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of a transient intermediate regime

Alexis Bougouin *

Aix-Marseille Université, CNRS, IUSTI, Marseille, France

Laurent Lacaze †

Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse,
CNRS, INPT, UPS, 31400 Toulouse, France

(Received 16 September 2021; accepted 7 September 2022; published 27 September 2022)

The propagation of horizontal dam-break flows induced by the release of a rectangular
column of a liquid phase into a negligible ambient fluid is investigated by combining
numerical simulations and laboratory experiments. Varying both the geometry of the initial
column and liquid properties, the parameter space covered allows the investigation of
the transition from inertial to viscous slumping barely considered so far. In light of the
Reynolds number Re based on the initial parameters of the fluid column, we report a
newly investigated transient regime following the inertial slumping regime and prior to
the viscous-dominated one. The transient intermediate regime is shown (i) to only exist
for Re � 10 and (ii) to be characterized by an inertial overshoot followed by a strong
deceleration of the front position accompanied by an excess and a deficit of fluid at the
front and at the origin, respectively, with respect to the expected theoretical prediction of
the viscous-dominated regime. Beyond the intuitive idea of an adaptive transition from
the inertial to fully viscous slumping, these results highlight and quantify the influence of
initial inertia on the spreading of a liquid, which may be particularly useful for modeling
industrial and geophysical applications.
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I. INTRODUCTION

The slumping of a finite-volume liquid column into an ambient fluid along a solid surface has
been widely studied at the laboratory scale. One main reason is that this idealized configuration
provides most of the dynamical ingredients of unsteady gravity-driven flows encountered in a
lot of geophysical and industrial applications. At the geophysical scale, natural hazards, such
as avalanches, debris flows and thermal currents, share dynamical processes with this slumping
configuration [1]. Dam break or silo collapse are also relevant examples that may initiate unsteady
gravity-driven flows of various materials from water to granular medium. At smaller scale, the
slump test is a standard tool used to access fluid properties, such as concrete in the mining or food
industries [2,3]. Covered by such a variety of applications on various scales, slumping flows became
canonical configurations used to extract fundamental dynamical processes through laboratory-scale
experiments, numerical simulations, and theoretical models involving Newtonian fluids or more
complex materials (Refs. [4–16] among many others).
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The dynamics of these gravity-driven flows can be split in different flow regimes characterized
by the relevant balance of dynamical terms in each regime. For a Newtonian liquid slumping into
a weightless and inviscid ambient fluid, well known as the dam-break problem corresponding to
one of most popular non-Boussinesq systems, the dynamics is usually split into two main regimes:
an inertia-dominated slumping regime characterized by a constant front velocity and a viscous-
dominated regime for which the velocity of the front decreases with time and thus the distance
of spreading. The inertia-dominated regime has been first investigated by Ritter [4] in the case of
a semi-infinite volume of frictionless fluid, for which a theoretical prediction of the height and
velocity profiles was proposed based on the shallow-water approximation. In this case, the flow
regime is assumed as a balance between inertia and pressure gradient induced by the weight of the
slumping liquid. In particular, the theoretical model provides the front velocity u f = 2

√
gH and the

receding velocity up = −√
gH of the static/flow frontier, where g is the gravitational acceleration

and H is the initial height of the fluid column. In the case of a finite-volume of fluid, this analytical
prediction is theoretically applicable as long as the receding perturbation has not reached the back
wall, i.e., t � L/

√
gH with L the length of the initial column. Thus, the temporal evolution of the

front position xth|I
f and the height profile hth|I can be summarized as

xth|I
f (t ) − L = 2

√
gHt, (1)

hth|I (x, t ) = 1

9g

(
xth|I

f − x

t

)2

. (2)

Some experimental and numerical studies addressed this regime in the case of water flows prop-
agating in the ambient air. Qualitative agreements are usually obtained with the theoretical front
velocity, i.e., the linearity between u f and

√
gH . However, the quantitative agreement remains

questionable as the constant prefactor of u f is usually found to be smaller than 2 [17–22]. The
reason of this discrepancy is usually attributed to bottom dissipation which becomes significant
at the front [23–26]. On a longer timescale, the flow may even be totally governed by a balance
between the pressure gradient and the inertial drag induced by the bottom wall, which leads to a
front propagation as x f ∝ t2/5 [25]. Thus, such observations suggest some intermediate regimes
between the purely inertial regime unaffected by any dissipation, and a purely viscous one.

In the viscous-dominated regime, viscous dissipation overcomes inertia over the entire slumping
phase and consequently slows the current down. A self-similar solution has been derived from
lubrication theory, balancing viscous stress and pressure gradient. In this case, both the front position
and the height profile are found as

xth|V
f (t ) = ηn

[
ρg(HL)3t

3μ

]1/5

, (3)

hth|V (x, t ) = (3/10)1/3η2/3
n

[
3μ(HL)2

ρgt

]1/5

f th(x, t ) ≡ (3/10)1/3η5/3
n

HL

xth|V
f

f th
(
x/xth|V

f

)
, (4)

where ηn ∼ 1.411 is a constant, ρ and μ are the density and the viscosity of the slumping fluid,
respectively, H and L are the height and length of the initial column, respectively, and f th(x/xth|V

f ) =
[1 − (x/xth|V

f )2]1/3 is an analytical function [5]. Note that such a solution is not expected to hold
close to the initial state, being therefore valid on a relatively long timescale [27,28]. This theoretical
solution can be used as long as capillary effects can be disregarded, i.e., the height of the current is
larger than the capillary length.

In the context of gravity currents, i.e., when the density difference between the surrounding
fluid and the slumping phase is small enough, some experimental studies focused especially on
the inertial-to-viscous transition (e.g., Refs. [7,29]). In this case, an intermediate inertial regime is
usually reported, referred to as the inertial-buoyancy regime, prior the viscous-dominated regime
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FIG. 1. Sketch of the initial geometry (left) and the slumping flow (right) for the 2D dam-break
configuration.

mentioned above [7]. It is attributed to the finite size of the initial reservoir affecting the current
front, thus evolving as x f ∝ t2/3. However, this inertial-buoyancy regime is not expected for dam-
break flows because the front travels as fast as the propagating perturbation [30]. It therefore leaves
bottom drag invading the entire flow prior fully developed viscous flow as the only mechanism of
intermediate regime.

