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We simulate gravity-driven dynamics of partially wetting droplets moving along a fiber
using the lattice Boltzmann method. For the so-called clamshell morphology, we find three
possible dynamic regimes upon varying the droplet Bond number and the fiber radius:
compact droplet, droplet breakup, and droplet oscillation. For small Bond numbers, in the
compact droplet regime, the droplet reaches a steady state and its velocity scales linearly
with the driving body force. We find two scaling laws depending on whether the droplet
size is smaller or larger compared to the fiber radius. In addition, we further identify a
scaling law applicable for the barrel morphology. For higher Bond numbers, in the droplet
breakup regime, satellite droplets are formed trailing the initial moving droplet. We find
such droplet satellite formation is easier with increasing fiber curvature (smaller fiber
radius). Finally, in the droplet oscillation regime, favored in the midrange of fiber radius,
the droplet shape periodically extends and contracts along the fiber.
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I. INTRODUCTION

Fibers and fibrous materials are ubiquitous in nature and industry, and their interactions with
liquid droplets are often key for their use and functions. In nature, numerous plants and animals,
such as cactus and spider silk, have unique fiber-like features to condensate and collect water
droplets efficiently [1,2]. Mammalian hair fiber has a series of axially symmetrical serrations on its
cylindrical main structure, directing water droplets to move parallel to the fiber [3]. Understanding
droplet wetting on fibers is also important for small scale (laboratory) and large scale (industrial)
applications. For example, one way to prepare a compound droplet—microdroplets encapsulated by
a larger droplet—is by using fiber junctions [4]. Fiber networks have been suggested as a possible
open droplet microfluidic design [S]. Mimicking nature, fiber mesh structures have been harnessed
for improved designs of water collecting and fog harvesting devices [6-8].

Given their wide-ranging interest, droplet studies on fibers have a long history. In a seminal
paper, Lord Rayleigh observed that a thin film encapsulating a fiber can break up because of
capillary instability [9], resulting in a string of droplets with barrel morphology, where the droplet is
axisymmetric and encapsulates the fiber completely. Adams noted another morphology, clamshell,
which is favored by the droplet when the contact angle of the droplet increases [10]. Clamshell is
characterized by its asymmetric shape, where the droplet is only perched on one side of the fiber.
More recent studies have systematically investigated the transition and the stability of these two
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morphologies [11-14], which depend on the contact angle of the droplet, the droplet volume, and
the fiber radius.

Beyond equilibrium properties, droplet dynamics on fibers has also generated significant interest.
Several groups have deduced the scaling laws for droplet velocity along the fiber by balancing the
viscous forces experienced by the droplet against the driving force [15,16]. Typically, the droplet
weight due to gravity is the driving force in the experiments. Other external driving forces, both
parallel and perpendicular to the fiber, have also been considered to generate droplet motion,
including subjecting the droplet to airflow [17,18] or using a centrifugal force by rotating the fiber
support [19]. In addition, more complex fiber geometries have been investigated. These include
conical fibers [20-23], where the curvature asymmetry can be exploited to drive self-propulsion;
fiber cross-junctions [24,25], where the droplet trajectory can be tuned, for example, as the droplet
size and orientation of the driving force is varied; and multiple parallel fibers, both when the fibers
are rigid and flexible [26-28].

To date, the majority of works on droplet dynamics have focused on the case where the droplet
is perfectly wetting the solid fibers. In contrast, here we will primarily consider the dynamics of
partially wetting droplets. We will investigate the complex shape and velocity of such droplets
as we vary the fiber curvature and the droplet body force (correspondingly, velocity). When the
droplet remains compact, we identify scaling laws for both the barrel and clamshell morphologies.
Compared to known results for fully wetting droplets [15,16], a key difference is in how the loss of
symmetry and corresponding variation of the droplet shape and aspect ratio affect the dynamics of
droplets with clamshell morphology. Focussing on the clamshell morphology, we then demonstrate
that the droplet dynamics is affected by the fiber curvature. On flat surfaces it has been observed
that, with increasing velocity, the receding contact line becomes unstable leading to the formation of
trailing satellite droplets. This phenomenon, the so-called pearling instability, has been extensively
studied [29-32]. Interestingly, we find satellite droplet formation occurs on fibers as well, and it is
favored with increasing fiber curvature. Moreover, we find a region of the parameter space in which
the droplet oscillates as it moves along the fiber. A similar observation was made by Yang et al. [33]
for droplets on an inclined flat surface.

This paper is organized as follows. In Sec. II, we illustrate our simulation approach based on
the lattice Boltzmann method [34]. The lattice Boltzmann method has been successfully harnessed
to study a wide range of interfacial flows, including droplet collisions [35,36], capillary filling,
self-propelled droplet slugs [37], and droplet impact on textured superhydrophobic surfaces [38].
We then present our results in Sec. III, where we characterize the three dynamic regimes identified:
compact droplet, droplet breakup, and oscillating droplet. Finally, we summarize the key results and
provide an outlook for future work in Sec. I'V.

