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Stability of particle laden interfaces of drops flowing through a pore
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When a drop laden with solid particles and suspended in a liquid passes through a narrow
pore, its interface experiences strong shear and elongation, and the raft of particles may
accumulate toward the back of the drop. Using well-controlled formulations of Pickering
drops driven at set pressure, we determine the two conditions for which solid particles are
expelled from the oil-water interface after a Pickering drop passes a converging-diverging
pore: (i) particles accumulation at the rear of the drop is such that surface pressure builds up
at the interface and (ii) surface pressure relaxation by buckling is impaired by geometrical
constraints. These two conditions are rationalized using three nondimensional numbers: the
capillary number, the particle to pore size ratio, and the drop to particle size ratio, which
allow us to account for the viscous shear at the interface, the stability of the lubricating
film between the pore wall and the drop, the drag on the raft of particles adsorbed at the
interface, and its mechanical behavior.

DOI: 10.1103/PhysRevFluids.7.104002

I. INTRODUCTION

Particle-laden drops suspended in a fluid, also called Pickering drops, bear remarkably stable
interfaces: At liquid-liquid interfaces, capillarity strongly stabilizes solid particles of typical size
ranging between 0.1 to 10 μm [1,2]. The resulting strong adsorption makes these drops more
stable than bare drops with regards to coalescence or shear [3,4]. From a practical point of
view, the behavior of suspensions of particle-laden drops in strongly sheared situations is relevant
to the understanding of filtration processes [5,6] or oil recovery [7,8], where mixtures of immiscible
liquids and solids are pushed through a porous medium in order to separate the two liquids. To
gain insight in this complex situation, we offer to describe the behavior of a single Pickering drop
flowing through a single pore and to define the conditions for which solid particles separate from
the drop. In the past, particles [9] or soft objects [10,11], such as capsules [12–17] or vesicles
[18,19], flowing through constrictions have been studied in order to assess their stability [13,15,17]
or the conditions for clogging and flow in relation to their elasticity [10,12,14,16,18,20–22] or to
their interactions with the walls [9,11,19,23]. However, much fewer studies [24,25] addressed the
case of Pickering drops flowing through a constriction: As particle-laden interfaces bare negligible
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resistance to stretching compared to elastic membranes, while they both easily bend, we expect
specific behaviors may emerge in the present case.

In a recent paper [26], we described the behavior of oil-in-water drops laden with micrometer-
sized silica particles flowing through a single convergent-divergent axisymmetrical pore. The drop
was initially 5 times larger than the narrowest part of the pore, so that it strongly deformed in the
pore. The particle size was 30 times smaller than the pore. We explored a range of capillary number
Ca between 3×10−3 to 3×10−2, where Ca compares the viscous stress at the drop interface with
the capillary pressure inside the drop: Ca = ηV/γ with η the outer phase viscosity, V the drop
velocity, and γ its interfacial tension. In such conditions, as the drop flows through the pore, its
surface expansion leads to a particle-free front interface with particles accumulating toward the
rear drop interface. In the explored range of relatively small capillary numbers, we nevertheless
demonstrated that the particles are efficiently driven back from the rear to the front by a Marangoni-
like mechanism that opposed the viscous shear. As a consequence, the drops cross the pore without
destabilization of the particle laden interface, and the drop is unchanged after its passing through
the pore. For larger capillary numbers (10−2 to 10−1), other studies [24] evidenced the formation of
tails at the rear of the drops, with buckling and break up for highly confined drops.

In the present paper, we offer to determine the conditions for which solid particles are expelled
from the oil-water interface after a Pickering drop passes a single pore. To do so, we explore
the situations where the accumulation of solid particles at the rear of the drop does not relax.
We anticipate the flow of the particle raft from the rear to the front may be slowed down if the
particle size increases as compared to the thickness of the lubrication film separating the drop from
the pore wall. Following Bretherton’s law on bare drops or bubbles flowing through a cylinder in a
liquid [27], the thickness h of this lubrication film is expected to increase with the capillary number.
Hence, we chose to vary both the adsorbed particles mean diameter and the drop capillary number
in the low Ca range (10−4 to 10−2), and we investigate the consequences on both the drop movement
and the flow of the particles raft adsorbed at its interface.

