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Thermal conduction through a cool well
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We study a differentially heated square cavity with inlet and outlet ports at the top
of the side walls, quantifying how the effective thermal conductivity changes with the
temperature difference across the system. The side walls are insulating, the top surface is
kept at a fixed high temperature, and the bottom surface at a fixed low temperature, leading
to buoyancy-stabilized flow. We visualize the flow pattern for Reynolds number, Re = 1,
and Prandtl number, Pr = 50, and characterize the heat transfer at the bottom surface using
the Nusselt number, Nu, for Re = 0.1, 1, 10 and Pr = 1, 50. As the Richardson number,
Ri, is increased, we observe the formation of a series of system-spanning vortices through
the merging of Moffatt eddies growing from the bottom corners of the cavity. We find
that the convection, which enhances the transport of heat, is strongly suppressed by
increasing the temperature drop. As a result Nu drops by a factor 1–3 depending on the
Reynolds number.
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I. INTRODUCTION

Thermal convection has a major impact on the overall transport of thermal energy, as is exempli-
fied by the formation of cumulus clouds or the boiling of a pot of water. These are well-studied
processes that are driven by a destabilizing thermal gradient [1]. The opposite case where the
thermal gradient is stabilizing and works against convection, is less widely studied. Processes
where this happens include the flow of cold water under a warmer surface, as may be the case
in geothermal wells [2,3], and lakes [4]. Also, it is well known that surface structure may play a
role in the geothermal regulation of certain mammals [5]. Meteorological examples include warm
winds over colder valleys. In the present paper, we quantify such heat exchange in the simple case
of low Reynolds number flow over a thermally stabilized cavity, where the bottom is maintained at
a temperature that is lower than that of the passing fluid. Establishing the effective heat conductivity
over a cavity and how it depends on its size and the flow velocity may be applied for the purpose of
upscaling in real-world systems where a range of cavity sizes and flow velocities are present.

Flow in a lid-driven cavity in the presence of a temperature gradient has been studied widely
[6–10], mostly in the case of a destabilizing thermal gradient. Iwatsu et al. [6] study the relative
importance of natural and forced convection for several values of the Richardson number in a lid-
driven square cavity with insulating side walls and isothermal top and bottom walls, with the top
one at a higher temperature than the bottom, i.e., buoyancy stabilized. Cheng and Liu [7] investigate
the effect on flow and heat transfer of four temperature gradient directions (upward, downward,
leftward, and rightward) in a lid-driven square cavity. They study these four cases for the situation
where the lid motion forcing dominates over thermal convection (i.e., low Richardson number, Ri =
0.1), mixed convection (Ri = 1) dominating thermal convection (i.e., high Ri, Ri = 10). They find
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FIG. 1. The system is a square cavity of side h with a narrow channel of width w = h/60 at the top. The
flow is driven from the left to right in the channel by a constant body force, f .

that both the Richardson number and the temperature affect flow pattern and heat transfer, however,
the heat transfer rate increases with decreasing Ri for all four temperature gradient directions.

Several studies [11–14] have also been conducted on flow in a square cavity with inlet and
outlet injection ports in the presence of temperature gradients, specifically, on the effect on the
flow patterns and heat transfer of the position of the injection ports. Saeidi and Khodadadi [11]
visualize flow patterns in a square cavity with fixed inlet port position and nine locations for the
outlet port. The walls of the cavity are maintained at a temperature higher than that of the injected
fluid. Mahmoudi et al. [12] and Koufi et al. [13] study the effect of inlet and outlet placement on
the flow and temperature field in a square cavity with a warm isothermal bottom wall. Koufi et al.
[13] study the turbulent flow through a cavity with the other three walls at a fixed cold temperature
while Mahmoudi et al. [12] have three insulating walls and inject cold fluid.

