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Using a squeegee on a layer of viscous or viscoplastic fluid
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We use lubrication theory to study the bow wave ahead of a squeegee as it moves steadily
over a horizontal layer of fluid. If the squeegee is infinitely long with a small gap at its
base then the motion is two dimensional and we obtain an analytic prediction for the
flow thickness. For a relatively long straight squeegee on a layer of viscous fluid with
no gap, we deploy a two-dimensional approximation, which enables the flow thickness in
the bow wave to be determined relative to the thickness at the squeegee. The analysis is
completed by balancing the flux into the bow wave with the transverse flux perpendicular to
the squeegee associated with hydrostatic pressure gradients. The simple method is adapted
to squeegees that are angled to the direction of translation. For a layer of viscoplastic fluid
that has a relatively high yield stress, the bow wave is quasiplugged and this observation
enables a different flux balance to be used to determine the flow thickness. The predictions
are compared favorably to numerical results.
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I. INTRODUCTION

Flows that are driven predominantly by gravity and resisted by viscous stresses, known as
“viscous gravity currents,” occur in many industrial and environmental settings. Often these flows
interact with obstructions. Examples include the deflection of lava flows by barriers [1] and the
manufacture of electronic components through screen printing in which a blade or squeegee is used
to evenly distribute material over a surface [2–4].

In this paper, we study the steady inertialess interaction between a moving squeegee and a thin
layer of viscous fluid. Provided the squeegee is relatively long, the flow is quasi-two-dimensional
enabling the flow thickness in the bow wave to be determined up to a slowly varying function of
the lateral position. Simple flux-balance arguments are deployed to obtain this function. The ideas
are relevant to the interesting problem of screen printing. In addition, they provide insight and a
novel pedagogical approach to understanding the interaction of inertialess flows with obstructions.
Indeed, our uncomplicated analysis is straightforwardly adapted to squeegees of arbitrary shape and
to the case of a layer of viscoplastic fluid.

The theory can be extended to a wide range of applications in other areas of continuum
mechanics. These include flows in porous media, settings in which surface tension plays a dominant
role, and flows down slopes; see, e.g., Ref. [5]. Another possible extension is to the transient flow
that arises when a squeegee bulldozes a mound of fluid, which has been investigated for granular
material [6].
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FIG. 1. (a) In the reference frame of a squeegee of length 2L, a plane covered with viscous fluid moves
from right to left with speed U . Fluid builds up in a bow wave ahead of the squeegee and is diverted laterally
around the ends by the pressure gradient in the y direction. (b) The squeegee is now inclined at angle α to the
y axis and flow in the bow wave to the trailing end of the squeegee is primarily due to the component U sin α

of the plane’s velocity parallel to the squeegee.

The paper is structured as follows. In Sec. II, the technique is presented for the case of straight and
angled squeegees and a layer of Newtonian viscous fluid. We use a shallow approximation. We allow
slip at the squeegee boundary (as is required for lubrication theory) and neglect Moffat eddies in
the corner, but note that these features could be reintroduced with additional effort [7,8]. In Sec. III,
we show that the same ideas, applied with some key differences, furnish the flow thickness in the
squeegee bow wave for a general viscoplastic fluid with a relatively high yield stress. The theory is
compared to some numerical computations. Applications of such non-Newtonian rheologies might
include the bulldozing of mud or slurry, or the scraping of sediments from subducting oceanic
lithosphere to form a deep accretionary wedge [9,10]. We conclude in Sec. IV.

II. NEWTONIAN FLUID

In this section, we describe the problem of squeegeeing a layer of viscous fluid on a horizontal
plane or of using a snowplow to clear up a large pool of molasses [11]. The emphasis here is on
showing how simple flux arguments can be used to determine the structure of the bow wave.

