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The problem of thermal instability in rapidly rotating, self-gravitating fluid bodies has
been widely modeled in spheres or spherical shells, which implicitly neglects the flattening
effect due to the centrifugal force. In our previous paper [Kong, Phys. Rev. Fluids 7,
074803 (2022)], by self-consistently taking into account the centrifugal force, rapidly
rotating stably stratified Boussinesq fluid was modeled in oblate spheroidal cavities whose
geometric shapes are determined by the theory of figure. A closed-form solution was
obtained for gravity and temperature. The stable stratification was demonstrated to be
motionless in the corotating frame of reference. Based on this nonspherical model of the
conduction state in a rapidly rotating spheroidal cavity, the problem of thermal instability
is formulated and discussed by this paper in the regime of inertial convection, which is
marked by asymptotically small Ekman number and sufficiently small Prandtl number. The
critical properties of inertial modes are explicitly derived. The dependence of the onset of
thermal inertial convection on the oblateness of spheroid is systematically explored.
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I. INTRODUCTION

Convection inside a planet plays an important role in planetary evolution [1,2], chemical mixing
[3], and magnetic field generation [4–6]. As generally acknowledged, a planetary fluid layer that
possesses enough internal thermal energy could sustain active buoyancy-driven convection, which
is usually seen in the interiors of gaseous planets or the liquid layers of terrestrial planets. However,
there is no simple global criterion by which one can straightforwardly judge whether or not thermal
convection takes place in a planetary interior, especially when the planet is rapidly rotating [7,8].

Chandrasekhar [9] first formulated the problem of thermal instability in rotating fluid spheres and
spherical shells under the Boussinesq approximation and the assumption of uniform distribution of
heat sources. From then on, much attention has been paid to the role of rotation in altering the onset
of rotating Boussinesq convection [8,10–18]. When the Prandtl number of a rotating fluid, which
is the ratio of the kinematic viscosity ν to the thermal diffusivity κ , is finite (0 < Pr < ∞), there
are several nondimensional numbers that can reflect the relative importance of rotational effects.
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Denote the angular speed of rotation by �, the typical length scale of the fluid layer by d , the
typical flow speed by U , the fluid density by ρ, and the universal gravitational constant by G.
Planets are usually called rapidly rotating, because Ekman number Ek = ν/(�d2), which compares
viscous force to Coriolis force, is usually asymptotically small at the global scale (0 < Ek << 1),
and Rossby number Ro = U/(�d ), which compares inertial force to Coriolis force, is also usually
small. One of the good examples is our Earth. In the convective liquid core, the Ekman number is
smaller than 10−15 [19], the Rossby number can be as small as 10−6 [19]. Generally speaking, in the
context of geophysical and astrophysical fluid dynamics, extremely small Ekman number and small
Rossby number mean that Coriolis force plays a controlling role in thermal instability. This has
been extensively justified, for rotating convections [20–27]. Meanwhile, Another rotational param-
eter, Froude number, being defined as Fr = 3�2/(4πGρ), measures the relative strength between
centrifugal force and self-gravity. By far, in studies of the problem of thermal instabilities, effects
of centrifugal force have been neglected. People believe the much simple spherical problem would
give a good approximation to the actual oblate problem. But this has not been rigorously verified by
any mathematical or numerical studies. A fundamental scientific question is how centrifugal force
would change the onset of thermal instability in a rapidly rotating fluid.

One obvious consequence of the centrifugal force is the nonspherical shape of the fluid domain
[28]. For an isolated, uniformly rotating, and self-gravitating Boussinesq fluid of a constant density
ρ, to the leading order of the rotational equilibrium, its geometrical figure can be described by
a Maclaurin spheroid [29] with equatorial radius Re and polar radius Rp and hence spheroidal

eccentricity E =
√

R2
e − R2

p/Re. The eccentricity and the Froude number obey the classical relation

2Fr

3
=

√
1 − E2

E3
(3 − 2E2) sin−1 E − 3(1 − E2)

E2
, (1)

such that the outer surface is equipotential (the gravitational potential plus the centrifugal poten-
tial). Note that, unlike the Maclaurin spheroid solution, the geoid for a rotating, self-gravitating
compressible fluid can not be explicitly expressed by any closed-form formulation [30,31]. After
all, nonspherical geometry would significantly complicate theoretical or numerical analyses. Most
numerical convection models based on finite-difference or spectral methods discretize the governing
equations over regular spatial grids in spherical coordinates (r, θ, φ) (see compilations of popular
codes discussed by Jackson et al. [32] and Matsui et al. [33]). It is not straightforward to extend them
from spherical settings to nonspherical ones because the bounding surface of the domain will not
coincide with any particular radial coordinate level surface, which either prevents applying boundary
conditions or breaks the condition that can separate radial and angular functions. In principle,
finite-element and finite-volume methods that adopt nonstructured meshes are more adaptable to
nonspherical geometries, including oblate spheroids [34,35].

Another more intricate effect related to the centrifugal force is a baroclinic state. Von Zeipel
in 1924 [36] first derived the condition under which a stably stratified radiative star would rotate
uniformly. In order that the stable stratification satisfying the mechanical equilibrium condition can
remain hydrostatic in the corotating frame of reference, the internal state of the rotating fluid has to
satisfy

ε = C

(
1 − �2

2πGρ

)
, (2)

where ε is the rate of heat generation per unit mass, C is a constant. Because the condition suggested
by Eq. (2) can hardly be physically sound for stellar interiors [37,38], it is generally found that
centrifugal-force-related baroclinicity arises and results in differential rotation, meridional circula-
tion, turbulent mixing, and even dynamo action [39–47]. Note that the rotational baroclinic state is
essentially nonhydrostatic and even turbulent in the corotating frame of reference. It implies that if
such baroclinicity is a necessary result of the centrifugal force, then the onset of thermal instability
is not represented by a Hopf bifurcation, which will cause a fundamental difficulty for analysis.
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In our previous paper [48] (hereafter being referred to as K1), however, it was demonstrated by
mathematical and numerical examples that the centrifugal-force-related baroclinicity could vanish
in the interior of planets, mainly because there was no nuclear fusion process generating energy,
hence the assumptions and conditions of the von Zeipel theorem could be exactly satisfied. As a
result, in the corotating frame of reference, it is still possible to have a hydrostatic stably stratified
conduction state before thermal instability takes place, which provides a crucial basic reference state
for perturbation analysis.