First disregarding such intermediate regime, the entire dynamics of a dam-break flow starting
from an inertial-dominated regime toward a fully viscous regime, would be therefore modeled by
matching the two previous theoretical models. The intermediate regime could therefore be seen as
a continuous and monotonic transition linking these scalings on a finite time interval and a finite
length. In the present contribution, we show, however, that the inertia-to-viscous transient dynamics
of horizontal dam-break flows is more complex than expected from numerical simulations and
laboratory experiments. Following this objective, this study aims at characterizing the inertia-to-
viscous transition in the specific configuration of a Newtonian liquid released into the ambient air.
The paper is organized as follows. In Sec. II, both numerical simulations and laboratory experiments
are presented and compared together. Then first observations of the transient dynamics following
the inertial slumping regime and prior to the viscous-dominated one are addressed based on a
dimensional analysis (Sec. III). Section IV is dedicated to the fine characterization of the transient
intermediate regime providing scaling laws of different extracted quantities. Finally, we dicuss the
limitations of the results presented along the paper offering future perspectives (Sec. V).

II. SLUMPING SETUP

A. Methodology

In the present study, a two-dimensional (2D) dam-break configuration is used as shown in Fig. 1.
Both the initial geometry and the slumping flow are described in the (x, y) plane, with x and y the
horizontal and vertical directions, respectively, while the spanwise z direction is disregarded. The
setup consists of a rectangular reservoir of length L filled with a dense fluid of density ρ and dynamic
viscosity μ up to a height H . At t = 0, the initial column is released in air, and the dense fluid
slumps along the horizontal plane. Such an idealized configuration is particularly useful to capture
main physical processes of hydrostatic shallow-layer flows encountered in plenty of industrial and
geophysical applications.

The 2D numerical simulations are performed with the open-source computational fluid dynamics
code OpenFOAM [31]. The InterFoam solver is used which allows to describe the flow dynamics of
two Newtonian, incompressible and immiscible fluids using the volume-of-fluid method, one being
the slumping phase (ρ,μ) and the other ambient air (ρa, μa) = (1.2 kg m−3, 1.8 × 10−5 Pa s). No
surface tension are considered between the two phases, as it plays no role on the scales considered
here. No-slip boundary conditions are imposed at the back and bottom walls of the domain and
the domain size is dependent on the length scales of the problem, i.e., the distance necessary to
reach the viscous regime in the x direction and the initial height of the column in the y direction.
For all simulations, the spatial resolution of the mesh is set to �x = 2 mm and �y = 0.5 mm in
the streamwise and vertical directions, respectively. No significant differences were obtained on
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the results presented here when decreasing the mesh size or changing the cell aspect ratio. For
numerical simulations, the height and the length of the initial column are varied in the range H =
[0.01 : 0.2] m and L = [0.05 : 0.5] m, respectively.

The laboratory experiments are conducted in a horizontal transparent channel of rectangular
cross section. The dimensions of the channel are 1.6 m long, 0.5 m high, and 0.2 m wide along the
streamwise x, vertical y, and spanwise z coordinates, respectively. The finite-volume reservoir is
delimited by a sluice gate at x = L = 0.1 m from one side of the channel. Three different heights
of liquid characterizing the initial column geometry are used, namely H = 0.05, 0.1, and 0.2 m.
The initial time t = 0 is chosen as the initial motion of the gate manually lifted up in approximately
0.1 s. The release time of the gate is of the order of the inertial timescale (H/g)1/2, suggesting
the slumping dynamics could be affected as discussed later. The slumping flow is then recorded in
the (x, y) plane with a Lavision 2560 × 2160 pixels camera using a shadowgraphy method. The
obtained resolution is about 500 μm/pixel, and the acquisition frequency is between 10 and 108 Hz
depending on the timescale of the flow. For all experiments, the liquid phase used is a mixture of
water and Ucon oil 75H90000 (a Newtonian fluid soluble in water). The relative concentration of
Ucon oil and water, defined as cm = mo/(mo + mw ), with mo and mw the mass of oil and water,
respectively, allows us to vary the viscosity and consequently the density of the fluid (more details
given in Ref. [32]). In this study, four different mixtures are considered with a mass fraction cm of
11%, 28%, 49%, and 73%, leading to a viscosity and a density of μ = [0.01, 0.1, 1, 10] Pa s and
ρ = [1015, 1040, 1075, 1093] kg m−3, respectively. The viscosity of the fluid is measured using
a cone-plate geometry in a Haake Mars III rheometer, and the density is estimated with a calibration
curve.

In the case of a dam-break configuration, as the ambient air is supposed to be inactive, the
slumping dynamics is mainly controlled by a balance between the pressure gradient and inertia
or viscous dissipation depending on the flow regime considered (see Sec. I). Thus, it follows that
the propagation of the slumping can be described in terms of a unique dimensionless parameter,
namely the Reynolds number Re = ρ(gH )1/2H2/μL, comparing the relative influence of inertia,
based on a horizontal hydrostatic pressure gradient, and viscous dissipation at the flow scale. In
the present study, it is varied in the range Re = [0.2 : 6 × 104]. The wide range of Re considered
allows to anticipate both inertia- and viscous-dominated regimes with a transition from one to the
other during the propagation of the slumping, at sufficiently large Re. Although the following results
confirms the relevance of Re for describing the slumping flow, it can be split into two different
contributions as Re = aReH . Here the Reynolds number ReH = ρ(gH )1/2H/μ is based on vertical
fall of the initial column, which then introduces the initial aspect ratio a = H/L of the fluid column.
Note that ReH is probably more relevant to characterize viscous dissipation during initial stages
of the flow, while the former Re characterizes viscous dissipation during the horizontal spreading
of the liquid on a longer timescale. Thus, both are varied in the range ReH = [3.4 : 3 × 104] and
a = [0.05 : 2.5], respectively. Finally, for laboratory experiments, the surface tension could prevail
close to the front, which may be quantified through a Bond number Bo based on the slumping
properties. Here one obtains Bo = ρgh2/σ � 5, where σ = 0.055 N m−1 is the surface tension of
water/Ucon oil mixtures [32], h = HL/l is the characteristic height of the slumping and l ∼ 1 m
is the typical length of the channel. Such values of Bo prevents from any influence of the surface
tension on the front dynamics of the slumping phase.

