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Dynamic analysis of aeroacoustic hysteresis of a low-Reynolds-number airfoil
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Lifting surfaces in aerospace and power industry applications produce tonal noise at
low-to-medium Reynolds number, significantly contributing to global noise annoyance.
The dominant noise frequency depends on the freestream velocity, angle of attack, and
surrounding environment. This work reports that the frequency spectra can exhibit dif-
ferent behavior at the same flow condition, which constitutes the hysteresis phenomenon.
Time-resolved particle image velocimetry (PIV) of boundary-layer flows near the trailing
edge and far-field noise measurements are performed simultaneously and synchronously.
Two branches of experiments are conducted with the freestream velocity increasing and
decreasing, respectively. Results are analyzed from the perspective of modern dynamical
systems. The boundary layer is viewed as the forced oscillator, with the acoustic waves
being the forcing mechanism. Both the bifurcation theory and the Poincaré section are
introduced to investigate the dynamic process when freestream velocity changes. Typically,
the dominant frequency of acoustic waves matches that of the most amplified disturbances
in the boundary layer, which is consistent with existing literature on the same noise genera-
tion mechanism. However, dual peaks can be observed at specific freestream velocities: one
matches the natural frequency of the current flow state while the other matches that of the
previous state. The associated transitions between periodic and quasiperiodic oscillations
constitute the hysteresis phenomenon.

DOI: 10.1103/PhysRevFluids.7.094401

I. INTRODUCTION

The mechanism behind airfoil tonal noise generation is still an open question in the aeroacoustic
community. Research on the discrete tones from isolated airfoils dates back to the work of Paterson
et al. [1], who argued that these tones were related to vortex shedding similar to aeolian tones
generated by bluff bodies. Later, Arbey and Bataille [2] showed that the measurements agreed well
with the linear stability theory regarding the frequency of the most significant tone. An acoustic
feedback loop was identified in the pioneering studies [2,3], which states that boundary-layer insta-
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bility waves are scattered into acoustic waves [4] at the trailing edge and the upstream-propagating
acoustic waves reinforce the instability waves at the maximum velocity point [5,6].

This feedback loop can be viewed as the resonance between the boundary-layer flow and the
acoustic waves. Therefore, it can be analyzed with modern dynamical systems theory [7,8]. Instead
of finding precise solutions to the physical problem, the theory qualitatively describes the steady
state of a given dynamical system or transitions between these states. For instance, Rowley and
Williams [9] employed the dynamical systems theory to study the resonance problem of flow over
a cavity, gaining insight into the mechanisms by which open-loop control can affect flow features.
The work of Rowley and Williams [9] is of particular relevance, as the discrete tones from the airfoil
trailing edge are similarly ascribed to resonance mechanisms, thus motivating the present study.

Without loss of generality, the laminar boundary layer can be viewed as a nonlinear dynamical
system with the acoustic waves acting as an external force. The natural frequency of the system fn

matching that of the most amplified disturbances can be obtained by numerically solving the Orr-
Sommerfeld equation [2,10]. The frequency of the external forcing fe can be measured directly by
microphone. Typically, fn matches fe when the feedback loop is established [2,11,12]. The existing
acoustic-feedback theories [2,3] are based on a self-excited noise-generation mechanism, implying
that the frequency of dominant tones is chosen by the physical system (flow, airfoil, and wind
tunnel) alone. One important feature of self-sustained oscillators is that these oscillations cannot
be easily affected by different initial conditions [7]. Hysteresis is a property of path-dependent
dynamic systems. The solution of a hysteresis system depends on how the state variable changed
in the past, and two solutions can exist for the same condition. For instance, Sanmiguel-Rojas and
Mullin [13] observed a hysteresis loop when investigating transitional flows in a pipe with sudden
expansion. A subsequent work of Nguyen et al. [14] conducted two branches of simulations with the
Reynolds number increasing from steady laminar flow and decreasing from a transitional unsteady
state. Nguyen et al. [14] confirmed that two flow solutions can exist for the same Reynolds number,
depending on the steps of Reynolds number and computation time. In aerodynamics, hysteresis was
also studied during the stall process on two-dimensional airfoils, due to the difference between the
separation angle and the reattachment angle [15]. Examples can also be found in cavity flow [9],
airfoil separation bubble [16], and fluid phase transition studies [8], attracting great efforts in various
research communities. Typically, systems with hysteresis are nonlinear and can be challenging
to model precisely. A mathematical description of the hysteresis loop is beyond the scope of
this introduction. Nevertheless, the dynamical systems theory can still gain qualitative properties
of solutions from general principles. For instance, the Poincaré section can facilitate identifying
whether the oscillation of a dynamical system is periodic or quasiperiodic, by tracing its state
variables.