II. METHODS
A. The continuum model

The fluid equations of motion are described by the combination of the continuity and Navier-
Stokes equations. The continuity equation describes the conservation of mass,

%p+V-(pv)=0, (D

where p and v are the fluid density and velocity. The Navier-Stokes equation describes the conser-
vation of momentum for the fluid, and it can be written as

3 (pv)+V - (v @v)=—-V -P+Feo+F,+V-[n(Vv+ VD)l 2)

Here, n is the dynamic viscosity which depends on the fluid density, F . is the external force
(such as gravity) applied to the system, and F represents forces due to fluid-solid interactions. The
expressions of F ¢ and F will be discussed in the next subsection. P is the pressure tensor of the
fluid, and it depends on the thermodynamics of the fluid.
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TABLE I. The weights w; and lattice velocities ¢; for D3Q19 lattice in LBM.

i 0 1 2 3 4 5 6 7 § 9 10 11 12 13 14 15 16 17 18
[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wi 3 18 18 18 18 18 18 36 36 36 36 36 36 36 36 36 36 36 36
¢ 0 41 -1 0 0 O O 41 -1 41 -1 O O 41 -1 41 -1 0 O
¢, 0 0 0 41 -1 0 O 41 -1 0 O +1 -1 -1 41 0 O +1 -1
¢ 0 0 0 0 o0 41 -1 0 O +1 -1 +1 -1 0O O -1 +1 -1 +1

In this work, we use the following free energy to capture liquid-gas coexistence and the liquid-gas
surface tension [36,39],

E—/ M e + 9% av 3)
- 2 €os 2 IO ’
where the integration is done over the volume of the simulation domain. A and « are introduced to
tune the surface tension (here, we use o, = 0.184 in lattice unit) and the interface width between
the liquid and gas phases. The form of the free energy function .5 depends on the fluid equation-
of-state (EOS). It is related to the bulk pressure of the system by:

d €08
pb=,0|: Il[ il_weov 4

dp
Here, we will use the Carnahan-Sterling EOS such that
L+ (bp/4) + (bp/4)* — (bp/4)* o

Py = PRT T ap’, 5)
8RT(—6+ b
lﬂeos=p|:C—ap—(_ifbp)2p)+RTlogp:|. (6)

Based on the work of Wohwarg et al. [36], we choose in lattice units: @ = 0.037, b=0.2, R =1,
and 7. = 0.3773a/(bR). C is chosen such that ¥eos(0,) = Yeos(01), and the coexisting gas (pg) and
liquid (o;) densities can be found by using the standard common tangent construction method. In this
model, the temperature T governs the liquid-gas density ratio obtained. Typically, we use 7' = 0.61
in lattice unit, leading to a liquid-gas density ratio of po;/pg 2 800.

This free energy model will enter the equations of motion via the pressure tensor

V-P=pVu,, (7

where 1, = 8E /8 p is the chemical potential. This leads to the following pressure tensor:

1
Pup = ppbap + K{(aap)(aﬁp) - [p(aﬁyp) + E(ayp)z]aaﬁ}. 8)

The bulk pressure, p;, is given by Eq. (5) for Carnahan-Starling EOS.

B. The lattice Boltzmann method

We use the entropic lattice Boltzmann method (ELBM) to solve the continuity and Navier-Stokes
equations. In ELBM, we introduce a discretized fluid distribution function f;(x, ¢) that represents
the partial density of fluids with lattice velocity c; at position x and time ¢. Here we use the so-called
D3Q19 lattice, where the weight (w;) and lattice velocity (c;) for each direction i are provided in
Table I. We then evolve the discretized distribution function using

ﬁ(x+clAt’ t+ At) _ﬁ(x’t) = aﬁ[.fleq(losu) _ﬁ(x’t)] + E(x’t) (9)
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The first term on the right-hand side is the collision term. £ is the equilibrium distribution
function,

2
«Cio  Ualp(CigCip — €56,
i tats(cauci .aﬂ>], o

Mo, u) =wipl 1
o, w) wp[+ 3 20

s

where ¢; = 1/ /3 is the standard speed of sound in LBM and 8, is the Kronecker § function. In
the collision term, the variable « is the nontrivial root for the discrete entropy function

H(f! +alf*p,u+ Au) — f/1) = H(f}). (11

with f{ = fi + [f7(p, u + Au) — f(p,u)] and H = Y, f; In(f;/w;). The variable « is typically
2.0 in the bulk liquid and gas phases, equivalent to what it would be if the Bhatnagar-Gross-Krook
(BGK) approximation is used [34], but its value will vary in a nontrivial manner across the liquid-gas
interface. The variable f is related to the kinematic viscosity (v = 1/p) through

B =1}
V= — =,
2

The second term on the right hand side of Eq. 9 is called the forcing term. We use the exact
difference method (EDM) whose form is [40]

12)

F = [f(p, u+ Au) — (o, w)]. 13)
Following previous works on ELBM [36,39], the correction term Au is defined as
PAU = (Fthermo + Fex + F) At. (14)