II. EXPERIMENTAL SYSTEM

The model system we used was developed in a previous study [26]. As a model pore, we used a
cylindrical tube made out of borosilicate glass with a central converging-diverging part, as depicted
in Figs. 1(a) and 1(b). The tube radius is 600 μm away from the contraction and rcap = 25 μm
at the constriction center. The length L of the contraction is L = 3 mm and its curvature radius
is Rcap = 2 mm. The flow is driven at controlled pressure difference across the constriction. The
pressure difference is denoted �P and varies between 1.2 and 5 kPa. The lower limit for �P is
actually the pressure for which clogging is observed when drops do not cross the pore [26]. The
dependence between pressure difference �P and water flowrate Qw was carefully calibrated to
measure the pore hydraulic resistance � defined as �P = �Qw for water: � = (1.4 ± 0.1)×1012

Pa s m−3. When compared to a computed value based on the shape of the capillary tube, this shows
that only the constricted part contributes to the hydraulic resistance. The particle-laden drops are
oil drops laden with silica particles and suspended in water with a background concentration of
salt (NaCl at 10−4 mol l−1) and a small amount of cationic surfactant (CTAB at 10−9 mol l−1) to
finely adjust the particle hydrophobicity. As oil, we used dodecane (viscosity ηo = 1.35 mPa s). The
viscosity of the aqueous solution was that of pure water η = 0.89 mPa s, or, when noted, increased
by addition of glycerol at 0.4 w:w (η = 3.12 mPa s) or 0.5 w:w (η = 5.63 mPa s). The interfacial
tension between oil and aqueous phase was measured at γo/w = 38.6 mN m−1 for pure water, and
35 mN m−1 (respectively, 33.5 mN m−1) for 0.4 (respectively, 0.5) w:w water:glycerol solutions.
As silica particles, we used spherical beads provided by Fiber Optic Center with a mean radius rs

equal to 0.125, 0.375, 0.75, 1.5, 2.5, and 5 μm with a 7% standard deviation. The particles are first
dispersed in 10 ml NaCl solution using an ultrasonic probe (20 000 Hz, 40% of maximum intensity).
Oil is further added and the emulsion is obtained by mixing at 18 000 rpm for 30 s. The volume
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FIG. 1. (a) Experimental setup: A glass cylindrical capillary tube with a narrow pore at the center is filled
with water. An oil drop with radius R laden with particles of size rs is pushed at constant pressure �P into the
pore. Images are captured by a microscope and a camera. (b) Geometrical parameters of the pore and deformed
drop in the pore: Front and back radii of curvature ρF and ρB, position of the drop front along the pore zF . The
lubrication film between the drop and the pore wall has a thickness denoted h. [(c) and (d)] Pickering drops
laden with rs = 375 nm (c) and 5 μm (d) silica particles. Mean drop radius is R = 125 ± 25 μm. Scale bar:
100 μm.

of oil is adjusted so that all particles and oil are emulsified [26]. We obtained drops with radius
R = 125 ± 25 μm and a surface coverage in particles measured at C = 0.86 ± 0.04. Microscopy
images showing drops laden with silica particles is shown in Figs. 1(c) and 1(d). When adsorbed
at the oil-water interface, silica particles with radius larger than or equal to 0.75 μm scatter light
and their movement at the drop interface can be imaged, as will be detailed below. The emulsion
is diluted with water so that single drops are pushed one by one in the pore. Finally, observation
of pressure driven particle-laden drops through the axisymmetrical pore is made with an inverted
microscope at magnification 5× and transmitted illumination. Images are acquired with a high-
speed camera at 10 000 to 18 000 fps. Examples of videos are available as Supplemental Material
[28–30].

A typical time series of images is shown in Fig. 2(a). Initial time is taken when the drop shape
starts to depart from a sphere. Figures 2(a)(ii) and 2(a)(iii) clearly evidence the surface expansion
of the drop, as well as the heterogeneous surface coverage in particle, with a particle free front and
particle accumulation at the rear. The particle raft is clearly delimited from the front bare part and
this frontier can be tracked by image analysis. Figure 2(b) shows a space time intensity diagram
along the red line of Fig. 2(a)(i). The bare front of the drop shows brighter, while the particle-laden
interface corresponds to lower gray levels. This allows us to measure both the front drop velocity
UF and the particle raft velocity Uraft as the slopes of the two frontiers. These velocities are shown
by arrows in the inset of Fig. 2(b) in the particular case where the drop front denoted zF is at the
pore center: zF = 0. Besides, the time series of images are used to measure the flow rate of the drop
Q over time, using the axial symmetry of the pore. Because the drops are driven at constant pressure
difference �P across the contraction, we use next the classical relationship between the flow-rate Q,
applied pressure, and capillary pressures at both the front and rear interfaces of the drop to measure
the latter. To do so, three assumptions are made: the water films around the drop do not contribute
to the flowrate; the pore curvature 1/Rcap can be neglected so that the flow is a Poiseuille flow; the

104002-3



FRANZ DE SOETE et al.

