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Effective drift velocity from turbulent transport by vorticity
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We highlight the differing roles of vorticity and strain in the transport of coarse-grained
scalars at length scales larger than � by smaller scale (subscale) turbulence. We use the
first term in a multiscale gradient expansion due to Eyink [J. Fluid Mech. 549, 159
(2006)], which exhibits excellent correlation with the exact subscale physics when the
partitioning length � is any scale smaller than that of the spectral peak. We show that
unlike subscale strain, which acts as an anisotropic diffusion/antidiffusion tensor, subscale
vorticity’s contribution is solely a conservative advection of coarse-grained quantities by
an eddy-induced nondivergent velocity, v∗, that is proportional to the curl of vorticity.
Therefore, material (Lagrangian) advection of coarse-grained quantities is accomplished
not by the coarse-grained flow velocity, u�, but by the effective velocity, u� + v∗, the
physics of which may improve commonly used LES models.

DOI: 10.1103/PhysRevFluids.7.104601

I. INTRODUCTION

Basic considerations from fluid dynamics (e.g., [1]) indicate that the distance between particles
in a laminar flow is determined by the strain. Vorticity merely imparts a rotation on their separation
vector r without affecting its magnitude. This behavior can be seen by considering the velocity, u,
difference between particles P and Q at positions x and x + r, respectively,

uQ − uP = δu = u(x + r) − u(x) = r · ∇u
∣∣
x + · · · , (1)

where a Taylor-series expansion is justified for short distances |r| over which the flow is sufficiently
smooth. In the Lagrangian frame of P at x, the separation from Q evolves as

Dr
Dt

= δu = r · S + r · �︸ ︷︷ ︸
1
2 ω×r

, (2)

where the velocity gradient tensor, ∇u = S + �, has been decomposed into the symmetric strain
rate tensor S = [∇u + (∇u)T ]/2 and the antisymmetric vorticity tensor � = [∇u − (∇u)T ]/2 =
− 1

2εi jkωk . Here ω = ∇ × u is vorticity and εi jk is the Levi-Civita symbol. Taking an inner product
of Eq. (2) with r,

1

2

D|r|2
dt

= r · S · r, (3)
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FIG. 1. Schematic of how eddy-induced advection by a nondivergent velocity, v∗ ∼ ∇ × ω�, (blue arrow)
from Eq. (43) can arise due to subscale vorticity (red). In this example, two symmetric but counterrotating
eddies (red) are of a size smaller than that of the coarse-graining box (dashed). At length scales larger than that
of the box, �, which may represent a grid cell in a simulation or the resolution limit of an observation, these
eddies exert an eddy-induced advection with velocity v∗ proportional to the curl of vorticity, depicted by the
blue arrow at location x.

shows that the distance is determined by the strain. Vorticity in Eq. (2) acts only to rotate r without
changing its magnitude.

These considerations hinge on the critical assumption that the flow is sufficiently smooth over
separations r, which is patently invalid in a turbulent flow for r at inertial scales [2]. However, a
version of this story survives due to the property of scale locality, which justifies an expansion in
scale as we shall discuss below. The main result of this paper is Eq. (43), which is an expression for
the eddy-induced advection velocity v∗ at length scales larger than �, which may be the size of grid
cells in a simulation. The nondivergent velocity, v∗, arises from vortical motions associated with
subscale nonlinear interactions. Figure 1 captures the essential insight behind Eq. (43).

In Sec. II we discuss subscale transport, Eyink’s expansion in length scale, and the leading order
term. In Sec. III we present empirical support from (1) 3D direct numerical simulation (DNS) of a
compressible turbulent flow and (2) two-layer stacked shallow water simulation of geophysical fluid
turbulence. Section IV contains the main result, which expresses transport by subscale vorticity
as a conservative advection by an effective drift velocity v∗ proportional to the curl of vorticity.
Throughout this paper we attempt to make the presentation accessible to readers from various
backgrounds.

II. MULTISCALE DYNAMICS

To analyze the dynamics of different scales in a flow, we use the coarse-graining approach,
which has proven to be a natural and versatile framework to understand and model scale interactions
(e.g., [3,4]). The approach is standard in partial differential equations and distribution theory (e.g.,
[5,6]). It became common in large eddy simulation (LES) modeling of turbulence thanks to the
foundational works of Leonard [7] and Germano [8].

For any field a(x), a coarse-grained or (low-pass) filtered version of this field, which contains
spatial variations at scales > �, is defined in n dimensions as

a�(x) =
∫

dnr G�(x − r) a(r). (4)
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Here G� is a convolution kernel derived from a “mother” kernel G(s) (borrowing the term
from wavelet analysis [9]). G(s) is normalized,

∫
dns G(s) = 1. It is an even function such that,∫

s G(s) dns = 0, which ensures that local averaging is symmetric. G(s) also has its main support
(or variance) over a region of order unity in diameter,

∫
dn s |s|2 G(s) = O(1). The dilated version

of the kernel,

G�(r) = �−nG(r/�), (5)

inherits all those properties, except that its main support is over a region of diameter �. An example
is the Top Hat kernel in nondimensional coordinates s,

G(s) =
{

1, if |si| < 1/2 for i = 1, . . . , n,

0, otherwise,
(6)

and its dilated version in dimensional coordinates r,

G�(r) =
{
�−n, if |ri| < �/2 for i = 1, . . . , n,

0, otherwise.
(7)

The scale decomposition in Eq. (4) is essentially a partitioning of scales for a field into large
scales (��), captured by a�, and small scales (��), captured by the residual

a′
� = a − a�. (8)

In the remainder of this paper, we shall omit subscript � from variables if there is no risk for
confusion.

A. Coarse-grained transport

Consider the transport equation of the concentration (per unit volume) C(x, t ):

∂tC + ∇ · (C u) = ∇ · [ρ κ ∇φ]. (9)

Here ρ is mass density, u is the advecting flow velocity, which is possibly compressible. The scalar
field C = ρ φ, where φ is concentration per unit mass, can be either passive or active, with diffusivity
κ , which can be due to the microphysics or an effective (turbulent) diffusivity used in a simulation.
Analysis of the incompressible momentum transport follows similar reasoning as below, with C
replaced by u when ρ = (const), so we shall focus on C for simplicity.