In this work, we find that the frequency of the dominant tone does not have to match that of
the most amplified disturbances in the boundary layer. A dynamic lag can exist between fn and
fe when the freestream velocity changes. The frequency spectra can exhibit different behavior at
the same freestream velocity, depending on the freestream velocity increasing or decreasing. This
phenomenon of hysteresis, which has not been reported elsewhere, constitutes one of the major
findings in this work.

The remaining parts of this article are organized as follows. The experimental setup and phenom-
ena are discussed in Sec. II to show the hysteresis in the trailing edge noise. Next, the boundary-layer
instability and the forced synchronization oscillation system are discussed in Sec. III. The system
states are also discussed by employing the Poincaré section in Sec. III A. Finally, Sec. IV concludes
the present research.

II. EXPERIMENTAL MEASUREMENTS

Experiments were conducted in a closed-circuit low-turbulence wind tunnel with a 1 m ×
1 m × 4 m test section at Peking University. Figure 1 shows the experimental setup. The boundaries
of the test section were treated to minimize reflections. A 0.2 m chord NACA 0012 airfoil was
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FIG. 1. (a) The experimental setup and (b) the photograph.

installed with a fixed angle of attack at 0 deg. The testing airfoil speed was from 11 m/s to 25 m/s
with the corresponding chord-based Reynolds number from 1.4 × 105 to 3.3 × 105. The airfoil
aerodynamic noise was measured by a BSWA-MA401 high-precision microphone that was flush
mounted to the side wall of the test section. The microphone was further covered by a tensioned
Kevlar 120 cloth (0.6 m × 1.2 m, only one side of the wind tunnel and smaller than the test
section scales) to reject wind tunnel boundary-layer interference and permit the transmission of
sound with little loss [17]. The sampling frequency was set to 50 kHz and the sound pressure level
(SPL) results were acquired by averaging over 36 blocks (length 1 × 105, frequency resolution
0.5 Hz) for statistical convergence.

The time-resolved particle image velocimetry (PIV) technique was employed to capture velocity
fluctuations inside the boundary layer. The injected seeding particles were first illuminated by
a 1 mm thick double-pulsed DCQ-60 laser sheet and then visualized by a 1280 × 800 pixels
Phantom-V2512 camera with 6 kHz acquisition frequency. Two coordinate systems were used in
the experiments. One was originated at the trailing edge of the airfoil, with x aligned with the
downstream direction and y normal to the chord. The other coordinate system was specifically
designed for describing local boundary flow, with xt and xn tangent and normal to the airfoil surface,
respectively. A National Instruments 24-bit PXI-4496 card was used to acquire samples from the
microphone and the acquisition was synchronized to the high-speed camera.

Figure 2 shows the vortical structures on the velocity vectors at u∞ = 18.1 m/s in (a) and (b)
when the inlet speed increases, and in (c) and (d) when the inlet speed decreases. As shown in
Figs. 2(a) and 2(c), the time-averaged flow field is essentially symmetrical with respect to the chord,
since the angle of attack is fixed at 0 deg. Moreover, the instantaneous vorticity results in Figs. 2(b)
and 2(d) show the gradual development of small flow fluctuations inside the boundary layer of the
airfoil. The governing physics is often associated with the Tollmien-Schlichting (T-S) instability
mechanism. Furthermore, the fluctuations on the top and bottom sides around the trailing edge are
in-phase in Fig. 2(c) and out-of-phase in Fig. 2(d). This difference signifies that the system state has
bifurcation at u∞ = 18.1 m/s.

In this work, the PIV measurements were performed at velocities from u∞ = 17.7 m/s to
u∞ = 19.0 m/s. The instantaneous vorticity contours are quite similar to those in Fig. 2 and are
therefore omitted here for brevity. Figure 3 shows the tangential flow velocity profiles inside the
boundary layer at −0.15 c, −0.1 c, −0.05 c, and 0 c. The tangential velocity results are normalized
by the trailing edge velocity ue, the symbol (·) represents the arithmetic mean value, and the symbol
δ∗ indicates the displacement thickness of the boundary layer (the chord-based dimensionless profile
results are shown in Supplemental Material [18]). The flow separated at the near wall region
(especially at −0.15 c and −0.1 c). It can be seen that the normalized mean velocity profiles are
almost identical at different mean flow speeds, whereas the velocity fluctuations gradually develop
along the airfoil surface, which is governed by the growing T-S instability waves.
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FIG. 2. Time-averaged and instantaneous contours of the spanwise vorticity at u∞ = 18.1 m/s for (a and
b) increasing speed and (c and d) decreasing speed.