F (hermo 18 the thermodynamic force, defined as F permo = V - (pcszl — P). F . is the external force,
where due to gravity, F ¢ = pg with g the gravitational acceleration. For the fluid-solid interface
force, F, we introduce a body force for fluid nodes whose direct neighbors are solid nodes. The
form of the force is [37]

Fy(x,t) =" p"(x) Z wis(x + ¢;At)c;. (15)

k"™ is the fluid-solid interaction intensity, and its value can be varied from negative (nonwetting,
where the contact angle is >90°) to positive (wetting, where the contact angle is <90°). p™(x) =
(p(x) — pg)/ (o1 — pg) is the rescaled density. The function s(x + ¢;Ar) takes the value of 1 when
the corresponding fluid node is next to a solid node and 0 everywhere else. Here, we use the staircase
boundary approximation for the circular cross-section of the solid fiber.

From Eq. (9), we can reconstruct the fluid density (p) and its bare velocity (u) as

ple, 1) = fix, 1), (16)
pulx,1) =Y fix. e (17)

u is related to the actual velocity by v = u + Au/2.

C. Simulation setup

At equilibrium, it is well-known that a droplet on fiber can adopt both barrel and clamshell
morphologies, depending on the contact angle (6,) and its volume (£2) relative to fiber radius (7)
[11-14]. Typically, the barrel and clamshell morphologies are favored for small contact angles with
large volumes and large contact angles with small volumes, respectively. A bistable region is also
observed where both morphologies are mechanically stable. Using ELBM, we are able to simulate
both barrel and clamshell morphologies, as depicted in Fig. 1. Figures 1(a) and 1(c) show the droplet
in the barrel morphology, while Figs. 1(b) and 1(d) show the droplet in the clamshell morphology.
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FIG. 1. (a, b) Three-dimensional view of a droplet in the barrel and clamshell morphologies, respectively.
In both cases, the normalized droplet volume is Lg = 9.28 and the equilibrium contact angle is 6, = 75°. (c,
d) Cross-sections of droplets with the same volume Ly but different contact angles (6,). L denotes the droplet
length along the fiber, while H denotes the height of the droplet perpendicular to the fiber.

The different lines for the cross-sections in Figs. 1(c) and 1(d) correspond to several values of
contact angle formed by the droplet on the fiber surface. To characterize the droplet shape, we
denote with L the length of the droplet along the fiber axis, and with H the height of the droplet
perpendicular to the fiber.

In this work, we are mainly interested in the droplet dynamics as a body force is introduced
parallel to the fiber. We identify three nondimensional control parameters. The first one is the contact
angle 6, formed by the droplet with the fiber surface. The second one is the relative droplet size (to
the fiber radius), defined as

Q1/3
Lp = , (18)
ry
where €2 is the droplet volume and 7y is the fiber radius. The third control parameter is the
nondimensional body force, represented by the Bond number (Bo),

XQZ/3
Bo = &% (19)

O[g

where p; is the liquid density, g, is the gravitational acceleration parallel to the fiber, and oy,
is the liquid-gas surface tension. In addition to the three nondimensional control parameters, the
main observable considered in this work is the nondimensional droplet velocity, represented by the
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Capillary number (Ca),

Ca= 1% (20)

U]g

where 7; is the dynamic viscosity of the droplet and v, is the droplet velocity along the fiber.

There are two main sets of simulation data that we generate. First, we focus on the clamshell
morphology and study its stability against satellite droplet formation as we vary the Bond number
and the droplet size relative to the fiber. To vary Bo we keep the droplet volume fixed to Q = 8 x 10°
lattice units (l.u.), and tune the value of g,, obtaining Bo values ranging between 0.842 and 2.221.
For simplicity, we set g, and g, to 0. To vary the relative droplet size, we keep the volume constant
and vary the fiber radius employing the following values: r; = 10, 12, 16, 20, 24, 30, 40, and 60
l.u.. This leads to relative droplet size values Lg of 9.28, 7.74, 5.80, 4.64, 3.87, 3.09, 2.32, and
1.55, respectively. For the droplet contact angle, we choose the value of «” in Eq. (15) that leads to
6, = 75° on a flat surface.

In the second set of data, we investigate the scaling law between the droplet velocity and its
driving force, comparing barrel and clamshell morphologies. In this case, we vary the relative
droplet size by fixing the fiber radius to r; = 10 l.u., and vary the droplet volume, leading to
L =9.28, 8.43, 6.69, 5.31. For these values, both barrel and clamshell morphologies are mechan-
ically stable when the contact angle 6, is 60° and 75° [11]. We also simulate barrel morphologies
with 6, = 28° and clamshell morphologies with 6, = 120°. For these combinations of volume and
contact angles, only one morphology, respectively barrel and clamshell, is stable. Furthermore,
the gravitational acceleration g, is varied such that we obtain values of Bo ranging between
3.969 x 1073 and 3.793.