We shall call Eq. (9) the “bare” dynamics [10,11] as it governs flow in an experiment or natural
system. In a coarse-resolution simulation, such as in implicit or explicit LES [3,12], or when taking
spatially underresolved measurements in an experiment, u and C are not resolved down to the
microphysical scales. The equation that governs the coarse-grained scalar C� is obtained by filtering
Eq. (9) to get (e.g., [13])

∂tC� + ∇ · (u� C�) = −∇ · τ � + ∇ · (ρ κ∇φ)�, (10a)

where τ � = τ �(u,C) ≡ (u C)� − u� C� (10b)

is the subscale flux of C� [8]. Equation (10) is exact, without any approximation, and describes the
scalar transport at length scales larger than �. The last term, ∇ · (ρ κ∇φ)�, was shown mathemati-
cally in [14] to have an upper bound proportional to αrms �−2 φrms at every location in the flow and
every time, where α = ρ κ . Therefore, it is guaranteed to be negligible for sufficiently large � or
sufficiently small α, which was demonstrated numerically in [15]. Therefore, ∇ · (ρ κ∇φ)� can be
dropped from Eq. (10) [but not from the bare Eq. (9)].
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An evident role of the subscale flux τ �(C, u) in Eq. (10) is accounting for the influence of
unresolved scales C′

� and u′
� on the transport of C�. Another important role of τ �(C, u) in Eq. (10)

that may not be as well appreciated is balancing u� C�, which can interact with scales < � that
are approximately within the band [�/2, �]. This is analogous to the term ρκ∇φ balancing u C
at microphysical scales ∼�κ , below which molecular diffusion dominates advection. To illustrate,
assume that at a time t the scalar and velocity fields are fully resolved, C� = C and u� = u.
Moreover, assume that scale � is sufficiently large, � � �κ , such that microphysical diffusivity
is negligible and does not damp nonlinear interactions. That small scales are absent, C′

� = 0 and
u′

� = 0, does not necessarily imply that the subscale flux τ �(C, u) = (u C)� − u C is zero unless
there is sufficient scale separation between � and the smallest scales of C and u. Therefore, the
general transport of a coarse-grained scalar C� is not described by the typical (or bare) transport
equation (9) even when C and u are resolved (C′

� = 0 and u′
� = 0), because coarse graining also

alters the representation of their nonlinear interactions, which may be at scales smaller than �.
From definition (10b), it is possible to decompose τ �(C, u) into contributions that are solely due

to resolved fields C� and u� (e.g., the Leonard term [7,16]) and other contributions that involve
unresolved fields C′

� and u′
�. In the discussion below, we use the term “subscale” to refer to any

contribution from τ �(C, u) because it arises from coarse graining the dynamics at scale �. We shall
see that the resolved fields make a dominant contribution to the subscale flux τ �(C, u) due to the
property of ultraviolet scale locality.

B. Multiscale expansion

The subscale term τ �(u,C) does not lend itself to a straightforward intuitive interpretation. To
that end, we utilize the multiscale gradient expansion of Eyink [17]. This expansion is accomplished
by decomposing a field

a(x) =
∞∑

p=0

a[p](x) (11)

into a sum of band-passed fields [17]

a[p] = a�p − a�p−1, p = 1, 2, . . . , (12a)

a[0] = a�0 (12b)

for a sequence of scales �p = λ−p�0 with the nondimensional number λ > 1, e.g., λ = 2. �0 can be
a characteristic large scale such as the domain size. A similar decomposition can be done for the
subscale flux,

τ �(u,C) =
∞∑

p=0

∞∑
q=0

τ
[p,q]
� (u,C), (13a)

with τ
[p,q]
� (u,C) = (u[p]C[q] )� − (u[p] )�(C[q] )�. (13b)

The term τ
[p,q]
� (u,C) represents the subscale contribution from scalar and velocity scales within

bands [q] and [p], respectively. Eyink [4,17] proved that the series (13) converges absolutely and
at a geometric rate under the condition that the scaling exponents of increments of δu(r) ∼ rσ u

and
δC(r) ∼ rσC

satisfy σ u > 0 and σC > 0.1

1More precisely, the condition is that σ u
p > 0 and σC

p > 0 if increments scale as 〈|δu(r)|p〉1/p ∼
urmsAp(r/�0)σ

u
p and 〈|δC(r)|p〉1/p ∼ CrmsBp(r/�0)σ

C
p for some dimensionless constants Ap and Bp, where 〈. . . 〉

is a space average. The condition has to hold for at least p = 2, with higher values of p representing more
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Exponents σ u and σC reflect the smoothness of their respective fields (see Fig. 1 in [10] and the
associated discussion), with larger values of σ implying smoother (or, heuristically, less turbulent)
fields. For example, the Kolmogorov-Obukhov theory [18–20] predicts σ u = σC = 1/3 for velocity
and passive scalar increments over scales within the inertial-convective range of a high Reynolds
number turbulent flow that is statistically homogeneous. In contrast, for low Reynolds number flows,
even if they are chaotic, we can expect σ u � 1. Ignoring intermittency corrections, the scaling
exponent σ of increments is related to the power-law scaling of a spectrum, E (k), of either u or C,
via E (k) ∼ k−2σ−1. Therefore, the condition σ > 0 corresponds to a wave number scaling of spectra
that decays faster than k−1 in wave number, which is a fairly weak condition and is expected to hold
in most flows. The conditions are the same as those required for τ �(u,C) to be ultraviolet scale-local
[4,21,22], which means that length scales δ 
 � make a negligible contribution to τ �(u,C),

|τ �(C′
δ, u′

δ )| 
 |τ �(C, u)|. (14)

Under these conditions of convergence, the leading order term in Eq. (13) is the dominant
contribution to the series, which justifies the approximation