Consider a horizontal plane z = 0 covered with a thin layer of viscous fluid of uniform initial
thickness h∞. We model the squeegee (window-wiper blade or scraper) as a thin vertical rigid planar
barrier of some horizontal extent 2L � h∞ in the y direction and of large vertical extent (Fig. 1).
The squeegee is moved slowly and horizontally at a constant speed U perpendicular to its plane,
sweeping up the fluid ahead of it.

For convenience, we work in the reference frame of the squeegee so that the plane moves with
speed −U . Neglecting surface tension and assuming lubrication theory, the evolution of the film
thickness h(x, y, t ) due to gravitational flattening is given by

∂h

∂t
− U

∂h

∂x
= ρg

3μ
∇ · (h3∇h), (1)

where ∇ = (∂/∂x, ∂/∂y). By balancing the second and third terms, we see that the natural hori-
zontal length scale for the bow wave ahead of the squeegee is � = ρgh3

∞/μU . The usual conditions
h∞ � � and ρUh2

∞/μ� � 1 for lubrication theory to hold reduce to U � ρgh2
∞/μ and U 2 � gh∞,

respectively. Within an O(h) distance of the squeegee the lubrication description breaks down and
the local flow resembles the classic corner-flow (or “paint scraper”) problem; see, e.g., Ref. [12], p.
224 ff. Here, however, we are concerned with the flow on the larger O(�) length scales.

We make the problem dimensionless by scaling h by h∞, all horizontal lengths by �, and time by
�/U . The dimensionless equations are then

∂h

∂t
− ∂h

∂x
= 1

3
∇ · (h3∇h), (2)
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FIG. 2. Dimensionless profile (4) of the bow wave ahead of the squeegee. The profile extends further to the
left if the height h0 at the squeegee is greater. The dimensional scales for h and X are h∞ and � = ρgh3

∞/μU
and it is assumed that h∞/� � 1 so that lubrication theory is valid except very close to the squeegee.

where h → 1 as x → ∞, the squeegee is at x = 0 for −L � y � L, and the dimensionless squeegee
half length is L = μUL/ρgh3

∞.

A. Infinitely long squeegee

It is instructive first to consider the limit L → ∞ of an infinitely long squeegee with a small gap
of height ε � 1 beneath it. The small gap allows for a steady state h(x) to be established in which a
sufficiently large bow wave has built up ahead of the squeegee that the hydrostatic pressure forces a
unit leakage flux through the gap to balance that arriving from x = ∞. The equation for this steady
state,

−dh

dx
= 1

3

d

dx

(
h3 dh

dx

)
, (3)

can readily be integrated to obtain first 3(1 − h) = h3(dh/dx) and then the implicit equation

x = X (h0) − X (h), where X (h) ≡ 1

3

∫
h3dh

h − 1
= 1

3

{
1
3 h3 + 1

2 h2 + h + ln(h − 1)
}
, (4)

see Fig. 2, where h0 is whatever height is needed at x = 0 to drive the leakage flux. For a rectangular
gap of height and width O(ε), scaling shows that h0 is O(ε−1); for a gap of minimum height ε formed
by a semicircular lower boundary of radius δ � ε, a standard lubrication-theory calculation shows
that h0 is O(δ1/2/ε5/2). The main point is that h0 needs to be �1 if ε � 1. The shape (4) of this bow
wave is analogous to the flat pond in Hinton et al. [5], Eq. (45).

The evolution of h(x, t ) to the steady state can be evaluated by a simple flux argument: we
assume, to be verified, that the accumulating bow wave has a quasisteady shape given by (4) with
h0 replaced by h(0, t ). Under this assumption, the area of excess fluid accumulated ahead of the
squeegee is

A(t ) =
∫ ∞

0
(h − 1) dx =

∫ h(0,t )

1
(h − 1)

dX

dh
dh = 1

12

{
h(0, t )4 − 1

}
. (5)

The leakage flux qL under the squeegee is proportional to the hydrostatic pressure h at leading order
and is equal to unity when h = h0 in steady state. Hence qL = h(0, t )/h0. Unit flux is arriving from
x = ∞ by advection and thus dA/dt = 1 − h(0, t )/h0 by mass conservation. Substituting from (5),
we obtain an implicit equation,

t = 1

3

∫ h(0,t )