B. Numerical and experimental comparison

Numerical simulations and laboratory experiments have been first performed considering the
same initial conditions and thus the same Reynolds number Re. Figure 2 shows the temporal
evolution of the slumping height profile h(x, t ) extracted from (a) the numerical simulations and (b)
the experiments, with Re = 103. The global trend of the slumping flow is broadly similar despite
some quantitative discrepancies, which can be attributed to both numerical approximations and
experimental uncertainties. In particular, the numerical front evolves faster than its experimental
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FIG. 2. Temporal evolution of the slumping height profile h(x, t ) extracted from (a) the numerical
simulations and (b) the laboratory experiments, with Re = 103. The height profiles are shown at t =
0.1, 0.3, 0.5, 1, 2, 8, and 16 s (from dark to light gray). Here the horizontal and vertical dimensions of
the initial column are L = H = 0.1 m, respectively.

counterpart, which may be attributed to 2D simulations that underestimate total dissipation induced
by back and bottom walls in the experiments, or the release system which differs between the two
approaches. As previously discussed in Sec. II A, the release timescale is equivalent to the inertial
flow timescale (H/g)1/2 in experiments, while it is instantaneous in numerical simulations. At early
times, the falling motion of the slumping phase is thus initiated in presence of the sluice gate
for experiments, which may promote additional dissipation in the system compared to numerical
simulations. On the other hand, it shall be noted that the relevant boundary condition of numerical
model to be considered at the bottom wall is not obvious [33]. Imposing no-slip boundary condition
for both the slumping phase and the ambient fluid induces an initial motionless front, which leads to
the formation of a thin layer of ambient fluid below the slumping phase reducing viscous dissipation.
Different numerical tricks were proposed to limit this phenomenon [33], but such modification of
boundary conditions still suffer a better knowledge of the local interaction between the slumping
phase and the bottom wall (e.g., wettability) in laboratory experiments. As the global dynamics
related to processes discussed later are captured by numerical simulations, we prefer to keep
boundary conditions as no-slip without a better knowledge of local processes at the triple point
in experiments.

In order to strengthen the reliability of simulations to capture the main processes of the slumping
flow, Fig. 3 compares the temporal evolution of the front position x f (t ) obtained with numerical
simulations (solid lines) and experiments (crosses) for different Re. At early stages, the front posi-
tion follows a linear evolution with time, i.e., x f ∝ t , corresponding to the inertial slumping regime
as defined by Eq. (1). Later, the front velocity of currents smoothly decreases, thus leaving the
inertial regime, and viscous dissipation cannot be disregarded any longer. The slumping eventually
reaches a purely viscous-dominated regime, during which the front position follows Eq. (3). The
comparison with both inertial and viscous theoretical predictions will be more fully addressed in
Sec. III. As discussed previously, some quantitative discrepancies below 10% for the local front
position x f (t ) may be reported, but the global evolution from inertial- to viscous-dominated regimes
is consistent between the experiments and the numerical simulations. Moreover, these discrepancies
are relatively low compared to those associated with the variations of the Reynolds number Re.
Thus, it can be concluded that both approaches describe properly the slumping dynamics, while
numerical simulations provide a relevant and useful tool to highlight the main physical processes of
the slumping by modifying easily the geometry of the initial column and fluid properties and thus
the Reynolds number Re. In the following, the numerical simulations will be thus mostly used to
characterize the transient dynamics from the inertial slumping regime to the fully viscous one.
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FIG. 3. (a) Lin-lin and (b) log-log representation of the temporal evolution of the front position
x f − L obtained with numerical simulations (solid lines) and laboratory experiments (crosses), for Re =
[19, 182, 1030, 5827] [from light to dark gray]. The horizontal and vertical dimensions of the initial column
are L = 0.1 m and H = [0.05, 0.05, 0.1, 0.2] m, respectively.

III. FROM INERTIAL TO VISCOUS FLOW REGIMES

A. Dimensionless scalings

The Reynolds number Re as defined previously, is based on the horizontal and vertical length
scales L and H , respectively, and the associated timescale is L/

√
gH for describing the spatiotem-

poral evolution of the slumping. Accordingly, the dimensionless front position x̃ f = x f /L, the
dimensionless height profile h̃ = h/H , and the dimensionless time t̃ = t

√
gH/L are defined, and

the theoretical solutions given by Eqs. (1) and (3) are therefore rewritten as

x̃th|I
f − 1 = 2t̃, (5)

x̃th|V
f = ηn

(
Re

3
t̃

)1/5

. (6)

We can then define a transition time T̃v between the two regimes by equalizing the two spreading
laws of x̃ f [Eqs. (5) and (6)] obtained in both inertial and viscous regimes. As already stated, the
viscous theoretical solution [Eq. (6)] is only valid relatively far from the initial condition under
the shallow-layer approximation, which may be written as x̃th|V

f > 1 and x̃th|V
f > a1/2, respectively.

Thus, one solves this balance problem in asymptotic limit, leading to the explicit estimate

T̃v =
(ηn

2

)5/4
(

Re

3

)1/4

and x̃th
f (T̃v ) = ηn

5/4

(
Re

6

)1/4

, (7)

valid if Re > 1 and Re > a2 [as x̃th
f (T̃v ) > 1 and x̃th

f (T̃v ) > a1/2]. In the present study, we mostly
satisfy this condition, for which the above scalings and the unique Re dependency are thus expected
to be relevant. Note that, for Re < 1, the slumping should enter instantaneously a viscous regime,
or more precisely on a typical length of spreading smaller than the initial length of the column,
when the dense fluid is released. Thus, the condition Re ∼ 1 corresponds to the transition between
a purely viscous regime (i.e., when Re < 1) and a combined inertia-to-viscous regime (i.e., when
Re > 1) of the slumping. To finish, Eq. (7) highlights another limiting behavior. In the parameter
space (Re, a), approaching Re ∼ a2 from below indicates that the shallow-layer condition is less
applicable. Above Re ∼ a2, the transition from the inertial slumping toward the viscous slumping
dynamics is thus expected to occur during the vertical falling acceleration of the slumping, for which
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FIG. 4. Temporal evolution of the dimensionless front position x̃ f obtained from numerical simulations.
Axis scales are chosen according to (a) inertial [Eq. (5)] and (b) viscous [Eq. (6)] solutions. In (b), the solid
and dashed lines correspond to the viscous solution [Eq. (6)] with a deviation of ±10%.

the couple (ReH , a) is probably the most relevant parameters for describing it (more details given
in Sec. V).