τ �(u,C) ≈ τ
[0,0]
� (u,C) = τ �(u�,C�). (15)

This approximation corresponds to the well-known similarity (or Bardina) model [3,23]. To readers
who are perhaps less familiar with LES or coarse graining, the term

τ �(u�,C�) = (u�C�)� − (u�)�(C�)� (16)

may seem insignificant, especially considering that if one were to replace operation (. . . )� with
a Reynolds (or ensemble) average, expression (16) would be identically zero. However, operation
(. . . )� is a decomposition in length scale, which is inherently different from Reynolds averaging.
To aid in the conceptual understanding of expression (16), assume that (. . . )� is a sharp-spectral
projection in wave number space, (. . . )� = (. . . )<K . Applying (. . . )<K removes all wave numbers
larger than K = �−1 (i.e., small length scales) while keeping wave numbers smaller than K intact.
Then

τ �(u�,C�) = (u<KC<K )<K − (u<K )<K (C<K )<K (17a)

= (u<KC<K )<K − u<KC<K , (17b)

using the sharp projection property, ((. . . )<K )<K = (. . . )<K , to arrive at the last expression. The
term u<KC<K in Eq. (17b), being a quadratic product, contains wave numbers <2K . Of these, the
contribution (u<KC<K )<K from wave numbers < K is subtracted in Eq. (17b), such that τ �(u�,C�)
represents wave numbers within the band [K, 2K] or, equivalently, between length scales � and �/2.
As discussed in previous work on scale locality [4,24], this band of scales is expected to make
the dominant contribution to the subscale flux τ �(u,C) if the spectrum decays faster than k−1 in
wave number over the range of scales < �. This is essentially the condition under which Eq. (15)
was derived. Physically, a spectral decay faster than k−1 implies that dyadic wave number band
[k, 2k] has more energy than band [2k, 4k] (e.g., [22,25]), which justifies retaining the smallest
wave numbers via the leading order term in expansion (13) [22]. A spectral decay faster than k−1

is a fairly weak condition and is expected in most flows (turbulent or laminar), but may fail, for
example, if � approaches scales of the spectral peak or larger. We emphasize that filtering with
a sharp-spectral kernel in Eq. (17) is merely for conceptual understanding. Unlike the Top Hat

stringent conditions. Note that a power-law scaling of increments is not required; the condition is still satisfied
if increments decay faster than any power law with r → 0, for example exponentially.
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or Gaussian, a sharp-spectral kernel is not positive semidefinite in physical space, which violates
physical realizability conditions [26], rendering subscale energy or coarse-grained mass density
negative in physical space [4,14].

C. Relation to increments and gradients

Using the usual definition of an increment,

δ f (x; r) = f (x + r) − f (x), (18)

the subscale flux (10b) can be rewritten exactly in terms of δC and δu [4,24,27]:

τ (C, u) = 〈δC δu〉� − 〈δC〉�〈δu〉�. (19)

Equation (19) is exact and follows directly from Eq. (10b) without requiring any assumption about
scale locality or the scaling exponents, where

〈δ f 〉�(x) ≡
∫

dnr G�(−r)δ f (x; r) (20)

is a local average around x over all separations r weighted by the kernel G�. A spatially localized
(or compact) kernel effectively limits the average in Eq. (20) to separations |r| � �/2. Note that
G�(−r) = G�(r) for even kernels, such as a Gaussian or a Top Hat. Relation (19) is a key step
and reveals the connection between the subscale physics and increments (spatial variations) over
distances smaller than �. This connection is underscored by noting that expression (20) equals
(minus) the high-pass field containing scales < �,∫

dnr G�(−r) δ f (x; r) = −[ f (x) − f �(x)] = − f ′
�(x). (21)

We may also connect these considerations with the argument presented in the introduction, where
increments reflect gradients [17], including strain and vorticity of the subscale flow.

Approximating the subscale flux by the leading order term in Eq. (15) allows us to use identity
(19) for the filtered quantities,

τ (C�, u�) = 〈δC� δu�〉� − 〈δC�〉�〈δu�〉�. (22)

Since a filtered field f �(x) is smooth, we can Taylor expand its increments around x,

δ f �(x; r) = f �(x + r) − f �(x) ≈ r · ∇ f �(x) + · · · , (23)

where we neglect higher order terms. Substituting the first term in the Taylor expansion of each of
δC and δu into Eq. (22) gives in n dimensions

τ �(C, ui ) = [∂kC�][∂m(ui )�][〈rk rm〉� − 〈rk〉�〈rm〉�] (24a)

= [∂kC�][∂m(ui )�]

[
1

n
δkm �2

∫
dns G(s)|s|2

]
(24b)

= 1

n
M2 �2 ∂k (ui )� ∂kC�. (24c)

In deriving the second line, we used the symmetry of the kernel such that 〈rk〉� = 0. In the final
expression, the mother kernel’s second moment, M2 = ∫

dns G(s)|s|2, depends solely on the shape
of kernel G and, in particular, is independent of scale �. For the Top Hat in Eq. (6), M2 = n/12 in
n dimensions.
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D. Summary and interpretation

From the derivation above, we see that the final expression in Eq. (24c) represents the leading
order contribution to τ �(C, u). Therefore, to the extent expression (24c) faithfully approximates
τ �(C, u), it also represents the subscale physics. How can expression (24c), which involves only
coarse-grained (or resolved) quantities, represent subscale interactions? It is analogous to inferring
the value of a function f (x0 + h) a distance h away from x0 based solely on its local properties at x0

via a Taylor series expansion, the accuracy of which depends on smoothness properties of f . Here
the expansion is done in length scale [17] rather than in space to arrive at Eq. (24c). The analog to
smoothness is ultraviolet scale locality, which is guaranteed under weak spectral scaling conditions
[4,21,22,24].