1

h3 dh

1 − h/h0
, (6)
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for h(0, t ). We note that, for 1 � h(0, t ) � h0, Eqs. (6) and (4) give h(0, t ) ∼ (12t )1/4 and
X (h(0, t )) ∼ (192t )3/4, from which it can be verified by scaling that the assumption of a quasisteady
shape is justified. Conservation of mass shows that the film thickness left behind the squeegee is
given by qL(t ), which increases slowly to 1 as the bow wave builds up to steady state.

B. Long finite squeegee

We now return to the original problem of a long but finite squeegee, 1 � L < ∞, with no gap
beneath it (ε = 0). For a steady state h(x, y) to be established ahead of the squeegee, the flux arriving
at the squeegee from x = ∞ must be diverted sideways around the ends at y = ±L.

The solution can again be obtained by a simple flux argument and an appropriate approximation
for the shape of the bow wave. There is no flux through the squeegee and no flux across y = 0 by
symmetry. In steady state the flux from x = ∞ in 0 < y < Y due to the translation must therefore
be equal to the flux across y = Y due to the lateral pressure gradient ∂h/∂y. Thus

y =
∫ ∞

0
− 1

3 h3(∂h/∂y) dx = − 1

12

d

dy

∫ ∞

0
(h4 − 1) dx. (7)

We now assume, to be verified, that the shape of the bow wave is given by (4) with the height at
the squeegee h0(y) varying slowly along the length of the squeegee in such a way that (7) is satisfied.
We also assume that the diverted flux goes around the ends of the squeegee close to y = ±L so that,
at leading order, h0(±L) is very much smaller than the interior values. Equation (7) can be integrated
with respect to y and the x integral evaluated exactly using dx = (dX/dh)dh to find

6(L2 − y2) = 1
21 h7

0 + O
(
h6

0

)
. (8)

To leading order for L � 1, we deduce that

h0(y) ∼ {126(L2 − y2)}1/7, (9)

except near y = ±L, and the assumed shape of the bow wave is then given by (4) and (9). This
theoretical prediction compares very well with a numerical solution to the full problem in Figs. 3(a)
and 3(b).

The assumption that the shape of the bow wave is given by (4) at leading order is valid if
h(x, y) varies more rapidly in the x direction than the y direction. Since for L � 1 we have
X (h0) ∼ 1

9 {126(L2 − y2)}3/7 = O(L6/7) and L6/7 � L, this assumption is asymptotically valid
along most of the squeegee. However, it fails sufficiently close to the ends, at L ∓ y = O(L3/4),
where flow predominantly parallel to the squeegee gives way to a fully two-dimensional flow around
the end.

C. Snowplow problem

Finally, we consider the snowplow problem or, equivalently, a squeegee whose blade is held at
an angle α (0 < α < π/2) to the y axis [see Fig. 1(b)]. For convenience, we take the origin to be at
the leading end of the squeegee so that the trailing end is at (−2L sin α, 2L cos α). As should be
intuitively obvious from experience, the tilting of the squeegee makes it easier to push the fluid to
one side and reduces the magnitude of the bow wave.

Once again, a simple flux argument and approximation of the bow-wave profile yields the answer.
The unit flux arriving from x = ∞ at the squeegee must be diverted to run along the squeegee until it
reaches the trailing end. With the leading end at the origin, the total flux diverted along the squeegee
at position y in the bow wave is simply Q(y) = y (0 < y < 2L cos α).