B. Dimensionless flow dynamics: Observations from numerical simulations

Now the evolution of the front position and the height profile of the slumping can be addressed
according to the inertial and viscous dimensionless solutions. Based on the scaling analysis pre-
sented above, the slumping dynamics is investigated by varying incrementally the Reynolds number
Re.

Figure 4 shows the dimensionless front position x̃ f as a function of the expected timescale
according to the inertial [Eq. (5)] and viscous [Eq. (6)] solutions. At early times, i.e., for t̃ � 0.5, the
spreading front first accelerates corresponding to the transition from the initial static column toward
the flow dynamics of the slumping liquid [Fig. 4(a)]. This initial acceleration can be described as a
free-fall motion of the slumping front, at least at sufficiently large Re [34]. Then the front position
evolution clearly follows an inertial regime characterized by a constant front velocity. The initial
slope of x̃ f (t̃ ) depends on Re ranging roughly from 1 to 2, as already reported in the literature (e.g.,
Refs. [19–22,24]). A smaller slope value than the expected one of two from the inertial formulation
[Eq. (5)] with decreasing Re is consistent with local viscous dissipation, which means that part of the
transition toward the viscous regime has already started. Then the lowest value of Re = 1.8, close
to the condition Re ∼ 1, leads to a nearly initially viscous dynamics of the flow. Contrary to the
usual view of a smaller coefficient of the inertial trend, one can conclude that the transition toward
an expected viscous regime occurs at earlier times with decreasing Re, which is consistent with the
estimate of T̃v given by Eq. (7). At longer times, the viscous dimensionless scaling according to
the theoretical solution [Eq. (6)] then becomes relevant to describe the temporal evolution of the
slumping [solid line, in Fig. 4(b)]. Recall that even for a purely viscous slumping, i.e., Re = 1.8
here [Fig. 4(b)], the theoretical solution [Eq. (6)] cannot describe the front position evolution of a
purely viscous slumping at early times because of the dependency on the initial state of the slumping
liquid. The dashed lines represent the deviation of the front compared to the theoretical prediction
of around 10% due to numerical uncertainties, as discussed in Sec. II B. Again one observes that
the inertial-to-viscous transition occurs earlier for decreasing Re as predicted by the estimate of T̃v

[Eq. (7)].
In most of the cases discussed here, the front position evolution shows that the slumping does

not evolve monotonically from the inertial slumping regime to the viscous-dominated one. At large
Re, it is clearly highlighted that the front position x̃ f overshoots the expected viscous solution
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FIG. 5. The shape function f as a function of the normalized streamwise direction x̃/x̃ f , at t̃/T̃v = 5 (inset:
at t̃/T̃v → ∞), for the same set of simulations shown in Fig. 4. The black dashed line corresponds to the viscous
theoretical shape function f th (x̃/x̃ f ) = [1 − (x̃/x̃ f )2]1/3.

[Fig. 4(b)]. This implies a strong deceleration of the front to reach the viscous solution from above
at longer times. This behavior cannot be fully attributed to the inertial bottom drag counterbalancing
the pressure gradient as such a situation would lead to a monotonic evolution of the front position
as x f ∝ t2/5 [25], unrecovered here. To our knowledge, this transient intermediate regime has never
been reported so far probably due to a main interest on purely inertial and viscous dam-break flows,
disregarding the transition from one to the other during which both inertia and viscous forces should
be considered.

When the slumping enters the viscous regime at t̃ > T̃v , the dimensionless height profile should
follow

h̃th|V (x, t ) = (3/10)1/3η5/3
n

(
x̃th|V

f

)−1
f th(x̃/x̃th|V

f

)
, (8)

according to the viscous self-similar solution [Eq. (4)] in a dimensionless form. Moreover, the
analytical form of the inertial solution [Eq. (2)] implies that the height profile should evolve toward
the viscous solution [Eq. (4)] from above and below at the origin and the front, respectively.
The shape function of currents is extracted from numerical simulations as f = h̃x̃ f /(3/10)1/3η5/3

n
according to Eq. (8). Figure 5 shows the shape function f as a function of the normalized streamwise
direction x̃/x̃ f , at t̃/T̃v = 5 (inset: at t̃/T̃v → ∞, i.e., t̃ � T̃v) for the same set of simulations shown
in Fig. 4. For comparison, the viscous theoretical shape function f th is also plotted as the black
dashed line. Overall, the height profile is characterized by a monotonous decrease on the whole
range of 0 � x̃/x̃ f � 1. However, the height at the origin, i.e., f (x̃/x̃ f = 0), and the frontal height,
i.e., f (x̃/x̃ f → 1), can be significantly smaller and larger than the viscous prediction, respectively.
The decrease of Re leads to a better prediction of the shape profile, at t̃/T̃v = 5 (light red). This
indicate that the existence of an initial inertial regime influences the behavior of the slumping shape
by pushing additional fluid from the origin to the front during the transient stage. In particular,
when increasing Re (from light to dark red), a deficit and an excess of fluid at the origin and at
the front, respectively, is clearly observed in comparison with the viscous prediction. Moreover, the
emergence of the blunt front shape occurs simultaneously with the overshoot of the front position
previously mentioned. At long times (i.e., t̃/T̃v → ∞), however, the viscous self-similar solution of
the height profile is still recovered, regardless of the value of Re (inset of Fig. 5).