Expression (24c) corresponds to the nonlinear (or Clark) model [28], which is a closure of the
subscale flux using a product of gradients in LES modeling and has been shown to be an excellent
(a priori) approximation of the subscales in several previous studies (e.g., [13,29,30]). Some studies
have also offered viable ideas for utilizing it in a posteriori LES [23,31,32]. Below we provide
additional a priori support from simulations of 3D compressible turbulence and two-layer stacked
shallow water simulations of geophysical fluid turbulence.

In the discussion above, we followed Eyink’s multiscale gradient expansion [17] to derive
expression (24c), which is more general than the standard derivations of the nonlinear model found
in the LES literature (e.g., [2,23,28,29,32–34]). Since Eyink’s multiscale gradient expansion is
convergent, it provides a rigorous foundation to justify neglecting higher order terms. Another
advantage of using Eyink’s expansion is in bringing to the fore the underlying physics, including the
assumptions under which the series (13) converges and, therefore, the conditions under which the
approximation may fail. Moreover, being a systematic expansion, it allows for future improvements
by retaining higher order terms or by using a closed form of those terms following the recent work
of Johnson [35,36].

Approximation (24c) provides us with physical insight into the mechanisms by which the
subscales transport C�. Below we show that subscale vorticity’s contribution is an eddy-induced drift
velocity. Prior to doing so, we discuss how well Eq. (24c) approximates τ �(u,C) from simulations.

III. EMPIRICAL SUPPORT

Approximating τ �(u,C) by expression (24c) has significant support in the LES literature from
a priori tests of the nonlinear model. It has been shown to exhibit excellent agreement when C is
taken as the momentum (e.g., [29,34]), as the temperature field in the atmospheric boundary layer
[13,30], and as a passive scalar [37,38].

In this section we present additional supporting evidence for active scalars, when C represents (1)
density in a 3D compressible turbulent flow and (2) layer thickness in a two-layer stacked shallow
water simulation of geophysical fluid turbulence. The correlation is generally better than 0.9 at
inertial scales smaller than the scale at which the spectrum peaks.

A. Compressible turbulence

We carry out a direct numerical simulation (DNS) of forced compressible turbulence in a periodic
box of nondimensional size 2π with grid resolution 10243. From the simulation data, we test how
well the expression in Eq. (24c) approximates τ �(u,C) with C replaced by the density field, ρ, which
is an active scalar. The DNS follows the configuration of [39] and solves the fully compressible
Navier-Stokes equations using our DiNuSUR code [15,39]:

∂tρ + ∂ j (ρ u j ) = 0, (25)

∂t (ρ ui ) + ∂ j (ρ ui u j ) = −∂iP + ∂ jσi j + ρ Fi, (26)

∂t (ρ E ) + ∂ j (ρ E uj ) = −∂ j (P uj ) + ∂ j
[
2 μ ui

(
Si j − 1

3 Skk δi j
)] − ∂ jq j + ρ ui Fi − RL. (27)

104601-7
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FIG. 2. Left to right: visualization of x, y, and z components, respectively, of momentum, ρ u, in physical
space from the 10243 DNS. These images are shown at an instant of time after the flow has reached steady
state. Shocks can be seen as discontinuities. The spectrum of this flow is shown in Fig. 15 in the Appendix.

Here E = |u|2/2 + e is total energy per unit mass, where e is specific internal energy, P is
thermodynamic pressure, μ is dynamic viscosity, q = −κ∇T is the heat flux with a thermal
conductivity κ and temperature T . Both dynamic viscosity and thermal conductivity are spatially
variable, where μ(x) = μ0(T (x)/T0)0.76. Thermal conductivity is set to satisfy a Prandtl number
Pr = cp μ/κ = 0.7, where cp = R γ /(γ − 1) is the specific heat with specific gas constant R and
γ = 5/3 for a monoatomic gas. We use the ideal gas equation of state, P = ρ R T . We stir the flow
using an external acceleration field Fi, and RL = ρ ui Fi represents radiation losses from internal
energy (see [39,40]). Si j = (∂ jui + ∂iu j )/2 is the symmetric rate of strain tensor and σi j is the
deviatoric (traceless) viscous stress,

σi j = 2 μ
(
Si j − 1

3 Skk δi j
)
. (28)

We solve the above equations using the pseudo-spectral method with 2/3rd dealiasing. We advance
in time using the fourth-order Runge-Kutta scheme with a variable time step.

The acceleration, F, is similar to that in [41]. In Fourier space, the acceleration is defined as

F̂i(k) = f̂ j (k) Pζ
i j (k), (29)

where f̂ is constructed from independent Ornstein-Uhlenbeck stochastic processes [42]. The projec-
tion operator

Pζ
i j (k) = ζ δi j + (1 − 2 ζ )

ki k j

|k|2 (30)

allows for controlling the ratio of solenoidal (∇ · F = 0) to dilatational (∇ × F = 0) components of
the forcing using the parameter ζ . When ζ = 0, the forcing is purely dilatational and when ζ = 1,
the forcing is purely solenoidal. For the simulation we use here, shown in Fig. 2, we set ζ = 0.01 to
simulate turbulence with high compressibility, such that dilatation, ∇ · u = 0, is significant.

Our simulated flow has significant compressibility, which can be seen from Fig. 2 and inferred
from the following three time-averaged quantities. (1) First, we use the ratio (∇ · u)rms/(∇ ×
u)rms = 5.61 in our flow, which measures compressibility at small scales. (2) We also Helmholtz
decompose the velocity field into the dilatational, ∇ × ud = 0, and solenoidal, ∇ · us = 0, compo-
nents, u = ud + us. The ratio of dilatational kinetic energy, Kd = 〈ρ ud

i ud
i /2〉, to solenoidal kinetic

energy, Ks = 〈ρ us
i us

i /2〉, yields a measure of compressibility at large scales, which in our flow is
Kd/Ks = 4.80. (3) We also calculate the turbulence Mach number, Mt = 〈|u|2〉1/2/c = 0.23, where
c = 2.18 is the mean nondimensional sound speed. Spectra of density and velocity are plotted in
Fig. 15 in the Appendix.