FIG. 2. (a) Time series of a drop of radius R = 129 μm laden with rs = 750 nm particles driven through
a pore at �P = 2700 Pa. (b) Space-time intensity diagram along the red line in image (a)(i). The darkest gray
levels correspond to the particle raft adsorbed at the drop interface. The brightest area is the free-of-particles
front interface. The slope of the two frontiers allows us to measure the drop front velocity UF and the particle
raft velocity Uraft as shown in inset.

hydraulic resistance � is computed from the knowledge of the pore shape r(z) and the location of
the oil drop [26]. This is written as:

�P + 2γB

ρB
− 2γF

ρF
= �Q, (1)

where ρF (respectively, ρB) and γF (respectively, γB) are the front (respectively, rear) radius of
curvature and interfacial tension, as depicted in Fig. 1(b). The radii of curvature are also measured
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over time by image analysis. besides, from the typical images in Fig. 2(a) we find that, as the
drop flows through the pore, the front interface is free of silica particles so that γF = γo/w, the
oil-water interface tension, at all times [26]. At the back of the drop where surface coverage in
adsorbed silica particles varies, the interfacial tension γB will account for the subsequent change in
surface energy. By analogy with the interparticulate pressure in three-dimensional granular systems,
when the particle raft is compressed, we offer to account for the interparticulate forces building up
between the silica beads adsorbed at the interface [25] by defining a 2D surface pressure denoted
π and defined as the difference between the bare oil-water interfacial tension and the current value
of the interfacial tension γ : π = γo/w − γ . At the interface of the nondeformed drop or at the bare
front interface, π is zero. If a raft of particles is compressed, at some critical surface coverage, then
surface pressure builds up and π becomes positive. With this notation, the surface pressure at the
front is πF = 0, and Eq. (1) can be rewritten so as to provide a measure of the surface pressure at
the back πB:

πB = γo/w

(
1 − ρB

ρF

)
+ ρB

2
(�P − �Q). (2)

Here assumption is made that as long as the back of the drop is hemispherical, its surface pressure
is isotropic.

In the following, we offer to discuss the various regimes adopted by a drop flowing through a
converging-diverging pore depending on its velocity and the silica particle size, in terms of capillary
number defined as:

Ca = ηUF

γo/w
(3)

and surface pressure πB at the rear interface of the drop.

III. RESULTS

As introduced in Sec. I, when the radius of the adsorbed silica particles compares with the
thickness of the lubrication film squeezed between the raft and the pore wall, the movement of
the raft is expected to be all the more difficult than the particle size is closer to the film thickness.
The latter can be derived assuming that the lubrication film has a thickness denoted h set by the
Bretherton’s law [27], which applies to particle-free drops driven in a cylinder within a fluid. The
cylinder radius is taken at the center of the pore. This yields:

h = 1.34rcapCa2/3, (4)

with rcap = 25 μm and Ca ranging between 10−4 and 10−2, the lubricating film thickness is expected
to vary in the 0.1- to 3-μm range. Note that more refine laws have been derived in the literature that
account for the viscosity ratio of the outer and inner phases [31], inertial effects [32], or adsorbed
particles [33]. In the present range of capillary number, with a viscosity ratio of 3, the lubrication
film thickness would only differ by a factor of order one and less than 2 from Bretherton’s model.
Since both the capillary radius and the surface coverage in particles change within the constriction,
we choose to ignore these corrections. We will see later that Bretherton’s hypothesis is sufficient to
describe the destabilization mechanisms of the drops.

Hence, we first set the lubrication film thickness by selecting experiments with roughly the same
capillary number, and we increase the silica particle size. Examples are shown in Figs. 3(a) and 3(b)
where the capillary number Ca is 10−2, which would correspond to h ∼ 1.5 μm through Eq. (4),
and particle radius increases from 0.75 to 2.5 μm between Figs. 3(a) and 3(b). Images in each row
correspond to the same drop position, and the two rows to two subsequent times. Comparison of
images (a1) with (b1) or (a2) with (b2) shows that the particle raft is all the more accumulated
toward the rear that the silica particles are large: The surface coverage at the rear increases with rs
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FIG. 3. Flow regimes of the particle raft adsorbed at the drop interface depending on the capillary number
Ca and particle size rs. (a) rs = 0.75 μm, Ca = 10−2. (b) rs = 2.5 μm, Ca = 10−2. (c) rs = 0.75 μm, Ca =
10−4. The raft always accumulates at the back. In (a), it relaxes toward the front and only the front apex of the
drop remains naked. See also the Supplemental Material [28]. (b) The naked front part extends over a longer
part of the drop. (c) An even longer naked front zone is observed, where oil wets the pore wall (inset; see also
Ref. [29]). Scale bar: 100 μm.