These results confirm the relevance of the inertial and viscous self-similar solutions to predict the
evolution of the slumping at early and late stages. However, we showed the existence of a transient
intermediate regime following the inertial slumping regime and prior to the viscous-dominated one,
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FIG. 6. (a) Spatiotemporal evolution of the local Reynolds number ReL [Eq. (9)] as a function of x̃/x̃ f and
t̃/T̃v , with Re = 12. (b) The {ReL = 1} contour as a function of x̃/x̃ f and t̃/T̃v for Re = [9, 18, 58, 175] (from
light to dark red).

which is mainly controlled by the Reynolds number Re. It is characterized by an overshoot followed
by a strong deceleration of the front position accompanied by a deficit and an excess of fluid at the
origin and at the front, respectively, in comparison with the expected viscous theoretical solution.

C. A spatiotemporal inertial-to-viscous transition

In Sec. III A, a scaling analysis was proposed to quantify the time and length scales of a sudden
transition from the inertial- to the viscous-dominated regime of the slumping. Not surprisingly, the
intermediate regime previously shown indicates a more complex evolution during the propagation.
In particular, the spatiotemporal evolution of the dynamics within the slumping body has to be
considered. In this way, the streamwise and time-dependent local Reynolds number is defined as
follows:

ReL(x, t ) = ρū(x, t )h(x, t )

μ
with ū(x, t ) = 1

h(x, t )

∫ h

0
u(x, y, t )dy, (9)

where ū(x, t ) and u(x, y, t ) are the depth-averaged and local streamwise velocities, respectively and
h(x, t ) is the height profile of the slumping.

Figure 6(a) shows the evolution of ReL as a function of x̃/x̃ f and t̃/T̃v , with Re = 12. As
anticipated, the slumping highlights a more complex dynamics than the idealized gradual inertial-
to-viscous transition that would lead to no color variation along the streamwise direction. Here the
spatiotemporal evolution of the slumping can be split in both inertia- and viscous-dominated regions
in the (x̃/x̃ f , t̃/T̃v ) space. More specifically, we consider the inertial and viscous domains as the
regions for which ReL > 1 and ReL < 1, respectively, mostly in red and blue colors in Fig. 6(a). The
{ReL = 1} contour thus highlights the spatiotemporal transition from inertial- to viscous-dominated
regions whithin the slumping body.

Figure 6(b) shows the {ReL = 1} contour as a function of x̃/x̃ f and t̃/T̃v for Re increasing (from
light to dark red). One observes that the viscous-dominated dynamics invades the slumping phase
from both the front and the back wall. This viscous invasion leaves a persisting region of inertial
dynamics close to the front, thus revealing a spatial coexistence of an inertial and two viscous
domains over a finite time interval. The increase of Re promotes more significant inertial regions
persisting over a long timescale well above the viscous time T̃v , and this inertial dynamics is
therefore predisposed to disturb the front dynamics of the slumping.
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FIG. 7. (a) The shape function f = h̃x̃ f /(3/10)1/3η5/3
n extracted from the numerical simulations and

(b) the fitted shape solution f̂ [Eq. (10)] as a function of the normalized streamwise direction x̃/x̃ f , at
t̃/T̃v = 1, 2, 5, 10, and 20 (from light to dark gray), with Re ∼ 175.

IV. CHARACTERIZATION OF THE TRANSIENT INTERMEDIATE REGIME

A. Quantifying the intermediate regime

The nontrivial inertial-to-viscous transition within the slumping body could explain the overshoot
of the front position and the excess (respectively, deficit) of fluid at the front (respectively, at the
origin), in comparison with the viscous theoretical solution (Figs. 4 and 5). This is interpreted as
a newly transient adaptation regime following the inertial slumping regime and prior entering the
viscous one. Because of the complexity of the intermediate regime including a balance of inertia and
viscous forces within the slumping body (see Sec. III C), no theoretical background exists to predict
the temporal evolution of the front position and the height profile. For this reason, we propose to
quantify the intermediate regime through the deviation of different extracted quantities from the
theoretical viscous prediction [Eqs. (6) and (8)]. To achieve this, we extend empirically the shape
function f th found from the viscous theory to describe the shape of the slumping phase during its
entire propagation, as

f̂ = α

[
1 −

(
x̃

x̃ f

)β]1/(β+1)

, (10)

where α and β are unknown fitting parameters quantifying the height at the origin, i.e., f̂ (x̃/x̃ f =
0) = α, and the blunting of the height profile, respectively. Note that the shape function given by
Eq. (10) has no specific mathematical background, except for the values of αth|V = 1 and β th|V =
2 recovering the viscous asymptotic prediction. Nevertheless, this description allows to explicitly
incorporate temporal and spatial dependencies of the slumping on Re for the purpose of quantifying
its relative influence onto x̃ f , α, and β.

In order to highlight the relevance of the empirical function f̂ [Eq. (10)] to capture the shape
of the slumping, and particularly, during the transient intermediate regime, an example of (a) the
shape function f extracted from the numerical simulations and (b) the fitted shape function f̂ with t
increasing (from light to dark gray), for Re ∼ 175, is shown in Fig. 7. One observes the relevance of
this description which actually provides a reasonable evolution of shape profiles, at different times of
the slumping dynamics. In particular, the proposed shape function allows to provide the shape of the
slumping interface from the inertial regime (light gray), quite surprisingly, toward the viscous one
(dark gray), therefore including the transient intermediate regime characterized by a deficit and an
excess of fluid at the origin and at the front, respectively, with respect to the viscous theoretical shape
function. We thus assert that, despite an empirical basis, the modified shape function f̂ contains the
ingredients needed to describe the intermediate regime in the following.
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FIG. 8. (a) (x̃ f − x̃th|V
f )/x̃th|V

f and (b) (β − β th|V )/β th|V [inset: (α − αth|V )/αth|V ] as a function of normalized
time t̃/T̃v , with Re ∈ [1.8 : 1751] (from light to dark red). Horizontal solid lines correspond to the viscous
theoretical solution with x̃th|V

f given by Eq. (6), αth|V = 1 and β th|V = 2.