We use the Top Hat kernel in Eq. (7) for the coarse graining. Figure 3 shows a 2D slice from
the 3D flow at the instant of time shown in Fig. 2, comparing the exact τ �(ux, ρ) at � = 0.19635
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FIG. 3. A 2D slice at x = 0 from a snapshot of the 3D compressible turbulence DNS, comparing the (left)
exact τ �(ux, ρ ) at � = 0.19635 with (right) its approximation from Eq. (24c), τm = 1

3 M2 �2 ∂kρ ∂kux .

(domain size is 2π ) with its approximation (24c). The other two components are shown in the
Appendix Fig. 16. All indicate an excellent agreement. Figure 4 (left column) shows a more quanti-
tative evaluation of all three components of the subscale transport approximation, where we can see
that the approximation is remarkably accurate almost everywhere but underestimates τ �(ux, ρ) at
locations of strong shocks. This underestimation indicates that higher order terms in the expansion
(13) are needed for better agreement at those locations since these rare but strong discontinuities
have a significant contribution from scales < � and are an extreme test case for the approximation.
Indeed, at a location x0 of a shock, the increment scales as δu(x0; r) = u(x0 + r) − u(x0) ∼ rσ , with
σ ≈ 0 for distances r larger than the viscous shock width (see Fig. 1 in [10] and the associated
discussion). This value is at the margin of validity of the σ > 0 condition2 for Eyink’s expansion
(13) to converge.

Figure 4 (right column) shows the joint probability density function (PDF) between τ �(u, ρ) and
its approximation, with correlations exceeding 0.9. In Figs. 11–13 in the Appendix, we show similar
comparisons at other length scales. The correlation coefficient between two data sets, A and B, is
defined as

r(A, B) = 〈A B〉 − 〈A〉〈B〉
[(〈A2〉 − 〈A〉2)(〈B2〉 − 〈B〉2)]

1
2

, (31)

where 〈. . . 〉 is a space-time average over the entire domain and time after which the flow has
become statistically stationary. The joint PDF in Fig. 4 uses the so-called “z-scores” of τm and
τ �, denoted by τ ∗

m and τ ∗ (all other figures show the actual τ � and τm values). The z-score of A is
defined as

A∗ = A − 〈A〉
〈(A − 〈A〉)2〉1/2

, (32)

which helps focus on the spatio-temporal variation patterns after subtracting the mean and normal-
izing by the standard deviation. For completeness, we plot the joint PDFs of the actual τm and τ �

in Fig. 14 in the Appendix. Using z-scores in the joint PDF only affects the slope of the linear fit

2Formally, the condition σ > 0 for Eyink’s expansion to converge is not based on the scaling of an increment
δu(x; r) at a single point x. Rather, it is based on the scaling of structure functions, which are spatial averages
of increments.
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Comparison of τ �(ρ, u) with its approximation τm = 1
3 M2 �2 ∂kρ ∂ku at � = 0.19635. (a) x compo-

nent of τ and τm along a diagonal transect through the domain from a single snapshot. (b) Joint PDF between τ ∗

and τ ∗
m, where the asterisk superscript indicates z-scores, which emphasizes trends [see Eq. (32) and associated

discussion in the text]. Color bar indicates the number of grid points on a logarithmic scale, proportional to the
probability. Black line is the best linear fit, and the correlation squared, r2, quantifies the fraction of variability
in τ that is captured by τm. (c), (d) Same as (a) and (b) but for the y component. (e), (f) Same as (a) and (b) but
for the z component.

between τm and τ �. The correlation coefficient is the same whether using the actual values or their
z-scores,

r(A∗, B∗) = r(A, B). (33)

Therefore, z-scores show how well the approximation τm is able to capture the exact subscale
physics τ � up to a proportionality constant.

Figure 5 plots the correlation coefficient as a function of �, which has values exceeding 0.90 for
scales � smaller than that of the peak and decreasing to ≈0.85 for scales � = π (half the domain
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(a) (b) (c)

FIG. 5. Correlation coefficient r between τ �(ρ, u) and its approximation τm = 1
3 M2 �2 ∂kρ ∂ku as a function

of scale �. (a) x component; (b) y component; (c) z component.

size). These strong correlations justify our usage of expression (24c) as a proxy for τ �(u, ρ) to gain
insight into its underlying mechanics.

B. Geophysical fluid turbulence

We also ran simulations of the two-layer stacked shallow water equations (34) and (35) using
the ocean general circulation model MOM6 [43,44]. We simulated an ocean current [45] that is
baroclinically unstable [46,47], resulting in mesoscale eddy generation and geostrophic turbulence,
which we visualize in Fig. 7.

Details of the simulation setup can be found in [45]. The equations solved in MOM6 are

∂um

∂t
+ ( f + ω) ẑ × um = −∇(Mm + |um|2/2) − ∇ · T − δm2 CD |u2| u2, (34)

∂hm

∂t
+ ∇ · (hmum) = (3 − 2m)[γ (η3/2

x − η3/2,ref ) − ∇ · (Kh∇η3/2)]. (35)

The subscript m = 1, 2 labels the top and bottom layers, respectively, and repeated indices are
not summed in the thickness equation (35). η1/2 is the vertical position of the top layer interface

FIG. 6. Initial condition for two-layer stacked shallow water simulation following [45]. The top layer has
zonal (east-west) velocity with a Gaussian profile peaking at ≈0.35 m/s (positive to the east) while the bottom
layer is initially quiescent. Bottom topography is flat. The surface has initial height η1/2 = 0 m. The interface
height η3/2 between the two layers is initialized to the reference η3/2,ref shown to satisfy geostrophic balance.
η3/2 is allowed to evolve freely while being relaxed back to η3/2,ref at the rate γ .
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(a1) (b1) (c1)

(a2) (b2) (c2)

FIG. 7. Visualization of the relative vorticity normalized by the Coriolis paramater f at the domain’s
midlatitude from our simulation of an eastward flowing ocean current that is baroclinically unstable, resulting
in eddy generation and turbulence. The simulation solves the two-layer shallow water equations, with the top
and bottom panels showing the respective top and bottom layers. Time increases from left to right: panels (a1)
and (a2) are from day 60, (b1) and (b2) from day 93, and (c1) and (c3) from day 180. Our analysis uses model
data after day 169, when the flow has become statistically steady.

