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Numerical modeling of droplet rim fragmentation by laser-pulse
impact using a multiscale two-fluid approach
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In this paper, we examine the rim fragmentation of a millimeter-sized methyl-ethyl-
ketone droplet imposed by the impact of different millijoule nanosecond laser beams
that correspond to droplet propulsion velocity values between 1.76 and 5.09 m/s. The
numerical investigation is conducted within a physically consistent and computationally ef-
ficient multiscale framework, using the �-ϒ two-fluid model with dynamic local topology
detection. Overall, the macroscopic droplet expansion and the obtained deforming shape
show good agreement with the experimental observations. The influence of the laser beam
energy on the droplet deformation and the evolution of the detached fragments from the rim
is demonstrated. The physical mechanisms that determine the droplet expansion, including
the expansion velocity and expansion rate, along with the effect of the surrounding air
flow on the detached fragments, are addressed. Despite the visualization limitations inside
the polydisperse cloud of fragments in the experimental results at higher laser energy, the
evolution of fragments during the fragmentation process is quantified, and size distributions
are obtained within the multiscale framework.
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I. INTRODUCTION

The droplet response to a laser-pulse impact is a polyparametric phenomenon, which remains of
primary significance in varied state-of-the-art applications of both industrial and medical interest,
including, among others, the extreme ultraviolet (EUV) light emission in lithography machines
[1–4], the micromachining in the fabrication of photonic devices [5–7], and the laser ablation
of biological tissues [8–11]. The absorption of the laser energy by the liquid droplet results in
rapid and explosive phase-change phenomena, such as cavitation [12,13], vaporization [14–16], and
plasma formation [17,18], observed in both transparent and liquid metal droplets. Because of the
developed droplet dynamics after the laser-pulse impact, the droplet moves, deforms, and fragments
into different patterns, dependent on the intensity of the applied laser beam energy and the material
of the liquid droplet.

Authors of several experimental studies in the literature have investigated the laser-imposed
fragmentation of a liquid droplet under different experimental configurations, which as a result,
lead to different postimpact mechanisms. In the early literature, Kafalas and Herrmann [14] and
Kafalas and Ferdinand [15] examined the explosive vaporization of single micron-sized water
droplets imposed by a pulsed CO2 laser with an energy of ∼0.5 J per pulse. Later, Pinnick et al.
[19] extended the explosive vaporization study for different liquids, e.g., for ethanol and diesel
droplets, and observed similar fragmentation patterns with the water experiments for a pulsed CO2

laser and comparable energy. Similar explosive response was also observed for micron-sized liquid
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metal droplets in the experiments of Basko et al. [20] and Grigoryev et al. [21]; in this case,
the picosecond laser pulse results in the development of a plasma state inside the droplet, while
the development and propagation of a gigapascal pressure pulse inside the droplet triggers the
subsequent violent fragmentation. More recently, Gonzalez Avila and Ohl [12] and Zeng et al.
[22] studied a different explosive fragmentation mode, which develops as an outward widespread
jetting from the droplet surface. Specifically, the laser impact onto a millimeter-sized water droplet
with a cavitation bubble in the center imposes a laser-induced cavitation and bubble oscillations that
penetrate the droplet surface; different fragmentation regimes were identified based on the dynamic
pressure and the energy of the expanding bubble. In an attempt to control the deposition of the
laser energy inside the droplet, Klein et al. [23–25] proposed the use of opaque liquid droplets,
which restrict the energy absorption in a thin superficial layer on the illuminated side of the droplet.
Specifically, Acid-Red-1 and Oil-Red-O solutions were utilized for water and methyl-ethyl-ketone
(MEK) droplets, respectively, to investigate the droplet response to a broad range of laser energy
between 1 and 420 mJ. Additionally, the similarities between the physical principles that govern
the laser-induced droplet fragmentation and the fragmentation due to the mechanical impact of a
droplet onto a solid surface [26] were highlighted; the impulsive acceleration of the droplet due to
the laser impact can be correlated with the impulsive deceleration of the droplet when impacting
the solid. Recently, Rao et al. [27] demonstrated the influence of the laser focus and energy on
the resulting fragmentation of an array of micron-sized water and diesel droplets and identified
a butterfly-type fragmentation pattern. Overall, the available experimental studies in the literature
provide a thorough analysis of the droplet dynamics and the physical mechanisms that govern the
subsequent fragmentation. However, due to the multiscale character of the fragmentation process,
very few quantitative data are available regarding the produced fragments, for instance, in the
high-resolution experimental visualizations of Klein et al. [25] and Rao et al. [27], which mainly
concern moderate fragmentation regimes.

The hydrodynamics response of a liquid droplet to a laser-pulse impact is driven by the imposed
recoil pressure on the droplet surface, as discussed in previous analytical and numerical studies
in the literature. Specifically, the smooth particle hydrodynamics (SPH) method is commonly
adopted for the investigation of liquid tin droplets, which are subject to high-energy picosecond
laser beams. As depicted in the works of Grigoryev et al. [21] and Koukouvinis et al. [28],
the SPH method can accurately predict the recoil pressure establishment and propagation inside
the droplet shortly after the laser-pulse impact, the formation of dominant cavitation regions, and
the early time explosive fragmentation using a given particle population. Concerning the commonly
utilized Eulerian methods in droplet fragmentation simulations due to mechanical impact [29–31],
Zeng et al. [22] employed the volume of fluids (VOF) method to study the cavitation-induced liquid
jetting of a water droplet with a gas bubble in the center at initial conditions, impacted by a millijoule
laser pulse. The coherent droplet interface and the formation of multiple outward liquid jets were
accurately captured with the sharp interface method; however, the small-scaled fragments remain
unresolved with the VOF method, which can result in significant loss of information in more violent
fragmentation regimes with dominant polydisperse fragments. Gelderblom et al. [32] proposed the
boundary integral (BI) method for the simulation of the laser-induced droplet deformation. The BI
simulations precisely capture the droplet lateral and width deformation under different conditions;
nevertheless, the effects of the surrounding air and the subsequent fragmentation of the elongated
liquid sheet were excluded from the numerical modeling. Additionally, Gelderblom et al. [32] and
Reijers et al. [33] presented an analytical solution for the developed flow fields inside the droplet,
during the early times of the droplet response to the laser-pulse impact. In the analytical studies,
they provided a further insight into the obtained recoil pressure and the resulting droplet dynamics
that finally initiate the droplet deformation; however, the analysis is restricted to the early times
before the droplet deformation becomes significant.

Following the numerical challenges imposed by the unrevealed laser-induced droplet fragmen-
tation mechanisms, there is a gap in the up-to-date literature regarding a comprehensive numerical
analysis that can capture both the early time droplet dynamics, evolving shortly after the laser-pulse
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impact and the later time droplet fragmentation with consideration of all the produced multiscale
fragments. In this paper, we propose the multiscale two-fluid approach, as developed by Nykteri
et al. [34], to investigate the multiscale character of the later time droplet fragmentation. The
numerical methodology has been previously validated against droplet fragmentation cases, driven
by the high-speed mechanical impact on a solid surface [34]. In the present numerical simulations,
the multiscale two-fluid approach employs a sharp interface method for the deforming and laterally
expanding liquid droplet and a physically consistent subgrid scale modeling for the produced
small-scaled fragments due to the rim breakup. In the conducted simulations, we do a thorough
quantitative analysis of both the early and later time droplet dynamics with a viable computational
cost. Specifically, significant information regarding the liquid droplet expansion into an elongated
liquid sheet is revealed, including the droplet radial expansion velocity and the effect of the
surrounding air. Additionally, the influence of the applied laser beam energy is demonstrated and
shows good agreement with both the experimental observations of Klein et al. [25] and theory.
Finally, an overview of the evolution of the population of the produced fragments is presented. The
fragment dynamics, including the development of a cloud of fragments during the fragmentation
process and the interaction between the detached fragments and the surrounding air under the impact
of different beams, is highlighted, and size distributions are obtained.

In Sec. II are presented all the details of the numerical configuration for the conducted laser-
induced droplet fragmentation simulations, including the problem formulation as described in the
experimental studies of Klein et al. [23–25], the early time dynamics simulations, the governing
equations of the multiscale two-fluid approach, and the later time dynamics simulations setup.
Following, in Sec. III, the numerical investigations for the rim fragmentation of a liquid droplet,
imposed by different intensity laser beams are discussed. The numerical results are compared with
the experimental observations of Klein et al. [25] for the same examined conditions. Finally, the
major conclusions are summarized in Sec. IV.