at a given Ca number, and thereby surface pressure probably builds up. Next, we offer to decrease
the capillary number with respect to the case shown in Fig. 3(a), for the same silica particle radius
of rs = 0.75 μm. In Fig. 3(c), Ca = 10−4. The bare front of the drop now extends over an even
larger area, the particle raft being so confined toward the back that the rear of the drop crumples and
wrinkles appear along the drop in Fig. 3(c2). Besides, a careful analysis of the gray levels on the inset
of Fig. 3(c2) evidences that the bare front part of the drop is no longer separated from the pore wall
by a lubricating water film: Oil wets the wall. This is clearer on the movie available as Supplemental
Material [29]. Quantitatively, we find that the velocity of the particle raft Uraft drops to zero as the
front passes the contraction center. In Fig. 4(a), we systematically measure the variations of the
particle front velocity Uraft as a function of the drop capillary number Ca [Eq. (3)] when the drop
front is at the pore center. This position corresponds to the first row of Fig. 3. Here the particle radius
is rs = 0.75 μm. We find that below Ca∗ = 6.10−4, which corresponds in this case to U ∗

F = 0.025
m/s, the particle raft velocity is zero and oil wets the pore wall. Above Ca∗, the particle velocity
is always one order of magnitude lower than the drop velocity. We also systematically compute the
surface pressure at the back of the drop πB through Eq. (2) as a function of Ca in Fig. 4(b). As
anticipated, we find that as the particle raft velocity decreases, particles accumulates at the back and
simultaneously, surface pressure builds up.

We chose next to explore in details the low capillary number case, and we vary the particle radius
over the whole available range. In Fig. 5, the capillary number is set around Ca ∼ 10−4 and each
column corresponds to a different particle radius: rs is 0.125 μm in Fig. 5(a) and 5 μm in Fig. 5(b).
Each row corresponds to the same drop position, and the four rows are four subsequent times or
positions. In all cases, the particle raft is stopped, oil wets the wall at the front of the drop—as
indicated by the contrast change in inset in Fig. 5(a2) and in the video in Supplemental Material
[29]—and particles are forced to accumulate at the drop rear. This accumulation at the rear changes
the behavior of the rear interface of the drop depending on rs. In Fig. 5(a2), longitudinal wrinkles
appear at the rear of the particle raft (see also the Supplemental Material [29]), whereas no wrinkles
are detected in Fig. 5(b2). At later times, particles do not separate from the liquid drop in Fig. 5(a4),
and the Pickering drop, remarkably, crosses the pore with no damage, at variance with Fig. 5(b)
where the particles fully separate from the drop interface: In Fig. 5(b4), after the drop has crossed
the pore, its interface is naked and silica particles are now dispersed in the aqueous phase (see also
video in the Supplemental Material [30]).

Similar behaviors were obtained by systematically varying the applied pressure and thus the drop
velocity, and the particle radius rs. The results are summarized in the rs versus Ca diagram of Fig. 6.
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(a)

(b)

FIG. 4. (a) Interfacial velocity Uraft and (b) surface pressure at the drop back πB as a function of the capillary
number Ca defined with the front velocity UF for Pickering drops laden with 750-nm radius silica particles.
Full triangles: Wetting of oil on the pore wall is observed.

IV. DISCUSSION

A. Movement of the particle raft at the drop interface

In Fig. 6, the wetting cases for which Uraft = 0 are shown as full symbols while the nonwetting
cases are hollow symbols. We clearly find that the frontier between wetting and nonwetting
corresponds to a defined value of the capillary number, denoted Ca∗. This was further checked by
changing the aqueous phase viscosity with glycerol addition (green and red markers) which allows
us to vary Ca at constant drop velocity. In Fig. 6, a dash-dotted line marks the frontiers between the
wetting and nonwetting cases, and we find Ca∗ = 6.10−4. In the following, we discuss this value
in terms of the condition for which the water lubricating film dewets, and the velocity at which,
once nucleated, the oil wets the pore wall. Our observations show that oil wets the wall where the
drop interface is naked. Once nucleated, the wetting of oil propagates toward the front part of the
drop, the propagation toward the rear being impaired by the silica particles. Therefore, we offer
to compare the critical value Ca∗ we measure to the spontaneous wetting velocity of oil on silica
and within a submicrometer thick water film for the same system (dodecane and CTAB with same
concentration), taken from a previous work [34]: We had found that wetting was easily nucleated
and that oil spontaneously wetted silica in the water film at a capillary number Cas = 3.10−4 which
was found independent on the film thickness, but system dependent. Here we find a good agreement
with the present capillary number value Ca∗. We conclude that as soon as the drop capillary number
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FIG. 5. Effect of the particle radius at low capillary number on the interface compression and relaxation:
Ca ∼ 10−4. (a) rs = 0.125 μm and (b) rs = 5 μm. Each column presents four subsequent images as a drop
passes through the pore. Each line corresponds to the same position of the drop. The oil in the drop wets the
pore wall at the front (inset) where the oil-water interface is naked. At the back, where the raft is adsorbed at
the interface, the lubrication water film persists. (a) Wrinkling in a2. No particle expulsion. (b) No wrinkling.
Full particle expulsion (b4). Scale bars: 100 μm.

falls below the spontaneous oil wetting value Cas, nucleation of oil wetting occurs and propagates
faster than the drop moves. As a consequence, the particle raft stops and Uraft = 0.