Although there are challenges to understanding the effect of centrifugal force in rotating con-
vection, it is scientifically meaningful to make efforts. There are many stellar and planetary objects
undergoing extremely fast rotation. Some massive Be-type stars, such as α Arae [49] and α Eridani
[50], are famous for their unusual rapidly rotational velocity, causing them to become very oblate.
Maeder et al. (2008) [51] examined the effects of rotation on the thermal gradient in convective
zones of massive stars and discussed the criterion for convection in rotating envelopes. In our
Solar System, giant planets such as Jupiter and Saturn are rotating very fast. Their Froude numbers
are no longer small and their flattened shapes are apparent. In the era of the Juno and Cassini
missions, the measurements of gravitational fields of the two gaseous planets are so accurate that
their deep convective motions can be detected via their gravitational signatures [52–55]. Note that
the gravitational field of a gaseous planet measured by a spacecraft is always the total one, including
both the main field of the nonspherical rotating equilibrium structure and the dynamical distortions
resulting from fluid motions. To convincingly separate the dynamical part from the predominant
equilibrium background field, it is necessary to self-consistently model the convection [56–58]
inside a nonspherical planet, where the centrifugal force is not neglected.

The present work, for the first time, models the onset of thermal instability in significantly
flattened spheroids of rapid rotation, by self-consistently taking into account of Coriolis force,
centrifugal force, and nonspherical shape. The analysis focuses on the regime of asymptotically
small Ekman number and small Prandtl number, but the Froude number is not assumed small. In
K1, a nonspherical model of stable stratification was analytically constructed for rapidly rotating
Boussinesq fluid of uniform distribution of heat sources. The gravity and temperature solutions
were presented as closed-form formulations, in terms of oblate spheroidal coordinates defined in
an oblate spheroidal cavity whose geometrical figure shall obey the Maclaurin spheroid relation
Eq. (1) rather than arbitrarily chosen. It was mathematically demonstrated that the rotating stable
stratification is hydrostatic in the corotating frame of reference, free of baroclinicity because the
assumptions and conditions of the von Zeipel theorem can be fully satisfied. The nonspherical
model of stable stratification is herein adopted as the conduction state before the onset of thermal
instability. By assuming the Ekman number is asymptotically small and the Prandtl number is
sufficiently small, linear stability analysis is carried out to determine the critical stratification
number and the critical frequency for each particular inertial wave mode in oblate spheroidal cavities
of different eccentricity and Froude number. The most unstable modes are numerically verified by
three-dimensional finite-element convection models in oblate spheroidal geometries.

In what follows, the hydrostatic basic reference state solution in a Maclaurin spheroid is first
discussed in Sec. II. Based on it, the equations to the first order of perturbations, which govern
weakly convective motion taking place inside oblate spheroidal cavities, are formulated, subject to
no-slip velocity boundary condition and isothermal temperature boundary condition. In Sec. III,
under the assumption of an asymptotically small Ekman number and sufficiently small Prandtl
number, linear instability analysis is carried out for thermal inertial modes confined in oblate
spheroidal cavities, to find the respective critical stratification number for the modes. A global
asymptotic solution is derived to describe the criterion for the onset of inertial convection. In Sec. IV,
the solution is used to explore how the onset of spheroidal convection depends on the oblateness of
the spheroid, or equivalently, on the Froude number. A three-dimensional finite-element method is
employed to numerically compute several examples, to verify and validate the theoretical results.
Finally, Sec. V summarizes this study and discusses the next works of this paper series.
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II. GOVERNING EQUATIONS

Consider a self-gravitating and incompressible Boussinesq fluid confined in an oblate spheroid
of eccentricity 0 � E < 1 with constant thermal diffusitivity κ , specific heat capacity at constant
pressure cp, thermal expansion coefficient α, and kinematic viscosity ν. The fluid oblate spheroid
rapidly rotating with constant angular velocity � = �ẑ is heated internally by a uniform distribution
heat sources Qh per unit volume. When the strength of the heat sources becomes sufficiently strong,
the corresponding buoyancy effect would drive convective flow u and modify the stably stratified
thermal profile. The problem of self-consistent convective flow in a rotating oblate spheroid is
formulated by the following dimensional equations in the rotating frame [9]:

ρ0

(
∂u
∂t

+ u · ∇u + 2� × u
)

= −∇P + ρ[g0 − � × (� × r)] + ρ0ν∇2u, (3)

∂T

∂t
+ u · ∇T = κ∇2T + Qh

cpρ0
, (4)

∇ · u = 0, (5)

∇ · g0 = −4πGρ0, (6)

where u is the fluid velocity relative to the rotating frame, T represents the temperature, P is the
hydrodynamic pressure, and ρ0 is the constant reference density at T = 0 and the density obeys
ρ = ρ0(1 − αT ), g0 is the time-independent gravity, and r denotes the position vector of fluid parcel.
In contrast to previous studies where the effects of centrifugal force associated with density ρ were
omitted, the contribution of the centrifugal force is no longer neglected in the further analysis. The
equations are defined within the frame of reference attached to a rotating oblate spheroidal cavity
whose bounding surface is described in terms of Cartesian coordinates (x, y, z) by

S =
{

(x, y, z)

∣∣∣∣(x2 + y2) + z2

1 − E2
= R2

e

}
. (7)

The no-slip boundary condition for velocity, the isothermal boundary condition for temperature, and
the equipotential equilibrium condition are adopted

u|S = 0, (8)

T |S = 0, (9)[
G

∫
ρ0(r′)
|r − r′| dV ′ + 1

2
|� × r|2

]
S

= Constant. (10)

The linear properties of weakly convective motion near onset are analyzed through a perturbation
approach. Substitution of the expanded solution

u = u(r, t ), (11)

T = T0(r) + �(r, t ), (12)

ρ = ρ0 − αρ0[T0(r) + �(r, t )], (13)

P = P0(r) + p1(r, t ), (14)

into Eqs. (3)–(6) yields the basic state equations for the equilibrium temperature T0, density ρ0,
pressure P0, eccentricity E , and the first-order equations for perturbation variables, velocity u,
temperature �, and pressure p.
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The equilibrium state is described by the following dimensional equations confined within the
spheroidal bounding surface S ,

ρ0� × (� × r) = −∇P0(r) + ρ0g0(r), (15)

∇ · g0(r) = −4πGρ0, (16)

