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Interaction of vortex streets with a downstream wing
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The unsteady aerodynamics of a wing in the wake of a periodically plunging upstream
airfoil was investigated in water tunnel experiments. By varying the frequency and the
amplitude of the plunge oscillations, vortex-street configurations with varying wavelength
and circulation were generated. Depending on the angle of attack of the wing, the largest
lift force is found when the leading edge of the wing is located at the wake centerline or
just above it. Flow separation at the leading edge, formation of a leading-edge vortex, and
coupling with incident vortices are observed with increasing angle of attack. The lift time
history has higher harmonics up to n = 5 when the wing is close to the wake centerline.
This is due to the cross-stream velocity profile in the undisturbed wake and can be also
predicted by a point-vortex model. The peak lift coefficients decrease with increasing
deflection angle of the wake if the upstream airfoil is plunged at nonzero mean angle of
attack. This occurs as the geometry and circulations of the vortices in the reversed Karman
vortex street are modified. For the unloaded wing in the symmetric wakes, the peak lift
coefficients increase with increasing frequency and amplitude of the plunging airfoil. These
kinematic parameters also determine the amplitude and shape of the cross-stream velocity
profiles and the degree of two dimensionality in the undisturbed wake. The amplitude of
the lift coefficient of the wing depends on a single wake parameter, which is the Strouhal
number based on the amplitude of the upstream airfoil.

DOI: 10.1103/PhysRevFluids.7.094701

I. INTRODUCTION

The interaction of rows of vortices originated from separated shear layers, two-stream mixing
layers, and bluff-body wakes with downstream bodies was reviewed by Rockwell [1]. The class of
parallel vortex-street–body interactions can be observed for wings in the wakes of stationary and
oscillating upstream bodies. The interaction of the Karman vortex street of a stationary upstream
body with a downstream elliptical edge was investigated by Gursul and Rockwell [2]. Depending on
the circulation, wavelength, and the offset distance from the body, the interaction and the distortion
of the incident vortices produce different unsteady pressure fields. Recent investigations on the
aerodynamics of wings in bluff-body wakes [3–5] revealed significant effects on the unsteady as
well as time-averaged forces. Relevant applications of this type of vortex-street interactions are
found in the aerodynamics of tandem wings, formation flight, flight refueling, and wings in ship
airwakes.

It was demonstrated that it would be possible to exploit the energy of the vortex streets for flexible
[6] or oscillating bodies [7]. The unsteady wings in the wakes of upstream bodies have applications
in energy harvesting [6], formation flight of birds [8], unsteady aerodynamics of dragonflies [9,10],
and oscillating tandem foils [11]. In this class of flows, it is known that the arrival time of the
incident vortices with respect to the wing motion is critical.
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In this study we focus on a stationary wing in the wake of a plunging airfoil. It is known that,
with increasing Strouhal number of airfoil oscillations, the Karman vortex street with net drag force
switches to a reverse Karman vortex street with net thrust force. This canonical flow is highly
relevant to the vortex-body interactions [1], formation flight of birds and flapping-wing microair
vehicles [8,12], and even for fixed-wing vehicles encountering gusts and turbulence [13]. By varying
the frequency and the amplitude of the airfoil plunging motion to generate the unsteady wake, the
circulation and the wavelength can be altered to some extent. In a broader view, the oscillating wake
of a plunging airfoil represents “periodic traveling gusts” that have finite cross-stream length scale.
We note that the spanwise length scale (two dimensionality of the flow) is dependent on a single
parameter, the Strouhal number [14].

Historically, periodic traveling gusts in the experimental facilities were generated by oscillating
airfoils or cascade of airfoils [15–21], and by oscillating flaps [22,23]. Comparisons between the
force measurements and the theoretical predictions using the Sears function were made when
the gust cross-stream length scale was large compared to the airfoil dimensions. (In the Sears
formulation, the gust amplitude is constant in the cross-stream direction.) The unsteady wakes of
plunging airfoils represent more realistic gusts with large but localized velocity fluctuations, for
which the cross-stream and the spanwise length scales depend on the kinematic parameters for
the oscillating airfoil. Comparison of large-amplitude airfoil motions or gust encounters with the
small-amplitude linear theory was also made. For example, Chiereghin et al. [24] found reasonable
agreement with the linear theory for large-amplitude plunging motion. Motivated by their findings,
we have also compared the results of the present experiments with the Sears theory.

In this paper, we investigate the interaction of unsteady wake of a periodically plunging airfoil
with a stationary downstream wing at a chord Reynolds number of Re = 20000 by means of particle
image velocimetry (PIV) and lift force measurements. First, we characterize the incident wake
generated by the plunging airfoil by means of two-point cross correlations and phase-averaged flow
fields, while the kinematic parameters (frequency and amplitude) are varied. Then, we investigate
the interaction of the wakes with a wing by means of unsteady lift measurements, phase-averaged
vorticity fields, and the proper orthogonal decomposition (POD). Finally, we report the effects of
the kinematic parameters on the interaction and the lift force.

II. METHODS AND TECHNIQUES

A. Experimental setup

The experiments were performed in a closed-loop, free-surface water tunnel (Eidetics model
1520) at the University of Bath. This facility can provide a maximum freestream velocity of 0.5
m/s, with a turbulent intensity of around 0.5% [25]. The main test section of the facility is 381 mm
wide, 508 mm deep, and 1520 mm long, and tempered glass is used in the test section for the camera
and laser access. Figure 1 gives a basic overview of the side and front views of the test section, the
plunging mechanism, the support structure of the downstream wing, and the schematic of the PIV
setup.

Both the airfoil and the finite downstream wing were mounted vertically with respect to the
tunnel and the freestream velocity. The NACA0012 profile was used for both the airfoil and the
wing. The chord length of the upstream airfoil was c = 62.7 mm, with an aspect ratio of AR = 5,
but represented an airfoil as the end plates were used at both ends. The downstream wing had a chord
length of c = 62.7 mm and a semiaspect ratio of sAR = 3. The coordinate system was located at
the root of the upstream airfoil and at the trailing edge as sketched in Fig. 1. Both the airfoil and
the wing were manufactured by selective laser sintering using Polyamide (PA) 2200, with a smooth
finish and subsequently spray painted matte black to eliminate laser reflection during visualization.
To provide spanwise stiffness, a T800 carbon-fiber inset was slotted along the spanwise direction for
the models. The long end plate placed near the root of the airfoil prevented any free-surface effects.
Both end plates above and below the upstream airfoil, with 2-mm clearance, extend 2c upstream
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FIG. 1. Schematic of the test section and the PIV system.

and 10c downstream of the airfoil to obtain nominally two-dimensional flow field. This setup was
previously used by Chiereghin et al. [24].

The plunging rig consisted of a fixed platform, which was placed at the top of the water tunnel test
section. The upstream airfoil was connected to the platform through a rotation stage that allowed the
airfoil to rotate, thus adjusting the desired geometric angle of attack with an accuracy of ±0.2º. The
plunging motion, provided by a Zaber LSQ150B-T3 translation stage, was powered by a stepping
motor with an X-MCB1 controller. The plunging motion h(t ) of the airfoil displacement in the
cross-stream y direction can be expressed in the form of

h(t ) = A

2
cos (2π f t ), (1)

which can be reproduced with an accuracy of 2%. Here, the displacement h(t ) is measured from
the mean location of the airfoil (y = 0). The uncertainty of the velocity of the plunging motion is
estimated to be less than 3%.