Beyond the wetting case for which silica particles obviously accumulate toward the back of the
drop because the raft velocity drops to zero, as in Fig. 3(c), experiments at Ca > Ca∗ show that the
raft velocity decreases when the particle radius increases [see Figs. 3(a) and 3(b)]. In the following,
we derive the mechanical balance accounting for the particle raft movement toward the front of
the drop. We first examine the cases where capillary numbers are larger than Ca∗ and particle are
small (typically rs = 0.75 μm), as in the video presented in the Supplemental Material [28]. The
raft movement from the rear to the front of the drop was described in a previous work [26] to be
simply driven by the surface pressure gradient �π/L between the back and front of the drop of
length L, and opposed by the viscous drag within the lubrication water film. For a lubricating film
of thickness denoted h, the viscous drag is written as ηUraft

h .
In the present paper, we assume that the lubrication film has a thickness set by Bretherton’s

law Eq. (4), so that increasing the particle size at constant Ca or decreasing Ca could result in an
additional drag on the raft arising when the particle size becomes as large as the lubrication film
thickness. To test this hypothesis, we define the additional drag �σ acting on the particle raft as the
difference between the driving term �π/L and the viscous drag. With our notations where πF and
πB are the surface pressures at the front and back of the drop respectively, we have �π = πB − πF

and πF = 0, so that the additional drag is written as:

�σ = πB

L
− η

Uraft

h
. (5)
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FIG. 6. Flow regimes for a Pickering drop covered with particles of radius rs flowing through a pore at
capillary number Ca. Aqueous phase: Black symbols: water; red: water-glycerol 0.4 w:w; green: 0.5 w:w.
Hollow symbols: A lubricating water film separates the oil drop from the pore wall. Full symbols: The
lubricating water film dewets and oil wets the wall. Blue dash-dotted line: Frontier Ca = Ca∗. Squares: Drag
�σ > 0 [see Eq. (5)]. Triangles: No drag, �σ = 0, no wrinkles, no expulsion. Green line: rs = h [Eq. (6)].
Circles: Wrinkles observed at the drop back. Diamonds: No wrinkles, full particles expulsion. Red dotted line:
rs = rmax

s = R/A = 4 μm.

This additional drag is a force per unit surface acting on the particle raft which was systematically
measured for drops with varied silica particle sizes and varied drop velocities, and the result is
plotted in Fig. 7 as a function of the ratio between the silica particle size rs and the Bretherton’s
thickness h. We find that h/rs = 1 clearly marks the limit between the case where the compressed
raft freely relaxes under the combined effects of the surface pressure gradient and the viscous
drag (�σ = 0), and the cases where �σ is nonzero. This observation confirms the onset of an
additional drag when the lubrication film thickness, as computed from Bretherton’s law, compares
with the particle size. This additional drag can be thought of as a friction term of the silica particles
sliding against the pore wall as soon as h < rs. This result allows us to refine the diagram in Fig. 6:
Experiments for which �σ = 0 are plotted as circles, and �σ �= 0 as squares. The line corresponds
to the frontier set by the condition h = rs which is written as, through Eq. (4):

rs = 1.34rcapCa2/3. (6)

As a first result, we rationalize the existence of a region of the rs versus Ca diagram where the
particle accumulation at the back of the drop relaxes through the sole dissipative effect of the
viscous drag: This region is delimited at low Ca by Ca∗ given by the spontaneous wetting velocity
of oil on silica in water and at large radius of particles by the water film thickness as calculated by
Bretherton’s law. It corresponds to the hollow circle markers in Fig. 6.

Outside this region, particles adsorbed at the drop interface accumulate at the back of the drop
and surface pressure builds up. In the following, we examine the consequence of an excess of surface
pressure in the regions where either friction or wetting impair the surface pressure relaxation. These
regions are marked in Fig. 6 as triangles, squares, and diamonds. In particular, we will link the
surface pressure excess to both the wrinkles and the particle expulsion we observed in Fig. 5).
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FIG. 7. Additional drag acting on the particle raft as defined by Eq. (5) as a function of the lubrication film
thickness h over particle radius rs ratio for all the experiments of Fig. 6 (same symbols). Thickness h computed
from Eq. (4). �σ decreases to zero for h/rs ∼ 1. Aqueous phase, black: water; red: water-glycerol 0.4 w:w;
green: 0.5 w:w.