II. NUMERICAL MODELING

The fragmentation of a millimeter-sized MEK droplet imposed by the impact of a millijoule
nanosecond laser pulse is investigated in this paper using numerical simulations. The MEK
droplet with an initial radius of R0 = 0.9 mm, density ρ = 805 kg/m3, kinematic viscosity ν =
0.53 × 10−6 m2/s, and surface tension γ = 0.025 N/m lies in a nitrogen environment at ambient
conditions (p = 1 atm, T = 20 ◦C). The laser-induced droplet dynamics concern two main stages,
namely, the early time droplet response to the laser pulse and the later time droplet deformation and
fragmentation. The early time droplet dynamics are discussed in Sec. II A based on the experimental
investigations of Klein et al. [23–25], and a physically consistent numerical modeling is presented
in Sec. II B, following the analytical model of Gelderblom et al. [32]; the obtained pressure and
velocity fields inside the droplet are subsequently utilized for the initialization of the conducted
numerical simulations that capture the later time phenomena. The numerical simulations of the later
time droplet deformation and fragmentation are performed using the multiscale two-fluid approach,
presented in Sec. II C. Details of the simulation setup are summarized in Sec. II D.

A. Problem formulation

The numerical modeling of the laser-induced droplet fragmentation is based on the problem for-
mulation and the fundamental principles of the early and later time droplet dynamics, as introduced
in the experimental studies of Klein et al. [23–25] and illustrated in Fig. 1.

The early time droplet dynamics in Figs. 1(i) and 1(ii) are characterized by the millijoule
nanosecond laser pulse impact onto the droplet that results in local boiling on the superficial layer
with thickness δ � R0 and the emission of a very small vapor mass in the surrounding air. The
resulting recoil pressure on the droplet surface accelerates the droplet until it finally reaches a
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FIG. 1. Separation of timescales in the laser-induced droplet rim fragmentation problem. (i) A nanosecond
laser pulse impacts the left side of the dyed droplet. (ii) The vaporized liquid mass on the superficial layer is
ejected backwards. As a result, the droplet accelerates until it reaches a constant propulsion velocity U at the
vapor expulsion time τe. (iii) The droplet propels and deforms at the inertial time τi. (iv) The surface tension
and the extended fragmentation restrict the droplet lateral expansion at the capillary time τc.

constant propulsion velocity U , as expressed in the momentum conservation below:

mu = ρR3
0U, (1)

where m is the vaporized liquid mass on the superficial layer, u the velocity of the expelled vapor
mass, ρ the liquid density, R0 the initial droplet radius, and U the droplet propulsion velocity.

The primary parameter that determines the laser-induced droplet fragmentation, by establishing
the propulsion velocity and thus the expansion rate of the droplet, is the Weber number of the
propelled droplet, defined as

We = ρR0U 2

γ
, (2)

where ρ is the liquid density, R0 the initial droplet radius, U the droplet propulsion velocity, and γ

the liquid surface tension.
During the later time droplet dynamics in Figs. 1(iii) and 1(iv), the deformation of the droplet

surface dominates on the inertial timescale, defined as τi = R0/U , until eventually the droplet lateral
expansion is restricted by the surface tension and the extended fragmentation on the capillary
timescale, calculated as τc =

√
ρR3

0/γ .

B. Early time dynamics and initial fields

The distinct separation of timescales in the laser-induced droplet fragmentation problem al-
lows us to isolate the modeling of the early time droplet dynamics from the later time droplet
deformation and fragmentation without introducing physical or numerical restrictions. Following
this observation, Gelderblom et al. [32] provided a unified analytical model for all early time
phenomena, starting from the laser-pulse impact onto the droplet for a duration τp, until the droplet
propulsion with constant velocity on time τe, illustrated in Figs. 1(i) and 1(ii). The model concerns
a pressure pulse with magnitude pe applied on the droplet surface for a duration τe. Accordingly, the
absolute impulse scale peτe imposes the droplet propulsion. The momentum conservation at time τe
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is expressed as follows: ∫ τe

0

∫
A

peez · dAdt = 4

3
πρR3

0U, (3)

where τe is the vapor expulsion time, A the droplet surface area, pe the magnitude of the pressure
pulse, ρ the liquid density, R0 the initial droplet radius, and U the droplet propulsion velocity.

As derived from the assumptions of Gelderblom et al. [32] for an inviscid, irrotational, and
incompressible flow, the pressure field inside the droplet at time τe is obtained from the solution of
the Laplace equation:


p∗ = 0, (4)

for the nondimensional pressure field p∗ = p/pe. Subsequently, the velocity field inside the droplet
at time τe is calculated from the momentum equation as

u = −τe

ρ
∇p, (5)

while the nondimensional velocity field is obtained as u∗ = ρR0u/peτe.
The pressure boundary condition of Eq. (4) refers to the original pressure pulse that is applied on

the droplet surface and considers the dependence of the pulse shape on the angle θ , such that

p∗(r = 1, θ ) = f (θ ), (6)

where the pulse f (θ ) is proportional to the actual laser pulse that impacts onto the droplet surface
in the conducted experiments of Klein et al. [23–25]. Therefore, Gelderblom et al. [32] suggested
a Gaussian-shaped pressure pulse to remain consistent with the typically used Gaussian laser beam
profiles in the experiments. The Gaussian-shaped pressure pulse is formulated as

f (θ ) = ce−θ2/2σ 2
, (7)

where σ is the pulse width and

c = 2
√

2

σπ3/2exp(−2σ 2)
[
2er f i(

√
2σ ) − er f i

(
iπ+2σ 2√

2σ

) − er f i
(−iπ+2σ 2√

2σ

)] .

In the experiments of Klein et al. [23], a laser beam profile with σ = π/6 is used; then c = 0.825.
In this numerical study, the previously presented analytical model for the early time droplet

dynamics is adapted to be incorporated in the computational fluid dynamics (CFD) framework.
Specifically, the MEK droplet is simulated as a 5◦ spherical wedge with one cell thickness in
the azimuthal direction, using PIMPLEFOAM, a transient incompressible solver in OpenFOAM. As
suggested in the analytical model, for times t � τe, a pressure pulse is applied on the surface of the
initially stagnant MEK droplet at ambient conditions. Correspondingly, the pressure pulse is set as
the pressure boundary condition on the spherical wedge domain, given in dimensional form as

p(θ ) = pe f (θ ) + patm. (8)

Details of the numerical configuration for the simulation of the early time droplet dynamics are
illustrated in Fig. 2(i).

At time t = τe, the established pressure and velocity fields inside the droplet are calculated from
the numerical simulations, as illustrated qualitatively in Fig. 2(ii). Later, the obtained flow fields are
utilized for the initialization of the droplet in the conducted numerical simulations that initiate at
time t > τe and capture the later time phenomena, as demonstrated in Sec. II D.

C. Later time dynamics and numerical method

The later time phenomena, illustrated in Figs. 1(iii)–1(iv), are governed by the deformation of
the droplet into an elongated liquid sheet and the subsequent fragmentation of the droplet rim. The
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FIG. 2. Problem configuration and simulation setup. (i) For t < τe, the axisymmetric pressure pulse p(θ )
is applied on the droplet surface. (ii) At t = τe, the initial pressure and velocity fields inside the droplet are
obtained. (iii) The initial fields are mapped into the wedge geometry. For t > τe, the droplet fragmentation is
simulated using the multiscale two-fluid approach.

detached fragments form a polydisperse cloud of secondary droplets with diameters at least two
orders of magnitude smaller than the initial droplet. Therefore, during the phenomenon, a flow
field with dominant multiscale structures is developed, which imposes additional complexities in a
full-scale and computationally efficient numerical analysis.

In this numerical study, the �-Y two-fluid model with dynamic local topology detection,
introduced in the previous work of the authors [34], is utilized for the laser-induced droplet rim
fragmentation simulations. The previously developed multiscale two-fluid approach provides a
physically consistent and numerically stable multiscale framework for the investigation of all the
scales involved in the laser-induced droplet fragmentation problem with a viable computational
cost. A fundamental principle of the multiscale framework is the detection of different flow regimes
based on advanced on-the-fly topological criteria and the application of the appropriate modeling
approach for the local interfaces based on the dimensions of the underlying structures. The interface
of the expanding but still coherent liquid sheet is fully resolved using the VOF sharp interface
method [35,36]. On the contrary, the produced fragments, which are smaller than the local mesh
resolution, are modeled within a diffuse interface approach. In this case, an additional transport
equation for the interface surface area density � [37,38] is incorporated to model the unresolved
subgrid scale phenomena and provides an estimation for the dimensions of the unresolved subgrid
scale droplets.