The system investigated in this study is a square cavity with both inlet and outlet ports at
the top of the side walls. The side walls are insulating, while the top and bottom surfaces are
isothermal. The study differs from that of the above-mentioned ones [11–13] in that flow is steady
and the top surface is at a higher temperature than the bottom one, i.e., the system is buoyancy
stabilized, and that we quantify how heat transfer (quantified by the Nusselt number) changes with
the temperature difference. In all our simulations the Richardson number is larger than unity, so
that forced convection never dominates over thermal convection. The focus of the study is the
changes in the qualitative features of the flow patterns and the heat transfer as the Richardson
number, Ri, increases. With this goal, we made several series of simulations by fixing the values
of the Reynolds and Prandtl numbers, and increasing the values of Ri. In all our simulations the
Richardson number is larger than unity, so that forced convection never dominates over thermal
convection. We characterize the flow through visualization of the streamlines. The flow patterns in
a square lid-driven cavity with a stabilizing thermal gradient orientation have already been studied
[6,7]. The flow patterns observed in this case are quite similar to the ones we observe for high values
of the Richardson number, Ri, but differ for low Ri due to the presence of open streamlines from
the channel. Additionally, we quantify heat transfer through the bottom surface through the Nusselt
number, Nu, for several values of Re, Pr, and Ri.

II. SYSTEM DESCRIPTION

A. Geometry

The system shown in Fig. 1 is a two-dimensional square well of height h with a horizontal channel
of width w = h/60 at the top. A constant force drives flow through the channel, which in turn drives
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the flow in the body of the cavity. On the top surface of the well, the temperature is maintained at
a constant value, T+, and on the bottom surface, the temperature is maintained at a lower constant
value, T−. The sides of the cavity are insulating.

B. Governing equations

Since we are interested in the steady state of Re � 10 flows [15], the equations governing the
flow field are the time-independent Navier-Stokes equations,

ρu · ∇u + ∇p − μ∇2u − f êx − �ρgêy = 0, (1)

∇ · u = 0, (2)

and the time-independent advection-diffusion equation for the temperature,

k∇2T + u · ∇T = 0. (3)

Here, u is the fluid velocity, p is the pressure, μ is the dynamic viscosity, f is the constant driving
force, êx is the unit vector parallel to the channel axis directed from left to right, ρ is the density,
β is the thermal compressibility, g is the acceleration of gravity, êy is the unit vector parallel to the
side walls pointing to the top surface, k is the heat diffusivity, and T is the temperature.

We adopt the Boussinesq approximation, taking the density to be constant in the inertial term,
while the gravitational forcing term in Eq. (1) is given by

�ρg = ρ0β(T − T0)g, (4)

where ρ0 = ρ(T0), and T0 is a reference temperature.
Although the equations were solved in their dimensional form, the results are better interpreted

in light of the adimensional equations:

u′ · ∇u′ + ∇p′ − Re−1∇2u′ − Ri

RT
êx − Ri T ′êy = 0 (5)

∇ · u′ = 0 (6)

(Re Pr)−1∇2T ′ + u′ · ∇T ′ = 0, (7)

where Re = Uh/ν is the Reynolds number, Ri = βgh�T/U 2 is the Richardson number, RT =
βgρ�T/ f is the ratio between the buoyancy force and the driving force in the channel, Pr = ν/k
is the Prandtl number, U = 〈|u|〉(x,y)∈�well is the speed averaged over the volume of the cavity
(�well = [0, h] × [0, h]), h is the height and width of the cavity, ν is the kinematic viscosity, and
�T = T+ − T− is the temperature difference between the top and bottom surfaces.

To quantify heat transfer through the bottom surface we consider the heat flux density, defined as

j = uT − k∇T . (8)

Since the top surface has a higher fixed temperature than the bottom surface, the system is stable
with respect to buoyancy. If the driving force is set to zero, there is no motion in the system. In this
case heat transfer happens purely through diffusion, and is described by Fourier’s law,

j = −k
�T

h + w
êy. (9)

When the driving force is turned on, convection enters the picture, and the heat transfer cannot be
described by the above law. We quantify the departure from the case of pure heat diffusion, by
describing the heat transfer through the Nusselt number,

Nu = 〈 jy〉x(h + w)

k�T
, (10)
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where 〈 jy〉x is the y component of the measured heat flux density averaged over the cross section of
the well. We measure heat flux density at the bottom of the cavity. The Nusselt number can be
interpreted as the ratio between an effective heat diffusivity coefficient keff and the molecular
diffusivity coefficient k, i.e. Nu = keff/k.