As is common in lattice Boltzmann simulations, we use the so-called staircase approximation
[41,42] to model the fiber circular cross-section. In this approach, a curved or inclined surface is
approximated by piecewise facets that follow the structure of the underlying cubic lattice. This
staircase approximation introduces roughness to the fiber cross-section and this will modify the
effective contact angle. Such roughness due to the staircase approximation is not constant along
the fiber cross-section. However, as a simple estimate, we can apply the Wenzel contact angle
equation [43]. Given a typical roughness of 1.27, the variation in contact angle does not significantly
change the expected droplet morphologies for all the cases considered here. Furthermore, since
we consider droplet motion along the fiber, the effect of contact line pinning due to the staircase
approximation is minimal. Such contact line pinning slightly affects the neck dynamics when a
satellite droplet separates from the main droplet. While not a focus of this work, it also has an effect
on the shape transition between clamshell and barrel morphology when bistability exist since in the
transient states contact line motion occurs across the fiber roughness.

In our simulations, we first initialize the droplet on a fiber setting g, = 0 and let it equilibrate until
it reaches its static equilibrium shape. Then, a constant gravitational acceleration g, > 0 correspond-
ing to the target Bond number is applied instantaneously to the droplet, and the resulting droplet
dynamics is monitored. This can lead to steady moving droplets corresponding to deformed barrel
and clamshell morphologies, and also non-steady-state shapes with periodic shape oscillations or
the formation of satellite droplets. Since the instantaneous application of the body force is expected
to affect the transient dynamics, we also selectively simulated an incremental increase of the body
force, obtaining qualitatively similar results, though quantitative differences are observed for the
regime with satellite droplet formation.

III. RESULTS

A. Dynamic regimes for clamshell morphology

Figure 2(a) illustrates three dynamic regimes detected in our simulations of a droplet in the
clamshell configuration. They form a phase diagram in the parameter space of the Bond number
(Bo) and the size ratio between the droplet and the fiber radius, Lg. We denominate the three regimes
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FIG. 2. (a) The dynamic phase diagram for a droplet in a clamshell configuration for varying Bond number
(Bo) and size ratio between the droplet and the fiber radius (Lg). There are three different possible outcomes,
and they are illustrated in the subsequent panels for (b) compact droplet, (c) droplet breakup, and (d) oscillating
droplet.

referring to the droplet shape as (i) compact droplet [Fig. 2(b)], (ii) droplet breakup [Fig. 2(c)], and
(iii) oscillating droplet [Fig. 2(d)].

The compact droplet regime is highlighted with the circle symbols and a green background. Here,
the droplet first undergoes a transient state where it is accelerated, and some shape oscillations are
triggered. However, after the oscillations are damped, the droplet will eventually move along the
fiber with a steady-state shape. In practice, for the classification done in this work, we identify a
droplet in the compact regime when: (a) there are no satellite droplets produced by the main droplet;
and (b) the residual oscillation triggered by the transient state is damped with a maximum variation
of 1% within the simulation time window. As expected, this regime is found at low Bo number
when the droplet is only weakly deformed when compared to its equilibrium shape. In this case, the
droplet receding contact line typically has a rounded shape without any tail. With increasing Bo, and
correspondingly the droplet velocity, a visible tail can be observed in the steady state, as illustrated
in Fig. 2(b). This is reminiscent to previous works on pearling stability on a flat surface [29,31,32].

The droplet breakup regime is highlighted by the triangle symbols and a blue background. Here,
during the transient state, the droplet breaks up leaving behind one or several satellite droplets. The
satellite droplets are considerably larger than that observed for the pearling instability studied on
flat surfaces [29,31,32]. However, due to the demanding computational resources, we are limited to
relatively small droplet size and simulation domain. It will be interesting to study larger systems in
the future. A key observation in our work is that the stability of the compact droplet regime depends
on the relative size of droplet and fiber radius. As observed in Fig. 2(a), at parity of droplet volume,
when the fibre has a small radius of curvature L (alternatively, large fibre radius r, the droplet can
reach a steady-state shape without forming satellite droplets for the entire range of the Bo number
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FIG. 3. (a) Typical droplet flow profile in a compact configuration. The color map corresponds to the
x-z component of the strain-rate tensor. The arrow length represents the velocity magnitude, and the scale is
provided at the top of the panel. Here, we use Lz = 3.09 and Bo = 1.453. (b) Time evolution of the solid-liquid
friction in the x direction, Fy,e. Different colors denote different values of Lz = Q3 /rs. (c) Contact area
between the droplet and the fiber (A4,,) as a function of time for different normalized fiber curvature. For panels
(b) and (c), Bo = 0.842.

explored in this phase diagram. For smaller fiber radius, in contrast, the droplet becomes unstable,
leading to the formation of satellite droplets, as shown in Fig. 2(c). Interestingly, the onset of this
instability shifts to lower Bo as the fiber radius ry becomes smaller. It is worth noting that, in this
work, we assume an idealized fiber where there is no contact angle hysteresis along the droplet.
A previous simulation study by Yang et al. [33] on a flat surface also highlighted satellite droplet
formation, but correlated it with increasing contact angle hysteresis.