The downstream wing was mounted to a binocular force balance, and its leading edge was placed
at x/c = 3. In order to avoid the end-wall effects of the incoming unsteady wake on the downstream
wing, there was a gap of 0.5c between the airfoil end plate and the wing end plate. In addition,
to minimize the interference effects of the wing end plate on the force measurements, we kept
the dimensions of the wing end plate small. The Reynolds number based on the chord length was
Re = 20000. The vortex streets reported in this paper remain parallel to the freestream in the near
wake for αairfoil = 0◦. The deflected wakes (in the absence of the downstream wing) are observed at
much higher plunge velocities as we previously documented in this facility [26].

B. Particle image velocimetry measurements

The experiments were conducted at various plunging reduced frequencies (up to k = π f c/U∞ =
3.14) and normalized peak-to-peak amplitudes (up to A/c = 1 ), as shown in Fig. 2. In this amplitude
versus frequency plot, maximum amplitudes and frequencies are limited by the stepping motor, and
roughly correspond to a constant value of maximum plunge velocity. Most of the measurements
were carried out in the midspan plane of the wing (z/c = 2) to capture the streamwise flow. In
addition, we performed some experiments in the cross-flow plane just downstream of the wing
(x/c = 4.03) as shown in Fig. 1. The cross-flow PIV measurements were carried out in an area
that covered a region between z/c = 1 and 4. The measurement region is believed to be free of
the end-wall effects. Calderon et al. [27] measured the influence of the wall boundary layer on the
vortical flow in the same facility for a comparable chord length, gap, and Reynolds number, and
found that it was restricted to a zone not broader than 0.15c at x/c = 1, which may be used as a
reference for our study at x/c = 4.03.
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FIG. 2. Normalized amplitude vs reduced frequency for the test cases.

The PIV system is a commercially available TSI system that consists of a synchronizer (TSI
model 610036), a double-pulsed laser (Nd:yttrium aluminum garnet, 50 mJ), and an 8 MP camera.
The time interval between two laser pulses was �t = 0.8 ms. Commercially available hollow
glass spheres (8–12 μm in diameter) were used to seed the water. The images were analyzed via
algorithms by the TSI’s software package INSIGHT 4GTM using fast Fourier transform. The image
processing was done with an interrogation window size of 32 × 32 pixels with 25% overlap, result-
ing in a spatial resolution of 2.5%c. The primary peak ratio (PPR) algorithm for PIV uncertainty has
been implemented and calibrated within INSIGHT 4GTM for each set of PIV processing parameters.
The PPR method was used to calculate the instantaneous measurement uncertainty with extended
uncertainty within a 95% percent confidence level [28]. The mean uncertainty was approximately
2% of the freestream velocity.

We had two types of velocity measurements. For one specific set of the kinematic parameters
(k = 1.70 and A/c = 0.4), we obtained phase-locked measurements. The phase-locked data were
averaged using 60 image pairs acquired at equal intervals in a plunging period, i.e., at t/T = 0, 0.25,
0.50, and 0.75. For a wide range of frequency and amplitude parameters (k � 3.14 and A/c = 1),
we obtained 2000 sequential instantaneous flow fields with continuous sampling. The data sampling
rate was chosen as 3.75 Hz (which was not a subharmonic or higher harmonic of the plunging
frequency). The data obtained this way could be processed to obtain the time-averaged data (mean
and rms velocity) as well as the two-point cross correlations and the POD modes.

In this paper, the POD analysis was performed using commercial software TSI GRAD-POD

TOOLBOX, which employs the spatial-temporal data analysis technique proposed by Heiland [29].
The cross-stream velocity component can be expressed as

v(x, y, t ) = V (x, y) + v′(x, y, t ) = V (x, y) +
N∑
1

an(t )φn(x, y), (2)

where V is the mean cross-stream velocity component, and v′ is the fluctuating cross-stream velocity
component of the velocity field. Here φn and an are the POD modes and corresponding mode
coefficients. The ratio of the energy of each mode to the total energy has particular importance.
The small number of POD modes with most of the energy imply highly coherent flows. We will
discuss the energy of the POD modes later in the paper. As previously shown, most of the energy is
captured in the first two modes for oscillating wakes of plunging airfoils [14].
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FIG. 3. Contour plots of cross-stream velocity for A/c = 0.4 and k = 1.70, at t/T = 0.5: (a) phase-locked
to airfoil motion and (b) phase-averaged based on the POD.

Oudheusden et al. [30] proposed a phase-averaging method based on the POD analysis for the
wake of a bluff body. Their method is based on the fact that the periodic flow due to vortex shedding
is dominated by the first two POD modes:

v(x, y, t ) ≈ V (x, y) + a1(t )φ1(x, y) + a2(t )φ2(x, y), (3)

where the coefficients a1 and a2 are found using the first two eigenvalues:

a1 =
√

2λ1 sin (ϕ), a2 =
√

2λ2 cos (ϕ). (4)

Here, ϕ is the vortex-shedding phase angle, assumed to increase linearly with time according to
dϕ/dt = 2π f , where f is the fundamental frequency of vortex shedding. We have done phase
averaging using a bin size of 10 °. For k = 1.70 and A/c = 0.4, Fig. 3 compares the cross-stream
velocity field 〈v〉 in the wake, obtained from the phase-locked (to the airfoil motion) velocity
measurements and the POD-based phase-averaged velocity field. The agreement between the two
methods is very good. This allowed us to use the POD-based phase-averaging method for a wide
range of frequency and amplitude.

C. Force measurements

A binocular strain-gauge force balance, which was machined in house from aluminum 2014T6,
was used to make direct lift force measurements. This type of strain-gauge balance is known to
be insensitive to the bending moment and has been widely used [31,32]. The binocular load cell
was calibrated by a pulley and weights. Voltage signals were amplified through an Analog Devices
AD624 amplifier. A digital third-order Butterworth low-pass filter was used in LABVIEW to remove
any high-frequency noise above 30 Hz (about k = 18). The lift data for the wing in freestream (in
the absence of plunging upstream airfoil) were acquired for 60 s at a sampling rate of 1 kHz. When
the wing is submerged in the oscillating wake behind the plunging airfoil, an integrated LABVIEW

program ensures the synchronization of the plunging motion and the lift force data. For each case,
60 cycles were recorded, with 2000 samples per period. The phase-averaged lift force was then
calculated.

III. RESULTS AND DISCUSSION

Figure 4(a) shows the variation of the time-averaged lift coefficient as a function of angle of
attack for the downstream wing (sAR = 3) in freestream. We compare our data with those for the
same aspect ratio (sAR = 3) [33] as well as for sAR = 2 [34], sAR = 5 [35], and airfoil [24,36],
all with the same NACA0012 cross section and at the same Reynolds number of Re = 20000.
The lift curve slopes according to the lifting line theory are also shown with solid lines. There
is good agreement with the data for the same aspect ratio. The average lift slope decreases with
decreasing aspect ratio as expected; however, the nonlinear behavior of the lift slope is apparent

094701-5



BURAK TURHAN, ZHIJIN WANG, AND ISMET GURSUL

FIG. 4. (a) Time-averaged lift coefficient in freestream and comparison with literature for stationary
NACA0012 wing at the test Reynolds number of Re = 20000; the lift curve slopes according to the lifting
line theory are also shown with solid lines and (b) rms of cross-stream velocity fluctuations in the incident
wake at x/c = 4.03 for k = 1.26 and various amplitudes.

for all wings. The peculiar variation at small angles of attack for the NACA0012 cross section is
typically observed for Re < 30000 and is well documented in the literature as discussed by Cleaver
et al. [36]. The static stall of the wings becomes more gradual while the maximum lift coefficient
decreases with decreasing aspect ratio. The static-stall angle of the present wing (sAR = 3) is
approximately 11◦, which agrees very well with the data of Qian et al. [33].