(surface height), η3/2 is the height of the interface between the two layers, um is the horizontal
velocity, ω is vertical component of relative vorticity, f = f0 + βy is the Coriolis parameter for
Earth’s rotation (i.e., the planetary vorticity), where f0 is the value of f at southernmost boundary
(y = 0) and β is the linear rate of change of f along meridional direction. T is the horizontal stress
tensor parameterized by Smagorinsky biharmonic viscosity [48], CD is the dimensionless bottom
drag coefficient and M1 = gη1/2 and M2 = M1 + (g�ρ

ρ0
)η3/2 are the pressure of the layers 1 and 2

normalized by ρ0, the density of the top layer. �ρ is the density difference between the two layers,
hm is the layer thickness, Kh is the interface height diffusivity coefficient, and γ is a rate that is
proportional to the mass flux between the layers [45]. Kh allows for the dissipation of available
potential energy [49] and γ forces the interface height between the two layers to reference zonal
mean state η3/2,ref . Here (·)x

represents a zonal average (i.e., in the east-west direction). The flow is
able to attain a statistically steady state in the absence of direct wind forcing in Eq. (34) by nudging
the layer interface η3/2 to the reference profile η3/2,ref in Eq. (35), which drives the flow by providing
a source of potential energy [45], mimicking the sloping of isopycnals by Ekman pumping in the
real ocean [47].

The flat bottom domain is 1200 km × 1600 km in horizontal extent and is discretized on a
Cartesian grid with a grid-cell size of 5 km. The total depth is 2 km and the bottom surface is flat. It
is zonally periodic and subject to free-slip walls at the northern and southern boundaries. The initial
conditions have a zonal jet 200 km wide with a Gaussian profile peaking at ≈0.35 m/s for top layer
and bottom layer is quiescent, similar to initial conditions of [45]. The interface between the two
layers is such that it satisfies geostrophic balance and is as shown in Fig. 6. The Coriolis parameter at
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(a) (b)

(c) (d)

FIG. 8. Comparing the (left) exact τ �(u, h) at � = 100 km with (right) its approximation from Eq. (24c),
τm = 1

2 M2 �2 ∂kh ∂ku, from a single snapshot. Top panels are for the zonal (eastward) component. Bottom
panels are for the meridional (northward) component. Gray bands at northern and southern boundaries are
excluded from our analysis to avoid details of the coarse graining next to boundaries.

the southernmost boundary is f0 = 6.49 × 10−5 s−1 and β = ∂y f = 2 × 10−11 m−1 s−1. The value
of γ = 1.1574 × 10−6 s−1 and Kh = 8000 m2 s−1. The simulation is run for 180 days, sufficiently
long for the geostrophic turbulence to develop as a result of baroclinic instabilities. For our results,
we analyze 100 snapshots taken every 2.5 hours starting from day 169. Spectra of u1 and h1 are
shown in Appendix Fig. 21. For our purpose, we only analyze the fields from the top layer since
the flow in the bottom layer is much weaker. Hereafter we drop the layer subscript since all results
pertain to the top layer.

We compare τ �(h, u) with its approximation 1
2�2 M2 ∂kh ∂ku in Eq. (24c). We use a graded Top

Hat kernel following our previous work analyzing oceanic flow [50,51],

G�(r) = 0.5 − 0.5 tanh[(r − �/2)/10], (36)

where � denotes the kernel width. This kernel is essentially the same as the Top Hat in Eq. (7), but
with smoothed edges to avoid discretization noise from the nonuniform grids [50] commonly used
in general circulation models. Since the model domain is flat, r is a simple Euclidean distance
as in Eq. (7), without complications due to Earth’s surface curvature [52]. Figure 8 compares
the τ �(u, h) at � = 100 km with its approximation (24c). It indicates an excellent agreement.
Figure 9 (left column) shows a more quantitative evaluation of both components of the subscale
transport approximation, where we can see that the approximation is remarkably accurate almost
everywhere. Figure 9 (right column) shows the joint PDFs between τ �(u, ρ) and its approximation
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(a) (b)

(c) (d)

FIG. 9. Comparison of τ �(h, u) with its approximation τm = 1
2 M2 �2 ∂kh ∂ku at � = 100 km. (a) Zonal

(eastward) component of τ and τm along the transect y = 802.5 km from a snapshot on day 171 of the
simulation. (b) Joint PDF for all space-time points between τ ∗ and τ ∗

m, where the asterisk superscript indicates
Z scores, which emphasizes trends [see Eq. (32) and associated discussion in the text]. Color bar indicates the
number of grid points on a logarithmic scale, proportional to the probability. Red line is the best linear fit, and
the correlation squared, r2, quantifies the fraction of variability in τ that is captured by τm.

for both components (eastward and northward directions). They show correlations exceeding 0.95.
In Figs. 18–20 in the Appendix, we show similar comparisons at other length scales of 50 km,
200 km, and 400 km. The joint PDF in Fig. 9 uses the z-scores of τ � and τm, denoted by τ ∗
and τ ∗

m and (all other figures show the actual τ � and τm values). As mentioned in Eq. (33), the
correlation coefficient between τ ∗ and τ ∗

m is the same as that between τ � and τm. We use z-scores
to focus on how well the approximation τm is able to capture the exact subscale physics τ � up to a
proportionality constant. For completeness, we plot the joint PDFs of the actual τm and τ � in Fig. 25
in the Appendix.