Now the deviation of the transient intermediate regime from the viscous one can be quantified
through the discrepancy of the extracted quantities with respect to the viscous theoretical solution
as (x̃ f − x̃th|V

f )/x̃th|V
f , (α − αth|V )/αth|V , and (β − β th|V )/β th|V , where x̃th|V

f is given by Eq. (6),
αth|V = 1, and β th|V = 2. Figure 8 shows these different quantities plotted as a function of nor-
malized time t̃/T̃v , for Re increasing (from light to dark red). In most of the cases, the quantities
cross the viscous theoretical solution (solid lines) around t̃/T̃V ≈ 2. Then (x̃ f − x̃th|V

f )/x̃th|V
f and

(β − β th|V )/β th|V overshoot and (α − αth|V )/αth|V undershoots the viscous theoretical solution
before tending asymptotically toward it at longer times. In fact, the asymptotic value of both
(α − αth|V )/αth|V and (x̃ f − x̃th|V

f )/x̃th|V
f is not exactly zero. At long times, the overestimate of α

compared to αth|V can be probably attributed to the no-slip condition imposed along the back wall
affecting the slumping height at the origin. In the same way, the no-slip boundary condition at the
bottom wall considered in numerical simulations is expected to reduce total dissipation through the
formation of a thin layer of ambient fluid between the slumping phase and the bottom surface, as
previously discussed in Sec. II B, which differs from the viscous theoretical solution. In any case,
this quantitative bias does not modify the analyses and conclusions drawn here, and it will be taken
into account by adding error bars in the following. Finally, the similar trend of all quantities supports
the presence of an intermediate regime prior the viscous-dominated one, as well as the relevance of
this description to characterize it. As expected, this behavior and the related transient intermediate
regime is hardly observed for smaller Re (light red). The transient intermediate regime can therefore
be characterized by the deviation of x̃ f , α, and β from the asymptotic viscous solution, which clearly
increases with increasing Re.

It can also be concluded from Fig. 8 that T̃v is more relevant to provide the transition time
from the inertial regime to the intermediate one, instead of predicting the transition time toward the
viscous-dominated regime as initially derived. We obtain here t̃/T̃V ≈ 2 as the relevant timescale
of the beginning of the intermediate regime. By analogy with the intermediate inertial regime
of gravity currents following the inertial slumping and prior to the viscous one (see Sec. I), the
beginning of the transient intermediate regime can be interpreted as the time at which the back wall
reflected perturbation reaches the slumping front, which is only possible when the front is slowed
down by viscous dissipation and thus enters the viscous-dominated regime. The timescale of the
receding perturbation can be expressed as T̃p = 1 + x̃th

f (T̃v ) ≈ η5/4
n (Re/6)1/4, knowing that x̃th

f > 1
(Sec. III A). This leads to T̃p/T̃v = 2 consistent with the time at which the transient regime occurs
and this inertial perturbation is thus probably at the origin of the transient intermediate regime. For
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FIG. 9. Timescale ratio T̃ M/T̃v as a function of the Reynolds number Re, for numerical (closed symbols)
and experimental (opened symbols) results. The red and blue colors correspond to the set of simulations at
constant a = 0.5 and constant ReH ∼ 117, respectively, while the symbols indicate the initial aspect ratio as
(•) a = 0.1, (�) a = 0.2, (�) a = 0.25, (�) a = 0.5, (�) a = 1, and (�) a = 2; (- - -) T̃ M/T̃v = 6.

t̃/T̃v � 2, the dynamics evolves toward the viscous regime defined by Eqs. (6) and (8) in a timescale
depending on Re.

B. Scaling laws of the transient regime

As previously mentioned, the transient intermediate regime is reached and thus begins at t̃/T̃v ≈
2. Unfortunately, its ending time is less obvious as it asymptotically evolves toward the purely
viscous-dominated regime. Therefore, the intermediate regime can hardly be characterized, and
we define the time T̃ M/T̃v � 2 at which the maximum deviation of the front position x̃ f from the
expected viscous solution x̃th|V

f is obtained, i.e., x̃M
f = max[(x̃ f − x̃th|V

f )/x̃th|V
f ] at t̃ = T̃ M . Note that

the timescales at which the minimum of (α − αth|V )/αth|V and the maximum of (β − β th|V )/β th|V are
reached can be slightly different from T̃ M (more details given in Appendix). However, this does not
reflect the general observations of the intermediate regime, and thus both αM and βM are estimated
at T̃ M here. Afterwards, the Reynolds number Re = aReH is varied at constant a = 0.5 (red) and
constant ReH ∼ 117 (blue) with increasing ReH and a, respectively, for ensuring the unique Re
dependency of the slumping evolution.

Figure 9 shows the time ratio T̃ M/T̃v as a function of the Reynolds number Re, for numer-
ical (closed symbols) and experimental (opened symbols) results. Here only data with Re > 10
are considered as they clearly highlight an intermediate transient dynamics between the inertial
slumping regime and the viscous-dominated one, as it will be argued later. One observes that the
timescale T̃ M of the intermediate regime scales with the transition time T̃v . More specifically, we
obtain T̃ M/T̃v ≈ 6 (dashed line) on the wide range of Re considered. Recall that it was previously
reported that the transient regime begins at t̃/T̃v ≈ 2 (Sec. IV A). This supports that the timescale
T̃v obtained by considering a sudden inertial-to-viscous transition remains the relevant timescale of
the slumping evolution during the intermediate regime, even though both the front position and the
shape of the slumping deviate from the viscous theoretical solution.

Prior discussing x̃M
f , αM , and βM , the absolute extension of the slumping at t̃ = T̃ M , i.e., x̃ f (T̃ M ),

is first considered. Figure 10 shows that the Reynolds number Re is the relevant dimensionless
parameter to collapse data on a master curve for both numerical simulations and laboratory experi-
ments. More specifically, for Re > 10, one obtains

x̃ f (t̃ = T̃ M ) ∝ Re1/3. (11)
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FIG. 10. Dimensionless front position x̃ f (T̃ M ) as a function of the Reynolds number Re, for numerical
(closed symbols) and experimental (opened symbols) results. The red and blue colors correspond to the set of
simulations at constant a = 0.5 and constant ReH ∼ 117, respectively, while the symbols indicate the initial
aspect ratio as (	) a = 0.05, (•) a = 0.1, (�) a = 0.2, (�) a = 0.25, (�) a = 0.5, (�) a = 1, and (�) a = 2.