B. Mechanical destabilization of the particle raft at large surface pressure

We first examine the wrinkling of the particle-laden interface at the back of the drop. Such
phenomenon was reported in the past for capsules in a pore [13] or shear particle-laden drops [25],
although its onset condition was not characterized in the latter case. Figure 8(a) displays a series of
images of a drop advancing through a pore in a wetting case where the particle raft stops: Uraft = 0,
and the particle-laden interface wrinkles as shown in the inset of Fig. 8(a)(iii) which corresponds to
the time when wrinkles appear. The wrinkles are aligned with the longitudinal direction and develop
where the interface is squeezed by the converging shape of the pore. At this location, the decrease
of the pore section is assumed to result in an anisotropy of the surface pressure with a longitudinal
component denoted πzz and an orthoradial component denoted πφφ . This assumption is supported
by previous works [35] in which rafts of particles adsorbed at liquid-liquid interfaces were shown
to exhibit an elastoplastic behavior due to both cohesion between particles and friction between
contacting particles when surface concentration becomes large enough. As depicted in Fig. 8(c),
we first assume a continuity of the longitudinal component of the surface pressure between the
hemispherical cap of the drop back and the converging part where the wrinkles appear, so that
πzz = πB at the frontier between the wrinkled part and the cap. In Fig. 8(b), we measure the surface
pressure of the cap at the back of the drop, πB, as a function of the position of the drop when
it flows though the pore. The data correspond to the image series in Fig. 8(a). Note that at times
later than image Fig. 8(a)(iii), the drop back is no longer hemispherical, and the hypothesis of an
isotropic pressure at the back fails so that we no longer compute values for the surface pressure.
Wrinkling onsets in Fig. 8(iii) for which the longitudinal pressure is denoted πw

zz . Its averaged value
over all our experiments is measured at πw

zz = (2.4 ± 0.1)γo/w, far larger than the expected threshold
for buckling found in the literature to be γo/w [36,37]. We also observe that the wrinkles develop
along the longitudinal direction. From these two observations, we understand that (i) the build-up
of the orthoradial component of the surface pressure πφφ is the only component responsible for the
mechanical buckling of the particle-laden interface as depicted in Fig. 8(d) and (ii) the compressed
raft adopts an elastoplastic behavior: large strains caused by the section reduction plasticize the raft.
Assumption is further made that the wrinkling involves small enough strains to be described within
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FIG. 8. (a) Time series of images of a drop laden with rs = 750 nm particle entering the pore at Ca =
2.10−4. zF = (i) 0; (ii) 100 μm; (iii) 465 μm; (iv) 550 μm. Inset in (iii) shows the onset of longitudinal wrinkles
of wavelength λ = 35 μm. (b) Normalized surface pressure πB at the back of the drop versus drop front position
zF . The onset of wrinkles corresponds to πB = 2.4γo/w . (c) Schematic of the surface pressures at the drop
interface at the onset on wrinkling: At the frontier between the back spherical cap and the wrinkled interface
(red dotted line), an orthoradial component of surface pressure φφφ builds up due to the section reduction.
(d) Schematical views of the drop cross section separated from the pore by a lubricating film of thickness h:
Increasing the orthoradial surface pressure πφφ causes the buckling of the interface. Cylindrical coordinates (r,
φ). Curvilinear coordinate s = rφ/2π .

the elastic framework, which is supported by noting that buckling releases the stress and does not
lead any additional plastic deformation.

Hence, following past studies on the buckling of particle rafts at liquid-fluid interfaces [38,39],
we explore the onset of such a buckling instability within the framework of a plate with bending
modulus B supported by a thin viscous film of thickness h and viscosity η. This situation is depicted
in Fig. 9(a). While the compressive stress πφφ drives the development of the interface deformation

FIG. 9. (a) Schematic representation of the interface buckling driven by compressive stress πφφ . Curvilinear
abscissa s defined in Fig. 8. The deformation with wavelength λ and amplitude δh induces flows in the water
film of mean thickness h with velocity field v which are limited by viscous dissipation. (b) Experimental
wavelength λ of the wrinkles at the onset of buckling as a function of particle radius rs for drops of radius
R = 125 μm entering the pore at varied low Ca. Black line: λ = R. Dotted line: Equation (A6) with fitted
prefactor A = 30. Gray zone: No wrinkles are observed experimentally.
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with amplitude δh and wavelength λ, the viscous dissipation within the lubricating film prevents its
development.

The modeling of the buckling of the particle laden interface supported by a thin viscous film
is detailed in Appendix A. It allows for the prediction of the wrinkling wavelength λ [Eq. (A6)]
that depends linearly on the particle radius rs through λ = Ars where A depends on the orthoradial
pressure πφφ through A = 4π [8(1 − C)(1 + ν)(πφφ/γo/w − 1)]−1/2.