C. Computational tools

The flow is simulated using the finite element method implemented in the FEniCS framework
[16]. The simulations are run with unstructured triangular mesh generated using Meshpy/triangle
[17], with a resolution, res = 64, maximum triangle area, Amax = 0.5(h/res)2, and minimum angle,
θmin = 25◦, to ensure a good-quality mesh. This gives a characteristic mesh size ∼(h/res). The full
numerical code can be found at a designated Git repository [18].

III. RESULTS

For low values of Ri, the open streamlines from the channel fan out and occupy almost the entire
square cavity, as seen in Fig. 2(a). Only the bottom corners are occupied by vortices. Due to the
resolution of the simulation, we only see one vortex in each corner, but there is an infinite cascade
of Moffatt eddies in each corner, as is known theoretically [19].

As the value of Ri is increased the outer vortex from each cascade grows until the two touch and
merge in a cavity-spanning vortex. This process is shown in Fig. 2. As Ri increases further, the same
process is repeated by the second-generation eddies as they emerge from the two corners. These
vortices grow even larger as Ri increases, and just like the previous couple of vortices, they touch and
merge in a cavity-spanning vortex. This process repeats itself with the following pairs of vortices.
In Fig. 3, we can see the formation of the second and third cavity-spanning vortices. More vortices
are formed after that, but as the velocity in the cavity decreases with increasing Ri, the velocity in
the fourth and, potentially, subsequent vortices is so small that fluctuations due to round-off errors
become dominant. Figure 4 shows the values of Ri at which the first four cavity-spanning vortices
are formed as well as the Nusselt number, Nu, as a function of Ri when Re = 1 and Pr = 50. In the
case of pure diffusion, keff = k, and the Nusselt number is unity, Nu = 1. The value of Nu is highest
for smaller values of Ri. This is because most of the cavity is filled by the open streamlines of the
channel, and convection has a significant role in the heat transport. As the value of Ri increases the
cavity becomes filled by the vortices, and the average speed decreases, so that the fluid in the cavity
approaches the stationary state where diffusion becomes the dominant factor in the heat transport.
This is shown by Nu approaching 1 as Ri increases. Note that while the topological changes to the
streamlines are discontinuous in the sense that two eddies become one, there is no corresponding
discontinuity in Nu(Ri), however, a weak inflection point corresponding to the formation of the first
cavity-spanning vortex can be observed for Re = 1, Pr = 50 (Fig. 4).

Figure 5(a) compares the series from Fig. 4 to two other series with the same
Prandtl number, Pr = 50, but different Reynolds numbers, Re = 0.1 and Re = 10. Here,
the Nusselt number is shown as a function of the product of the Richardson and
Reynolds numbers, Ri Re = βgh2�T/(Uν), which represents the ratio between the buoy-
ancy and viscous forces. For the same order of magnitude of Ri Re, the flow pattern
and the qualitative behavior of Nu are similar for the three series of data with different values of Re.
All three graphs converge towards Nu = 1 for high values of Ri, but the higher the Reynolds number,
the more the effective diffusion coefficient departs from the molecular one for low Ri values. This
is because the departure from Fourier’s law is caused by convection, which is more significant for
larger values of the Reynolds number.

Figure 5(b) shows the same, but for a lower Prandtl number, Pr = 1, corresponding to a larger
value of the diffusivity. Hence, the relative significance of diffusion with respect to convection
has increased. This can be seen in Fig. 5(b), where the values of Nu for small values of Ri are
significantly smaller than their corresponding values for Pr = 50 in Fig. 5(a).
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FIG. 2. Temperature field, represented by the color gradient, and streamlines of the velocity field of the
steady states for Re = 1, Pr = 50, and several values of Ri.