In order to provide first clues on the obtained scaling, one recall that the intermediate regime is
characterized by a timescale T̃v controlling both the initiation and the maximum deviation from the
viscous regime. This suggests that the initiation of the intermediate regime is actually controlled
by viscous dissipation. Moreover, the perturbative inertia remaining in the slumping pushes the
slumping front and it then affects the inertial-to-viscous transition. A simple approach may be
proposed to quantify the overshoot of the slumping front through a balance between horizontal
inertia and viscous dissipation. As shown in Sec. III C, the inertia-dominated region evolves in space
and time during the slumping. In order to simplify this observation for the purpose of scaling laws,
we consider that inertia triggered by releasing the initial column should be completely dissipated
by the work of viscous dissipation before reaching a unique balance between the pressure gradient
and viscous friction, as stated by the viscous theoretical solution [Eqs. (6) and (8)]. This can be
summarized as

ρ
u2

f

x f (T M )
∼ μ

u f

h(x, T M )2
, (12)

where u f ∼ (gH )1/2 is the front velocity in the inertial slumping regime and h(x, t )x f (t ) ∼ HL
is given by the mass conservation. Using the dimensionless form (Sec. III A), Eq. (12) can be
rewritten as x̃ f (T̃ M ) ∼ Re1/3 in agreement with the scaling obtained above. Thus, it highlights that
the intermediate regime is clearly controlled by a balance between inertia and viscous forces at the
flow scale.

Along the same lines, Fig. 11 shows the influence of Re on the different extracted quantities x̃M
f ,

αM , and βM , for numerical (closed symbols) and experimental (opened symbols) results. Again, this
clearly shows that the Reynolds number Re is the relevant parameter to characterize the transient
intermediate regime relatively to the viscous solution by collapsing data on master curves. More
specifically, it is shown that x̃M

f and βM (respectively, αM) increase (respectively, decreases) with Re,
for Re > 10, while no deviation of all quantities is obtained, otherwise. This confirms the previous
estimate of a critical Reynolds number Re ≈ 10 for the appearance of an intermediate inertial-to-
viscous regime. For Re > 10, the influence of the intermediate regime characterized through x̃M , αM

and βM is shown to increase with increasing Re. Finally, the combination of the obtained scaling
x̃ f (T̃ M ) ∼ Re1/3 [Eq. (11)] and the viscous prediction [Eq. (6)] allows to predict the trend of x̃M

f
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FIG. 11. Estimated quantities (a) x̃M
f (inset: log-log representation) and (b) βM (inset: αM ) as a function of

the Reynolds number Re for numerical (closed symbols) and experimental (opened symbols) results. The red
and blue colors correspond to the set of simulations at constant a = 0.5 and constant ReH ∼ 117, respectively,
while the symbols indicate the initial aspect ratio as (	) a = 0.05, (•) a = 0.1, (�) a = 0.2, (�) a = 0.25, (�)
a = 0.5, (�) a = 1, and (�) a = 2. In (a), the solid line indicates x̃M

f ∼ Re1/12 − 1.

with Re. More specifically, one obtains x̃M
f ∼ Re1/12 − 1 (solid line) in good agreement with data

[inset of Fig. 11(a)].

V. LIMITATIONS AND OTHER REGIME

The flow dynamics of the slumping phase has been described in light of a single dimensionless
parameter, namely the Reynolds number Re. These results are supported by the set of simulations at
constant a (red) and constant ReH (blue) with increasing ReH and a, respectively, and thus increasing
Re = aReH . Here the relevance of Re for describing the slumping dynamics is appropriate as
the set of parameters covered mostly satisfies the two conditions mentioned in Sec. III A, i.e.,
Re > 1 and Re > a2, as shown in Fig. 12. This suggests that the inertial-to-viscous transition
occurs relatively far from the initial condition. Under the shallow-layer approximation, this allows
to reduce the dynamics to a balance among hydrostatic pressure gradient, horizontal inertia, and
viscous dissipation. Nevertheless, approaching the condition Re ∼ a2 from below indicates that the
validity of the shallow-layer approximation becomes questionable as the initial vertical inertia is
non-neglibible on the flow dynamics. For Re < a2, it is even expected that inertia caused by the
vertical falling of the fluid column becomes dominant during the transient dynamics, which leads
probably to a balance between vertical fall and viscous dissipation. Hence, another dimensionless
parameter should be defined to characterize the entire flow of the liquid phase. In particular, the
aspect ratio a of the initial column may be interpreted as the vertical-to-horizontal inertia ratio.

In order to highlight such signature of a on the slumping dynamics, Fig. 13(a) shows the
dimensionless front position x̃ f as a function of the expected timescale t̃ according to the inertial
solution [Eq. (5)], for (Re, a) = (∼ 10, 0.1) (solid line), (Re, a) = (∼ 20, 0.5) (dotted-dashed line)
and (Re, a) = (∼ 10, 0.5) (dashed line), i.e., incrementally approaching the above-mentioned limit.
Note that, in the case of a unique Re dependency, the global trend of x̃ f should be equivalent here
due to the limited range of Re considered, or at least the curves should be organized according to
the values of Re. Such an observation is obtained at sufficiently long times where the front position
x̃ f propagates faster with increasing Re in consistence with the decrease of viscous dissipation. At
early times, however, one clearly observes that the slumping dynamics cannot be fully described by
considering solely the Reynolds number Re. In particular, the front position spreads faster with
decreasing a (blue vs. red), regardless of Re. This observation may also be reported from the
temporal evolution of the dimensionless height profile h̃, as shown in Fig. 13(b). This difference
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FIG. 12. Set of dimensionless parameters covered in the present study for both laboratory experiments
(crosses) and numerical simulations (circles), in the (Re, a) plane. Full circles highlight the sets of simulations
at constant ReH ∼ 117 (blue) and constant a = 0.5 (red) with increasing a and ReH and thus increasing Re =
aReH (from light to dark colors), respectively. The light gray lines indicate the isovalue curves of ReH from 1
(left) to 106 (right).

can be attributed to the relative influence of vertical inertia over horizontal inertia affecting the early
stages of the collapsing dynamics of the fluid column.