The classical hysteresis loops for low-Reynolds-number airfoils appear in aerodynamic loads
during oscillatory motion with varying angle of attack [19]. In contrast, the hysteresis loop observed
in this work concerns the dominant frequencies as a function of varying mean flow speeds, where
u∞ is first increased from 11 m/s to 25 m/s with a velocity step around �u∞ = 0.23 m/s (5 rpm
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FIG. 4. The hysteresis loop of the dominant frequency, where (a) is the spectrum of the microphone signal
at different mean flow speeds, and (b) shows the comparisons of the SPL values at the representative flow
speeds inside the loop. The background noise is measured at u∞ = 18.0 m/s.

difference of the driving system) and then modified backward to 11 m/s. During each aerodynamic
and aeroacoustic measurement, the freestream velocity was kept constant for at least two minutes to
ensure a steady aerodynamic state was achieved. The repeatability of the measurements was checked
by performing the experiments consecutively three times.

Figure 4(a) shows the spectrum of the microphone signal with respect to the mean flow speeds.
The focus of this research is on the noise induced by the T-S instability waves at the frequency
range between 400 Hz and 600 Hz. The enlarged inset in Fig. 4(a) clearly shows a hysteresis cycle,
where the direction of the arrows represents the flow speed modification setups during the tests. The
good agreement between the (◦) cycle and the (·) cycle at u∞ = 17.4m/s, 17.7 m/s, 19.0 m/s, and
19.3 m/s suggests remarkable accuracy of the measurements. However, differences are also visible
at specific freestream velocities such as 14 m/s, 16 m/s, 18 m/s, etc., producing several loops of
hysteresis.

When comparing two branches of experiments, it is notable that the frequency values are mainly
composed of three regimes: (i) the dominant frequency increased linearly with the freestream
velocity for u∞ � 16 m/s (Re � 2 × 105); (ii) the frequency varied within a small range centered
approximately at 500 Hz when 16 m/s < u∞ � 22 m/s (2 × 105 < Re � 2.9 × 105); and (iii) the
frequency values were around 800 Hz over 22 m/s < u∞ � 25 m/s (2.9 × 105 < Re � 3.3 × 105).
Interestingly, the hysteresis phenomenon was found in all the above regions, despite the associated
noise generation mechanisms being different. In region (i), the dominant noise was ascribed to
laminar-boundary-layer vortex shedding at the trailing edge as arrowed in Fig. 4(a). The corre-
spondence between the flow structure and acoustic emissions was confirmed by PIV and noise
measurements [10,20,21]. In regions (ii) and (iii), the T-S wave diffraction contributed to the tonal
noise emission, as shown in the following section. However, in region (iii), separation bubbles near
the trailing edge also generated discrete tones [12]. Moreover, as the velocity (Reynolds number)
increased, the separation bubbles disappeared. The laminar boundary layer transited into a turbulent
boundary layer at high Reynolds number, and the broadband noise was dominant [22]. In other
words, different noise generation mechanisms co-existed and thus were challenging to analyze.
Therefore, we focused on the small hysteresis loop around u∞ = 18 m/s, where the scattering of
T-S waves dominated the tonal noise generation. A closer view of the hysteresis loop was plotted
over a small freestream velocity range, 16 m/s < u∞ < 20 m/s, where the directions of the change
in u∞ are also indicated by arrows.
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FIG. 5. Stabilized modes and destabilization at different boundary-layer locations and flow speeds. Projec-
tions of the phase portraits on the plane (u/ue, v/ue).