To analyze the structure of the bow wave, we resolve the velocity of the plane into components
sin α parallel to the squeegee and cos α perpendicular to the squeegee. We assume, to be verified,
that the height of the bow wave varies more rapidly in the direction perpendicular to the squeegee
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FIG. 3. Comparison between the numerical results (solid lines) and the leading-order theoretical predic-
tions (dashed lines) for the dimensionless flow thickness with a straight squeegee. (a),(b) Along the center line
(y = 0) and at the squeegee (x = 0) for a Newtonian fluid with L = 10, 20 [Eqs. (4) and (9)]. (c),(d) Along
the center line and at the squeegee for a Bingham fluid with B = 10, 25 and L = 10 [Eqs. (17) and (22)]. The
green lines show the numerical and theoretical predictions for the yield surface for B = 10. In all cases the
dimensional vertical and horizontal scales differ by a factor h∞/� � 1.

than in the parallel direction. Its shape is thus given by

− cos α
∂h

∂x′ = 1

3

∂

∂x′
(

h3 ∂h

∂x′
)
, (10)

where x′ is a coordinate perpendicular to the squeegee and the factor cos α is the perpendicular
component of the plane’s velocity. The solution is x′ cos α = X (h0) − X (h), where h0(y) varies
slowly along the squeegee. The extra flux parallel to the squeegee in the bow wave is dominated by
the parallel component of advection with speed sin α and is thus equal to

sin α

∫ ∞

0
(h − 1) dx′ = 1

12 tan α
(
h4

0 − 1
)
. (11)

Equating this to the diverted flux Q(y), we find that the height of the bow wave at the squeegee is
given by

h0(y) = {1 + 12 cot α y}1/4 (12)

for 0 < y < 2L cos α. As anticipated, tilting reduces the magnitude and width of the bow wave,
from O(L2/7) to O(L1/4) and from O(L6/7) to O(L3/4), respectively. Since L3/4 � L, the assumed
shape of the bow wave is asymptotically valid along most of the squeegee. Sufficiently close to
the trailing end, 2L cos α − y = O(L3/4), the approximations fail and there is again a fully two-
dimensional flow around the end [see Fig. 4(a)]. Close to the leading end, where h0 = O(1), the
flow is also fully two dimensional.
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FIG. 4. Steady flow thickness from numerical solutions of (2) for Newtonian flow around (a) a squeegee
at angle α = π/3 and (b) a parabolic squeegee. In both cases L = 100. Except near the ends, the solution is
described asymptotically by the theory in Sec. II C.

Equation (12) also holds for a curved squeegee if the local angle α(y) between the squeegee
and the y axis satisfies 0 < α(y) < π/2; separate analysis would be needed for the singular cases
α = 0 (cot α = ∞) and α = π/2 (cos α = 0) which occur, for example, at the front and sides of a
semicircular shape. As another example, since cot α = dy/dx, Eq. (12) predicts a constant height
bow wave for a parabolic squeegee [see Fig. 4(b)], which is thus optimal for avoiding overtopping.

Another variation asks when leakage beneath a finite squeegee is significant compared to the flux
diverted sideways. There is also an interesting question of how the ridge of fluid diverted around
the ends of the squeegee starts to spread to fill the gap left behind the squeegee. (See [13] for the
downslope case.)

III. BINGHAM FLUID

In this section, we consider squeegeeing a layer of viscoplastic fluid. We illustrate the analysis
with a Bingham fluid, which is the simplest constitutive model for such a fluid: for stresses below
a certain yield stress τY , the material behaves rigidly; for stresses larger than τY , the material flows
with constant viscosity μ in response to the excess stress. We present flux-balance arguments to
describe the bow wave in the case that the material has a relatively large yield stress. While the
main assumption of the analysis, that gradients in thickness are much larger perpendicular to than
parallel to the squeegee, is the same as in the Newtonian case, the yield-stress condition requires a
different method of solution.