Finally, it can be anticipated that the early stages of the slumping can prevail on the transient
regime when a is increased, at constant Re. In this case, and more particularly for a2 > Re,
the obtained scalings for characterizing the transient intermediate regime are probably no longer
valid. This would deserve further investigation, but it highlights that the couple (Re, a) should be
considered to describe fully the slumping dynamics of a fluid column collapsing along an horizontal
plane.

FIG. 13. (a) Temporal evolution of the dimensionless front position x̃ f according to the inertial solution
[Eq. (5)], for (Re, a) = (∼ 10, 0.1) (solid line), (Re, a) = (∼ 20, 0.5) (dotted-dashed line), and (Re, a) =
(∼ 10, 0.5) (dashed line). (b) Dimensionless height profile h̃ as a function of the dimensionless streamwise
direction x̃ − 1, at t̃ = 0.5, 2, and 5 for (Re, a) = (∼ 10, 0.1) (solid line) and (Re, a) = (∼ 20, 0.5) (dotted-
dashed line).
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VI. CONCLUSION

The propagation of horizontal dam-break flows from the initial inertial slumping toward the
purely viscous regime has been investigated through numerical simulations and laboratory exper-
iments, for which both the geometry of the initial column and the properties of the dense fluid
released were systematically varied. In particular, an inertial-to-viscous transient dynamics has
been highlighted and characterized as an intermediate regime in light of the Reynolds number
Re. For Re � 10, the transient dynamics vanishes: The front propagation and the shape of the
current evolve progressively from an inertial solution toward a viscous one that can be prescribed
by classical self-similar models obtained in the shallow layer limit. By contrast, for Re � 10, the
front overshoots and then strongly decelerates accompanied by a deficit and an excess of fluid at the
origin and at the front, respectively, relatively to the viscous asymptotic solution obtained at longer
times. Surprisingly, an inertial-to-viscous transition timescale estimated by balancing the inertial
and viscous self-similar solutions remains the relevant timescale controlling both the initiation and
the maximum deviation of the intermediate regime relatively to the viscous one. One has shown that
the transient intermediate regime is mostly controlled by the Reynolds number Re in the range of
parameters considered. In particular, the absolute extension of the slumping, at which the maximum
overshoot characterizing the transient regime is obtained, scales as Re1/3 interpreted as the length
over which the initial inertia is fully dissipated by the work of viscous dissipation. Likewise, the
maximum overshoot of the front position and the associated relative front shape have been shown
to scale with Re. All together, these results suggest that a transient regime has to be considered for
improving the modeling of unsteady gravity-driven flows in industrial and geophysical applications.
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APPENDIX: ESTIMATE OF THE TIMESCALE T̃ M

In the present study, the timescale of the transient intermediate regime is estimated as the time T̃ M

at which the maximum deviation of the front position x̃ f from the expected viscous solution x̃th|V
f is

FIG. 14. Timescale ratio T̃ M/T̃v as a function of the Reynolds number Re with (a) log-lin and (b) log-log
representations, where T̃ M is defined as the timescales at which the maximum value of (x̃ f − x̃th|V

f )/x̃th|V
f (black

symbols) and (β − β th|V )/β th|V (white symbols), and the minimum values of (α − αth|V )/αth|V (gray symbols)
are obtained when t̃/T̃v � 2, noted as T̃ M

x f , T̃ M
β , and T̃ M

α , respectively. The symbols indicate the initial aspect
ratio as (•) a = 0.1, (�) a = 0.2, (�) a = 0.25, (�) a = 0.5, (�) a = 1, and (�) a = 2; (- - -) T̃ M/T̃v = 6.

094803-16



FROM INERTIAL TO VISCOUS SLUMPING: NUMERICAL …

FIG. 15. βM (inset: αM ) estimated as the value of (β − β th|V )/β th|V (inset: (α − αth|V )/αth|V ) at t̃ = T̃ M
x f

(closed symbols) and t̃ = T̃ M
β (inset: t̃ = T̃ M

α ) (opened symbols). The symbols indicate the initial aspect ratio
as (•) a = 0.1, (�) a = 0.2, (�) a = 0.25, (�) a = 0.5, (�) a = 1, and (�) a = 2.

obtained. Accordingly, both quantities αM and βM are defined as the deviation of (α − αth|V )/αth|V
and (β − β th|V )/β th|V at t̃ = T̃ M , respectively. Nevertheless, the time T̃ M could also be estimated
from the minimum and maximum of the other quantities (α − αth|V )/αth|V and (β − β th|V )/β th|V ,
respectively. Figure 14 shows the timescale ratio T̃ M/T̃v as a function of Re with (a) log-lin and
(b) log-log representations, where T̃ M is estimated as the time at which the maximum values
of (x̃ f − x̃th|V

f )/x̃th|V
f (black symbols) and (β − β th|V )/β th|V (white symbols), and the minimum

value of (α − αth|V )/αth|V (gray symbols) are obtained when t̃/T̃v � 2, noted as T̃ M
x f

, T̃ M
β , and

T̃ M
α , respectively. Overall, the order of magnitude of T̃ M/T̃v is similar with the different extracted

methods. Additionally, the values of T̃ M
α and T̃ M

β are close each other because both are extracted
from the shape of the height profile of the slumping. By contrast, some quantitative differences can
be reported between T̃ M

x f
and both T̃ M

α and T̃ M
β , for Re � 103, which are not observed, for Re � 103.

The influence of the extracted method of T̃ M on the scaling laws of the different quantities can
be then addressed by considering βM (respectively, αM) estimated as the value of (β − β th|V )/β th|V
[respectively, (α − αth|V )/αth|V ] at t̃ = T̃ M

x f
and t̃ = T̃ M

β (respectively, t̃ = T̃ M
α ), as shown by closed

and opened symbols, respectively, in Fig. 15. Recall that T M
α and T M

β are roughly equal on the range
of Re considered (Fig. 14). Overall, a similar trend of βM (respectively, αM) is obtained with the two
methods, and the conclusions of the paper are therefore unchanged. Additionally, a more important
scatter of data is obtained by estimating αM and βM at t̃ = T̃ M

α and t̃ = T̃ M
β , respectively, compared

to their estimate at t̃ = T̃ M
x f

as considered in the paper. The measures are thus aimed at improving
the results quantitatively without affecting the analyses and the conclusions.
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