The inset of Fig. 4(a) shows that the hysteresis loop consists of a positive half-cycle, where
u∞ is increased from 17.7 m/s to 19.4 m/s, and a negative half-cycle, where u∞ is decreased
from 19.0 m/s backward to 17.4 m/s. Figure 4(b) shows the corresponding SPL results at two
representative flow speeds, where the blue and red arrows indicate the shiftings of the dominant
frequencies inside the positive half-cycle and negative half-cycle, respectively. At first, the dominant
frequency increases with the freestream velocity changing from 17.7 m/s to 18.1 m/s and suddenly
drops at u∞ = 19.0 m/s. After that, the dominant frequency decreases with the freestream velocity
changing from 19.0 m/s to 18.1 m/s and suddenly increases at u∞ = 17.7 m/s. It should be noted
that results of 18.1 m/s in both branches exhibited similar dominant frequencies (517 Hz and
520 Hz), but with a difference of 20 dB in the peak values. More importantly, in the u∞ decreasing
process, dual peaks occurred at 18.1 m/s. A similar observation was also reported by Paterson et al.
[1]. As discussed later, one peak is the frequency of the external forcing (acoustic waves) fe, and
the other is the system’s natural frequency fn (that of the most amplified disturbances). Moreover,
in Fig. 4(b), the strength of the tonal noise at u∞ = 18.1 m/s(+) is about 100 dB, which is much
larger than the results from acoustically treated wind tunnels, wherein the tonal noise strength almost
distributed from 60 to 80 dB [1,2,10,20,21]. The hard wall of the wind tunnel may be the reason
for the high-value SPL results. In this work, the Kevlar cloth is only covered on one side of the
wind tunnel. The acoustic environment provided by the other walls allows the wind tunnel to follow
hard-wall acoustic conditions. Compared with the low-strength SPL results from acoustically treated
wind tunnels, Nash et al. [12] measured the high-value tonal noise at 26 m/s and reported that
the tonal noise is up to 40 dB above the broadband noise [same in Fig. 4(b)] in a hard-wall wind
tunnel. This feature can also be found in the spectrum results from Plogmann et al. [5]. Furthermore,
Pröbsting et al. [21] documented that the trailing edge noise was strongest at zero angle of attack,
which may be another reason for the high-value SPL results in Fig. 4(b). It should be mentioned that
the frequency resolution also affects the amplitude in the spectrum. In this work, different frequency
resolutions may result in a difference of up to 5 dB. For example, the strength of the tonal noise at
u∞ = 18.1 m/s(+) is about 100 dB with 0.5 Hz frequency resolution [as shown in Fig. 4(b)], 104 dB
with 2 Hz frequency resolution, and 105 dB with 5 Hz frequency resolution. The comparison results
are attached in Supplemental Material [18].

III. HYSTERESIS MECHANISM

Figures 5(a)–5(d) illustrate the evolution of stroboscopic sections at different wall-tangential
locations (the same wall-normal distance, xn = 0.02 c, which is the boundary-layer thickness at
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FIG. 6. The natural frequency at different speeds, where (a) is the spatial growth rate from Fig. 3(a) and
3(b) is the synchronization tongue for the forced van der Pol oscillator.

xt = −0.2c and u∞ = 17.7 m/s) for all flow speeds. The horizontal and vertical axes indicate
normalized wall-tangential and wall-normal velocity components. The red cross denotes a reference
state of (ut/ue, un/ue) = (1, 0). For all flow speeds presented, the phase portraits are distributed
around the reference state, demonstrating the phase coherence between velocity disturbances. The
distance between each point and the reference state measures the magnitude of local velocity
disturbances. These points are expected to exhibit ideal point or circular patterns for harmonic
oscillations. Here we introduce the bounding circle, the smallest circle containing all of the points
at each location. In Figs. 5(a)–5(d), the radius of the bounding circle increases from xt = −0.2 c to
xt = 0 c, suggesting that the instability waves gradually develop along the wall-tangential direction.
In detail, the boundary layer is stable before xt = −0.15 c, and the fluctuation increases rapidly after
this location. It should be noted that the regularity of the point distributions becomes worse towards
the trailing edge, i.e., xt = −0.05 c and xt = 0 c, meaning the destabilization of the boundary-layer
flow. Therefore, we chose the location xt = −0.15 c for the following discussion to ensure that
the linear stability analysis is applicable. Moreover, the linear stability analysis results around
xt = −0.15 c are attached in Supplemental Material [18]. The spatial growth rate achieves the
maximum value at xt = −0.15 c at every wind speed, and the conclusions will not change if velocity
profiles are taken at a slightly upstream and downstream position.