For gravity-driven flow in a thin layer, the pressure is hydrostatic and the dimensional shear
stress, ρg(h − z)∇h, varies linearly from zero at the free surface (z = h) to a maximum at the base
(z = 0) [14,15]. Hence, if the shear stress at z = 0 is less than the yield stress τY , then the entire
layer is rigid and static. Conversely, if the stress at z = 0 exceeds the yield stress, then there is a
positive height

Z (x, y, t ) = h − τY

ρg|∇h| , (13)

where the shear stress equals the yield stress, and this height divides the flow into two regions: in the
lower region 0 < z < Z the material is clearly yielded and flows viscously with a parabolic velocity
profile whose gradient vanishes at the (apparent) yield surface z = Z; in the upper region Z < z < h
the material moves (apparently) rigidly in plug flow. (Detailed asymptotic analysis of thin-layer flow
[14] shows that the upper region is actually weakly yielded due to horizontal variations in velocity
and the attendant stresses; the upper region is termed a “pseudoplug” and z = Z a “fake” yield
surface. These higher-order subtleties do not affect the leading-order analysis below.) The evolution
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FIG. 5. Steady flow thickness around a straight squeegee of half length L = 10 calculated numerically.
(a) Newtonian fluid, B = 0. (b) Bingham fluid with B = 10. (c) The height of the yield surface for B = 10.
Note the different color scales in each panel.

equation for the film thickness h(x, y, t ) is obtained by vertical integration of the velocity profile
across both regions followed by use of mass conservation as usual [15].

We retain the moving coordinate system of Sec. II. We scale thicknesses with h∞, horizontal
lengths by � = ρgh3

∞/(μU ), and time by �/U , as in the Newtonian case, in order to obtain the
dimensionless evolution equation

∂h

∂t
− ∂h

∂x
= 1

3
∇ ·

[
1

2
Z2(3h − Z )∇h

]
, (14)

where

Z = max
{

h − B

|∇h| , 0
}
, B = τY h∞

μU
. (15)

The Bingham number B represents the magnitude of the yield stress relative to viscous stresses
and the evolution equation (14) reduces to the Newtonian case (2) when B = 0 and Z = h. The
boundary conditions are h → 1 as x → ∞ and no flux into the squeegee at x = 0, −L � y � L,
where L = μUL/(ρgh3

∞) = L/�, as in the Newtonian case.
The steady version of (14) was solved numerically using the finite-element package of MATLAB’s

Partial Differential Equation toolbox. A rectangular domain was used with boundary condition
h = 1 on the right-hand edge and ∂h/∂n = 0 on the other three edges. At the squeegee, a no-flux
boundary condition was applied. The Bingham constitutive law was regularized following the
Appendix in [15].

Results for the flow thickness for a straight squeegee of half length L = 10 are shown in Fig. 5(a)
for a Newtonian fluid and in Fig. 5(b) for a Bingham fluid with B = 10. Note the different thickness
scales in the panels. The Bingham fluid accumulates in a much deeper, but more localized, bow
wave. Figure 5(c) shows the height of the yield surface corresponding to Fig. 5(b). The bow wave is
defined by the finite region where Z > 0, and outside this region Z = 0. Figure 5 also demonstrates
that Z � h so that the fluid is in plug flow over most of its thickness, even in the bow wave. These
observations are borne out by the theory in the following subsections.

A. Infinitely long squeegee

We begin the analysis of a Bingham fluid by considering the steady flow upstream of an infinitely
long squeegee with a small gap underneath it. A large bow wave builds upstream of the squeegee.
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The equation for the steady state is

1 = h + 1

6
Z2(3h − Z )

dh

dx
, where Z = max

{
h + B

dh/dx
, 0

}
, (16)

since dh/dx < 0. This is a nonlinear first-order ordinary differential equation for h(x), which can
be integrated numerically for given B. In contrast to the Newtonian case, the bow wave of Bingham
fluid has finite extent and there is a qualitative change in behavior at its edge [e.g., Fig. 5(c)]. Within
the bow wave, the fluid is yielded in a thin layer 0 < z < Z and h > 1; upstream of the bow wave,
the fluid is completely unyielded Z = 0 and h = 1.