∇2T0 + β = 0, (17)

subject to the the boundary conditions on the spheroidal boundary surface S ,

P0|S = Constant, (18)[
G

∫
ρ0

|r − r′| dV ′ + 1

2
|� × r|2

]
S

= Constant, (19)

T0|S = 0, (20)

where the positive constant β = Qh/(cpρ0κ ). Note that the eccentricity E of the bounding surface
does not explicitly appear in Eqs. (15)–(17). It enters the problem via the equipotential boundary
condition Eq. (19). K1 presented the solution to Eqs. (15)–(20) and verified the equilibrium state
being exactly hydrostatic. It is convenient to express the solution and conduct further analyses in
terms of oblate spheroidal coordinates [59] (η, φ, τ ), which can be linked to Cartesian coordinates
via

x = Re

√
(η2 + E2)(1 − τ 2) cos φ, (21)

y = Re

√
(η2 + E2)(1 − τ 2) sin φ, (22)

z = Reητ, (23)

where the z axis is parallel to the angular velocity, 0 � η �
√

1 − E2 is the radial coordinate, 0 �
φ < 2π is the azimuthal coordinate, and −1 � τ � 1 is the angular coordinate. According to K1,
The solution to Eqs. (15)–(17) subject to boundary conditions Eqs. (18)–(20) on S where η =√

1 − E2 are

η̂ · g0 = γ Re
3η

2E3

√
η2 + E2√

η2 + E2τ 2
[E − 3Eτ 2 − E3(1 − τ 2) +

√
1 − E2(3τ 2 − 1) sin−1 E], (24)

τ̂ · g0 = γ Re
3τ

2E3

√
1 − τ 2√

η2 + E2τ 2
[−E3 + E5 + E (E2 − 3)η2 +

√
1 − E2(3η2 + E2) sin−1 E], (25)

T0 = βR2
e

[1 − (η2 + E2)][1 − E2(1 − τ 2)]

6 − 4E2
, (26)

2Fr

3
=

√
1 − E2

E3
(3 − 2E2) arcsin E − 3(1 − E2)

E2
, (27)

where γ = 4πGρ0/3. Equation (27) is identical to Eq. (1). Note that our radial coordinate η differs
slightly from the ξ defined in K1 by a factor E . It is then straightforward to find the thermal gradient

η̂ · ∇T0 = −βRe
2η[1 − E2(1 − τ 2)]

6 − 4E2

√
η2 + E2√

η2 + E2τ 2
, (28)

τ̂ · ∇T0 = βRe
2E2τ [1 − (η2 + E2)]

6 − 4E2

√
1 − τ 2√

η2 + E2τ 2
. (29)
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It was demonstrated in K1 that the equilibrium state is free of baroclinicity, which can be quickly
shown as the direction of the buoyancy is everywhere parallel to the effective gravity

∇ × {T0[g0 − � × (� × r)]} = ∇T0 × [g0 − � × (� × r)] = 0. (30)

Based on the basic conduction state established by Eqs. (24)–(29), the onset of convective motion
confined within the spheroidal cavity is governed by the linearized perturbation equations

∂u
∂t

+ 2� × u = −∇p − α�(g0 − � × � × r) + ν∇2u, (31)

∂�

∂t
+ u · ∇T0 = κ∇2�, (32)

∇ · u = 0, (33)

where p is the reduced pressure. Nondimensionalizing Eqs. (31)–(33), by choosing the scalings

r → rRe, t → t�−1, p → pρ0R2
e�

2, � → �βR2
e , and g0 → g0γ Re, (34)

arrives at

∂u
∂t

+ 2ẑ × u = −∇p + St(2Fr − 3)�∇T0 + Ek∇2u, (35)

∂�

∂t
+ u · ∇T0 = Ek

Pr
∇2�, (36)

∇ · u = 0, (37)

in which the key dimensionless parameters are defined as

St = αβγ R2
e

�2
, Pr = ν

κ
, Ek = ν

�R2
e

. (38)

When the Froude number Fr and the corresponding eccentricity E are given, the stratification
number St acts a similar role as the Rayleigh number plays in classical formulations of spherical
convection problems. But it should be noted that −St(2Fr − 3) is the full representation of the
strength of unstable stratification. In the spherical limit Fr → 0, ∇T0 → −r/3, it is possible to
calculate the equivalent Rayleigh number from a stratification number St. For example, the Rayleigh

number defined in Zhang et al. (2017) [60] can be calculated as R = αβγ R4
e

�κ
= St × [Pr/(3Ek)]. Note

that the factor 3 is because they adopted a slightly different definition of β. The equations Eqs. (35)–
(37) are equipped with the no-slip velocity and isothermal boundary conditions on S (η = √

1 − E2),

η̂ · u|S = τ̂ · u|S = φ̂ · u|S = �|S = 0. (39)

III. GLOBAL ASYMPTOTIC SOLUTION AND ONSET OF THERMAL INERTIAL WAVE

In classical thermal instability problems in rotating spheres or spherical shells, there are several
approaches to determining global onset of convection. One of the most popular idea is looking at
the Hopf bifurcation of the eigenproblem resulting from some temporal (e.g., eiωt ) and spatial (e.g.,
spherical harmonics) decomposition of the governing equations. The eigenfrequency ω is complex.
For given values of azimuthal wave number, Ekman number and Prandtl number, the Rayleigh
number is increased until the imaginary part of the eigenfrequency decreases from positive to zero
signaling the onset of the particular convective mode (e.g., [8,16,61]). The globally most unstable
mode can be obtained by minimizing the critical Rayleigh number with respect to the azimuthal
wave number.

Another view of the problem is conceptually different. For given values of azimuthal wave
number, Ekman number, and Prandtl number, the imaginary part of the eigenfrequency is assumed
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to be exactly 0, which means the system must be right at the onset. As a result, Rayleigh number,
real-valued eigenfrequency, and convective flow form a definite system that requires some solvabil-
ity condition being satisfied. This method was first proposed and demonstrated by Zhang and his
coauthors since the 1990s [14,15,17,62], and has been applied to various problems (e.g., [60]). The
method and relevant examples are comprehensively discussed in a recent text book [63].