In the oscillating droplet regime, the droplet oscillates regularly as it moves along the fiber. Over
the range of parameters explored in Fig. 2(a), this is observed for the intermediate range of relative
droplet sizes. Initially, the droplet dynamics is akin to that for droplet breakup, where the trailing
edge bulges and a neck is formed connecting the rear and the front of the droplet; see, e.g., Fig. 2(d).
However, unlike the droplet breakup regime, the neck does not rupture and the rear portion of the
droplet merges with its front. Furthermore, we observe the droplet oscillation is not damped and can
repeat over multiple cycles in our simulations. Indeed, it appears to continue indefinitely, suggesting
that the energy provided by the body force at a constant rate feeds the droplet oscillation as well as
the motion of the center of mass.

B. Dynamics of compact droplets

In this and the next subsections, we will discuss the droplet dynamics for each dynamic regime
in turn, starting with the compact droplet case. In Fig. 3(a) we inspect the middle cross-section of
the droplet along the fiber and illustrate its typical flow profile (see the arrows). At steady state, the
internal velocity is dominated by the positive x component with clear variations in the z direction.
To characterize this, in Fig. 3(a), we have also shown the x-z component of the strain-rate tensor in
the plane of the droplet cross-section, defined as E,, = E_, = (0,v, + 9.v,)/2. In our case here, the
second term is much larger compared to the first term.

From the strain rate color map, we can infer that viscous dissipation is dominated by shear close
to the solid substrate. Correspondingly, the primary friction force arising at the liquid-solid interface
opposes the external body force due to gravity. The liquid-solid friction force in the x direction, Fyrag,
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can be estimated as
Fdrag = / m Vv dA, 2n
A

where the integral is over the solid-liquid contact area, 1; is the dynamic viscosity of the liquid, and
V 1 v, is the velocity gradient normal to solid surface. Figure 3(b) shows the time evolution of the
drag force, Fyr,g, for several different fiber curvatures. Here, we have chosen Bo = 0.842 where the
droplet is in the compact regime for all values of L considered in the phase diagram in Fig. 2(a).
We find that, at steady state, the friction force approaches the same value for all Lg cases. This is
expected because we have used the same droplet volume, and at steady state, the friction force must
balance the driving force due to gravity. There are, however, two clear variations as we study fibers
of different radii. First, the relaxation time to steady state: fibers with smaller curvatures (i.e., larger
fiber radii) reach steady state faster than fibers with larger curvatures (smaller fiber radii). Second,
the liquid-solid contact area: as shown in Fig. 3(c), the contact area is larger for a fiber with smaller
curvature (larger fiber radius). Moreover, since the total friction force is the same, as a corollary, the
shear stress must be smaller with decreasing curvature (increasing fiber radius).

Next, we investigate in the relation between the droplet velocity and the driving force. Lorenceau
and Queré [15] have previously investigated the spontaneous motion of a perfectly wetting droplet
in a barrel configuration on a conical fiber. They argued that, at steady state, the viscous force in the
droplet scales as

vry
Farag ~ n1—, 22)
O
where 7, is the droplet viscosity, v is the droplet velocity, 7 is the fiber radius, and 6,, is the effective
wedge angle at the contact line. If the wedge angle 6,, is small (<30° or when H/L < 0.5) and the
droplet moves slowly such that it does not drastically change the shape of the droplet, they further
estimated that 6, is in the order of the droplet aspect ratio H/L, where H is the droplet height
perpendicular to the fiber and L is the droplet length along with the fiber. Balancing the viscous
friction with the driving force Fy;ye, then we obtain

~ H F drive

v .
L nry

(23)

A similar scaling argument has also been derived by Gilet et al. [16]. If the driving force is
due to gravity, as it is the case here, then the scaling law above can be rewritten in terms of two
dimensionless numbers, the Capillary and Bond numbers. Substituting Fysive = 018,€2, We can write

v H opg 2P QR
O1g L Olg ry

H Q'3
Ca~ —
L

’

Bo,
I"f

H
Ca ~ I L Bo. 24)

To check the validity of the derived scaling law for partially wetting droplets, we will therefore fit
our simulation data against the corresponding equations:

Ca = a;(Lg Bo)™, (25)

my

Ca= az(% Lr Bo) , (26)
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FIG. 4. (a—c) Scaling laws between the droplet Capillary (Ca) and Bond (Bo) numbers. The markers are
the simulation data points (all panels), while the lines are the best fits based on Egs. (25) [for panels (a) and
(c)] and (26) [for panel (b)]. Panels (a, b) are for the barrel morphology, while panel (c) is for the clamshell
morphology. Insets in panels (a, ¢) show the wetted area normalized to the fiber radius (AY/?/r;) as a function
of the reduced volume Lg. Inset in panel (b) shows the droplet aspect ratio (H/L) as a function of the reduced
volume Lg. All the data shown in the insets are taken for Bo = 0, and their values do not change significantly
with varying Bo across the range considered here. In panel (d), we plot Ca/Bo as a function of reduced volume
Lg = Q'3 /r;. The dashed line shows Lz = 1.0. For each value of the droplet volume 2, the fiber radius is
varied such that Lg ranges from 0.05 to 10.0.

where «1, op, my, and m, are numerical constants. The two equations above differ in whether the
droplet aspect ratio, H/L, is taken into account in the scaling law, as Lorenceau and Queré¢ argued
it should only be valid when 6,, ~ H/L is small.