This prediction Eq. (A6) is compared with our data in Fig. 9(b), where the wavelength λ of the
wrinkles at birth is measured by image analysis as shown in Fig. 8(a). The results are plotted in
Fig. 9(b) as a function of rs. We find that the wavelength increases linearly with the particle size as
predicted: λ = Ars. From the slope of this line measured at A ∼ 30, we measure the surface pressure
πw

φφ at the onset of wrinkling: πw
φφ ∼ (1.1 ± 0.1)γo/w using C = 0.86 as measured in Sec. II and

ν = 1/
√

3 [38]. At this stage, two comments can be made on this threshold value of surface pressure.
First, it is of the order but larger than γo/w, in agreement with buckling experiments on particle-laden
interfaces [36,37]. Second, at onset of wrinkling, the compressed particle-laden interface can be
regarded as a two dimensional cohesive granular material. Following the path of previous works on
both cohesive wet granular media [40] and elastoplasticity of compressed rafts [35], we derive in
Appendix B a relationship between the two components of the surface pressure when the plasticity
threshold is reached using a Mohr-Coulomb criterion that is written as:

πzz
1 − sin δ

1 + sin δ
− πφφ = 2c

cos δ

1 + sin δ
, (7)

where δ is the friction angle between silica particles and c the cohesion of the raft. From the literature
on silica particles sliding against glass at pH 6, δ = 20◦. At the onset of wrinkling, πw

φφ = 1.1γo/w

and πw
zz = 2.4γo/w, so that Eq. (7) provides an estimate of the cohesion: c = (0.07 ± 0.02)γo/w.

Hence, we find a nonzero value for the cohesion, which is in agreement with our observations that
particles tend to self-assemble into rafts. Our particles are small enough for gravity to be neglected,
so that cohesion is likely to originate from capillary attractions due to the pinning of the oil-water
contact line on the silica particles [41]. This pinning has been thought to induce noncircular contact
lines which generate multipolar capillary interactions between particles. The magnitude of these
capillary interactions are expected to be of the order of the interfacial tension and are found here
to be around one tenth of it. In Appendix B, we further derive a relationship between the cohesion
c and a geometrical parameter ε characterizing the noncircularity of the oil-water-particles contact
lines that we evaluate.

From this, the following picture emerges: At the wrinkling threshold, the stress state of the 2D
cohesive granular medium is set by large deformations arising from the squeezing of the drop
section within the converging pore, and the plasticity threshold is reached in which frictional
contacts build up between particles. Nevertheless, the strains at stake in the development of the
instability are small and can therefore be described within the elastic approximation.

C. Particle expulsion from the drop interface after crossing the pore

From this description of the stress relaxation at the drop interface through wrinkling, we show
next how to predict the conditions for drops destabilization and particle expulsion. In Fig. 9(b), we
indicate as a gray zone the experimental conditions for which no wrinkles are observed when the
drop enters the convergent part of the pore, which also corresponds to situations where full particle
expulsion from the drop is observed at the pore exit. First, these two observations can be linked
by noting that no wrinkling leads to no release of the compressive stress within the particle raft,
until particle expulsion occurs. Second, the threshold between wrinkling and no wrinkling can be
thought of as the limit where the buckling wavelength becomes larger than the drop radius. This
writes λ = R or equivalently A.rs = R which sets a particle size limit over which expulsion from
the drop interface occurs: rmax

s = R/A ∼ 4 μm in our experimental conditions. The condition λ = R
has been reported as a line in Fig. 9(b) and r = rmax

s as a dotted line in the regime diagram of Fig. 6.
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We find that this prediction agrees with our experimental observation of full particle expulsion.
Altogether, we demonstrate that the drop interface destabilization proceeds through the combination
of two effects: (i) surface pressure build-up at the back of the drop by particle accumulation in the
raft and (ii) no release of surface pressure through either particle movement toward the front or
buckling of the interface.

V. CONCLUSION

We demonstrate that particle expulsion from the rear interface of particle-laden drops flowing
through a converging-diverging pore happens when two conditions are simultaneously met: (i)
particles accumulation at the rear of the drop is such that surface pressure builds-up at the interface.
(ii) Surface pressure relaxation by buckling is impaired by geometrical constraints.

Quantitatively, we find that condition (i) amounts to a constraint on the capillary number and
the particle to pore size ratio: Condition (i) is indeed met when the lubrication water film squeezed
between the oil drop and the pore wall is thinner than the particle size or breaks up. In terms of
capillary numbers, this writes: Ca < ( rs

rcap
)3/2 or Ca < Ca∗ where Ca∗ characterizes the spontaneous

wetting velocity of the inner phase (oil) on the pore wall within a water film and is system dependent.
Condition (ii) constrains the drop to particle size ratio and writes R/rs < A where A ∼ 30 and

decreases if the initial surface coverage in particles initially adsorbed at the interface decreases.
In line with past studies where the single pore case was extended to porous media [7,9,22,42],

we anticipate our results could efficiently be applied to the control of processes where Pickering
emulsions flow through porous media, such as filtering of mixtures of immiscible liquids and solids.