The multiscale two-fluid approach has been implemented in OpenFOAM with further develop-
ments on the twoPhaseEulerFoam solver to introduce all the additional features of the multiscale
framework, as described in detail in Ref. [34]. The numerical model consists of the same set of
governing equations under both formulations, namely, the sharp and diffuse interface approaches,
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with specific source terms to be activated and deactivated depending on the currently operating
formulation of the solver, as summarized below.

1. Two-fluid model governing equations

The volume averaged conservation equations [39] governing the balance of mass, momentum,
and energy for each continuum and interpenetrating fluid phase k are

∂

∂t
(akρk ) + ∇ · (akρkuk ) = 0, (9)

∂

∂t
(akρkuk ) + ∇ · (akρkukuk ) = −ak∇p + ∇ · (

akτ
eff
k

) + akρkg +
2∑

n=1
n �=k

Mkn, (10)

∂

∂t
[akρk (ek + kk )] + ∇ · [akρk (ek + kk )uk]

= −∇ · (
akqeff

k

) −
[
∂ak

∂t
p + ∇ · (akuk p)

]
+ akρkg · uk +

2∑
n=1
n �=k

Ekn, (11)

where αk is the volume fraction, ρk the density, uk the velocity, ek the specific internal energy, kk

the specific kinetic energy fields for each phase, p the pressure field shared by both the liquid and
gaseous phases, and g the acceleration of gravity. Viscous and turbulence effects are introduced
with the effective stress tensor τ eff

k , which accounts for the molecular viscosity and the Reynolds
stress tensor based on Boussinesq’s hypothesis [40] and the effective heat flux vector qeff

k , which
corresponds to the laminar and turbulent thermal diffusivity. Here, Mkn represents the forces acting
on the dispersed phase, depending on local topology; the surface tension force [41] is implemented
under the sharp interface approach, while the aerodynamic drag force [42] is implemented under the
diffuse interface approach. Also, Ekn demonstrates the heat transfer between the liquid and gaseous
phases, irrespectively of the flow region.

2. �-ϒ model transport equations

The transport equation for the liquid volume fraction in a compressible two-phase flow is given
by

∂al

∂t
+ ∇ · (al um) + vtopo{∇ · [al (1 − al )uc]} = alag

(
ψg

ρg
− ψl

ρl

)
Dp

Dt
+ al∇ · um − (1 − vtopo)Ral ,

(12)
where um is the velocity field of the liquid and gaseous mixture and ψl , ψg are the liquid and gaseous
compressibility fields, respectively. Here, νtopo distinguishes the two different interface approaches
by taking either the 0 or 1 value under a diffuse or sharp interface formulation, respectively. Interface
sharpness is imposed by the artificial compression velocity uc. Additional modifications in the
governing equations for coupling the VOF method with the two-fluid framework are presented in
detail in Ref. [34]. Finally, the term Ral accounts for the liquid dispersion induced by turbulent
velocity fluctuations, which are important in dispersed flows and smaller scales [43,44].

The transport equation for the liquid-gas interface surface area density � [38] is given by

∂�′

∂t
+ ∇(�′um) = (1 − vtopo)

[
−R� + CSGS

�

τSGS

(
1 − �

�∗
SGS

)]
, (13)

where the simultaneous existence of liquid and gas on the interface implies the presence of a
minimum interface surface area density, such as � = �′ + �min, as shown by Chesnel et al. [45].
The term R� represents the interface surface area diffusion due to turbulent velocity fluctuations
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[44]. The subgrid scale source term, namely, the term SSGS = CSGS
�

τSGS
(1− �

�∗
SGS

), accounts for all
the unresolved physical mechanisms which are responsible for the local interface formation. The
SSGS term is a function of the constant adjustable parameter CSGS, the characteristic timescale
τSGS, and the critical interface surface area density �∗

SGS at an equilibrium state between interface
production and destruction. Each modeled subgrid scale mechanism has either a positive or a
negative contribution on the overall SSGS term calculation. Specifically, a positive SSGS term value
corresponds to an increase of the local interface surface area and physically correlates with the
evolution of the underlying subgrid scale droplets into smaller diameters, while a negative SSGS

term value describes a decrease of the local interface surface area due to the creation of subgrid
scale droplets with larger diameters.

In these simulations of the laser-induced droplet fragmentation, the subgrid scale modeling is
implemented for the small-scale fragments detached from the droplet rim with sizes below the local
mesh resolution. The evolution of the droplet sizes inside the produced cloud of fragments depends
on the aerodynamic conditions of the surrounding air and on the subgrid scale droplet interactions
within the cloud. Therefore, the subgrid scale mechanisms that are considered for the local interface
formation are the effects of turbulence, the subgrid scale droplet collision and coalescence, and the
secondary breakup. The appropriate closure relations for each mechanism are based on models that
are validated in the literature for similar flow conditions; the implemented subgrid scale models and
their limitations are discussed in detail in Ref. [46].

The diameter of a subgrid scale fragment d� is calculated as the equivalent diameter of a
spherical particle which has the same volume-to-surface-area ratio as the examined computational
cell, proposed by Chesnel et al. [45] as

d� = 6al (1 − al )

�
, (14)

where αl represents the liquid volume fraction and � the total liquid gas interface surface area
density, as calculated in Eq. (13).

3. Flow topology detection algorithm

The flow topology detection algorithm is implemented based on general and case-independent
topological criteria that can be applicable in any flow field governed by multiscale structures, as
described in detail in Ref. [34]. For these simulations of the laser-induced droplet fragmentation,
the algorithm identifies instantaneous topological changes in the region around the droplet rim,
where all the smaller-scaled structures are observed because of the rim breakup. Based on the sizes
of the produced fragments, the algorithm evaluates and applies the most appropriate numerical
formulation, namely, an interface capturing approach for the sufficiently large structures or a subgrid
scale modeling for the unresolved fragments.

D. Later time simulation initialization and setup

The numerical simulations of the later time droplet deformation and fragmentation initiate at time
t > τe with ambient atmospheric conditions, while the flow field inside the droplet is initialized
based on the modeling of the early time phenomena in Sec. II B. The computational domain
consists of a 5◦ wedge geometry with one cell thickness in the azimuthal direction and a mesh
with a resolution of 200 cells per original droplet diameter around the area of interest is applied.
Details of the initial configuration for the simulations of the later time phenomena are illustrated
in Fig. 2(iii). Different Weber numbers in the range of 90–750 are examined with corresponding
droplet propulsion velocities between 1.76 and 5.09 m/s. The simulation results are compared with
the experimental observations of Klein et al. [25] for the same Weber numbers.

Regarding the numerical simulation setup, the spatial discretization is based on second-order
accurate discretization schemes. Time stepping is performed adaptively during the simulation
to respect the selected limit for the convective Courant-Friedrichs-Lewy condition of 0.2. The
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thermodynamic closure of the system is achieved by implementing the stiffened gas equation of
state, proposed by Ivings et al. [47], for the liquid phase and the ideal gas equation of the state for
the gaseous phase. Concerning the turbulence modeling, a large-eddy simulations (LES) approx-
imation is implemented with the one-equation SGS model of Lahey [48]. However, the utilized
computational domain imposes limitations regarding the accurate capturing of the turbulent state,
which corresponds to fully three-dimensionally (3D) developed phenomena. The simulations are
initialized without turbulence in the flow field since the droplet acceleration at early times involves
low velocities and Reynolds numbers ∼103. Therefore, in the absence of developed turbulence at
the initial conditions, the LES approximation can be applied in this geometry of one cell thickness
in the azimuthal direction without significant modeling restrictions.

A crucial parameter for an accurate simulation of the later time droplet deformation and frag-
mentation is the initialization of the pressure and velocity fields inside the droplet at time t = τe,
as obtained from the early time simulations of Sec. II B. For a given Weber number, the droplet
propulsion velocity is obtained from Eq. (2), and subsequently, the absolute impulse scale peτe can
be calculated from Eq. (3), as introduced by Gelderblom et al. [32]:

peτe = ρR0U

3
. (15)

As shown in Eq. (15), different combinations of recoil pressure pe and vapor expulsion time
τe values determine different initialization sets (pe, τe) for the same propulsion velocity U . Two
conditions should apply for a valid expulsion time τe obtained for a known propulsion velocity:
first, τe 
 τp so that compressibility effects inside the droplet will not be significant, and thus, the
modeling assumption of an incompressible flow will not be violated, and second, τe � τi so that
the applied pressure pulse will not have a macroscopic influence on the droplet spherical shape, and
thus, the droplet will not deform yet.