Figures 4(a) and 4(b) show how the simulation data fit against the proposed scaling laws for
the barrel morphology. To ensure the scaling law is tested robustly, we have varied the droplet
contact angle, the droplet volume, and the applied body force. The fiber radius is fixed at ry = 10.
The different colors denote different contact angles (6,), while different symbols correspond to
different reduced volumes (Lg). We find that the exponents (m; and m;) are always very close to
1 (between 0.944 to 1.012) for the range of Bo considered. Deviations from 1 can be observed
for larger Bo (typically when Bo > 0.3, though it depends on droplet morphology and contact
angle), accompanied by clear deformations of the droplet shape. In this low Bo regime, adding or
removing the H/L prefactor does not make the exponents change significantly. Therefore, for a
partially wet fiber, the relationship between the velocity and the external force is linear. However,
by incorporating the aspect ratio prefactor, all our results collapse into a single line, including fibers
with different wettabilities. This observation is well aligned to the argument by Lorenceau and
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Queré that the use of 6,, ~ H/L in the scaling law is reasonable only if H/L< 0.5 [15]. The inset in
Fig. 4(b) shows that for barrel morphology, H/L is below 0.5.

The linear relation between Ca and Lg X Bo can also be observed for the clamshell morphology,
as demonstrated in Fig. 4(c). However, unlike for the barrel morphology, we are unable to collapse
all the data points for different contact angles into a single master curve irrespective of whether
we include the aspect ratio H/L prefactor (data not shown) or not. Indeed, the aspect ratio H/L is
typically larger, >0.5, for the clamshell morphology compared to barrel. Furthermore, in Fig. 4(c),
the coefficient «; increases monotonically with 6,. With increasing contact angle, the droplet contact
area (see the inset) is smaller, and the droplet center of mass is further away from the fiber surface,
and as a result, the liquid-solid friction is smaller and droplet velocity is faster. The same argument
applies when comparing the barrel and clamshell morphologies. At parity of contact angle and
driving force, the clamshell is faster than the barrel because the wet area is smaller.

The data shown in Fig. 4(c) correspond to cases where the droplet size is large compared to the
fiber radius. We expect that, in the limit of where the droplet is small compared to the fiber, we
should recover the scaling law proposed for a droplet moving on an inclined flat surface [30,44,45].
By balancing the driving gravitational force and dissipative viscous force, Kim et al. derived a
relation for the droplet steady-state velocity [44]:

L Q
v~ D8 27)

mLyL’

where L is the projection of the droplet contact perimeter in the direction orthogonal to the motion.
Equation (27) can further be rewritten into

nv Q' pe Q¥

014 L, O14
Ql/3

Ca~ > Bo. (28)
L,

The key term to consider is the ratio (2!/3/L ) as we vary the size ratio between the droplet and the
fiber. When this ratio is small, corresponding to the flat surface limit, for a given contact angle 6,,
L, scales with Q'/3. This leads to an expected linear scaling between Ca and Bo, without any
dependency on the fiber radius. In contrast, when this ratio is large, we expect L, to scale as
the radius of the fiber ry, which explains the linear scaling between Ca and Lrx Bo observed in
Fig. 4(c).

To verify the crossover, in Fig. 4(d), we systematically vary the fiber radius 7, (corresponding to
Ly values from 0.05 to 10.0) for four different droplet volumes (indicated by the different colors and
symbols), while fixing the gravitational acceleration and droplet contact angle. At low Ly values,
we clearly observe a plateau in the ratio between Ca and Bo, while for large Lg values, we again
find an additional linear dependence on Lg. The latter is the regime where the fiber curvature
significantly affects the droplet dynamics. Furthermore, as expected, the crossover occurs around
Lg = 1.0, indicated by the dashed vertical line, where the droplet size becomes comparable to the
fiber.