Noting that the spectral peak (Fig. 21) is at ≈300 km, Fig. 10 plots the correlation coefficients
between the exact τ �(u, h) and its approximation (24c) as a function of �, which has values
exceeding 0.90 for scales � smaller than the that of the spectral peak and decreasing to ≈0.75 for
scales � = 400 km. These high correlation values justify our usage of expression (24c) as a proxy
for τ �(u, h) to gain insight into its underlying mechanics at least for scales � smaller than that of the
spectral peak.

IV. TRANSPORT BY SUBSCALE VORTICITY AND STRAIN

Insight from Eq. (24c) into how the subscale physics contributes to large-scale transport can be
gleaned by using a fundamental result from [53–55], which showed in different physical systems
the importance of scalar transport by an antisymmetric skew diffusion tensor, or equivalently an
eddy-induced advective flux. We elaborate on this idea in this section, which contains the main
result of the paper in Eq. (43).
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(a) (b)

FIG. 10. Correlation coefficient r between τ �(h, u) and its approximation τm = 1
2 M2 �2 ∂kh ∂ku as a func-

tion of scale �. (a) Zonal (eastward) direction; (b) meridional (northward) direction.

Replacing τ �(u,C) in Eq. (10) by expression (24c), we have

∂tC� + ∇ · (u� C�) = ∇ · (−A �2 ∂ ju� ∂ jC�), (37)

with the constant A = M2/n. Therefore, transport of C� by the subscale flux,

R(C) = ∇ · [(−A �2∂ ju�)︸ ︷︷ ︸
Ki j

∂ jC�], (38)

resembles that of generalized transport tensor

Ki j = −A �2 ∂ jui. (39)

Note that Ki j is a function of the length scale � through both the �2 factor as well as the coarse-
grained velocity u�. For notational brevity we drop the � when writing individual components
of u�.

Physical properties of the subscale transport tensor Ki j can be illuminated by separating it
into a symmetric part K sym

i j representing subscale strain, and antisymmetric part (also called
skew-symmetric) K skew

i j representing subscale vorticity. The tensor is rewritten as

Ki j = −A �2 ∂ jui = −A �2
[

1
2 (∂ jui + ∂iu j )︸ ︷︷ ︸

Si j

+ 1
2 (∂ jui − ∂iu j )︸ ︷︷ ︸

�i j

] = K sym
i j + K skew

i j (40)

with vorticity and strain underlying kinematically distinct flow processes (e.g., [55]). Note that the
symmetric part satisfies K sym

i j = K sym
ji while the antisymmetric part satisfies K skew

i j = −K skew
ji .

Transport due to the subscale strain,

Rsym(C) = ∂i
[
K sym

i j ∂ jC�

]
, (41)

can be thought of in the local eigenframe reference of K sym
i j as anisotropic diffusion/antidiffusion of

C� in directions that are not necessarily parallel to ∇C�. Such transport3 was analyzed in detail in
[13]. Positive eigenvalues are associated with a stretching flow direction (diffusion) while negative
eigenvalues are associated with a contracting flow direction (antidiffusion). If the underlying flow
is nonsolenoidal, ∇ · u = 0, such as in our simulations presented here, then K sym

i j can also account
for isotropic diffusion or coalescence due to the subscale physics.

3The tensor K sym would have to be positive semidefinite to qualify as a diffusion tensor in the strict sense.
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To understand the role of subscale vorticity, represented by the antisymmetric (or skew-
symmetric) tensor K skew

i j , we follow the analysis of [53–55] and rewrite

Rskew(C) = ∂i
[
K skew

i j ∂ jC�

] = [
∂iK

skew
i j

]
∂ jC� = ∂ j

[
∂iK

skew
i j︸ ︷︷ ︸

−(v∗ ) j

C�

]
, (42)

where the second equality follows from the chain rule and noting that the product of K skew
i j

(antisymmetric tensor) with ∂i∂ jC� (symmetric tensor) vanishes. Similarly, the third equality follows
from ∂i∂ jK skew

i j = 0. The interpretation of v∗ is an eddy-induced velocity arising from the stirring
induced by subscale vortical motions. It is straightforward to show that

v∗ = −∇ · Kskew = 1
2 A �2 ∇ × (∇ × u�), (43)

which is the main result of this paper. An example of how it can arise in swirling flow is sketched
in Fig. 1. Note that this eddy-induced velocity is solenoidal,

∇ · v∗ = 0, (44)

due to the antisymmetry of K skew
i j .

A. Summary and interpretation

The above result is a manifestation of the equivalence between transport by (1) flux due to an
antisymmetric diffusion tensor and (2) an advective flux [53–55]. It suggests that coarse-grained
simulations such as LES may need to solve

∂tC� + ∇ · [(u� + v∗)C�] = −∇ · [J(C)] (45)

to represent the unresolved (subgrid) vorticity physics self-consistently.
J(C) in Eq. (45) can represent traditional subgrid models such as turbulent (Smagorinsky)

diffusion [56], J(C) = −αturb∇C�. The evaluation of v∗ ∼ ∇ × (∇ × u�) presents no additional
cost since the resolved velocity u� is known. Figures 17–26 in the Appendix show the joint PDFs of
v∗ and u� at different length scales �, which demonstrate that v∗ and the coarse velocity u� are often
of a comparable magnitude.

Our interpretation of v∗ as an eddy-induced velocity representing subscale vortical motions can
be justified by appealing to a relation by Johnson4 [35,36],

τ �(ui,C) = 2
∫ �

0
dδ δ (∂k (ui )δ ∂kCδ )√

�2−δ2 . (46)

Equation (46) highlights that subscale flux τ �(u,C) is due to the cumulative contribution of subscale
velocity and scalar gradients at all scales < �. Since subscale velocity gradients can be decomposed
into strain and vorticity, and since expression (24c) is the dominant contribution, we are justified in
interpreting v∗ as an eddy-induced velocity representing subscale vortical motions.