In Appendix A, it is validated that, like the analytical solution of Gelderblom et al. [32], the
droplet deformation obtained from the proposed later time simulations is dependent only on the
absolute impulse scale and not on the individual pe and τe values selected for a given propulsion
velocity.

III. RESULTS AND DISCUSSION

The laser-induced rim fragmentation for a MEK droplet at We = 330 is presented in Figs. 3
and 4, comparing the simulation results with the experimental observations of Klein et al. [25].
Following the impact of the millijoule nanosecond laser pulse, the droplet has evolved into a thin
liquid sheet surrounded by a cloud of fragments at time 0.056 τc in Fig. 3(i). Subsequently, the
liquid sheet expands further in the lateral direction, and at the same time, the observed rim breakup
enhances the fragment cloud with polydisperse droplets of various diameters. The expanding liquid
sheet is captured by the sharp interface formulation of the multiscale framework, while the detached
fragments are subject to the subgrid scale modeling, as illustrated in Fig. 3(ii). Within the cloud
of fragments, droplets with diameters between 0.09 and 9 μm are detected; the upper limit is
correlated with the smallest structures that can be resolved with the sharp interface method for a
local mesh resolution of 200 cells per initial diameter, and the lower limit corresponds to the spatial
resolution of the utilized camera in the experiments. Overall, the numerically captured expanding
sheet follows the deforming shape and the curvature observed in the experiments, while the modeled
fragments are detected close to the liquid sheet during the early stages of fragmentation and move
further backwards at later times. Moreover, the radial dependence of the sheet thickness, which
is demonstrated in the experimental results in the front view in Fig. 4(i), is well predicted by the
numerical simulations. Specifically, the maximum thickness is found in the center of the liquid
sheet, and the minimum thickness is observed close to the rim. Consistent with the experimental
observations of Klein et al. [25], the rim is captured as a slightly thicker border, as observed in
the numerical results in Fig. 3(ii). At later times, a more uniform thickness is predicted along the
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FIG. 3. Laser-induced droplet rim fragmentation at We = 330. (i) Comparison between the experimental
visualizations of Klein et al. [25] in sideview and the isoline of the liquid volume fraction at 10−3, obtained
with the multiscale two-fluid approach. (ii) Three-dimensional (3D) reconstructed results in sideview and 30◦

angle, using the multiscale two-fluid approach. The expanding liquid sheet is captured by the sharp interface
formulation (in gray, the isosurface for liquid volume fraction at 0.5) and the detached fragments are captured
by the diffuse interface formulation (in red, the isosurface for fragments >0.09 μm). Zoomed-in view for the
dimensions of the produced fragments after the rim breakup. (iii) 3D reconstructed results in sideview and 30◦

angle, using the volume of fluids (VOF) method. Isosurface of the liquid volume faction at 0.5.

expanding sheet length, as displayed qualitatively in the liquid sheet isosurfaces in Fig. 3(ii) and
extracted from the indicative calculations of the local thickness in Fig. 4(ii). Additional simulations
are conducted using the VOF solver in OpenFOAM with the same initialization of the problem. The
VOF method results, presented in Figs. 3(iii) and 4(iii), show good agreement with the respective
results obtained with the multiscale two-fluid approach, regarding the capturing of the liquid sheet
deformation; nevertheless, the VOF method excludes the subgrid scale information for the produced
fragments.

Focusing on the predictions of the multiscale two-fluid approach in Figs. 3 and 4, at time
0.056 τc, which corresponds to the inertial time τi with dominant droplet deformation, the numerical
results meet the experimental observations and accurately predict the macroscopic liquid sheet
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FIG. 4. Laser-induced droplet rim fragmentation at We = 330. (i) Experimental visualizations of Klein
et al. [25] in front view. (ii) Three-dimensional (3D) reconstructed results in front view, using the multiscale
two-fluid approach. The expanding liquid sheet, captured by the sharp interface formulation, is illustrated as
the isosurface of the liquid volume faction at 0.5 with a mesh resolution of 200 (left) and 250 (right) cells per
initial droplet diameter. (iii) 3D reconstructed results in front view, using the volume of fluids (VOF) method.
Isosurface of the liquid volume faction at 0.5 with a mesh resolution of 200 cells per initial droplet diameter.
The red circle defines the borders of the liquid sheet rim in the experimental results. The calculated thickness
of the thin liquid sheet on the central line (in purple) and on the initial droplet radius (in yellow) is illustrated
on the simulation results.

expansion. At the same time, a cloud of fragments that recirculate behind the expanding sheet is
captured, with the largest droplets observed close to the rim.

Later, at time 0.112 τc, the liquid sheet thickness is reduced to ∼7% of the initial droplet
diameter. The numerical results satisfactorily follow the deforming shape of the thin liquid sheet and
the lateral expansion, while smaller fragments are captured downstream. However, an early sheet
breakup is observed close to the rim, where the local thickness of the liquid sheet is considerably
reduced; a sheet breakup is not noticed in the experimental results at that time. Due to the
axisymmetric geometry used in the numerical simulations the liquid sheet fragments detach in the
form of concentric rings that move outwards, as illustrated in the 3D reconstructed numerical results
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in Figs. 3(ii) and 4(ii). The multiscale two-fluid approach predicts a similar early sheet breakup even
with a finer mesh of 250 cells per initial droplet diameter in Fig. 4(ii). In the VOF method results
in Fig. 4(iii), the early sheet breakup is still present but developed to a smaller extent. The more
pronounced early sheet breakup in the results of the multiscale model compared with the VOF
results is related to the modeling of slip velocity effects; the relative velocity between the very thin
liquid sheet and the surrounding air locally exceeds the value of 20 m/s around the rim, i.e., ∼6×
higher than the droplet propulsion velocity, and thus enhances the local sheet breakup. Overall,
the early sheet breakup is a numerical limitation that originates from the utilized moderate mesh
resolution which is found to be insufficient to accurately capture the significantly reduced sheet
thickness around the rim at 0.112 τ c. However, the implementation of a very fine uniform mesh
will violate the fundamental principles of the multiscale two-fluid approach for computationally
efficient simulations, i.e., the multiscale framework is based on a moderate uniform mesh resolution
that accurately captures the large-scale structures and a subgrid scale modeling for the unresolved
small-scale structures. Alternatively, the proposed multiscale framework should be extended to
couple an adaptive mesh refinement (AMR) algorithm with the sharp interface formulation. The
AMR algorithm would be able to resolve flow structures in the segregated flow regime that require
significantly high resolution, such as the expanding liquid sheet, without an effect on the subgrid
scale modeling formulation of the numerical model; this development is beyond the scope of our
first numerical study on the laser-induced droplet fragmentation problem.

Following, at time 0.227 τc, these numerical limitations are observed as even more pronounced
due to the significantly reduced thickness of the expanding liquid sheet. The length of the numeri-
cally captured coherent sheet is limited, while a trace of radial fragments follows the shape of the
coherent elongated sheet, which is shown in the experimental visualizations. The successive detach-
ment of radial fragments from the sheet rim is a numerical artifact, which is previously recognized
in the BI simulations of Gelderblom et al. [32] during advanced stages of the fragmentation process.
At the same time, the experimental results demonstrate the nucleation of holes on the liquid sheet as
the major fragmentation mechanism. As illustrated in Fig. 4(i), the first holes are already detected
along the rim at 0.227 τc, and thus, the assumption for an axisymmetric flow field is disrupted.

Considering that, in this paper, we attempt to provide numerical simulations for the laser-induced
droplet fragmentation, the comparison between the experimental and numerical results in Figs. 3 and
4 is introduced as an investigation of the numerical capabilities of the proposed multiscale two-fluid
approach. Overall, the observed numerical limitations, namely, the early sheet breakup and the loss
of axisymmetry, arise only during advanced stages of the droplet fragmentation process. Therefore,
the numerical simulations presented later in this paper focus on the droplet deformation and rim
fragmentation before the numerical limitations become significant. Specifically, for the examined
droplets and expansion rates, the numerical simulations are terminated at a selected final time that
corresponds to the development of a liquid sheet with thickness ∼10% of the initial droplet diameter
on the central line; this is an acceptable limit before the early breakup and the loss of axisymmetry
dominate. The validity of the utilized mesh resolution and geometry to accurately capture the
underlying physical phenomena upon the laser-induced droplet deformation and fragmentation until
the selected final time is discussed in Appendix B.

