is hoped that these expressions will prove useful when deriving
turbulence model corrections for out-of-equilibrium effects.

After a critical time has passed from the onset of decay, turbulent dissipation transitions to its
classical scaling. The transition is quite abrupt and is shown to occur at the location where the
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FIG. 9. (a) Decay of Reλ versus number of turnover times for decaying periodic box turbulence of domain
size N = 2048 (red) and N = 1024 (blue) (from Ref. [11]). (b) Evolution of Reλ (solid line) and Cε (dashed-
dotted line) for periodic box turbulence of constant forcing versus time normalized with the mean turnover
time (from Ref. [21]). Note the quasiperiodical oscillations.

second derivative of the square of the integral lengthscale changes sign. After that point, turbulence
follows a “balanced” decay, described in the works of Refs. [11] and [12].
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APPENDIX A: VALIDATION DATASETS

For validation purposes, two datasets of periodic-box decaying turbulence are used,
the details of which are presented in Ref. [11]. For both cases, a forcing f =
[− sin(k f x) cos(k f y), cos(k f x) sin(k f y), 0] with k f = 4 is imposed on the Navier-Stokes equa-
tions and is turned off at t = t0, allowing the turbulence to decay. The first dataset concerns an
ensemble of ten simulations of N3 = 10243; the presented results are ensemble averages. The
second dataset concerns a simulation size of N3 = 20483 that contains a single run. The larger
simulation size corresponds to a larger Reynolds number. The spatial resolution kmaxη is slightly
larger than the one at t0, while kmaxη increases during decay. The decay of Reλ for the two datasets
is depicted in Fig. 9(a).

Additionally, data were retrieved from Ref. [21], for the case of steadily forced periodic-box
simulations. The flow quantities underwent quasiperiodic oscillations [see, for instance, Fig. 9(b)
where Reλ and Cε oscillate in anticorrelation, in accordance with the new dissipation scaling of
Eq. (3)]. In that case, ε and ReL were found to be slightly anticorrelated [see Fig. 10(a)], whereas
the large-scale interscale flux �a and ReL did not exhibit sings of correlation [see Fig. 10(b)].

APPENDIX B: TIME DEPENDENCE OF SPECTRA IN FIG. 4

Given the new dissipation scaling ε ∝ u2/L2, the GGV and Kolmogorov self-similarities are
connected via the identity

E

ε2/3L5/3︸ ︷︷ ︸
K41-type

∝ E

εL3︸︷︷︸
GGV-type

Re2/3
L .

The above expression makes clear that if the GGV-type normalization is valid (i.e., E/εL3 is
constant in time), the K41-type normalization cannot be constant with time, but will instead produce
curves which have a decreasing value as Reynolds number decreases, i.e., as time increases (given
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FIG. 10. (a) Dissipation versus integral lengthscale and (b) large-scale flux versus ReL , for the forced
turbulence simulation shown in Fig. 9(b).

the turbulence decay). This is indeed observed in Fig. 4(b) at low wave numbers. The opposite
occurs when the K41-type normalization is valid [see Fig. 4(a) at high wave numbers): in that case,
the GGV-type normalization leads to higher values as time progresses.
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