We extend the latter idea and the method to obtain the global asymptotic solution of thermal
inertial convection in oblate spheroidal cavity valid for 0 < Ek � 1 and sufficiently small Pr
subject to no-slip and isothermal boundary conditions. The global asymptotic theory is based on
the following hypotheses: (1) a boundary flow in the viscous spheroidal boundary layer must be
considered in deriving a global asymptotic solution; (2) the leading-order solution of convection for
0 < Ek � 1 can be represented by a single inertial mode umnk (η, φ, τ ) for small Pr.

An asymptotic solution of inertial convection is expanded in the form

u = A{[̂u + umnk (η, φ, τ )] + ũ}ei2σ t + c.c. + · · · , (40)

p = A{[ p̂ + pmnk (η, φ, τ )] + p̃}ei2σ t + c.c. + · · · , (41)

� = A�0(η, φ, τ )ei2σ t + c.c. + · · · , (42)

St = St1 + · · · , (43)

σ = σmnk + σ1 + · · · , (44)

where A represents the amplitude of convection, umnk and pmnk are the primary inertial mode, the
boundary flow ũ and the associated pressure p̃ only exist in the thin boundary layer where |̃u| =
O(|umnk|), û and p̂ are the small secondary interior perturbations caused by the boundary flow and
vanish in the boundary layer. σ1 is the small correction to the half eigenfrequency σmnk of the inertial
mode umnk , which will be determined with St1 in the following analysis. c.c. denotes the complex
conjugate of the previous term. The order m denotes the azimuthal wave number while k and n
represent the radial and axial wave numbers, respectively.

Substitution of Eqs. (40)–(44) into Eqs. (35)–(37) gives rise to the following leading-order
problem for a nondissipative inertial wave:

i2σmnkumnk + 2ẑ × umnk + ∇pmnk = 0, (45)

i2σmnk�0 + umnk · ∇T0 = Ek

Pr
∇2�0, (46)

∇ · umnk = 0, (47)

subject to the inviscid, nonpenetrable, and isothermal boundary conditions at η = √
1 − E2,

η̂ · umnk|S = �0|S = 0, (48)

where the imaginary unit i = √−1. The Ekman number and Prandtl number do not appear in
Eqs. (45) and (47) and only affect the solution �0 in Eq. (46). Zhang et al. (2004) [59] first solved
Eq. (45) and Eq. (47) in oblate spheroidal geometry. The pressure pmnk is expressed as

pmnk =
k∑

i=0

k−i∑
j=0

Cs
mki jσ

2i
mnk

(
1 − σ 2

mnk

) j
[(η2 + E2)(1 − τ 2)]m/2+ j (ητ )2ieimφ, (49)

where the coefficient Cs
mki j is defined as

Cs
mki j =

[ −1(
1 − σ 2

mnkE2
)]i+ j [2(m + k + i + j) − 1]!!

2 j+1(2i − 1)!!(k − i − j)!i! j!(m + j)!
, (50)
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and the half eigenfrequency σmnk can be solved from the transcendental equation,

0 = m +
k−1∑
j=0

(−1) j+k

{
k![2(2k + m − j)]!(k + m)!

[2(k − j)]![2(k + m)]! j!(2k + m − j)!

}

×
[

m − 2(1 − σmnk )(k − j)

σmnk (1 − E2)

][
(1 − E2)σ 2

mnk(
1 − σ 2

mnkE2
)]k− j

, (51)

with m � 1 and k � 1. For a given E , m, and k, there exist 2k different real solutions for σmnk

corresponding to 2k different inertial modes which can be arranged according to the size of
σmnk , 0 < |σm1k| < |σm2k| < |σm3k| <, · · · ,< |σmnk| <, · · · ,< 1, with the σmnk representing the nth
smallest absolute root of Eq. (51). Closed-form velocity components of inertial modes umnk can be
found in Zhang and Liao (2017) [63]. The order m denotes the azimuthal wave number while n and
k, respectively, outline the complexity of the flow structure in the directions perpendicular to and
parallel with the rotation axis.

While the inviscid spheroidal inertial modes are given, the temperature �0, a solution to Eq. (46)
subject to isothermal boundary condition, can be derived by virtue of an expansion using the radial
spheroidal wave functions of the first kind R(1)

ml (−iEklq, iη/E ) and the spheroidal angular functions
S(1)

ml (−iEklq, τ ) of the first kind, which are eigenfunctions of the Helmholtz equation ∇2ψ + k2ψ =
0 in oblate spheroidal domain [64,65], in the form

�0 =
∑
l,q

�lqR(1)
ml (−iEklq, iη/E )S(1)

ml (−iEklq, τ )eimφ, (52)

where �lq are the complex coefficients and klq are determined by zeros of R(1)
ml functions,

R(1)
ml (−iEklq, i

√
1 − E2/E ) = 0, (53)

with klq being ordered such that 0 < kl1 < kl2 < kl3 < · · · . The expansion coefficients �lq can be
figured out,

�lq = − 2πe−imφ

k2
lqEk/Pr + i2σmnk

∫ 1

−1

∫ √
1−E2

0
(umnk · ∇T0)R(1)

ml (−iEklq, iη/E )

× S(1)
ml (−iEklq, τ )(η2 + E2τ 2)dηdτ. (54)

The spheroidal wave functions R(1)
ml (−iEklq, iη/E ) and S(1)

ml (−iEklq, τ ) have been normalized such
that ∫ 2π

0

∫ 1

−1

∫ √
1−E2

0
R(1)

ml (−iEklq, iη/E )S(1)
ml (−iEklq, τ )

× R(1)
ml ′ (−iEkl ′q′ , iη/E )S(1)

ml ′ (−iEkl ′q′ , τ )(η2 + E2τ 2)dηdτdφ = δll ′δqq′ , (55)

where δll ′ is the Kronecker δ function and l − m = 0, 2, 4, · · · , q = 1, 2, 3 · · · for an equatori-
ally symmetric mode while l − m = 1, 3, 5, · · · , q = 1, 2, 3 · · · for an equatorially antisymmetric
mode. In practical computations, usually a small number of terms in Eq. (54) are required in the
expansion to achieve a reasonable accuracy. For the cases later presented in this paper, the chosen
truncation of the expansion is q up to 5 and l up to m + 5, which has been tested for convergence.