The fast jetting, which is shown in the experimental results in Fig. 3 to initiate from the center
of the deforming droplet, is a result of the laser-matter interaction, as previously discussed by Klein
et al. [25] and Reijers et al. [33]. The millijoule nanosecond laser pulse applied to the droplet surface
results to strong shock waves and potential cavitation spots inside the droplet that can give rise to
bubble collapse, interfacial instabilities, and finally, a fast jetting moving forward with a velocity
larger than the propulsion velocity of the droplet. The absence of the fast jetting from the numerical
results is not a limitation of the proposed numerical method but a result of the implemented
modeling for the early time droplet dynamics. Specifically, this modeling approach of the early
time dynamics does not account for the real laser pulse applied on the droplet for a duration τp.
Instead, it provides a unified modeling solution for both early time dynamics phenomena, namely,
the laser pulse impact and the resulting droplet propulsion, using a pressure pulse pe and a duration

103604-12



NUMERICAL MODELING OF DROPLET RIM …

FIG. 5. Laser-induced droplet rim fragmentation at We = 90. Initial pressure and velocity fields inside
the droplet, obtained for propulsion velocity U = 1.76 m/s and vapor expulsion time τe = 1 μs. Liquid sheet
expansion velocity in the lateral direction, radial velocity (top) and dimensions (bottom) of the detached
fragments for three time instances that correspond to liquid sheets with thicknesses 50, 20, and 10% of the
initial droplet diameter. The air velocity field around the rim and the developed vortex are depicted in the side
panels. The minimum captured thickness is illustrated at time 0.172 τc.

τe which are introduced for modeling purposes and do not correspond to the real laser intensity and
duration. Alternatively, the fast jetting can be captured by avoiding this modeling of the early time
phenomena and applying the real laser pulse to the droplet surface for the real impact duration
τp. In this case, a compressible numerical model with advanced high-order numerical schemes
should be implemented to capture the intense compressibility effects inside the droplet, and thus, the
incompressibility assumption for the early time droplet dynamics will be no longer valid. However,
considering the very small liquid mass injected, the investigation of the fast-jetting phenomenon
remains beyond the scope of this paper.

The effect of the Weber number on the MEK droplet deformation and fragmentation is examined
in Figs. 5–8 for Weber number values of 90, 170, 330, and 750 and the same width deformations
corresponding to liquid sheets with thicknesses 50, 20, and 10% of the initial droplet diameter.
Since the Weber number reflects the droplet expansion rate, which is set by the droplet propulsion,
the examined width deformations are observed at very different times for each case. Already at the
initial conditions, the strong impact of the Weber number is pronounced, resulting in significantly
increased initial pressure and velocity magnitudes at higher Weber numbers. Specifically, for We =
90 in Fig. 5, the initial pressure and velocity fields inside the droplet, as calculated from the early
time simulations to reach a propulsion velocity of 1.76 m/s, have a maximum value of 4.4 bar and
10 m/s, respectively. On the contrary, at We = 750 in Fig. 8, the stronger pressure pulse, applied on
the droplet during the early time simulations for a propulsion velocity of 5.09 m/s, imposes initial
pressure and velocity fields with the same profile but significantly increased maximum values up to
50.1 bar and 31 m/s, respectively.

Focusing on the early times of the droplet deformation at We = 750, due to the strong initial
pressure kick, the formation of a low-pressure region inside the droplet is observed, which is related
to the creation of cavitation bubbles. As highlighted in Fig. 8 at 0.01 τc, the developed low-pressure
region is significantly small compared with the total mass of the deforming droplet, and thus, it
does not affect the macroscopic droplet expansion. Therefore, a cavitation model has not been
implemented in the multiscale framework for the examined conditions. Instead, a very small volume
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FIG. 6. Laser-induced droplet rim fragmentation at We = 170. Initial pressure and velocity fields inside
the droplet, obtained for propulsion velocity U = 2.42 m/s and vapor expulsion time τe = 0.5 μs. Liquid
sheet expansion velocity in the lateral direction, radial velocity (top) and dimensions (bottom) of the detached
fragments for three time instances that correspond to liquid sheets with thicknesses 50, 20, and 10% of the
initial droplet diameter. The air velocity field around the rim and the developed vortex are depicted in the side
panels. The minimum captured thickness is illustrated at time 0.124 τc.

fraction of air of the order of 10−6, which corresponds to a typical nucleation volume fraction [49], is
introduced in the initial droplet volume fraction. Under this assumption, the small gaseous volumes
inside the droplet will expand after the significant pressure drop, causing expansion like those that
would occur with cavitation. Subsequently, when the low-pressure region reaches the backside of
the propelled droplet interface, the gaseous volumes collapse. Due to the minor breakup on the
local interface, very few nanoscale droplets are captured by the numerical model at 0.035 τc; these
droplets do not significantly influence the total population of the fragments.

During the laser-induced droplet deformation, the atmospheric pressure inside the droplet is
rapidly recovered in a few microseconds, and a pressure distribution close to atmospheric conditions
is stabilized before significant deformation is observed. Therefore, the droplet expansion is primarily
governed by the radial component of the velocity usheet (y), which shows maximum values on
the expanding rim. More specifically, at early stages, until a liquid sheet with thickness 0.5d0 is
developed in Figs. 5–8, the droplet deformation is the major phenomenon, while only a few droplets
are detached from the rim. During these times, usheet (y) induces the dominant liquid sheet radial
expansion with the maximum values on the rim to be ∼2× higher than the droplet propulsion
velocity in each examined case. At later stages, when the liquid sheet thickness is reduced further
than 50%, the rim fragmentation becomes significant, and hence, the droplet radial expansion is
restricted. As a result, usheet (y) gradually decreases over time; indicatively, usheet (y) maximum values
on the rim are decreased by ∼17 and 11% between liquid sheets with thicknesses 0.5d0 and 0.2d0 at
We = 90 and 750, respectively. At the final time, when a liquid sheet with thickness 0.1d0 is formed,
the fragmentation rate is reduced, and less fragments are detached, as observed more evidently at
lower Weber numbers in Figs. 5 and 6. Accordingly, the moderate fragmentation observed does not
have a significant effect on the thin liquid sheet radial expansion, and usheet (y) maximum values on
the rim remain almost unchanged compared with earlier times.

Overall, the numerical results in Figs. 5–8 demonstrate that an increasing Weber number imposes
a faster deformation of the initial spherical droplet into an elongated liquid sheet and an earlier
breakup of the rim. Additionally, the effect of the Weber number on the shape of the deforming
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FIG. 7. Laser-induced droplet rim fragmentation at We = 330. Initial pressure and velocity fields inside
the droplet, obtained for propulsion velocity U = 3.37 m/s and vapor expulsion time τe = 0.3 μs. Liquid
sheet expansion velocity in the lateral direction, radial velocity (top) and dimensions (bottom) of the detached
fragments for three time instances that correspond to liquid sheets with thicknesses 50, 20, and 10% of the
initial droplet diameter. The air velocity field around the rim and the developed vortex are depicted in the side
panels. The minimum captured thickness is illustrated at time 0.089 τc.

FIG. 8. Laser-induced droplet rim fragmentation at We = 750. Initial pressure and velocity fields inside
the droplet, obtained for propulsion velocity U = 5.09 m/s and vapor expulsion time τe = 0.2 μs. Liquid
sheet expansion velocity in the lateral direction, radial velocity (top) and dimensions (bottom) of the detached
fragments for three time instances that correspond to liquid sheets with thicknesses 50, 20, and 10% of the
initial droplet diameter. The air velocity field around the rim and the developed vortex are depicted in the
side panels. The minimum captured thickness is illustrated at time 0.062 τc. The arrows point to the minor
low-pressure region and the very few created droplets after collapse.
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FIG. 9. Expansion of the liquid sheet radius because of the laser-induced droplet deformation at We = 90,
170, 330, and 750. Comparisons between the experimental observations of Klein et al. [25], the analytical
model of Villermaux and Bossa [50], and the simulation results using the volume of fluids (VOF) method
and the multiscale two-fluid approach until a liquid sheet with thickness 10% of the initial droplet diameter is
formed.

liquid sheet concerning both the lateral expansion and the radial distribution of the thickness
is highlighted. Specifically, during the early stages of deformation, the droplet shows an almost
identical shape in the four examined cases for the same thickness reduction by 50%; the examined
deformation is observed at different times for each case in accordance with the Weber number
dependent expansion rates. However, at later times, when a thin liquid sheet is already formed, a
higher Weber number leads to an increased lateral expansion and thus a more uniform thickness
distribution for the same width deformation on the central line. Indicatively, for a liquid sheet
with thickness 0.2d0, the lateral sheet expansion is increased by ∼7% at We = 330 and by 13%
at We = 750 compared with the predicted expansion at We = 90 for the same thickness.