The sAR = 3 wing was submerged in the oscillating wakes of the upstream plunging airfoil.
To give an idea about the magnitude of the velocity fluctuations in the wake in the absence of the
wing, we show the variation of the normalized root-mean-square (rms) of the cross-stream velocity
fluctuations at x/c = 4.03 for k = 1.26 and various amplitudes in Fig. 4(b). The chosen reduced
frequency is a representative value as it is close to the half of the maximum reduced frequency
tested. In addition, as it is seen in Fig. 2, we have five different values of amplitude, whereas
with increasing reduced frequency we have less data points to compare. The rms cross-stream
velocity fluctuations have a maximum at the wake centerline for small amplitudes (A/c � 0.2).
The double peaks are observed with increasing amplitude (A/c � 0.4). Large velocity fluctuations
with increasing frequency and amplitude are typical in the incident wake, which suggest a collapse
of the data with the Strouhal number St = f A/U∞ (where A is the peak-to-peak amplitude of the
plunging oscillations). This will be presented later in the paper. The large velocity fluctuations push
the interaction with the wing beyond the small-amplitude potential flow theory. In the next section,
we characterize the unsteady wake using various parameters and methods.

A. Characterization of incident wake

Figure 5 shows contour plots of the cross correlation of the cross-stream velocity component
Cvv [Fig. 5(a)] and vorticity component Cωω [Fig. 5(b)], as well as the first two most energetic
POD modes [Fig. 5(c)] for A/c = 0.4 and k = 1.70. Here, the two-point cross correlation of the
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FIG. 5. Contour plots of (a) cross correlation of cross-stream velocity component Cvv , (b) cross correlation
of vorticity component Cωω, and (c) first two POD modes of cross-velocity component (with fraction of energy
of 34.2 and 32.5%), A/c = 0.4 and k = 1.70.

cross-stream velocity components is defined as

Cvv = v′
Av′

B√
v′2

A

√
v′2

B

, (5)

where v′
A is the fluctuating cross-stream velocity component at the reference point A, and v′

B is the
fluctuating cross-stream velocity component at any arbitrary location B in the measurement domain.
The reference point was chosen as x/c = 0.5 and y/c = 0. The wavelength λ of the vortex street
can be easily determined from the two-point cross-correlation contours in the streamwise direction.
Figure 5(b) presents the two-point cross correlation of the vorticity fluctuations in the measurement
domain calculated as

Cωω = ω′
Aω′

B√
ω′2

A

√
ω′2

B

, (6)

where ω′
A is the fluctuating vorticity component at the reference point A, and ω′

B is the fluctuating
vorticity component at any arbitrary location B in the measurement domain. The reference point
was chosen as x/c = 0.5 and y/c at which the ωrms is maximum. The cross-correlation coefficient
Cωω shows vortex-street arrangement with the row of positive vortices at the top with positive Cωω

values, and the row of negative vortices at the bottom with negative Cωω values. The spacing b
between the rows can be found from this plot. The parameters λ and b for varying frequency and
amplitude will be presented later.

Figure 5(c) presents the first two dominant POD modes of the cross-stream velocity component
normalized by its maximum value for the corresponding case. We name these two modes “funda-
mental wake modes” because they characterize the traveling wave in the wake and correspond to
the fundamental frequency. Note that the second mode is shifted a quarter wavelength with respect
to the first mode. In this example, the first two most energetic modes have 34.2 and 32.5% of the
total energy; hence, the wake modes representing large-scale vortices traveling downstream have
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FIG. 6. (a) Wavelength normalized by chord length as a function of reduced frequency k; (b) ratio of
spacing between rows to the wavelength as function of reduced frequency k; (c), (d) maximum phase-averaged
cross-stream velocity normalized by the freestream velocity as a function of reduced frequency and the Strouhal
number, respectively.

66.7% of the total energy. In this paper, we will present the energy fraction of the wake modes for
the incident wake as well as for the interaction.

Figure 6 shows the wavelength normalized by the chord length [Fig. 6(a)] and the spacing
between the rows (see the inset) normalized by the wavelength [Fig. 6(b)] as a function of the
reduced frequency k. The normalized wavelength λ/c shows remarkable collapse with the reduced
frequency for different amplitudes A/c. The dashed line in Fig. 6(a) corresponds to f λ = U∞, which
implies that the convection speed of the traveling waves is approximately equal to the freestream
velocity. In Fig. 6(b), the data for b/λ do not collapse with the reduced frequency k; however, b/λ
increases with k for a fixed value of A/c. We note that the spacing between the rows b cannot be
accurately calculated from the two-point cross correlations of vorticity at low reduced frequencies,
and we omitted these data in Fig. 6(b).

In Fig. 6(c), the variation of the maximum value of the phase-averaged cross-stream velocity at
x/c = 3 is shown as a function of the reduced frequency k for the incident wake (in the absence
of the downstream wing). This streamwise location is the location of the leading edge of the wing
when the wing is placed in the wake. The same quantity is plotted as a function of the Strouhal
number St = f A/U∞ in Fig. 6(d). There is a trend of increasing maximum cross-stream velocity
fluctuations with increasing k and A/c; however, a large scatter exists. In contrast, the data show
much better collapse with St . There is a trend of the data increasing almost linearly with St . As the
Strouhal number is the ratio of the maximum plunge velocity of the airfoil to the freestream velocity,
it represents the amplitude parameter for the oscillating wake. This was recently shown for the same
Reynolds number in the same facility for x/c � 4 [14]. In Figs. 6(c) and 6(d), note that the largest
cross-stream velocity component 〈v〉 is obtained at A/c = 0.4, k = 1.70, and St = 0.22 within the
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FIG. 7. Vorticity contours with streamlines at phase, t/T = 0.5, for (a) yLE/c = 0.8, (b) yLE/c =
0.4, (c) yLE/c = 0.2, (d) yLE/c = 0, and (e) time history of phase-averaged lift coefficient in one cycle,
A/c = 0.4, k = 1.70, and St = 0.22.

range of parameters tested. Consequently, we selected this case as a wake containing intense vortices
with large velocity fluctuations and finite length scale and investigated its interaction with loaded
and unloaded wings.

B. Unloaded wing in the wake

In this section we focus on the case of the wing set at an angle of attack αwing = 0◦. The wake
parameters are A/c = 0.4, k = 1.70, and St = 0.22. We also set the upstream plunging airfoil at the
mean angle of attack of αairfoil = 0◦ to produce symmetrically generated wakes. The interaction of
the wakes with the downstream wing is discussed as the offset distance between the wing and wake
is varied.