V. CONCLUSION

We have shown that unlike subscale strain, which acts as an anisotropic diffusion/antidiffusion
tensor, subscale vorticity’s contribution at leading order is solely a conservative advection of coarse-
grained scalars by an eddy-induced velocity v∗ proportional to the curl of vorticity. Our analysis
relied on the leading order term in Eyink’s multiscale gradient expansion, which coincides with the
nonlinear model and is known to be an excellent a priori representation of the subscale physics. Here
we provided additional evidence for this excellent agreement from a three-dimensional compressible

4Johnson’s relation (46) is exact only when filtering with a Gaussian kernel.
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turbulence simulation and from a two-layer shallow water model of geophysical turbulence. Since
the convergence of Eyink’s expansion and, therefore, the dominance of the leading order term relies
on ultraviolet scale locality, our results and conclusions may not hold at length scales larger than
those of the spectral peak.

While the focus of this paper was on the transport of scalars, a similar analysis may also
apply to the transport of momentum. Indeed, this is straightforward for incompressible flows
where approximation (24c) has been shown to work very well for momentum transport [28,29,34].
Johnson’s recent work on the energy cascade [36] seems to indicate that approximation (24c) may
be deficient in its magnitude (by a factor ≈ 1

2 ) compared to the true momentum flux. Yet, since
the two exhibit excellent spatiotemporal correlation as was shown in [29,34], a simple rescaling of
expression (24c) by a space-time independent coefficient (possibly ≈2) would suffice to match the
true momentum flux. Once approximation (24c) (possibly ×2) is accepted as representative of the
subscale flux, the same argument we presented here follows through for momentum after replacing
C with u in Eq. (24c). In flows with significant density variations such as compressible turbulence,
the subscale flux of momentum has a somewhat different functional form than in Eq. (10b) due to
the density-weighted filtering required to satisfy the inviscid criterion [14,57]. Yet we conjecture
that a result similar to what we derived here is still possible for subscale momentum flux in
variable-density flows, which was shown to be scale-local in [24].
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(a) (b)

(c) (d)

(e) (f)

FIG. 11. Same as in Fig. 4 for � = 0.3927.
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(a) (b)

(c) (d)

(e) (f)

FIG. 12. Same as Fig. 4 for � = 0.7854.
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(a) (b)

(d)

(e) (f)

(c)

FIG. 13. Same as Fig. 4 for � = 1.5708.

APPENDIX

1. Additional supporting material from the compressible turbulence simulation

2. Additional supporting material from the shallow water simulation
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 14. Similar to the joint PDFs of the z-scores in Fig. 4, here we show the joint PDFs of the actual
τ �(ρ, u) and its approximation τm = 1

3 M2�
2∂kρ ∂ku. Top row (a)–(c) shows the joint PDFs between τ and τm at

at � = 0.19635. Second row (d)–(f) is for � = 0.3927. Third row (g)–(i) is for � = 0.7854. Bottom row (j)–(l)
is for � = 1.5708. Left, middle, and right columns show the x, y, and z components, respectively.
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FIG. 15. Spectra of (left) velocity, Eu(k), and (right) density, Eρ (k). Both decay with wave number k
sufficiently faster than the k−1 required for the multiscale gradient expansion to converge. Here Eu(k) =∑

||k|−k|<0.5

1
2 |û(k)|2 and Eρ (k) = ∑

||k|−k|<0.5
|ρ̂(k)|2, where û(k) and ρ̂(k) are Fourier coefficients.

FIG. 16. Same as in Fig. 3, comparing the (left column) exact τ �(ρ, u) with (right column) its approxima-
tion for the (top row) y components and (bottom row) z components.

104601-22



EFFECTIVE DRIFT VELOCITY FROM TURBULENT …

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 17. Joint PDFs of v∗ and u. Color bar indicates the number of grid points on a logarithmic scale,
proportional to the probability. Slope of best linear fit and correlation squared, r2, are shown in the top left
of each panel. The best linear fits are omitted in the the plots due to small slopes. The rms values are shown
in the bottom right of each panel. Top row (a)–(c) shows the joint PDFs between v∗ and u at at � = 0.19635.
Second row (d)–(f) is for � = 0.3927. Third row (g)–(i) is for � = 0.7854. Bottom row (j)–(l) is for � = 1.5708.
Left, middle, and right columns show the x, y, and z components, respectively. This figure highlights that the
magnitudes of v∗ and the coarse velocity u� are often comparable.
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(a) (b)

(d)(c)

FIG. 18. Same as in Fig. 9 for � = 50 km.

(a) (b)

(d)(c)

FIG. 19. Same as in Fig. 9 for � = 200 km.
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(a) (b)

(d)(c)

FIG. 20. Same as in Fig. 9 for � = 400 km.

(a) (b)

FIG. 21. Spectra of (left) u and (right) h computed from the two-layer stacked shallow water simulation.
These are filtering spectra, calculated by filtering at successive length scales as described in [58,59].
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(a) (b)

(c) (d)

FIG. 22. Same as in Fig. 8 for � = 50 km.

(a) (b)

(c) (d)

FIG. 23. Same as in Fig. 8 for � = 200 km.
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(a) (b)

(c) (d)

FIG. 24. Same as in Fig. 8 for � = 400 km.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

FIG. 25. Similar to the joint PDFs of the z-scores in Fig. 9, here we show the joint PDFs of the actual
τ �(h, u) and its approximation τm = 1

2 M2�
2∂kh ∂ku, without normalization. Top and bottom panels show zonal

(eastward) and meridional (northward) components, respectively. (a1) and (a2) are for � = 50 km, (b1) and
(b2) for 100 km, (c1) and (c2) for 200 km, (d1) and (d2) for 400 km.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

FIG. 26. Joint probability density of v∗ and u. The colorbars are in log scale. The top panels show zonal
(eastward) component and the bottom panels show meridional (northward) component. (a1) and (a2) are for
� = 50 km, (b1) and (b2) are for � = 100 km, (c1) and (c2) are for � = 200 km, (d1) and (d2) are for � =
400 km. The red lines are linear regression fits of which the slope and goodness of fit(r2) are in the text in
each panel. The rms values are shown in the bottom right of each panel. This figure highlights that v∗ is often
comparable in magnitude relative to the coarse velocity u�.
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