IV. CONCLUSIONS

We have studied flow patterns and heat transfer in a square cavity with inlet and outlet ports,
insulating side walls, and isothermal high-temperature top wall and low-temperature bottom wall.
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FIG. 3. Temperature field, represented by the color gradient, and streamlines of the velocity field of the
steady states for Re = 1, Pr = 50, and several values of Ri. As Ri increases, more Moffatt eddies grow from
the corners, and merge to create other system-width-spanning vortices.

For low values of the Richardson number, Ri, the cavity is filled by open streamlines and the flow
is from the inlet to the outlet ports, thus increasing the role of convection compared to the case of
larger Ri. As Ri is increased, the outermost Moffatt eddies from the bottom corners expand, merge,
and create a series of cavity-spanning vortices.

The heat transfer has been quantified by the Nusselt number, Nu. This is largest for low values
of Ri, but converges to unity as Ri increases for all simulation series run, Re = 0.1, 1, 10, and Pr =
1, 50. Increasing Ri increases the spatial domain of recirculation zones where the main transport
mechanism is thermal diffusion. In some cases (Re = 10, Pr = 50), Nu is decreased by a factor ∼3
as the temperature difference is increased. Reducing Pr reduces this effect. However, increasing the
flow velocity or forcing has the combined effect of reducing Ri and increasing Re, both of which
will enhance the heat transport.

An experimental example of the system could be realized by setting the value of the Prandtl
number to Pr = 7, which is the value for water at the temperature T = 20 ◦C. Choosing the
dimensions of the cavity to be h = 0.1 m and w = 1.67 × 10−3 m, the bottom surface temperature
to be T− = 20 ◦C, and the velocity in the channel to be uch = 2.81 × 10−3 ms−1, leads to the value
of Reynolds number in the cavity of Re = 10. Our simulations predict that, as the temperature
difference �T = T+ − T− drops from �T = 6 ◦C to �T = 6 × 10−5 ◦C, the Nusselt number, Nu,
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FIG. 4. Nusselt number, Nu, as a function of the Richardson number, Ri, for Reynolds number, Re = 1,
and Prandtl number, Pr = 50. The vertical lines indicate the value of Ri at which width-spanning vortices are
formed. The labels n → n + 1 specify that the formation of a width-spanning vortex has increased the number
of vortices from n to n + 1. After the third vortex, observing new formations becomes difficult because the
velocities in the new vortices are so small that they are not properly resolved by the software.

doubles in value: Nu(�T = 6 ◦C) = 1.08, Nu(�T = 6 × 10−5 ◦C) = 2.14. At given values of Ri
and Re, which are computed for the flow inside the cavity, we expect the above numbers to change
only weakly if the channel width is changed.

The increase of Nu with decreasing Ri Re is more pronounced for higher values of Re and Pr. We
cannot arbitrarily increase Re, since the turbulent regime cannot be reached by the simulations. What
can be increased is Pr, which depends on material characteristics and temperature. The example
proposed above is for water at T = 20 ◦C, which has Pr ≈ 7. The Prandtl number of water increases
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FIG. 5. Nusselt number, Nu, as a function of the product of the Richardson and Reynolds numbers Ri Re,
for Prandtl number, (a) Pr = 50, (b) Pr = 1 and several values of the Reynolds number, Re. The product Ri Re
is proportional to the temperature difference, Ri Re = γ�T , however the proportionality constant, γ changes
for different values of the Prandtl and Reynolds number: γ (Pr = 50; Re = 10) = 106, γ (Pr = 50; Re = 1) =
107, γ (Pr = 50; Re = 0.1) = 108, γ (Pr = 1; Re = 10, 1, 0.1) = 108.
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as the temperature decreases. For example, water at T = 0 ◦C has Pr ≈ 14. There are other fluids
with much larger values of Pr; oils have Pr = 50 − 105, and glycerin at T = 25 ◦C has Pr ≈ 7 ×
103. Running simulations for Pr = 7 × 103, Re = 0.1, and 10 < Ri Re < 106, we found that the
Nusselt number decreases from Nu = 5 to Nu = 1. Further study is needed for higher values of the
Prandtl number.
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