Figure 6(a) shows the spatial growth rate [γ (m−1), dimensionless with the chord of airfoil] at
xt = −0.15 c, which was obtained by performing a spatial linear stability analysis with the mean
velocity profiles from Fig. 3(a) (at xt = −0.15 c). In linear stability analysis, the mean velocity
profiles are interpolated using the inverse ratio function (1/xn) to ensure a better resolution. The
maximum growth rate at u∞ = 18.1 m/s is larger than that at the remaining conditions, which may
be related to the amplitude of the tonal noise in Fig. 4(d). The frequency at which the maximum
growth rate occurs is the system’s natural frequency fn. It is found that the natural frequency fn at
u∞ = 17.7 m/s is close to those at u∞ = 18.1 m/s for both increasing and decreasing processes.
These peaks are all around 520 Hz, matching those associated natural frequencies. On the other
hand, when u∞ = 19.0 m/s, the natural frequency fn is approximately 30 Hz lower, and the maxi-
mum growth rate is also visibly lower than those at the other conditions. This finding implies that
the flow state in the boundary layer changes suddenly, leading to a sharp drop of the dominant
frequency around u∞ = 18.1 m/s in Fig. 4(a).

Nevertheless, two facts in Fig. 4 have yet to be explained by existing feedback loop theories: (i)
only u∞ = 18.1(−) m/s of the decreasing branch produced dual tones with a 12 dB difference in
the peak values, while the other cases generated just a single tone; and (ii) at u∞ = 18.1(−) m/s,
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the weak tone is close to the associated natural frequency while the strong tone is close to the natural
frequency at u∞ = 19.0 m/s, which was the previous flow state. These phenomena, however, can
be easily understood with the help of a van der Pol oscillator (a typical dynamical system),

d2g

dt2
+ α(g2 − 1)

dg

dt
+ ω2

0g = β f (t ), (1)

where α and β are parameters of damping and forcing strength, g denotes the displacement, and
f (t ) is the forcing function [7–9]. Without loss of generality, the system (1) is assumed to be forced
harmonically. The van der Pol oscillation system was employed to analyze the system states in
cavity noise problems [9]. Qualitatively, a forced oscillator can exhibit two states, periodic and
quasiperiodic oscillations [8], depending on both fn and fe. When the frequency of external stimulus
is sufficiently close to the natural frequency, meaning that fe reaches fn, the system (1) demonstrates
periodic oscillations and the spectrum contains just a single peak [7]. When a difference exists
between fn and fe, the quasiperiodic oscillation occurs and multiple peaks can be found in the
spectrum.

Figure 6(b) shows a bifurcation diagram of the van der Pol oscillator, where ( fn − fe)/α denotes
the forcing frequency and β/2α represents the forcing amplitude. The solid and dashed lines
denote the saddle-node bifurcation and the Andronov-Hopf bifurcation, respectively [7,23]. The
definition of these bifurcations are shown in Supplemental Material [18]. The gray area shows
periodic oscillation with only one tonal frequency at forcing frequency, and another area denotes the
quasiperiodic oscillations with multiple peak frequencies. In the quasiperiodic region, the system
states around the saddle-node bifurcation and Andronov-Hopf bifurcation are different [7]. The
peak associated with natural dynamics can be concluded with two different features: (a) moves
to coincide with forcing frequency (crossing the saddle-node bifurcation), and (b) is stable but
becomes smaller and finally vanishes (crossing the Andronov-Hopf bifurcation). In this work, only
the second process can be noticed [at 18.1 m/s(-)]. Therefore, results of u∞ = 17.7 m/s, 19.1 m/s,
and 18.1 m/s in the increasing process are periodic oscillations. This implies a frequency (phase)
synchronization of oscillations by external forcing, in which the van der Pol oscillator (1) achieves
a single solution. As a result, the oscillations are strictly periodic and synchronous with the forcing,
and a single peak is at the frequency of forcing. In contrast, u∞ = 18.1 m/s in the decreasing
process leads to a quasiperiodic oscillation and is close to the Andronov-Hopf bifurcation [7,8].
Two distinct peaks, namely, fe and fn, coexist as indicated by Fig. 6(b), indicating the absence
of synchronization between the oscillating system and the forcing. Note that u∞ = 18.1 m/s of
the increasing process produces the maximum forcing amplitude among the four states marked in
Fig. 6(b), while u∞ = 19.0 produces the least.