In the regime B � 1 of a large yield stress, we anticipate that the flow in the bow wave is plugged
over most of its thickness, which corresponds to 0 < Z � h. Under this assumption, Eq. (16 b)
becomes 0 = h + B

dh/dx at leading order, which furnishes the solution

h(x) = [
h2

0 − 2Bx
]1/2

. (17)

The height h0 at the squeegee is whatever is needed to drive unit leakage flux through the small gap
and the bow wave (17) has a finite extent X (h0) = (h2

0 − 1)/2B. If Z � h, Eq. (16) also provides
the approximation

Z2 = 2(h − 1)/B, (18)

which confirms the consistency of the assumption that Z � h for B � 1. The corrections to
Eqs. (17) and (18) are O(Z/h) in relative magnitude. [We note in passing that the sudden transition
from Z = 0 in x > X to Z > 0 in x < X suggests there is a local nonuniformity in the thin-layer
asymptotic analysis of [14], which might be resolved over a short transition region of dimensional
width O(h∞). This small region would have no effect on the large scale flow.]

B. Long finite squeegee

In this section, we consider a long finite squeegee with no gap beneath it and a fluid with
relatively large yield stress (B � 1) so that the steady flow in the bow wave is again quasiplugged
(i.e., plugged over most of its thickness). As in Sec. II B, we assume (condition to be determined
a posteriori) that the thickness of the bow wave varies more rapidly in the x direction than the y
direction. Hence the leading-order profile is given by (17) with the height h0(y) at the squeegee
varying slowly along its length. We balance the flux into the bow wave from x = ∞ due to
translation with the outward flux due to the lateral pressure gradient:

y =
∫ [h0(y)2−1]/2B

0
−1

6
Z2(3h − Z )

∂h

∂y
dx. (19)

At this point, we need to eliminate the yield height Z and the derivation diverges from the Newtonian
case. We substitute for Z2(3h − Z ) from (16) (which holds provided variations in the x direction
dominate those in the y direction) and use (17) to evaluate the derivatives. As a result, the flux
balance (19) becomes

y = −h0
dh0

dy

∫ h0(y)

1

h(h − 1)

B2
dh. (20)

Carrying out successive integrations furnishes

B2

2
(L2 − y2) = h5

0

15
− h4

0

8
+ h2

0

12
(21)

and, to leading order for BL � 1, we deduce that

h0(y) ∼
(

15
2

)1/5
B2/5(L2 − y2)1/5, X (h0) ∼ 1

2

(
15
2

)2/5
B−1/5(L2 − y2)2/5. (22)
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FIG. 6. (L, B)-parameter space. The dashed line represents parameters for which the Newtonian and
Bingham theories predict the same maximum thickness (B ∼ L−2/7). The red crosses and blue circles represent
where the maximum thickness from the numerical results has a 20% difference from the viscoplastic and
Newtonian theory, respectively.

The flow thickness in the bow wave is given by (17) and (22 a), and Z ≈ [2(h − 1)/B]1/2 as before.
These predictions for the flow thickness and the yield height compare well to the numerical results
along the center line and at the squeegee in Figs. 3(c) and 3(d), respectively. As in the Newtonian
case, the asymptotic prediction breaks down near the ends of the squeegee.

To determine the condition that variations in the x direction dominate those in the y direction,
we use (22) to estimate ∂h/∂x ∼ B3/5L−2/5 and ∂h/∂y ∼ B2/5L−3/5. Hence we require L � B−1,
which is the same as the condition for h0 � 1. Note that we have been assuming B � 1 so that
Z � h throughout the flow, so this condition is weaker than L � 1.

In the bulk of the bow wave, we have h ∼ B2/5L2/5 and Z ∼ B−3/10L1/5. Hence Z � h provided
that B � L−2/7. If now L � 1 and 1 � B � L−2/7, then the above solution applies to the bulk
of the bow wave, but there will be a region around its edge where the flow is almost completely
yielded rather than almost completely plugged; if L � 1 and B � L−2/7, then the flow is almost
completely yielded everywhere and the Newtonian solution of Sec. II B applies. Figure 6 compares
the numerical results to the dividing line between the Newtonian and Bingham theories.