At the next order, the governing equations for the secondary flow û in the interior of the oblate
spheroid are,

i2σmnkû + 2ẑ × û + ∇ p̂ = St1(2Fr − 3)�0∇T0 + Ek∇2umnk − i2σ1umnk, (56)

∇ · û = 0, (57)
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where higher terms, such as i2σ1û and Ek∇û, are neglected and the secondary flow û is subject to
the boundary condition,

η̂ · û = influx at the outer edge of the viscous boundary layer ũ. (58)

At this order, thermal effects are coupled with the nondissipative thermal-inertial oscillation, driving
convection against viscous dissipation. Multiplying Eq. (56) by u∗

mnk , the complex conjugate of
umnk , and integrating over the oblate spheroid V gives rise to the solvability condition for the
inhomogeneous system Eqs. (56) and (57),∫

S
p∗

mnk û · η̂dS = St1(2Fr − 3)
∫
V

(u∗
mnk · ∇T0)�0dV − i2σ1

∫
V

|umnk|2dV, (59)

given the following properties,∫
V

u∗
mnk · (i2σmnkû + 2ẑ × û + ∇ p̂)dV =

∫
S

p∗
mnk û · η̂dS, (60)∫

V
u∗

mnk · ∇2umnkdV = 0, (61)

where p∗
mnk is the complex conjugate of pmnk and the viscous integral Eq. (61) has been proved by

Zhang et al. (2004) [59]. Now the major task is to evaluate the surface integral on the left-hand side
of Eq. (59), though the right-hand side can be calculated easily. According to Eq. (58), the explicit
expression of the boundary flow ũ is needed for the task, which is discussed and derived in the
Appendix. Upon recognizing that, in Eq. (A18), the γ −

mnk trems make the same contribution as the
γ +

mnk terms, the surface integral can be computed∫
S

p∗
mnk û · η̂dS = i2π

√
Ek

∫ 1

−1

V τ
mnk + V φ

mnk

γ +
mnk

×
(

h
√

1 − τ 2
dPmnk

dτ
+ mh2

√
1 − τ 2

Pmnk

)
dτ, (62)

in which the symbols V τ
mnk , V φ

mnk , Pmnk , and h are also introduced in the Appendix.
Substitution of Eq. (62) into Eq. (59) gives rise to the final solvability condition, whose real part

can be used to determine the stratification number St1,

√
Ek

∫ 1

−1

σmnkh2 + τh

|σmnkh2 + τh|3/2

(
V τ

mnk + V φ

mnk

)(
h
√

1 − τ 2
dPmnk

dτ
+ mh2

√
1 − τ 2

Pmnk

)
dτ

= 2St1(3 − 2Fr)Re

[∫ 1

−1

∫ √
1−E2

0
(u∗

mnk · ∇T0)�0(η2 + E2τ 2)dηdτ

]
, (63)

while the imaginary part can be used to determine σ1, which gives the half frequency via Eq. (44),

√
Ek

∫ 1

−1

V τ
mnk + V φ

mnk

|σmnkh2 + τh|1/2

(
h
√

1 − τ 2
dPmnk

dτ
+ mh2

√
1 − τ 2

Pmnk

)
dτ

= 2St1(3 − 2Fr)Im

[∫ 1

−1

∫ √
1−E2

0
(u∗

mnk · ∇T0)�0(η2 + E2τ 2)dηdτ

]

+ 4σ1

∫ 1

−1

∫ √
1−E2

0
|umnk|2(η2 + E2τ 2)dηdτ, (64)
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where the integrals involving �0 can be computed via

Re

[∫ 1

−1

∫ √
1−E2

0
(u∗

mnk · ∇T0)�0(η2 + E2τ 2)dηdτ

]

= −
∑
l,q

2πk2
lqEk/Pr(

k2
lqEk/Pr

)2 + 4σ 2
mnk

×
∣∣∣∣∣
∫ 1

−1

∫ √
1−E2

0
(umnk · ∇T0)R(1)

ml (−iEklq, iη/E )S(1)
ml (−iEklq, τ )(η2 + E2τ 2)dηdτ

∣∣∣∣∣
2

, (65)

and

Im

[∫ 1

−1

∫ √
1−E2

0
(u∗

mnk · ∇T0)�0(η2 + E2τ 2)dηdτ

]

=
∑
l,q

4πσmnk(
k2

lqEk/Pr
)2 + 4σ 2

mnk

×
∣∣∣∣∣
∫ 1

−1

∫ √
1−E2

0
(umnk · ∇T0)R(1)

ml (−iEklq, iη/E )S(1)
ml (−iEklq, τ )(η2 + E2τ 2)dηdτ

∣∣∣∣∣
2

, (66)

and the integral linked to the normalization of an inertial mode umnk is given by∫ 1

−1

∫ √
1−E2

0
|umnk|2(η2 + E2τ 2)dηdτ

=
k∑

i=0

k−i∑
j=0

k∑
μ=0

k−μ∑
ν=0

Cs
mki jCs

mkμνσ
2i+2μ

mnk

(
1 − σ 2

mnk

) j+ν

[
2m+ j+ν−2(1 − E2)i+μ+1/2

(2m + 2i + 2 j + 2μ + 2ν + 1)!!

]

×
[H(m + j + ν − 1)!(2i + 2μ − 1)!!

(1 − σ 2)2
+ 8iμ(m + j + ν)!(2i + 2μ − 3)!!

σ 2(1 − E2)

]
, (67)

with

H = (2 jσmnk + mσmnk + m)(2νσmnk + mσmnk + m) + (2 j + m + mσmnk )(2ν + m + mσmnk ),

for the nonaxisymmetric and equatorially symmetric mode.
For any given Ekman number Ek that is asymptotically small, Prandtl number Pr that is

sufficiently small, and Froude number Fr that obeys the Maclaurin spheroid relation, the globally
minimum critical stratification number Stc is determined by minimizing St1 in Eq. (63) over different
inertial modes umnk , giving rise to the most unstable mode umcnckc marked by the critial wave
numbers m = mc, n = nc and k = kc along with the corresponding half eigenfrequency σmcnckc .
After the determination of St1 and the critial inertial mode umcnckc , the critical half frequency can be
computed by Eq. (64), σc = σmcnckc + σ1. Finally, the leading order velocity u of inertial convection
in rotating oblate spheroid can be expressed as

u = [umcnckc (η, τ, φ) + ũtang]ei2σmcnckc t + c.c., (68)

where ũtang is given by Eqs. (A9)–(A11). The velocity u of inertial convection not only satisfies
the no-slip condition on the spheroidal bounding surface but also is fully analytical in closed
form. Equations (63)–(67) describe a complete global asymptotic solution for inertial convection
in rapidly rotating oblate spheroids with the no-slip boundary condition. The determination of the
small amplitude A in Eq. (40) needs a higher-order analysis, which is out of the scope of the current
research.
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In the limit of Fr → 0, the effects of centrifugal force diminish and hence the oblateness of
spheroid E → 0, the spheroidal coordinates return to the spherical coordinates η → r, τ → cos θ .
It can be straightforwardly verified that h = 1, ∇T0 = −r/3 and the spheroidal wave functions
R(1)

ml (−iEklq, iη/E ) and S(1)
ml (−iEklq, τ ), respectively, degenerate to spherical Bessel function jl (klqr)

of the first kind and associated Legendre polynomial Pm
l (cos θ ). Without surprise, our asymptotic

solution Eqs. (63)–(67) will also tend to its spherical limit that has been thoroughly discussed in
Chapter 19 of Zhang and Liao (2017) [63].