C. Dynamics of droplet breakup

During breakup the droplet can be considered as a compound of three main parts: (i) the main
droplet body at the front, (ii) a satellite droplet at the rear, and (iii) a liquid filament connecting the
main body and the satellite droplet that eventually ruptures. When breakup takes place, the rear side
of the droplet starts to bulge [see t = 65 000 l.u., Fig. 5(a)], but the fluid flow is predominantly in
the x direction, akin to that in the compact droplet regime. As in the previous case, the viscous force
is largest close to the solid boundary, as indicated by the color map illustrating the x-z component
of the strain rate. Once the satellite droplet is formed, its volume is typically smaller than the main
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FIG. 5. (a) Droplet flow profile during breakup. The color map shows the x-z component of the strain-rate
tensor. The arrow length represents the velocity magnitude, and the scale is provided at the top of the panel
corresponding to t = 65000. In the inset for t = 85000, we use a different scale to clarify the variations in
the velocity magnitude. Here, Bo = 1.073 and Ly = 7.74. (b) Drag force (Fg.,) and (c) the contact area (A,,)
between the droplet and the fiber as a function of time for different normalized fiber curvature and Bo =
1.073. For Lg = 5.80, this leads to a compact configuration, while for Lg = 7.74, it leads to droplet breakup.
Gray dashed line shows the breakup point. (d) Typical cross-section of the droplet upon breakup, where L
denotes the droplet length alongside the fiber, Ly denotes the filament length, and Wr denotes the filament
width. (e) Ly normalized by the droplet characteristic length (22'/3), (f) Wi normalized by ©2!/3, and (g) the
rear droplet volume (€2;,-) normalized by initial droplet volume (£2) as a function of Bond number. In panels
(e—g), different colors correspond to different Lg, with solid lines for droplet breakup cases and dotted lines for
droplet oscillation cases.

droplet, so it is subjected by smaller driving force, and its center of mass moves at smaller velocity
than the main droplet. As breakup proceeds, the liquid filament becomes increasingly thinner and
more elongated, as illustrated in the snapshot for # = 85 000 l.u. Close to the rupture point in the
filament region, we can see a clear downward fluid velocity. This effectively squeezes the neck
region leading to droplet breakup, as shown in the snapshot for # = 90 000 l.u.

In the previous subsection, we observed that the value of the drag force converges to the same
value for a given Bo, as we vary the fiber radius. Here, when droplet breakup occurs, we find that
Farag overshoots the value for a steady-state compact droplet. Figures 5(b) and 5(c) show the drag
force Fyrae and the droplet contact area A,, at Bo = 1.073 for two cases: Lg = 7.74 when the droplet
has a compact shape, and Lr = 5.80 when the droplet breaks up. Since the droplet contact area is
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FIG. 6. (a) Typical droplet flow profile in the droplet oscillation regime. The color map shows the x-z
component of the strain-rate tensor. The arrow length represents the velocity magnitude, and the scale is
provided at the top of the panel corresponding to # = 40 000. In the inset for + = 50000, we use a different
scale to clarify the variations in the velocity magnitude. (b) Wetted area and (c) drag force as a function of time
for Lg = 3.09 and Bo = 2.221. (d) Ca as a function of Bo for Lg = 3.09. For the compact cases, the velocity is
measured at steady-state condition. For the droplet oscillation cases, the velocity is averaged over once cycle
of stretching and contraction.

smaller when the curvature is high, we argue the amount of energy which can be dissipated is lower.
To compensate for this, the droplet will stretch (increasing A,,) before the main and satellite droplets
separate. After the separation, the total drag force, Fyg, for those two droplets approaches that for
a compact droplet.

The droplet breakup mechanism can be characterized by the filament length and the satellite
droplet size. Figure 5(d) shows the cross-section of a typical droplet in the verge of breakup. L
denotes the droplet length alongside the fiber, while L denotes the filament length. We define
the filament boundary as the point where the curvature changes from convex (droplet) to concave
(filament). In Figs. 5(e) and 5(f), we compare Ly and Wr at the verge of breakup as a function of
Bo for three values of Lg: 3.09 (ry = 30), 4.64 (ry = 20), and 9.28 (r; = 10). In general, with
decreasing fiber radius, the filament length increases and its width decreases. As the filament
elongates over time, it eventually breaks up. Finally, Fig. 5(g) shows the satellite droplet volume
(2rear), measured on the first frame of breakup. We find that the volume of the satellite droplet
increases with the Bond number. At the same time, for the same Bond number, higher curvature
surface (1/7¢) will induce a smaller satellite droplet volume.

D. Dynamics of droplet oscillation

In addition to droplet breakup, we also find another dynamic regime at higher Bond number that
we term droplet oscillation. This regime is similar to the one described by Yang et al. [33] on a flat
surface, as illustrated in Fig. 6(a). Here, in the time range between ¢ = 40 000 l.u. and t = 50 000
Lu., we observe droplet dynamics similar to the one leading to droplet breakup, where the filament
stretches and a downward fluid displacement in the neck region is initiated. However, breakup is not
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triggered, and the filament survives for a much longer time until eventually the filament shortens (¢
= 110 000 l.u.), the two parts of the droplet recombine, and the cycle is repeated.