Finally, we note that the quasiplugged shape given by (17) applies to any viscoplastic fluid with
B � 1, since it arises simply from the condition of marginal yielding at the base. It follows that
identical analysis and leading-order results, such as (22), apply for a Herschel–Bulkley fluid or,
indeed, any inelastic viscoplastic fluid with a sufficiently large yield stress that Z � h. This can be
seen by replacing Z2(3h − Z ) in (16 a) and (19) with any function of Z and h; the expressions of
(22) can then be reproduced. In contrast, the Newtonian analysis of Sec. II could be adapted for
other constitutive laws without a yield stress, such as the power-law model, but the leading-order
terms would then be different to the Newtonian case.

C. Snowplow problem

Consider the snowplow problem with the same geometry as Sec. II C and the Newtonian fluid
replaced by Bingham fluid. The x′ gradient of the flow thickness (perpendicular to the squeegee)
dominates along most of the squeegee and the quasiplugged approximation (Z � h) corresponds to

h + B

∂h/∂x′ = 0, (23)

which furnishes the leading-order shape

h = [h0(y)2 − 2Bx′]1/2. (24)
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FIG. 7. Flow thickness at a squeegee (x′ = 0) with angle α = π/3. Comparison between the numerical
results (continuous lines) and the theory (dashed lines) for (a) Newtonian fluid and (b) Bingham fluid.

The flux into the bow wave from upstream is balanced by the flux parallel to the squeegee, which is
dominated by advection,

y = sin α

∫ (h2
0−1)/(2B)

0
(h − 1) dx′. (25)

Substituting for h from (24), we find that the height of the bow wave at the squeegee satisfies

By = sin α

[
h3

0

3
− h2

0

2
+ 1

6

]
. (26)

To leading order for h0 � 1, the height of the bow wave is given (away from the ends) by

h0(y) =
(

3By

sin α

)1/3

. (27)

Similar to the Newtonian case, Eq. (27) can be applied to a curved squeegee making a local angle
α(y) with the y axis; for example, a constant height is predicted for a semicircular squeegee.

Equation (27) is compared to the numerical results for a squeegee at angle α = π/3 and Bingham
numbers B = 10 and B = 25 in Fig. 7 alongside a similar comparison for the Newtonian case.

The x′ component of the governing equation, after integrating with respect to x′ and using Z � h,
is given by

(1 − h) cos α − 1

2
Z2h

∂h

∂x′ = 0. (28)

This can be rearranged to obtain an expression for the height of the yield surface,

Z =
(

2(h − 1) cos α

B

)1/2

. (29)

We note that h ∼ L1/3B1/3 and Z ∼ L1/6B−1/3 so the condition Z � h corresponds to B � L−1/4.
As for the perpendicular squeegee, the limiting case B ∼ L−1/4 matches to the results for a
Newtonian fluid.

IV. CONCLUSION

In this paper, we have presented simple predictions for the flow thickness upstream of a squeegee
that moves steadily through a layer of fluid. The theory shows good agreement with numerical
integration of the governing lubrication model. The theoretical analysis is based upon approximating
the flow as two dimensional since the squeegee is relatively long and then balancing the flux into the
bow wave from translation with the lateral flux out owing either to hydrostatic pressure gradients or
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to translation depending on the inclination of the squeegee. Separate analysis has been developed
for Newtonian and viscoplastic fluids but the simple flux-balance ideas can be extended to other
rheologies such as power-law or Herschel–Bulkley fluids, and to other settings such as flow in
porous media and microfluidic applications where the dominant pressure gradients are associated
with surface tension. In each case, the key is to determine the quasisteady cross section of the “bow
wave” normal to the obstacle and then consider the flux associated with the slow variation along the
obstacle.
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