In this paper, we have focused on the small Prandtl number regime of convection. Under this cir-
cumstance, the primary convective flow is nondissipative. As a result, in the leading order problem
Eqs. (45)–(47), the temperature �0 a passive variable, implying St0 = 0. The buoyancy term is small
and only active in the next order problem Eqs. (56) and (57), driving thermal convection against
viscous dissipation in boundary layer. However, if Prandtl number gets larger, or more precisely
speaking Pr/Ek becoming large, dynamics enter a different regime. Multiple inertial modes are
excited at the onset of convection. Internal viscous dissipation gradually becomes a leading role
[16,18,62]. The buoyancy term is no longer small. The overall formulation of the problem of thermal
instabilities must be different from Eqs. (40)–(44). The so-called viscous convection problem in
oblate spheroidal cavities will be discussed in our future paper.

IV. ANALYTICAL AND NUMERICAL RESULTS

With the global asymptotic solution of inertial convection in rapidly rotating oblate spheroidal
cavity, it becomes possible to systematically study the topological properties of onset of convection.
It is not our primary purpose in this paper to extensively explore a wide parameter space of Ek,
Pr, and Fr. Instead, we focus on some typical examples to demonstrate and validate the obtained
solution. In all the results displayed in this section, the Ekman number is fixed at Ek = 10−4, which
is asymptotically small and meanwhile practical for independent numerical verifications.

Figure 1 shows the onset of several thermal inertial modes, as the function of Prandtl number.
Two spheroids of E = 0.0818 and E = 0.3543 are chosen for the purpose of illustration, respectively
corresponding to the rotational flattening of Earth and Jupiter. The two cases, displayed in Figs. 1(b)
and 1(c), are compared with Fig. 1(a) that plots the result of the classical spherical convection
problem where the geometrical and topological effects of the centrifugal force are totally neglected
from the dynamics [15,63]. All panels show, when the Prandtl number varies, the globally most
unstable mode could change among different ones.

The next figure brings a better view of how the critical stratification numbers and the half eigen-
frequencies of the modes depend on the eccentricity of spheroid. Figure 2(a) shows that the critical
stratification numbers for all modes rise substantially with the increase of geometrical oblateness.
Figure 2(b) demonstrates that, as the eccentricity of the spheroidal cavity is getting larger, the
half-frequencies are driven higher for retrogradely propagating modes but largely maintain level
for the progradely propagating waves.

Specifically, we pick up a particular Prandtl number Pr = 5 × 10−3 and calculate the asymptotic
solutions for the globally critical modes in the three oblate spheroids. The results are listed in Table I.

Following the analytically computed results, the tabulated cases in Table I are also independently
calculated by a 3D finite-element method, solving the full nonlinear convection equations,

∂u
∂t

+ u · ∇u + 2ẑ × u = −∇p + St[Frẑ × (ẑ × r) − g0]� + Ek∇2u, (69)

∂�

∂t
+ u · ∇(T0 + �) = Ek

Pr
∇2�, (70)

∇ · u = 0, (71)
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FIG. 1. The onset of several thermal inertial wave modes in oblate spheroidal cavities plotted as functions
of the Prandtl number. The critical stratification number St1 of each mode is plotted in a respective solid curve.
The modes are distinguished by different colors and denoted by their azimuthal, axial and radial wave numbers
(m, n, k). The Ekman number is commonly fixed at Ek = 10−4. The Prandtl number ranges in 10−3 � Pr �
10−2. Panel (a) plots the classical spherical convection problem where the centrifugal force is neglected. In this
circumstance, the stratification number St can be equivalently converted to the modified Rayleigh number R̃a
defined by Zhang and Liao (2017) [63] as R̃a = St[Pr/(3Ek)]. Panels (b) and (c) present results for convections
in oblate spheroidal cavities of different rotation rate and hence different eccentricity. In panel (b), E = 0.0818
is chosen to be Earth’s oblateness; in panel (c), E = 0.3543 marks a shape that is close to Jupiter. In all
panels, the dashed vertical lines select the location of Pr = 5 × 10−3, at which the (2,1,1) modes are always
the most unstable. The corresponding global critical stratification numbers Stc are marked by pentacles. With
the increase of eccentricity, the Stc value rises.

TABLE I. Two examples of the globally most unstable modes and their critical properties at Ek = 10−4 and
Pr = 5 × 10−3 in oblate spheroids, obtained with the asymptotic solution. σmcnckc is the half eigenfrequency of
the most unstable inertial mode. σc = σmcnckc + σ1 is the modified half frequency of the asymptotic solution.
The spheroidal geometries are consistent with what are used in Figs. 1(b) and 1(c). Note that the first row
presents the critical parameters for the case under spherical approximation. Froude number hence is not part
of the model. In this case, the critical stratification number is equivalent to the critical Rayleigh number R̃ac =
Stc[Pr/(3Ek)] = 27.09.

Ek Pr Fr E (mc, nc, kc ) Stc σc σmcnckc

— 0 (2,1,1) 1.6253 −0.1096 −0.1160
10−4 5 × 10−3 2.6791 × 10−3 0.0818 (2,1,1) 1.6379 −0.1096 −0.1160

5.1108 × 10−2 0.3543 (2,1,1) 1.9215 −0.1106 −0.1170
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FIG. 2. The onset of several inertial modes in oblate spheroidal cavities as functions of the oblateness of
the geometry. The modes are distinguished by different colors and denoted by their azimuthal, axial and radial
wave numbers (m, n, k). The Ekman number and the Prandtl number are commonly fixed at Ek = 10−4 and
Pr = 5 × 10−3, respectively.

which are numerically computed in an oblate spheroidal geometry,

D =
{

(x, y, z)

∣∣∣∣x2 + y2 + z2

1 − E2
� 1

}
,

constructed by an unstructured tetrahedral mesh, as illustrated in Fig. 3.
No-slip and isothermal boundary conditions remain on the bounding surface S (η = √

1 − E2),

u|S = 0, �|S = 0.