APPENDIX A: MODELING THE BUCKLING OF A PARTICLE LADEN INTERFACE
SUPPORTED BY A THIN VISCOUS FILM

In the following, we model the growth of a sinusoidal deformation h̃(s, t ) = h + δheωt+2iπqs of
growth rate ω and wave vector q = 2π/λ of the particle-laden interface.

First, the compressive and bending moduli are taken from the literature [38] on the elasticity
of interfacial particle rafts: E ∼ 1−ν

1−C
γo/w

2rs
and B = 2

3(1−ν2 ) Er3
s where ν = 1/

√
3 [38] is the Poisson

ratio.
Second, the pressure field in the lubricating film is derived as a function of the curvilinear

distance s along the orthoradial direction. The pressure P(s, t ) obeys both a mechanical balance
at the interface and the Navier-Stokes equation within the lubricating film. The fluid velocity in the
orthoradial direction that develops as the interface deforms is denoted v(s, t ). It is averaged over the
thickness of the film and varies with space and time with the same wavelength and growth rate as h̃:
v = δveωt+2iπqs. With these notations, the mechanical and hydrodynamical balance equations write:

P = (πφφ − γo/w )
∂2h̃

∂s2
+ B

∂4h̃

∂s4
, (A1)

∂P

∂s
+ ηw

∂2v

∂r2
= 0. (A2)

These two equations are combined into:

(πφφ − γ )
∂3h̃

∂s3
+ B

∂5h̃

∂s5
= ηe

v

h2
. (A3)

These mechanical equations are supplemented with a volume conservation equation in the fluid:

∂ h̃

∂t
+ ∂vh̃

∂s
= 0. (A4)

104002-13



FRANZ DE SOETE et al.

For the particular case of a sinusoidal deformation of the interface, the problem reduces to:

ω = h3

ηe
q4 ∗ (πφφ − γo/w − Bq2). (A5)

Following classical descriptions of instability growth, the selected wavelength is that with the
maximum growth rate and is thus given by dω

dq = 0. This condition leads to a sine deformation
of the drop interface of wavelength λ that depends on the orthoradial pressure πφφ according to:

λ = 4π [8(1 − C)(1 + ν)(πφφ/γo/w − 1)]−1/2rs. (A6)

APPENDIX B: MOHR-COULOMB CRITERION FOR 2D COHESIVE AND FRICTIONAL
GRANULAR MATERIALS

The Mohr Coulomb criterion for plasticity was derived in the past for 3D granular media [40].
Here it is recast in a two-dimensional geometry:

(σ1 − σ2)2 = sin2 δ

(
σ1 + σ2 + 2c

tan δ

)2

, (B1)

where c is the cohesion and δ is the friction angle between two particles. At the wrinkling threshold,
we find πzz > πφφ so that we identify σ1,2 as follows: σ1 = πzz and σ2 = πφφ . Equation (B1)
becomes Eq. (7).

In the following, we offer a physical description of the cohesive term c we measure. In granular
materials, the cohesion c is related to the friction coefficient between particles tan δ and the internal
stress arising from the attractive interactions between particles through:

c = tan δσc, (B2)

where σc is the radial component of the Irwing Kirkwood tensor or the contact stress. The purpose
here is to link the contact stress to the attractive capillary forces between particles. The general
equation for σc writes:

σc = 1

S
�〈 fxbx〉, (B3)

where x is an arbitrary axis within the interface plane, fx the projection along x of the force acting
between two particles, and bx the projection along x of the vector joining the centers of the two
considered particles. Sum is made over the N pairs of particles interacting on the surface S. From
microscopy images in Fig. 1, the number of neighbors is approximately 6 per particle so that the

number of contacts per particle is 3. Using the surface density of particles C = πr2
s

S as defined in
Sec. II, the average number of contacts per unit surface writes as N/S = 3 C

πr2
s
. The average distance

between the center of two contacting particles is of order 2rs so that 〈 fxbx〉 ∼ rs fr where fr is the
mean attractive force between particles. Following models from the literature [41] accounting for
capillary attractive forces arising from the pinning of contact lines at the particle interfaces, we offer
to derive the interparticulate force according to:

fr 	 εγo/wπrs, (B4)

where ε is a numerical factor characterizing the noncircularity of the oil-water contact line at the
particle interface. Equations (B2), (B3), and (B4) allow us to relate the cohesion c that we measure
to the geometrical parameter ε:

c = tan δCεγo/w. (B5)

Taking c = 0.07γo/w from Sec. IV B, C = 0.86 and δ = 20◦ [43], we find ε 	 0.4.
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