Figures 7(a)–7(d) show the vorticity contours superimposed on the streamlines at the same phase
of the wake (t/T = 0.5) for various distances between the wake centerline (y = 0) and the wing
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FIG. 8. Vorticity contours with streamlines at four phases for (a) yLE/c = 0.8, (b) yLE/c = 0, (c) cross-
stream velocity profile over a wavelength upstream of the wing, and (d) normalized Fourier coefficients of lift
and cross-stream velocity profiles, A/c = 0.4, k = 1.70, and St = 0.22.

leading edge yLE. The corresponding lift coefficient history is presented in Fig. 7(e). For all four
cases of yLE, there is a counterclockwise vortex at this phase (t/T = 0.5) either just upstream of the
leading edge or strongly interacting with the wing leading edge. For closer interactions, there is a
slight deflection in the initially horizontal wake axis in addition to some distortion of the classical
reverse Karman street configuration. The lift history in Fig. 7(e) shows that there is a local maximum
at this phase for yLE/c = 0.8. This is similar to the finding for a single vortex approaching the wing
[37]. In contrast, for the other three cases for which the wing is closer to the wake centerline, there
is a local minimum in between the two local maxima at this phase.

In Figs. 8(a) and 8(b) we compare the cases of yLE/c = 0.8 and yLE/c = 0 at four phases. For
the case of yLE/c = 0.8, as the counterclockwise vortex approaches the wing the magnitude of
the induced velocity is expected to increase. On the other hand, the vertical component decreases
until the vortex is just below the wing. Overall, the measured lift history is as expected, and the
fundamental frequency is dominant in Fig. 7(e). However, for the close interaction case for yLE/c =
0, the two rows of the vortices make it difficult to have a similar analogy. Even if we focus on a part
when the counterclockwise vortex approaches the wing between t/T = 0.25 and 0.50, the positive
peak occurs at an instant between these two phases [see Fig. 7(e)].

In Fig. 8(c) we plotted the cross-stream component of the velocity along the lines of yLE/c = 0
and yLE/c = 0.8 in the undisturbed wake upstream of the wing over a wavelength. Here, x/λ = 0
and 1.0 correspond to the locations of the counterclockwise vortices (just below or just above the
core of the vortices). These spatial profiles of the cross-stream component over a wavelength can
be considered as the “gust” profiles upstream of the wing. Not only do the two cases differ in
magnitude, but they also appear to have different waveforms. The case of yLE/c = 0 has clearly
higher harmonics. This case appears to be closer to a square wave rather than a sine wave. This is
further illustrated in Fig. 8(d), where the Fourier coefficients normalized by that of the fundamental
frequency are plotted for the measured upstream cross-stream profile and measured lift coefficient.
Both these quantities exhibit strong third harmonic for the close interaction case (yLE/c = 0). As
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the third harmonic also existed upstream of the wing, we conclude that the double peaks in the lift
coefficient are not due to the distortion of the vortices as they interact with the wing.

We considered a point-vortex model of the reverse Karman street to model the wake [7]. In the
undisturbed vortex street along the wake centerline, the velocity components can be calculated from

[u − iv]y=0 = U∞ + i	

λ

cosh
(

πb
λ

)
sin

(
2πx
λ

) − isinh
(

πb
λ

) , (7)

where i2 = −1, and 	 is the circulation of the vortices. The cross-stream velocity component along
the wake centerline can be written as

[v]y=0 = −	

λ
cosh

(
πb

λ

)
sin

(
2πx
λ

)
[
sin

(
2πx
λ

)]2 + [
sinh

(
πb
λ

)]2 . (8)

In this equation we are only interested in [v]y=0 as a function of (x/λ) to be able to compare
with the experiments. The first term containing 	

λ
cosh( πb

λ
) has no effect on the function of (x/λ).

Although we have calculated λ using the cross correlations, it is not always possible to calculate
b accurately using the cross correlations of vorticity as it becomes very small at low reduced
frequencies as noted previously. In addition, we have not attempted to calculate the circulation
	 for all cases as this brings new challenges (area of vortex, integration of vorticity or velocity, and
decreasing coherence of the flow with decreasing Strouhal number—meaning that phase-averaged
flow does not accurately represent the flow). Instead, we compare the functional dependence of
[v]y=0 on x/λ with experiments by adjusting the value of 	

λ
cosh( πb

λ
).

In Fig. 8(c) we plotted the variation of [v]y=0 after the adjustment to have a comparison with
the experimental data. It is remarkable that the point-vortex model also predicts the existence of
the double peaks in Fig. 8(c) and the third harmonic in Fig. 8(d). Hence, we conclude that neither
the finite core size of the vortices nor their distortion during the interaction is responsible for the
multiple peaks observed in the lift history. We note that Eq. (8) also predicts that the variation of
the cross-stream velocity along the centerline in the undisturbed wake primarily depends on the
vortex array aspect ratio b/λ. This parameter is a strong function of the reduced frequency k and the
normalized amplitude of the plunging motion A/c as shown in Fig. 6(b). We will return to Eq. (8)
when we discuss the effects of the reduced frequency and the oscillation amplitude on the measured
lift response later in the paper.

As noted earlier, the unsteady wake represents a traveling gust with finite cross-stream length
scale. The POD modes of the cross-stream velocity component help to visualize the interaction
with the wing. Figure 9 presents the first two dominant POD modes of the cross-stream velocity
component for yLE/c = 0.4 representing a case with weaker interaction and yLE/c = 0 for the direct
collision. The cross-stream velocity component represents the gust velocity and may be easier to
relate to the unsteady lift in this case. The POD modes of the cross-stream velocity not only provide
the length scales in the streamwise and cross-stream directions, but also the energy fraction of
the dominant modes. In Fig. 9, the amplitude of the POD modes of the cross-stream velocity is
maximum at the wake centerline and covers a region that spans nearly one chord length in the
vertical direction. Again, the first two modes have nearly equal energy percentages. The sum of
the first two modes (the wake modes) has 51.2% for the weaker interaction and 50.2% for the
direct collision in the same measurement domain, which represents slight decrease compared to the
undisturbed wake (66.7% discussed in relation to Fig. 5). As for the two cases in Fig. 9 there is
very little change in the energy of the wake modes, we conclude that the effect of the offset distance
between the wing and the wake centerline is minor in terms of the wake coherence.

Figure 10 presents the maximum and minimum phase-averaged lift coefficients as a function
of the offset distance (the location of wing leading edge yLE). There is slight asymmetry in the
distribution of the peak lift coefficients with respect to the wing offset. This could be due to a
micromisalignment of the wing with the wake centerline. In addition to the maximum and minimum
values, the time-averaged lift coefficient is shown with dashed lines, but this is not visible as it is
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FIG. 9. First two POD modes of cross-stream velocity component for (a) yLE/c = 0.4 (with fraction of
total energy of 26.6 and 24.6%) (b) yLE/c = 0 (with fraction of total energy of 26.4 and 23.8%), for A/c = 0.4,
k = 1.70, and St = 0.22.

nearly zero. As expected, the largest peak-to-peak lift oscillations occur for the direct collision
(yLE/c = 0). This is similar to the structure of the dominant POD modes in the cross-stream
direction.