A P2/P1 mixed finite-element scheme is applied to the spatial discretization of the nonlinear partial
differential equations [66], while a BDF(2) time stepping scheme is adopted for the temporal
discretization [67]. The velocity field u and the temperature field � are expanded into piecewise
second-order polynomials by nodal quadratic bases defined on tetrahedral vertices and edge mid-
points, while the pressure field p is approximated by a piecewise first-order function constructed
by nodal linear bases defined on tetrahedral vertices. A saddle-point algebraic problem is yielded
after the Galerkin weighted residual approach is applied [68]. A stabilized Krylov subspace iterative
solver (the stabilized BiCG) is used to tackle the system of linear equations [69]. The overall code

FIG. 3. Sketch of a three-dimensional oblate spheroidal mesh consisting of tetrahedral elements. The mesh
is illustrated as being refined near its bounding surface to accurately compute the boundary layer flow. Note
that the meshes used in real numerical computations are much denser than this illustration.
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FIG. 4. The kinetic energy density Ekin of the numerical calculations. The two panels represent the two
spheroids in which the global asymptotic solutions are obtained and tabulated in Table. I. Panel (a) shows that
for the first spheroid whose shape is like Earth, the numerical critical stratification number is Stnum

c = 1.69.
Panel (b) shows that for the second spheroid whose shape is like Jupiter, the numerical critical stratification
number is Stnum

c = 1.98.

has been extensively used and validated in numerically modeling various spherical dynamo [34],
ellipsoidal librating flow [35], and cylindrical precessing flow [70] problems.

When the key parameters Ek, Pr, and Fr are prescribed, the numerical onset of thermal convection
in an oblate spheroidal cavity of eccentricity E is located through a bisectional-type searching
process. To start with, two calculations are launched with stratification numbers St respectively
significantly higher and lower than the global critical stratification number Stasym

c that is predicted
by the asymptotic theory. The two calculations are both initially static and perturbed randomly in
temperature. After a burn-in stage, the convective flow should substantially get excited for the higher
St case but quickly decay towards zero for the lower St case. The ensuing procedure is iterative,
involving gradually adjusting the St until the convection can be marginally sustained. The iterations
terminate when the numerically critical stratification number Stnum

c converges to the second decimal.
In Fig. 4, the kinetic energy density of flow, which is defined by the volumetric mean of kinetic
energy,

Ekin = 3

4π
√

1 − E2

∫
D

1

2
|u|2dV, (72)

is plotted for the calculated cases inside three spheroids.
Further, snapshots are displayed in Fig. 5 showing the azimuthal velocity of convective flows and

temperature isosurfaces of the three numerically critical convections. The structures of the flows are
all consistent with the nonaxisymmetric quasigeostrophic (2,1,1) mode.
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FIG. 5. Snapshots of the numerical solutions of critical convective flows in the two oblate spheroidal cav-
ities. The dynamical parameters are Ek = 10−4 and Pr = 5 × 10−3. The top and the bottom rows respectively
hold the solutions in the E = 0.0818 and E = 0.3543 spheroids. Their stratification numbers Stnum

c are indicated
by Fig. 4. The left column of panels (a) and (d) plot the azimuthal component of flow φ̂ · u in two meridional
cross-sections of the spheroids. Solid contours depict positive-valued speed and dashed contours represent
negative-valued speed. The middle column of panels (b) and (e) plot the azimuthal component of flow φ̂ · u
in the equatorial planes of the spheroids. Solid contours depict positive-valued speed and dashed contours
represent negative-valued speed. The right column of panels (c) and (f) plot the isosurfaces of temperature �

in the three spheroids. All panels can clearly show the three critical flows are dominated by the (2,1,1) mode.

Finally, it is ready to compare the numerical solutions and the asymptotic solutions for their onset
properties. Table II demonstrates an excellent consistency between the numerical and asymptotic
solutions.

V. CONCLUDING REMARKS

Coriolis force plays a predominant role in the dynamics of rapidly rotating fluids. In the
three-dimensional space, the Coriolis force alters the symmetry of the Navier-Stokes equation,
which fundamentally changes the topology of the dynamics [8]. It has been widely demonstrated

TABLE II. Comparison of the numerical and asymptotic solutions. A superscript “asym” denotes the result
computed with the asymptotic solution. A superscript “num” suggests a numerical result.

Ek Pr Fr E (mc, nc, kc )asym (mc, nc, kc )num St asym
c Stnum

c σ asym
c σ num

c

10−4 5 × 10−3 2.6791 × 10−3 0.0818 (2,1,1) (2,1,1) 1.64 1.69 −0.1096 −0.1001
5.1108 × 10−2 0.3543 (2,1,1) (2,1,1) 1.92 1.98 −0.1106 −0.1010
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by many researchers that the onset of rotating convection and the weakly nonlinear properties of
rotating convection are much more complicated than those in the nonrotating regime [7,71,72].
Ekman number and Prandtl number are regarded to be the key a priori parameters to determine the
characteristics of dynamics near the onset of rotating convection.

Besides Coriolis force, the rapid rotation will also lead to the centrifugal force in the corotating
frame of reference. It can flatten a rotating self-gravitating fluid body from a spherical shape to
an oblate spheroidal one, which not only transforms the domain in which equations are defined
but also changes relevant boundary conditions. It also directly enters Navier-Stokes equation as
part of the effective gravity geff = g0 − � × (� × r). Another essentially important parameter to
do with the dynamics of rotating convection is therefore the Froude number. In this paper, for the
first time, the thermal Boussinesq convection problem is self-consistently formulated and analyzed
inside a rapidly rotating oblate spheroidal cavity, taking full account of both the Coriolis force
and the centrifugal force into topology analysis. Based on the assumption of the Ekman number
is asymptotically small and the Prandtl number is sufficiently small, a global asymptotic solution
is obtained for the thermal inertial convection problem subject to no-slip and isothermal boundary
conditions. The onset of thermal instability of each inertial mode can be represented by a critical
stratification number and a small shift in the half-frequency of the mode.