Alongside the liquid sheet lateral expansion, the rim fragmentation becomes significant over
time, as observed in Figs. 5–8. For a liquid sheet with thickness 0.5d0, the first microscaled
fragments are detached from the rim, while at later times, when the liquid sheet thickness is reduced
to 0.2d0, the dominance of the rim fragmentation is pronounced with an extended cloud of fragments
to be developed in each examined Weber number case. On average, the largest fragments with
diameters >1 μm are detected close to the rim, and the smallest scales are observed at the edges of
the polydisperse cloud. On the contrary, at the final time, the fragmentation process is weakened.
Then a significantly limited cloud of fragments is observed at lower Weber numbers in Figs. 5 and
6, while at higher Weber numbers in Figs. 7 and 8, the cloud of fragments remains extended, but
on average, less and smaller-scaled fragments <3 μm are detached. During the evolution of the
rim fragmentation, the newly formed fragments are detached from the rim with radial velocities
ufragments(y) comparable with the radial velocity of the rim usheet (y) at the time of breakup, as also
observed in the experimental study of Klein et al. [25]. Afterwards, the fragments are subject to a
recirculation behind the liquid sheet, driven by the moving vortex that is created because of the inter-
action between the propelled and expanding liquid sheet and the surrounding air. For a liquid sheet
with thickness 0.2d0, the developed flow vorticity is found to be intense in all cases illustrated in
Fig. 5–8, with local air velocity values >2 × higher than the velocities of the fragments. During later
stages, the flow vorticity becomes less significant; however, it still influences the increasing cloud of
fragments at higher Weber numbers, as shown at 0.089 τc and 0.062 τc in Figs. 7 and 8, respectively.

A quantitative comparison between the experimental observations of Klein et al. [25], the
analytical model of Villermaux and Bossa [50], and the simulation results using the VOF method
and the multiscale two-fluid approach is presented in Fig. 9, examining the droplet radial expansion
under the Weber numbers examined before. In the numerical simulations, the droplet expansion is
considered until a thin liquid sheet with maximum thickness 10% of the initial droplet diameter is
formed. Overall, the numerical results capture the strong dependence of the droplet expansion rate
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FIG. 10. Volume concentration of the dispersed region over the total volume of the liquid phase for the
laser-induced droplet fragmentation at We = 90, 170, 330, and 750.

on the Weber number and satisfactorily follow the experimental observations. Better agreement
between the numerical and experimental results is obtained at the later stages of the droplet
expansion process, as similarly observed for the analytical solution. However, in contrast with the
analytical model [50], the conducted numerical simulations can accurately capture all stages of the
droplet deformation from a flattened back side to an elongated liquid sheet; thus, the small deviation
between the numerical and experimental results at early times is not a limitation of the numerical
model. Similarly, in the study of Gelderblom et al. [32], the BI simulation results of a water droplet
radial expansion slightly deviate from the experimental observations, especially at early times.
Considering that the BI simulations use the same early time initialization of the laser-induced droplet
fragmentation problem as this numerical study, the small delay of the droplet radial expansion at
early times can be related to the early time simulations and the lack of the impulsive effect of the
laser-matter interaction in the modeling of early time dynamics. With respect to the capability of
the numerical methods to accurately capture the overall droplet deformation and radial expansion
over time, the VOF method results precisely follow the predictions of both the analytical model
and the experiments during the advanced stages of droplet expansion, while the multiscale two-fluid
approach results capture the phenomenon with on average a small delay of maximum 5% compared
with the calculations with the VOF method. The slightly delayed expansion, observed with the
two different numerical methods, can be related to the subgrid scale modeling, which is performed
within the multiscale two-fluid approach and accounts for the produced fragments due to the rim
breakup. Under the multiscale framework, a part of the deformation energy that would be utilized
for the droplet radial expansion is now employed for the development of fragments. However, as
depicted in Fig. 10, the volume concentration of the modeled fragments over the total volume of
the liquid phase increases significantly at higher Weber numbers. Thus, the production of fragments
is not negligible during the droplet expansion and the resulting rim fragmentation. At lower Weber
numbers, the concentration of fragments relatively stabilizes during the rim fragmentation evolution,
while with an increasing Weber number, the fragment population is continuously enhanced over
time and even exceeds 40% of the total liquid volume at the later stages of rim fragmentation for
the highest examined Weber number of 750.

An overview of the evolution of the produced fragments inside the polydisperse cloud is
depicted in Fig. 11, where the volume concentrations of three classes of fragments with diameters
d� > 1 μm, 0.5 μm < d� < 1 μm, and 0.09 μm < d� < 0.5 μm are presented for a MEK droplet
at We = 90, 170, 330, and 750 over the total volume of the dispersed region. Upon the initiation
of the laser-induced droplet rim fragmentation, only large-scaled fragments of the first class
>1 μm are detected for each examined Weber number case; these correspond to the first detached
fragments from the rim. Subsequently, more fragments are detached from the rim that enhance
the fragment population, while at the same time, the previously formed fragments interact with
each other and develop further inside the polydisperse cloud. The modeled subgrid scale fragment
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FIG. 11. Volume concentration of three classes of fragments with diameters d� > 1 μm (first class),
0.5 μm < d� < 1 μm (second class), and 0.09 μm < d� < 0.5 μm (third class) at We = 90, 170, 330, and
750 over the total volume of the dispersed region. The vertical lines correspond to liquid sheets with thicknesses
20% and 10% of the initial droplet diameter.

interactions, namely, the flow turbulence, the droplet collision and coalescence, and the secondary
breakup effects, are driven by the developed flow vorticity. Specifically, the moving vortex, which
forms behind the expanding liquid sheet, enhances the local mixing and the slip effects between the
newly formed microscaled fragments of the first class and the surrounding air and leads to further
breakup of the fragments inside the cloud. On average, fragments of the second and third classes
with diameters <1 μm are not directly detached from the rim and are created at a second stage due
to the droplet interactions inside the cloud.

During later stages, when a liquid sheet with thickness 0.2d0 is formed, the rim fragmentation
process is fully developed, and an extended cloud of fragments is created downstream, as previously
illustrated in Figs. 5–8. Then the effect of the Weber number on the rim fragmentation rate and
the produced fragment population is pronounced. Specifically, for a liquid sheet with thickness
0.2d0 at We = 90 in Fig. 11(i), the population of large-scaled fragments of the first class is
significantly decreased, which can be related to the stabilization of the fragmentation mechanism
and the reduction of newly formed fragments, as shown in Fig. 10. Instead, smaller-scaled fragments
become dominant since the existing fragments inside the cloud are subject to further breakup driven
by the intense flow vorticity. On the contrary, for a liquid sheet with thickness 0.2d0 and higher
Weber numbers in Figs. 11(ii)–11(iv), the first class of fragments remains dominant, following the
positive fragmentation rate and the continuous enhancement of the dispersed cloud with newly
formed fragments, as depicted in Fig. 10. At the same time, smaller scales become significant
because of the fragment interactions within the recirculating cloud; at We = 170, the third class
of fragments is more noticeable, while at We = 330 and 750, the population of fragments <1 μm is
more balanced. Therefore, as observed for the examined cases, with increasing Weber number, the
intensity of the rim fragmentation mechanism is also increased and dominates over the interactions
of the fragments and breakup imposed by the developed flow vorticity.

During advanced stages of the rim fragmentation process for a liquid sheet with thickness
∼0.1d0, the fragmentation rate weakens over time, even at higher Weber number cases of values
330 and 750, as depicted in Fig. 10. This is reflected in a less violent rim fragmentation and
the creation of less and smaller newly formed fragments, as previously discussed in Figs. 5–8.
Consequently, smaller-scaled fragments <1 μm gradually dominate the fragment population and
become even more significant at lower Weber numbers. Eventually, at the final time of the examined
rim fragmentation, the predominant presence of the small-scaled fragments of the second and third
classes, i.e., fragments <1 μm, is highlighted in the probability density functions (PDFs) of the
fragment sizes in Fig. 12. The fragments sizes follow an exponential decrease in all Weber number
cases, as indicatively plotted against the PDFs in Fig. 12, with the largest captured fragments
to be ∼3 μm. At lower Weber numbers in Figs. 12(i) and 12(ii), ∼80% of the total fragment
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FIG. 12. Probability density functions (PDFs) of the fragment sizes at We = 90, 170, 330, and 750 at the
final time for a liquid sheet with thickness 10% of the initial droplet diameter. Zoomed-in view for the PDFs
of the first class of fragments with diameters d� > 1 μm. An exponential distribution is indicatively plotted
against the PDF in each case.

population consists of fragments <1 μm; the pronounced dominance of small-scaled fragments
comes in agreement with the previous observations of a limited number of newly formed fragments,
as depicted in the stabilized volume concentration of the dispersed cloud in Fig. 10. On the contrary,
at higher Weber numbers in Figs. 12(iii) and 12(iv), fragments <1 μm remain dominant in the
population by 60%; however, the significant presence of larger-scaled fragments indicates that,
despite the attenuation of the fragmentation mechanism, the rim breakup continues to play a major
role. Finally, a mesh convergence investigation for the calculated fragment populations is presented
in Appendix C.