C. Loaded wing in the wake

In this section we focus on the cases when the wing is set at a nonzero angle of attack αwing. The
wake parameters were kept the same as A/c = 0.4 and k = 1.70, while the upstream plunging airfoil

FIG. 10. Maximum and minimum phase-averaged lift coefficient as a function of offset distance of the
wing yLE/c for A/c = 0.4, k = 1.70, and St = 0.22.
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FIG. 11. For αwing = 5◦, vorticity contours with streamlines at phase t/T = 0.5 (top), and time history of
phase-averaged lift coefficient (bottom) for (a) yLE/c = 0.2, (b) yLE/c = 0, and (c) yLE/c = −0.2, for A/c =
0.4, k = 1.70, and St = 0.22.

is also set at the mean angle of attack of αairfoil = 0◦ to produce symmetrically generated wakes. For
three offset locations, yLE/c = −0.2, 0, and 0.2, we present the variations of the phase-averaged
lift coefficient and the vorticity fields at t/T = 0.5 in Fig. 11 for αwing = 5◦ and in Fig. 12 for
αwing = 10◦. The most obvious difference in the flow fields with nonzero angle of attack is the
increased evidence of flow separation and formation of the leading-edge vortices. This becomes
more pronounced with increasing angle of attack and for yLE/c � 0 as the counterclockwise
vortices induce separation at the leading edge. The incoming counterclockwise vortices in the
wake form vortex dipoles with the leading-edge vortices. However, for both angles of attack,
the largest lift fluctuations occur for a positive offset value, yLE/c = 0.2. This occurs soon after
the counterclockwise vortices directly impinge on the wing leading edge and cause the formation of
the leading-edge vortex as seen at t/T = 0.5. The peak lift is observed a little after this phase as the
leading-edge vortex is likely to grow, shed, and convect downstream. Hence, large local cross-stream

FIG. 12. For αwing = 10◦, vorticity contours with streamlines at phase t/T = 0.5 (top), and time history of
phase-averaged lift coefficient (bottom) for (a) yLE/c = 0.2, (b) yLE/c = 0, (c) yLE/c = −0.2, for A/c = 0.4,
k = 1.70, and St = 0.22.
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FIG. 13. First two POD modes of cross-stream velocity component for αwing = 10◦: (a) yLE/c = 0.2
(energy fraction of 25.1 and 23.1%), (b) yLE/c = 0 (energy fraction of 25.8 and 23.3%), and (c) yLE/c = −0.2
(energy fraction of 23.7 and 21.9%) for A/c = 0.4, k = 1.70, and St = 0.22.

velocity just upstream of the leading edge as well as the leading-edge vortex formation contribute
to the large lift peak in this case.

Figure 13 presents the first two dominant POD modes of the cross-stream velocity component for
αwing = 10◦ and three different values of the offset distance yLE/c = −0.2, 0, and 0.2. The first two
modes in each case account for roughly the same amount of total energy and contain significantly
more energy than the remaining modes. In all cases, the energy level of the first two modes is around
48%, which is slightly less than that for αwing = 0◦ (approximately 50%). We conclude that there is
no significant influence of the offset distance and the angle of attack on the wake coherence in the
measurement plane (spanwise plane).

The degree of two dimensionality of the interaction can also be assessed in the cross-flow
measurements at x/c = 4.03, which is immediately downstream of the trailing edge. For three
offset distances, Figs. 14(a)–14(c) present the first dominant modes of the cross-stream velocity
fluctuations in the x/c = 4.03 plane. In these plots, the wing is illustrated with dashed lines. The
POD modes are roughly uniform in the spanwise direction, concentrated either above or below the
wing depending on the offset distance. The uniformity of the first POD modes comes to an end near

FIG. 14. First POD mode of cross-stream velocity for αwing = 0◦ and (a) yLE/c = 0.4, (b) yLE/c =
0.2, and (c) yLE/c = 0, d) in the absence of the wing; and (e) ratio of the energy of the first mode to the total
energy for different angle of attack and offset locations at x/c = 4.03; A/c = 0.4, k = 1.70, and St = 0.22.
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FIG. 15. Maximum and minimum values of phase-averaged lift coefficient as a function of offset distance
of the wing for A/c = 0.4, k = 1.70, and St = 0.22, αairfoil = 0◦; the dashed lines show the corresponding lift
coefficients in steady freestream.

the wing tip. Figure 14(d) shows the corresponding first POD mode of the cross-stream velocity
fluctuations for the wake in the absence of the wing. The first mode, which can be described as a
flapping mode for the cross-stream velocity fluctuations, is dominant across a wide range of plunge
frequency and amplitude (Turhan et al. [14]), while the higher modes have much smaller energy.
For the wake parameters in Fig. 14, the first dominant mode has more than 70% of the total energy.
In the presence of the wing, the interaction with the wing causes significant drop in the energy of
the first mode. However, the effect of wing angle of attack and the wing location (offset distance
within the range tested) have much smaller effects.

Figure 15 shows the maximum and minimum phase-averaged lift coefficients as a function of
offset distance for the wing angles of attack for αwing = 0◦, 5◦, and 10◦. With increasing angle
of attack, the magnitude of the positive peak lift coefficients generally increases whereas the
magnitude of the negative lift coefficients decreases. The asymmetry with respect to the offset
distance increases with increasing angle of attack, shifting the largest positive peaks to positive
offset distances (wing over the wake centerline). For αwing = 10◦, the largest positive lift coefficient
is found at yLE/c = 0.3, whereas the lowest lift coefficient occurs when the wing is at the center of
the wake. The dashed lines show the corresponding lift coefficients in steady freestream. The effect
of the vortex street appears to be limited to a region within approximately one chord length distance
from either side of the centerline.

D. Wing in asymmetric wakes

The purpose of this section is to explore the effect of asymmetric wakes on the unsteady loading
on the wing. The asymmetric wakes were produced by oscillating the upstream airfoil at nonzero
angles of attack, αairfoil = 5◦, and 10◦. We focused on the unloaded wing case, i.e., αwing = 0◦. The
wake kinematic parameters were kept the same at A/c = 0.4, k = 1.70, and St = 0.22.

Figure 16 compares the phase-averaged vorticity fields at t/T = 0.5 (top row) and phase-
averaged lift coefficient over one cycle (bottom row) for αairfoil = 0◦, 5◦, and 10◦. For all three
cases, the wing is located at the same cross-stream location of yLE/c = 0. As expected, for nonzero
angles of attack of the airfoil, the wake of the oscillating airfoil is deflected downwards. There
is no noticeable effect on the strength of the vortices; however, this will be quantified as a next
step in this paper. With increasing angle of attack and a more deflected trajectory of the wake,
the vortex street induces lower lift coefficients. For αairfoil = 5◦, there is slight reduction in the
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FIG. 16. Vorticity contours with streamlines at t/T = 0.5 (top row), and time history of phase-averaged lift
coefficient over one cycle (bottom row) for (a) αairfoil = 0◦, (b) αairfoil = 5◦, and (c) αairfoil = 10◦; yLE/c = 0,
A/c = 0.4, k = 1.70, and St = 0.22.

positive peak lift coefficient even though the counterclockwise rotating vortices directly impinge on
the wing. The decrease in the magnitude of the peak negative lift coefficient is more noticeable as
the counterclockwise vortices are further away from the wing. For αairfoil = 10◦, both positive and
negative peak lift coefficients decrease significantly in magnitude. To characterize the effect of the
offset distance of the wing, the wing was traversed in the asymmetric wakes.