For the particular parameter space demonstrated in this paper, it is discovered that the critical
stratification number for inertial modes generally rises with the increase of the Froude number,
which means a planet that is rotating faster might require more energetic internal heating to excite
and sustain thermal inertial waves. It might also suggest that if a planet’s rotation is slowing down
due to tidal dissipation before the planet is cooling down, abundant internal inertial waves could
be induced. Although it is not straightforward to directly connect the current theory to various
phenomena yet, the role that the Froude number is playing perhaps helps understand questions such
as why the Moon could sustain its internal dynamics longer than Mars; why Venus has lost its active
dynamo process while our Earth is having one; and why the internal MHD properties are so different
between the two giant gaseous planets Jupiter and Saturn.

Choice of length scale for nondimensionalization might affect the interpretations in the above
paragraph. But the key fact remains true that linear onset of rotating convection apparently depends
on centrifugal effect, which has not been studied before this paper. Nonsphericity introduces another
degree of freedom to the dynamics, which calls for further explorations. Next, thermal convection
problems in oblate spheroidal cavities with moderate to large Prandtl number will be examined. The
corresponding so-called viscous convection may bring other interesting results.
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APPENDIX: THE BOUNDARY LAYER SOLUTION

In the boundary layer the flow ũ is decomposed into the tangential component ũtang and the
normal component η̂(η̂ · ũ): ũ = ũtang + η̂(η̂ · ũ). Substituting Eqs. (40)–(44) into Eqs. (35)–(37)
yields the equation in the boundary layer,

i2σmnk ũ + 2ẑ × ũ + η̂(η̂ · ∇ p̃) = Ek

1 − E2(1 − τ 2)

∂2ũ
∂η2

, (A1)
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where the small terms, such as ∂2ũ/∂τ 2, ∂2ũ/∂φ2 and the tangential part of ∇ p̃, have been ne-
glected. Applying η̂× and η̂ × η̂× to Eq. (A1) produces the two second-order differential equations,(

Ek
∂2

∂η2
− i2σmnkh2

)
η̂ × ũtang = −2τ h̃utang, (A2)(

Ek
∂2

∂η2
− i2σmnkh2

)
ũtang = 2τh(η̂ × ũtang), (A3)

where h =
√

1 − E2(1 − τ 2) and |η̂ · ũ| � |̃utang| is assumed. The combination of Eq. (A2) and
Eq. (A3) result in a fourth-order differential equation,[(

∂2

∂ξ 2
− i2σmnkh2

)2

+ 4τ 2h2

]
ũtang = 0, (A4)

where the boundary variable ξ = (
√

1 − E2 − η)/
√

Ek, subject to the four boundary conditions,

(̃utang)ξ=0 = −[umnk]η=√
1−E2 , (A5)(

∂2ũtang

∂ξ 2

)
ξ=0

= −[i2σmnkh2umnk + 2τhη̂ × umnk]
η=√

1−E2 , (A6)

(̃utang)ξ→∞ = 0, (A7)(
∂2ũtang

∂ξ 2

)
ξ→∞

= 0. (A8)

Among the four boundary conditions, Eq. (A5) is required by the no-slip boundary condition that
must be obeyed by the sum of ũtang and the mainstream umnk ; Eq. (A6) is derived from Eq. (A3);
Eqs. (A7) and (A8) result from the definition of a boundary layer. The solution of Eq. (A4) satisfying
the four boundary conditions is

ũtang = − 1
2 [umnk − iη̂ × umnk]η=√

1−E2 eγ +
mnkξ

− 1
2 [umnk + iη̂ × umnk]

η=√
1−E2 eγ −

mnkξ , (A9)

where the two parameters are defined as

γ +
mnk = −

(
1 + i

σmnkh2 + τh

|σmnkh2 + τh|
)√

|σmnkh2 + τh|, (A10)

γ −
mnk = −

(
1 + i

σmnkh2 − τh

|σmnkh2 − τh|
)√

|σmnkh2 − τh|. (A11)

Note that the characteristic thickness of boundary layer, as estimated from Eqs. (A9)–(A11), is of
the order (Ek/σmnk )1/2, thicker than a typical Ekman layer. Although the boundary layer solution
breaks down at critical latitudes [73],

τ = ±σmnk

√
1 − E2√

1 − σ 2
mnkE2

, (A12)

it is assumed that the effects of the breakdown on the asymptotic solution is negligible for arbitrarily
small but nonzero Ek, which was proved in sphere [15,62].

The radial component η̂ · ũ at the outer edge of the boundary layer is related to the tangential
boundary flow ũtang via the equation of mass conservation ∇ · ũ = 0 in the boundary layer,

∂

∂ξ
(hη̂ · ũ) =

√
Ek

[
∂

∂τ
(h

√
1 − τ 2τ̂ · ũtang) + h2

√
1 − τ 2

∂

∂φ
(φ̂ · ũtang)

]
. (A13)
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To simplify the mathematical expression, we introduce the following notations:

Pmnk (τ ) = [pmnk]η=√
1−E2 e−imφ, (A14)

V τ
mnk (τ ) = i[τ̂ · umnk]η=√

1−E2 e−imφ, (A15)

V φ

mnk (τ ) = [φ̂ · umnk]η=√
1−E2 e−imφ, (A16)

where Pmnk , V τ
mnk , and V φ

mnk are just real functions of τ . It is therefore convenient to separate the
variables ξ , τ , and φ in Eq. (A13) by writing

∂

∂τ
(h

√
1 − τ 2τ̂ · ũtang) + h2

√
1 − τ 2

∂

∂φ
(φ̂ · ũtang) = i

2
eimφ

×
{

∂

∂τ

[
h
√

1 − τ 2
(
V τ

mnk + V φ

mnk

)
eγ +

mnkξ
] − mh2

√
1 − τ 2

(
V τ

mnk + V φ

mnk

)
eγ +

mnkξ

+ ∂

∂τ

[
h
√

1 − τ 2
(
V τ

mnk − V φ

mnk

)
eγ −

mnkξ
] + mh2

√
1 − τ 2

.
(
V τ

mnk − V φ

mnk

)
eγ −

mnkξ

}
. (A17)

Integration of Eq. (A13) over ξ yields the normal flux η̂ · ũ at the top of the boundary layer
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