In our analysis of the breakup mechanism, we find that smaller fiber curvature (larger fiber radius)
will lead to a shorter filament (Lg), wider filament (Wg), and a larger satellite droplet volume (2;ear)
[see Figs. 5(e)-5(g)]. In Figs. 5(e) and 5(f), we also include data points for the oscillation cases,
which are denoted by dotted lines. Compared to the breakup cases (see the full and dashed blue
lines), we find that Lr does not differ significantly, while Wg is clearly larger. In general, filaments
with higher aspect ratio (Wg/Lg) are more stable. Furthermore, when the satellite and main droplets
are of similar size, they are affected by a similar driving force, and consequently the velocity
difference between them is small. Taken together, these limit the extension of the filament region,
and the short separation makes it easier for the satellite droplet to recombine with the main droplet in
the droplet oscillation cases. This consideration also qualitatively explains why droplet oscillation
is detected in a narrow boundary region between compact and breakup in our phase diagram of
Fig. 2(a). If the fiber curvature is too small, filament formation is suppressed, leading to a stable
compact droplet. However, if the fiber curvature is too large, (1) the rear droplet volume will be
too small, (2) the filament will be too long, and (3) the contact area will also be too small for the
filament to be stable; leading to droplet breakup.

In Figs. 6(b) and 6(c), we also show the time evolution of the drag force, Fy,,, and the droplet
contact area, A,,. A period in these curves corresponds to one cycle of droplet stretching and
contraction, and we observe that the droplet oscillation indefinitely repeats over multiple cycles
in our simulation. The minimum contact area coincides with the maximum drag force, as shown by
the dashed gray lines in Figs. 6(b) and 6(c).

Finally, Fig. 6(d) shows the droplet center of mass velocity (nondimensionalized into Ca) as a
function of Bo when Lg = 3.09. For the droplet oscillation cases, we plot the average center of mass
velocity over one cycle of stretching and contraction. As we have previously shown in Fig. 4, Ca
increases proportionally with Bo (for Bo < 1.4) when the droplet has a compact shape. However,
as we enter the droplet oscillation regime, we observe that the average Ca is lower even though
the external driving force is larger. This reflects the fact that the droplet shape oscillation leads to
extra dissipation during droplet motion. Within the same droplet oscillation regime, the average Ca
increases monotonically again with Bo.

IV. CONCLUSION

In this work we have used the lattice Boltzmann method to investigate the dynamics of droplets
moving along a fiber, focusing in particular on the clamshell morphology and the partially wetting
droplet case. By systematically varying the droplet Bond number and fiber radius, we observed three
regimes in the droplet dynamics. First, at low Bond number, the droplet maintains a compact shape.
Here, the driving force is balanced by viscous force such that the droplet reaches a steady state. The
viscous dissipation is dominated by shear close to the solid substrate, and for smaller fiber radius,
the shear stress is larger while the liquid-solid contact area decreases. Analysing the droplet velocity
in the low Bond number regime, we further identified a scaling law relating the Capillary number,
the Bond number and the size ratio between the droplet and the fiber: Ca o« Bo x Lg when the fiber
curvature is dominant, Lg > 1.0; and Ca o« Bo when Lz < 1.0 as we approach the flat surface limit.
A similar scaling law was further observed for a droplet in the barrel morphology. In fact, for barrel
configuration, all the data can be collapsed into a single line by including a droplet geometrical
factor, such that Ca o Bo (Lr) (H/L).

For large Bond number, the droplet shape becomes unsteady. The dominant unsteady regime is
droplet breakup, where satellite droplets are formed at the rear of the moving droplet. Importantly,
the transition to the droplet breakup regime strongly depends on the fiber curvature. The larger
the curvature (the smaller the fiber radius), the lower the Bond number for the transition between
compact droplet and droplet breakup regimes. We rationalized this by characterizing the filament
prior to satellite formation. The filament is longer and narrower with increasing fiber curvature,
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which suggests it becomes less stable. Another unsteady regime is droplet oscillation whereby the
droplet extends and contracts periodically. This regime was observed in the midrange of fiber radius
explored in this work, indicating subtle dynamics are at play. Compared to the droplet breakup
regime, the rear bulge is larger and the filament is wider during the extension phase. As a result,
the rear bulge can catch up with the filament and the droplet as a whole contracts. Furthermore,
compared to the compact droplet regime, the shape oscillation leads to extra dissipation during
droplet motion. Correspondingly, the droplet moves slower in this regime.

Our work highlights several avenues for further investigations. First, we have idealized the fiber
geometry in that there is no contact line pinning and contact angle hysteresis along the fiber. In
contrast, real fibers unavoidably have some roughness, and previous works on flat surfaces suggest
contact angle hysteresis is an important factor in satellite droplet formation [31,33]. Second, we
have demonstrated that the substrate curvature can have a strong effect on the resulting droplet
dynamics. It will be interesting to explore this concept further on more complex curved geometries,
such as a conical fiber or an undulating egg-box substrate [22,23]. Third, we currently limit our
work to an external force (e.g., gravity) parallel to the fiber axis. In many practical applications, it
will be relevant to consider a driving force that acts on different angles with respect to the fiber axis.
It will also be valuable to consider other types of driving forces, such as due to an imposed air flow
[18,24,46].
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