Figure 17 shows the maximum and minimum lift coefficients as a function of the offset distance
of the wing for αairfoil = 0◦, 5◦, and 10 °. As the wake becomes more deflected downwards with
increasing angle of attack, the wing interacts directly with the vortex street at negative yLE locations
(below the airfoil), resulting in the location of the largest peak lift coefficients shifting to more
negative yLE locations. We also observe that the magnitude of the largest peak coefficients decreases
with increasing deflection of the vortex street. For the asymmetric wake of αairfoil = 10◦, it is seen

FIG. 17. Maximum and minimum values of phase-averaged lift coefficient as a function of offset distance
of the wing for αairfoil = 0◦, 5◦, and 10◦; for A/c = 0.4, k = 1.70, and St = 0.22, αwing = 0◦.
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FIG. 18. Contour plots of vorticity with streamlines (left column) at t/T = 0.5; cross-stream velocity
(middle column) at t/T = 0.5; time history of phase-averaged lift coefficient over one cycle for (a) αairfoil = 0◦,
yLE/c = 0, (b) αairfoil = 0◦, yLE/c = −0.2, and (c) αairfoil = 10◦, yLE/c = −0.4. The kinematic parameters are
A/c = 0.4, k = 1.70, and St = 0.22, and αwing = 0◦.

that the largest lift coefficient magnitude of the wing is approximately 30% lower than in the
symmetric wake case. The maximum and minimum lift coefficients are found when the wing is
placed at yLE/c = −0.4.

For each of the three curves in Fig. 17, we investigated the flow fields of the cases for which
the largest lift fluctuations are observed. Figure 18 presents the vorticity fields (left column) and
cross-stream velocity (middle column) at t/T = 0.5, and the time history of the phase-averaged
lift coefficient (right column) for the cases of αairfoil = 0◦, 5◦, and 10◦. The normalized circulation
for approaching vortices is also added to the vorticity fields. The circulation was calculated by
the method described in Cleaver et al. [36]. The center of the vortex is found by the location of
the maximum vorticity and then a square path line around the vortex is defined. The circulation
is calculated as the size of the square is increased until the changes are very small. For the
symmetric wake αairfoil = 0◦ and the slightly asymmetric case αairfoil = 5◦, the strength of the
clockwise and counterclockwise vortices are similar. The corresponding contours of the cross-
stream velocity component and the phase-averaged lift coefficients are also similar. For the largest
deflection case ( αairfoil = 10 °), there is not much change in the circulation of the counterclockwise
vortex (	/U∞c = 1.58); however, there is some reduction in the strength of the clockwise vortex
(	/U∞c = −1.30) compared to the other cases. This is expected as the maximum and minimum
effective angles of attack become more different in this case. There is also significant change in
the topology of the vortex street. Whereas the wavelength appears to remain the same, the lower
row of the vortices is shifted (no longer antisymmetric) as the clockwise and counterclockwise
vortices are formed closer to each other. The vortex couples of opposite signs have an induced
velocity with a downward component. (Similar change in the topology of the reversed Karman
vortex street in the deflected wakes is seen for an oscillating NACA0012 airfoil at the nonzero mean
angles of attack [26,36].) This change in the vortex-street configuration modifies the approaching
cross-stream velocity component significantly. There is slight reduction in the positive cross-stream
velocity magnitude while the negative cross-stream velocity region becomes smaller. The changes
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in the cross-stream velocity together with decreased strength for the clockwise vortices result in
smaller lift fluctuations for the deflected vortex streets.

E. Effects of plunge frequency and amplitude on wake-wing interaction

In this section, we investigate the effects of the reduced frequency k and oscillation amplitude
A/c on the characteristics of the traveling gusts generated, vortex-street–wing interaction, and
the resulting lift coefficient fluctuations. We focus on the unloaded wing (αwing = 0◦) in the
symmetrically generated wakes (αairfoil = 0◦) and the head-on collision cases (yLE/c = 0).

Figures 19(a) to 19(d) present the first two POD modes of the cross-stream velocity component
for A/c = 0.2 and varying reduced frequency k = 0.63, 1.26, 1.88, and 2.51. These fundamental
wake modes have decreasing wavelength and cross-stream length scale with increasing reduced
frequency k. While the first and second modes have approximately the same energy percentages,
the sum of the energy of the two modes increases as a fraction of the total energy with increasing
reduced frequency. The ratio of the energy of the wake modes to the total energy increases from
5.5% for k = 0.63, 22.8% for k = 1.26, 38.1% for k = 1.88 to 49.2% for k = 2.51 at an amplitude
of A/c = 0.2. The wake modes upstream of the wing appear undisturbed until the immediate
neighborhood of the leading edge of the wing, but then disintegrate quickly over the wing and
downstream.

Figure 19(e) reveals that the peak lift coefficients increase with increasing reduced frequency
at constant plunge amplitude. The timing of the peaks varies with the reduced frequency since
the wavelength and the arrival time to the leading edge of the wing are dependent on the reduced
frequency as expected from the POD modes. This figure shows that the wavelength of the vortex
streets varies. The distance from the origin of the wake (trailing edge of the plunging airfoil) to
the leading edge of the wing is fixed. Also, the convection speed is roughly constant [see the
discussion of Fig. 6(a)]. Hence, the arrival time of the vortices near the leading edge is nearly
constant. However, constant arrival time corresponds to varying phase (time normalized by the
period). In addition, the waveforms for the phase-averaged lift coefficient exhibit many higher
harmonics for the lower reduced frequencies. For the lowest reduced frequency of k = 0.63, we
found the Fourier coefficients (not shown here) of the phase lift coefficient at odd terms, n = 3, 5, 7,
and 9. For k = 1.26, the third and fifth modes are most significant. For higher reduced frequencies,
k = 1.88, and 2.51, the most significant Fourier mode is n = 3 and it can reach as high as 50% of
the coefficient of n = 1.

We recall that the cross-stream velocity along the centerline in the undisturbed wake is primarily
predicted to depend on the vortex array aspect ratio b/λ according to Eq. (8). In turn, Fig. 6(b) shows
that the experimentally measured ratio b/λ is a strong function of the reduced frequency k and the
normalized amplitude of the plunging motion A/c. For A/c = 0.2, the aspect ratio of the vortex
street increases almost linearly (we could not get a reliable estimate of b based on the two-point
cross correlations of the spanwise vorticity for the lowest reduced frequency as the two rows are very
close to each other). In Fig. 20(a), we plot the cross-stream velocity component over a wavelength
for various reduced frequencies using Eq. (8). At the lower frequency (k = 1.26), the predicted
cross-stream velocity component has multiple peaks, whereas at the highest reduced frequency of
k = 2.51, the waveform becomes more similar to a sine wave. We calculated the Fourier coefficients
(not shown here) of the predicted cross-velocity profiles. We found that at k = 1.26, the Fourier
coefficients are significant at n = 3, 5, whereas at higher reduced frequencies only n = 3 becomes
dominant. In summary, the predicted waveforms of the cross-stream velocity in the vortex street
could explain the higher harmonics observed in the measured phase-averaged lift coefficient.