IV. CONCLUSIONS

The laser-induced droplet rim fragmentation for a millimeter-sized MEK droplet has been
investigated in this numerical study, examining a range of Weber numbers between 90 and 750
for the propelled droplet. The problem is characterized by the early time droplet dynamics, imposed
by the millijoule nanosecond laser-pulse impact and the subsequent response of the droplet until it
reaches a constant propulsion velocity, and the later time droplet dynamics, governed by the droplet
deformation into an elongated liquid sheet and the resulting rim breakup. The early time droplet
dynamics were simulated within the CFD framework based on the analytical model of Gelderblom
et al. [32], and the developed flow fields inside the droplet were obtained. Subsequently, the later
time droplet dynamics were simulated using the multiscale two-fluid approach, which allowed for
the consideration of all the scales involved with a viable computational cost. Specifically, the radial
expansion of the developed liquid sheet was resolved by the local mesh resolution, using the VOF
sharp interface method, while the produced fragments due to the rim breakup were modeled under
the diffuse interface approach with consideration of the significant subgrid scale phenomena inside
the cloud of fragments. The simulation results showed a good agreement with the experimental
observations of Klein et al. [25] with respect to the shape and the expansion of the elongated liquid
sheet and the development of a polydisperse cloud of fragments, until a selected final time before
the numerical limitations and the nucleation of holes on the liquid sheet surface become significant.

The numerical simulations demonstrated the influence of the laser beam energy on the initial
flow fields inside the droplet and the subsequent droplet deformation and rim fragmentation; these
observations have a general interest for different droplets and conditions but the same droplet Weber
number. Specifically, with increasing Weber numbers, a higher expansion rate, a more uniform
liquid sheet thickness, and a more extended cloud of fragments at the later stages of fragmentation
were captured. Quantitative information for the radial velocity fields, which are responsible for the
droplet expansion, were provided, showing maximum values on the rim. Additionally, during the
liquid sheet expansion, the formation of a moving vortex behind the rim was identified because of
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the interaction between the expanding liquid sheet and the surrounding air; thus, the vortical flow
creates a recirculation region for the produced fragments. Finally, an overview of the evolution of
the population of the fragments during the droplet rim fragmentation and the sizes distributions at
the final time of the phenomenon were presented. Overall, larger-scale fragments were detached
from the rim at the early stages of fragmentation, while smaller fragments <1 μm dominated at
the later stages because of the further breakup of the secondary droplets inside the cloud and the
attenuation of the fragmentation mechanism over time. However, with increasing Weber number,
droplets >1 μm remain significant even at the final times.

Further development of the proposed multiscale two-fluid approach to incorporate an AMR
algorithm and phase-change phenomena, namely, a cavitation and vaporization model, will provide
a valuable numerical model to investigate a broader range of unsteady fragmentation problems
and obtain insight into the sizes of the produced fragments that is not easily accessible from the
experimental observations. Examples of fragmentation cases of interest in the literature to date
include the violent laser-induced droplet fragmentation in biofuels [51] and screen printing inks
[52], the explosive droplet fragmentation [22] and the surface jet breakup [53] by laser-induced
cavitation bubbles, and the breakup of laser-induced jets in needle-free medical injections [54],
among others.
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APPENDIX A: LATER TIME SIMULATION INITIALIZATION AND EFFECT
ON DROPLET DEFORMATION RATE

The absolute impulse scale peτe defines the later time droplet dynamics and the resulting
droplet deformation for a given propulsion velocity. However, as shown in Eq. (15), for a specified
impulse scale peτe, different initialization sets (pe, τe) can be derived and equivalently used for the
initialization of the later time simulations at t = τe. In Fig. 13, the droplet radial expansion and width
reduction is demonstrated for the examined MEK droplet at Weber numbers 90, 170, 330, and 750
using three different initialization sets for each Weber number. Overall, the droplet deformation rate
remains almost unaffected by the different initialization sets of the same problem, like the previous
observations of Gelderblom et al. [32].

APPENDIX B: VALIDITY OF NUMERICAL MODEL: MESH RESOLUTION AND GEOMETRY

The capability of the proposed multiscale two-fluid approach to accurately capture the laser-
induced droplet deformation and rim fragmentation until the selected final time of the numerical
simulations is discussed below; the selected final time corresponds to the development of a liquid
sheet with thickness 10% of the initial droplet diameter on the central line. In this investigation, we
focus on the two major aspects that can raise limitations in the conducted simulations, namely, the
convergence of the numerical solution and the accuracy of the axisymmetric assumption.

1. Mesh convergence investigation

The droplet response to the laser pulse impact is related to three main macroscopic physical phe-
nomena: the droplet propulsion, deformation, and fragmentation. Each phenomenon is investigated
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FIG. 13. Evolution of the laser-induced droplet deformation at We = 90, 170, 330, and 750. (i) Droplet
radius expansion and (ii) droplet width reduction for three different initialization sets, namely, the same impulse
scale peτe but different individual pe and τe values, for each examined propulsion velocity and until a liquid
sheet with thickness 10% of the initial droplet diameter is formed.

below with respect to the convergence of the numerical solution for a MEK droplet at We = 90,
170, 330, and 750 using three different mesh resolution of 150, 200, and 250 cells per initial droplet
diameter until the selected final time of the numerical simulations.

(1) The center-of-mass properties in the axial direction in Fig. 14 depict the droplet propulsion.
Both the axial position and the axial velocity of the center-of-mass are accurately captured by all
the applied mesh resolutions. The small decrease of the axial center-of-mass velocity over time
is observed as more rapid with an increasing Weber number because of the surrounding air that
becomes more significant at higher propulsion velocities, i.e., the center-of-mass velocity is reduced
by ∼10% and 13% at the final time for We = 90 and 750, respectively.

(2) The droplet radial and axial deformation is illustrated in Fig. 15; the measurements of the
droplet radial expansion converge with an increasing mesh resolution, while very good agreement
is demonstrated for the measurements of the droplet axial deformation irrespective of the utilized
mesh.

(3) The evolution of the rim fragmentation is investigated in Fig. 16, illustrating the volume
concentration of the dispersed phase over the total volume of the liquid phase for different We-
ber numbers and mesh resolutions, as obtained within the Eulerian-Eulerian framework of the
multiscale two-fluid approach, namely, the fragment volume over time is calculated based on the

FIG. 14. Center-of-mass properties for a methyl-ethyl-ketone (MEK) droplet at We = 90, 170, 330, and
750. (i) Position and (ii) velocity of the center-of-mass in the axial direction. Mesh convergence investigation
using three different mesh resolutions of 150, 200, and 250 cells per initial droplet diameter.
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FIG. 15. Evolution of the laser-induced deformation for a methyl-ethyl-ketone (MEK) droplet at We = 90,
170, 330, and 750. (i) Droplet radius expansion and (ii) droplet width reduction. Mesh convergence investiga-
tion using three different mesh resolutions of 150, 200, and 250 cells per initial droplet diameter.

liquid volume fraction and not on the absolute volume of the detached fragments. As a result,
even though the absolute number of fragments is continuously increasing over time, very dilute
liquid regions within the cloud of fragments that correspond to significantly low liquid volume
fractions and equivalent fragment diameters <0.09 μm are excluded. This phenomenon is more
pronounced at low Weber numbers 90 and 170; here, the fragmentation rate attenuates at the later
stages, and significantly less large-scale fragments are detached from the rim, which is depicted
as a nonmonotonous concentration of fragments in Fig. 16. Overall, the concentration of dispersed
fragments captured within the multiscale framework converges toward the solution obtained with
the finest mesh, concerning the initiation of the rim breakup and the progressive detachment of
fragments over time. Specifically, at Weber numbers 330 and 750, the intermediate mesh results
with a resolution of 200 cells/d0 are found to approach more closely the finest mesh solution during
the later stages of fragmentation compared with the lower Weber number cases with values 90 and
170. However, at lower Weber numbers, the rim fragmentation is less violent, and the concentration
of fragments relatively stabilizes over time. As a result, the deviation between the results for a
resolution of 200 and 250 cells/d0 is mainly enhanced by new fragments <1 μm. Thus, it is safe
to conclude that the calculated concentrations of fragments using the multiscale two-fluid approach
satisfactorily converge in all examined conditions.