Next, we present the effects of varying amplitude A/c = 0.05, 0.1, 0.2, 0.4, and 0.6 at fixed
reduced frequency k = 1.26. Figures 21(a) to 21(e) present the first two dominant POD modes of the
cross-stream velocity component for the corresponding cases. Again, the relative energy of the first
two modes, which characterize the traveling fundamental wake modes, increases as the amplitude
A/c increases. Also, the cross-stream extent of the POD modes increases with increasing amplitude
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FIG. 19. First two POD modes of cross-stream velocity component for (a) k = 0.63, St = 0.04 (with
fraction of total energy of 3.3 and 2.2%); (b) k = 1.26 and St = 0.08 (with fraction of total energy of 11.8
and 11.0%); (c) k = 1.88 and St = 0.12 (with fraction of total energy of 20.2 and 17.9%); (d) k = 2.51
and St = 0.16 (with fraction of total energy of 26.4 and 22.8%); and (e) time history of phase-averaged lift
coefficient over one cycle; for A/c = 0.2, αwing = 0◦, αairfoil = 0◦, and yLE/c = 0.

A/c, while the wavelength remains constant. For the largest amplitude of A/c = 0.6, double peaks
develop away from the centerline (nevertheless the amplitude is roughly constant in this region).
For all other cases, the local maximum is at the wake centerline. Figure 21(f) shows the variation
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FIG. 20. Cross-stream velocity component according to the point-vortex model for (a) A/c = 0.2 and
varying k, and (b) k = 1.26 and varying A/c.

of the phase-averaged lift coefficient for the corresponding cases. The magnitudes of the maximum
and minimum lift coefficients increase with increasing amplitude A/c. As the wavelength remains
the same for all cases, the waveforms are overall similar. However, small-amplitude cases exhibit
higher harmonics. The Fourier coefficients were calculated (not shown here) and it was found that
n = 5 has the largest amplitude for A/c = 0.05, while for A/c = 0.1, 0.2, and 0.4, the modes n = 3
and 5 have comparable amplitudes.

Again, using the point-vortex model of the vortex street [Eq. (8)] and the measured values of b/λ
presented in Fig. 6(b), we can explain the trends of higher harmonics. For the smallest amplitudes,
again, we could not measure accurately the distance b as the two rows are very close to each other.
For the remaining three amplitudes, Fig. 20(b) shows the variations of the cross-stream velocity over
a wavelength. The existence of the higher harmonics can be expected based on these waveforms.
For the two smallest frequencies in Fig. 20(b), we find that n = 3 and 5 are dominant in Fourier
coefficients, although n = 3 has larger amplitude. For the largest-amplitude case, we expect to find
smaller number of harmonics (only n = 3 dominant). These predictions are consistent with the
observed waveforms of the phase-averaged lift coefficients in Fig. 21(f).

We summarized the results for varying amplitude A/c and reduced frequency k in Fig. 22. Here,
the amplitude of the lift coefficient was normalized using the static lift coefficient slope a of the
wing and the ratio of the maximum phase-averaged cross-stream velocity divided by the freestream
velocity. The ratio of the maximum cross-stream velocity divided by the freestream velocity can be
interpreted as the maximum effective angle of attack since the mean angle of attack is zero in this
case. Surprisingly, for plunging airfoils, the ratio of the maximum lift coefficient to the maximum
effective angle of attack is always close to 2π or slightly below [24], even though the velocity
fluctuations are not small. Given that in our case the variation of the static lift coefficient as a
function of angle of attack is highly nonlinear [see Fig. 4(a)], we used a constant value of the slope
a calculated by using 2π for the airfoil cross section and Prandtl’s lifting line theory, assuming an
elliptical circulation variation. Figure 22 reveals that despite the fact that velocity fluctuations are
not small, the trend is similar to that of the Sears theory [38] and the magnitude is smaller than
that of the Theodorsen theory [39]. This may be somewhat expected as the unsteady wake of the
plunging airfoil produces a traveling wave, which resembles a Sears gust. Nevertheless, there is still
large scatter in the data for a fixed value of the amplitude A/c as well as a large scatter from the
Sears theory.

The scatter of the data from the Sears theory may be due to not only the large-amplitude velocity
fluctuations, but also due to the unsteady wake being not exactly like the gusts modeled by the
Sears theory. To examine the latter possibility, we calculated the two-point cross correlation of the
cross-stream velocity component Cvv as defined in Eq. (5) for an arbitrary location and taking a
fixed reference point. The cross-stream velocity of the gusts modeled by the Sears theory can be
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FIG. 21. First two POD modes of cross-stream velocity component for a) A/c = 0.05 and St = 0.02 (with
fraction of total energy of 3.5 and 3.2%); (b) A/c = 0.1 and St = 0.04 (with fraction of total energy of 3.7
and 3.6%); (c) A/c = 0.2 and St = 0.08 (with fraction of total energy of 11.8 and 11.0%); (d) A/c = 0.4 and
St = 0.16 (with fraction of total energy of 27.6 and 24.6%); (e) A/c = 0.6 and St = 0.24 (with fraction of total
energy of 30.6 and 29.9%); and (f) time history of phase-averaged lift coefficient over one cycle; for k = 1.26,
αwing = 0◦, αairfoil = 0◦, and yLE/c = 0.
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FIG. 22. Normalized amplitude of the fluctuations of the lift coefficient as a function of reduced frequency
for αwing = 0◦ and αairfoil = 0◦.

expressed as

v′ = Vampcos
(

2π
x

λ
− 2π f t

)
, (9)

where Vamp is a constant, which implies that the gust amplitude is uniform in the cross-stream
direction. By taking the fixed reference point at (x = 0 and y = 0), the two-point cross correlation
of the cross-stream velocity fluctuations can be calculated for the uniform (Sears) gust as

Cvv,Sears = cos
(

2π
x

λ

)
. (10)

Figure 23(a) shows the variation of the two-point cross-correlation coefficient in the absence of
the wing as a function of the x axis normalized by the wavelength for a fixed reduced frequency
of k = 1.26 and various amplitudes A/c. The calculated cross-correlation coefficients are compared
with that of the uniform (Sears) gust. With increasing amplitude A/c, there is a trend of the cross-

FIG. 23. Variation of (a) cross-correlation coefficient in the absence of the wing as a function of x/λ
(reference location is at (x/c = 3.5, y = 0)), and (b) integral length scale as a function of reduced frequency k.
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FIG. 24. Variation of gust-shape factor as a function of Strouhal number St in the absence of the wing.

correlation coefficient approaching that of the uniform (Sears) gust. However, at low amplitudes, the
cross-correlation coefficient decays rapidly in the streamwise direction. In addition to the changes
in the shape and decay rate of the variation, higher harmonics are also visible. At low amplitudes,
the cross-correlation coefficient is far away from that of a uniform gust.

Using the cross-correlation coefficient in the streamwise direction, one can define the streamwise
length scale as

Lx =
∫ c

0
Cvv (x, y = 0)d (x). (11)

The streamwise integral length scale Lx for the uniform (Sears) gust is found as

Lx

c
= sin(k)

k
. (12)

The integral length scale for all cases is shown in Fig. 23(b) as a function of reduced frequency k
and compared with that of the uniform gust. This parameter reflects the effects of the streamwise de-
cay as well as the departure from the fundamental harmonic waveform. At low reduced frequencies
and low amplitudes A/c, the deviation from the uniform gust is large. As the streamwise integral
scale approaches that of the Sears gust with increasing reduced frequency and amplitude A/c, there
is a suggestion that the Strouhal number based on the amplitude might be the dominant parameter.