FIG. 16. Evolution of the laser-induced rim fragmentation for a methyl-ethyl-ketone (MEK) droplet at
We = 90, 170, 330, and 750. Volume concentration of the dispersed phase over the total volume of the liquid
phase. Mesh convergence investigation using three different mesh resolutions of 150, 200, and 250 cells per
initial droplet diameter.
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2. Axisymmetric modeling assumption

An axisymmetric geometry is commonly adopted in numerical simulations of droplet fragmen-
tation cases, as an acceptable compromise between a satisfactory representation of the developed
physics and a viable computational cost. Various examples of axisymmetric simulations using a
∼5◦ wedge geometry can be found in the literature, such as the explosive fragmentation imposed
by a laser-induced cavitation in the study of Zeng et al. [22] and the droplet fragmentation due to
mechanical impact onto a solid surface with moderate-impact [55,56] and high-impact velocities
[31,34].

The laser-induced droplet fragmentation examined here is an unsteady fragmentation process,
characterized by two fragmentation modes, namely, the rim and the sheet fragmentation, as
identified by Klein et al. [25]. In this numerical study, we focus on the investigation of the rim
fragmentation simulated until a selected final time before the sheet fragmentation begins. During the
rim fragmentation, perturbations with a characteristic wave number form along the rim and evolve
into fragments, i.e., ligaments or droplets. The fastest-growing wave number upon the unsteady rim
fragmentation for liquids of small viscosity is introduced by Wang et al. [57] as follows:

k∗
max =

√
1

2 + 6
√

2
R̃e

, (B1)

where k∗
max is nondimensionalized by the rim diameter b, such that k∗

max = kmax/(b/2). Here, R̃e is
the local rim Reynolds number which is calculated as follows:

R̃e = 0.2Oh−5/4Re−1/4, (B2)

where Oh = μ/
√

ργ d0 and Re = Ud0/v are the Ohnesorge and Reynolds numbers, respectively,
for the properties of the initial droplet before fragmentation, i.e., d0 is the initial droplet diameter,
U the propulsion velocity, μ the dynamic viscosity, ρ the density, γ the surface tension, and v the
kinematic viscosity.

For the examined MEK droplet at Weber numbers 90, 170, 330, and 750, the fastest-growing
wave number obtained from Eq. (B1) is kmax

∼= 0.33b in dimensional form. Considering the 5◦
wedge geometry used and the progressive radial expansion of the droplet, the critical point to exam-
ine if the developed wave numbers fit in the utilized wedge geometry is during the initiation of the
rim fragmentation process. At this moment, for each examined case, the droplet radius is expanded
by R ∼= 1.5R0, the azimuthal dimension of the wedge around the rim is zmin

∼= 10−4 m, and the rim
diameter is b ∼= 10−4 m. As a result, even during the initiation of the rim fragmentation process, the
fastest-growing wave number can fit in the 5◦ wedge geometry since kmax

∼= 0.33 × 10−4 < zmin.
Overall, the axisymmetric 5◦ wedge geometry is an acceptable modeling compromise in the
conducted simulations without suppressing the developed wave numbers and thus influencing the
results.

On the contrary, the simulation of the Rayleigh-Taylor instability-driven sheet fragmentation
would require not only a 3D geometry but also a significantly high resolution around the ex-
tremely thin liquid sheet to accurately resolve the nonaxisymmetric hole nucleation. In practice,
this numerical investigation would mean a computationally expensive direct numerical simulation
(DNS). However, a computationally efficient simulation within the developed multiscale framework
would be possible with a further development of the proposed numerical model to couple an AMR
algorithm with the sharp interface formulation. Then the AMR algorithm would provide high
resolution around the expanding but still coherent liquid sheet, sufficient to resolve the resulting
hole nucleation and, at the same time, operate independently of the subgrid scale modeling for
the produced microscale fragments. This model development is beyond the scope of this paper,
our numerical study on the laser-induced droplet fragmentation problem, and is part of ongoing
research.
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FIG. 17. Volume concentration of three classes of fragments for a methyl-ethyl-ketone (MEK) droplet
at We = 90, 170, 330, and 750 over the total volume of the dispersed region, using three different mesh
resolutions of 150, 200, and 250 cells per initial droplet diameter.

APPENDIX C: DROPLET SIZE DISTRIBUTIONS: MESH CONVERGENCE INVESTIGATION

The diameter of a subgrid scale fragment is calculated within the multiscale two-fluid approach in
Eq. (14) as the equivalent diameter of a spherical particle which has the same volume-to-surface-area
ratio as the examined computational cell. Therefore, the fragment diameter is a function of the
local calculated interface surface area density and the computational cell volume. In practice, for
the same examined computational volume, a very coarse mesh will predict a single large droplet,
while a finer mesh will capture the same volume with multiple computational cells and thus will
predict a group of smaller droplets, one in each cell. As a result, a coarser mesh enhances the
calculation of larger diameters, while in a finer mesh, smaller diameters will dominate. Following
this modeling limitation, a moderate mesh resolution is the safest balance to obtain the most accurate
representation of the physics and restrict the mesh-related overestimation of larger or smaller
droplets.

Considering the inevitable modeling effect of the mesh resolution on the droplet size calculations,
the interest of a mesh convergence investigation does not lie in the individual diameter values at a
specific time. Instead, the overall evolution of the population of the fragments over time, examining
how specific classes of diameters develop upon the rim fragmentation process, is the most significant
here. In Fig. 17, the volume concentrations of three classes of fragments, the same as in Fig. 11,
with diameters d� > 1 μm, 0.5 μm < d� < 1 μm, and 0.09 μm < d� < 0.5 μm are illustrated
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for a MEK droplet at We = 90, 170, 330, and 750 over the total volume of the dispersed region,
using three different mesh resolutions.

For the highest droplet propulsion velocities with corresponding Weber number values of 330
and 750, the concentration of droplets over time follows the same tendency in the three presented
classes of fragments in Fig. 17, irrespectively of the mesh resolution used. As expected, the largest
fragments of the first class are found to be more significant with the coarsest mesh of 150 cells/d0

even during the later stages of rim fragmentation, while the smaller fragments of the second and
third classes are more pronounced with the finest mesh of 250 cells/d0. For We = 330, the droplet
size distribution of Fig. 12 is obtained at the final time 0.089 τc, when the maximum observed
deviation between the moderate and the finest mesh results is found for the concentration of the first
class of fragments and is ∼15%. For We = 750, the droplet size distribution of Fig. 12 is obtained at
0.062 τc with the concentration of the first class of fragments to differ by <10% between the mesh of
200 and 250 cells/d0 Overall, the observed small deviations between the calculated concentrations
of different classes of fragments for Weber number values of 330 and 750 do not violate the overall
capturing of the phenomenon.

Focusing on the lower propulsion velocities with Weber number values of 90 and 170 and the first
class of fragments in Fig. 17(i), the concentration of the largest droplet class is reduced significantly
earlier with the finest mesh of 250 cells/d0. As previously shown in Fig. 16, after 0.06 τc, the
overall concentration of fragments relatively stabilizes; thus, at this time, the fragmentation process
decelerates, and less newly formed fragments are detached from the rim. As a result, the developed
cloud of fragments is not as varied as previously and mainly consists of droplets ∼1 μm, instead
of a group of large droplets well >1 μm close to the rim that break down into smaller droplets
downstream. In this case, the effect of the mesh resolution on the droplet size calculations ∼1 μm
is pronounced; the mesh of 150 cells/d0 overestimates the first class of droplets, while the mesh
of 250 cells/d0 underestimates their presence in the cloud of fragments. However, for the time
instances that the droplet size distributions of Fig. 12 are obtained, the moderate mesh resolution
results satisfactorily converge toward the finest mesh solution; for We = 90, the maximum deviation
is <4% for the second class of fragments, while for We = 170, the maximum deviation is observed
for the third class of fragments and a difference of 18%.
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