The degree of departure from the Sears gust can be quantified by defining the shape f actor as

f = (Lx/c)measured

(Lx/c)uniform gust
. (13)

The variation of the shape factor f is shown as a function of the Strouhal number in Fig. 24.
In general, the shape factor increases with increasing Strouhal number. Hence, the streamwise
integral scale approaches that of the Sears gust. Two different regions of the Strouhal number
can be identified in Fig. 24. For low Strouhal numbers St � 0.05 approximately, the shape factor
increases very rapidly. For St > 0.05, the shape factor increases more slowly. Interestingly, for the
unsteady wake of the plunging airfoil at the same Reynolds number (Re = 20000), we reported that
St = 0.05 is the approximate border between the drag and thrust (net streamwise force produced by
the plunging airfoil is zero) [14]. In summary, how close the unsteady wake is to the gusts modeled
by the Sears theory depends mainly on the Strouhal number. At low Strouhal numbers (wake mode),
the wake is not very similar to the Sears gust, whereas at high Strouhal numbers (thrust mode) the
wake becomes more similar to the Sears gust.
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FIG. 25. Amplitude of the lift coefficients as a function of Strouhal number St for all cases, αwing = 0◦ and
αairfoil = 0◦.

Turhan et al. [14] also showed that the coherence of the unsteady near wake increases with
Strouhal number. The first two POD modes have increasingly larger fraction of the total energy
with increasing St. In addition, the spanwise-averaged cross correlation of the cross-stream velocity
increases rapidly up to St ≈ 0.05, and then remains constant at a value of approximately 0.92 for
larger Strouhal numbers. In summary, with increasing Strouhal number, the wake becomes more
similar to the Sears gust while the coherence of the streamwise flow and cross flow increases.

Finally, we plot the variation of the amplitude of the lift coefficient as a function of Strouhal
number in Fig. 25. This figure could be compared with Fig. 22, in which the normalized lift
coefficient is plotted as a function of the reduced frequency. There is a better collapse of the
data with the Strouhal number compared to the reduced frequency. This stems from two facts.
Firstly, we have shown that the unsteady features of the wake, including the amplitude of the
cross-stream velocity fluctuations, coherence, or degree of two dimensionality of the streamwise
flow and cross flow, and the waveforms of the gust velocity profiles, all are strong functions of
the Strouhal number. Secondly and more importantly, the Strouhal number itself is the ratio of the
maximum plunging velocity to the freestream velocity, hence an amplitude parameter for the wakes
(gusts). As a result, a single parameter, which is the Strouhal number based on the amplitude of the
wake-producing airfoil, determines the maximum lift coefficient. This is contrasted with the Sears
theory for small-amplitude disturbances in which the reduced frequency is the primary parameter.

IV. CONCLUSIONS

The unsteady aerodynamics of a finite wing submerged in the wake of a periodically plunging
upstream airfoil was investigated in water tunnel experiments at a Reynolds number of Re = 20 000.
Interaction of the vortex-street configurations with varying wavelength and circulation with the
stationary downstream wing was studied by means of velocity measurements and unsteady lift
force measurements. The unsteady wakes of the oscillating airfoil produce traveling gusts with
finite cross-stream extent, while very large velocity fluctuations exceeding the freestream velocity
are possible within the wake. The properties of the unsteady wakes, including the wavelength
of the vortex street, the spacing between the vortex rows in the cross-stream direction, and the
maximum rms velocity of the cross-stream velocity, were characterized. The streamwise flow can
be represented with the first two POD modes, which are the fundamental wake modes. On the
other hand, a single mode which is a flapping mode represents the cross-stream velocity field in
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a cross-flow plane. The relative energy of the POD modes and the magnitudes of the two-point
cross correlations increase with increasing Strouhal number based on the amplitude of the upstream
oscillating airfoil, implying that the coherence (degree of the two dimensionality) increases.

We focused on the kinematic parameters of the wake (amplitude and frequency) that produce the
largest cross-stream velocity amplitude within our range of parameters. Then, we investigated the
interaction of the wake for the unloaded wing (set at zero angle of attack) and the loaded wings as
well as for the wing in asymmetric wakes (generated by oscillating the upstream airfoil at nonzero
mean angle of attack). For the unloaded wing, the largest amplitude of the lift fluctuations occurs for
the direct head-on interaction when the leading edge of the wing is located at the wake centerline.
This is consistent with the fact that the two dominant POD modes of the cross-stream velocity have
a maximum at the wake centerline. Even for this case, the flow separation at the leading edge does
not appear significant. Yet, the reversed Karman vortex-street configuration loses its coherence after
the interaction with the wing. When the wing is located further away from the wake centerline, the
lift time history has a single dominant frequency, which is the fundamental wake frequency and also
the plunging frequency of the airfoil. In contrast, as the wing approaches the wake centerline, higher
harmonics in the lift history become significant. When the wing is located at the wake centerline,
the most significant harmonic in the lift is n = 3 for these wake parameters, although one may
intuitively expect n = 2 for the staggered reversed Karman vortex-street arrangement. As the PIV
measurements are not time accurate, we looked at the variation of the cross-stream velocity along
the centerline (x, y = 0) in the approaching wake and upstream of the wing. The variation of the
cross-stream velocity along the centerline also confirms that the most significant harmonic is n = 3.
The measured cross-stream velocity is similar to the point-vortex model of the undisturbed reversed
Karman vortex street.

For the loaded wing, and with increasing angle of attack of the wing, the flow separation
at the leading edge, formation of a leading-edge vortex and formation of a vortex couple with
the incident vortex become more noticeable. These observations strongly depend on the offset
distance between the wing leading edge and wake centerline. However, the formation of stronger
leading-edge vortices does not necessarily correlate with larger amplitude of the lift oscillations. The
largest amplitude of the lift coefficient occurs when the wing is located above the wake centerline
and directly interacting with the counterclockwise vortices of the reversed Karman street. For the
inclined asymmetric wakes generated by plunging the airfoil at nonzero angle of attack, the location
of the largest amplitude of the lift fluctuations shifts below the streamwise axis as the wake is
deflected downwards. The magnitude of the largest peak lift coefficients decreases with increasing
deflection angle of the wake (increasing angle of attack of the plunging airfoil). This is due to
the unequal strength of the clockwise and counterclockwise vortices as well as the changes in the
topology of the staggered vortex street as the upper and lower rows are shifted with respect to each
other.

For the general case of the unloaded wing in the symmetric (undeflected) wakes, the peak
lift coefficients increase with increasing frequency and amplitude A/c of the plunging airfoil. At
low frequencies and amplitudes, the waveforms of the phase-averaged lift coefficient reveal higher
harmonics (up to n = 5), which again can be predicted by the point-vortex model of the reversed
Karman street. The amplitude of the lift coefficient normalized by using the maximum phase-
averaged cross-stream velocity magnitude has a similar trend to the Sears function when plotted
as a function of the reduced frequency, but with large scatter. It was shown that the cross-stream
velocity not only has large amplitude and finite cross-stream extent, but also significant departure
from a harmonic gust at low frequencies and amplitudes A/c. The properties of the gust waveform
and the degree of the two dimensionality are strong functions of the Strouhal number of the wake
only. In addition, the Strouhal number is the ratio of the maximum plunge velocity of the plunging
airfoil to the freestream velocity, hence an amplitude parameter for the unsteady wake. As a result,
the amplitude of the lift coefficient of the stationary wing is a strong function of the Strouhal number
of the wake only.
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