Unlike conventional forced oscillators, the natural frequency fn varies first instead of the forcing
frequency fe in the present problem, although the latter fe is affected accordingly by the former fn.
The varying processes in Fig. 6(b) can be described as follows: First, the oscillation at 17.7 m/s
is periodic, and the forcing frequency is equal to the natural frequency. Next, when u∞ increases
from 17.7 m/s to 18.1 m/s, the natural frequency gradually grows with the freestream velocity.
Then, the natural frequency fn drops at some point after u∞ = 18.1 m/s, as shown in Fig. 4(a).
In the process, the forcing frequency subsequently changes following the natural frequency, and
the system remains synchronized in a periodic oscillation. Therefore, the system remains in the
gray area and the frequency difference fn − fe is equal to zero, as shown in Fig. 6(b). Afterwards,
in the u∞ decreasing process (for example, from 20 m/s to 19.0 m/s), the natural and forcing
frequencies decrease with the freestream velocity. The system remains stably synchronized during
the u∞ increasing process. However, when the freestream velocity u∞ decreases from 19.0 m/s, a
sudden jump of the natural frequency occurs as u∞ decreases to u∞ = 18.1 m/s, leading to a large
frequency difference fn − fe. In the decreasing process, the peak at natural frequency is stable at
18.1 m/s(-) but becomes larger and finally dominant (as shown in Fig. 4), which denotes that the
system at 18.1 m/s is close to the Andronov-Hopf bifurcation line in Fig. 6(b). In the experiments,
the saddle-node bifurcation does not occur, which means the system states are above the solid line.
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FIG. 7. Phase trajectories in the Poincaré sections at different locations, where xt = −0.1 c (red), −0.06 c
(blue), and −0.02 c (black), respectively.

Poincaré section analysis

The Poincaré section was initially proposed to study planetary orbits in the restricted three-body
problem, which were too complicated to be explicitly describable. It is transversal to the state
flow of the original system and is one dimension smaller than the original dynamical system.
The Poincaré sections of periodic and quasiperiodic systems are related to a stable point and
closed curves, respectively [7,8]. In the present problem, a fluid particle possesses three state
variables: displacement, velocity, and acceleration (or force). To visualize the phase trajectory in
the Poincaré section, we chose to fix the displacement at (xt , xn) and monitor the rest states. This
implied that the distance between a fluid particle and the microphone would remain unchanged.
The force acting on a fluid particle became equivalent to the acoustic pressures measured by the
microphone because the associated acoustic phase delay was also time independent. Consequently,
the Poincaré section comprised the local velocity disturbance and the acoustic pressure fluctuation,
following the literature [24]. Three streamwise locations were selected with the same wall-normal
distance, xn = 0.02 c. Figures 7(a)–7(d) present the associated phase trajectories in the Poincaré
section at four states in the hysteresis loop. The three color points show results at xt = −0.1 c (red),
−0.06 c (blue), and −0.02 c (black), respectively. In Figs. 7(a), 7(b) and 7(d), the associated systems
demonstrate periodic oscillations, and the trajectories in the Poincaré section should be a fixed point
[7]. Different from the theoretical analysis, the results from measured data are inevitably disturbed
by noise. Therefore, the trajectories in the Poincaré section represent scattered points randomly
distributed in a certain range [as shown in Figs. 7(a), 7(b) and 7(d)]. Being distinct, the phase
trajectories in Fig. 7(c) exhibit closed curves with large excursions, which indicates the existence
of guiding manifolds of the resonant torus [7]. In this situation, there are multiple oscillation
frequencies in the system, suggesting an absence of synchronization between the natural frequency
and the forcing frequency. As a result, the system periodically switches between different states,
producing quasiperiodic oscillations. Note that the Poincaré section for the location close to the
trailing edge [see xt = 0.02 c in Fig. 7(c)] still successfully revealed the quasiperiodic oscillations,
showing advantages over the phase-portrait analysis for the boundary-layer flow in Figs. 5(a)–5(d).

IV. SUMMARY

This work presents an experimental study of airfoil tonal noise generation at zero angle of attack,
where we observed a hysteresis phenomenon in the frequency spectra. Both time-resolved PIV and
acoustic measurements were employed to study the dynamical process of tonal noise emission and
the associated flow evolution. Distinct tones, such as the vortex shedding noise and boundary-layer
instability noise, were observed over a wide range of Reynolds numbers. The dominant tone
demonstrated sudden jumps/drops at specific freestream velocities and did not always exhibit
simple scaling.
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The hysteresis phenomenon usually accompanies frequency jumps/drops and occurs almost uni-
versally. The hysteresis was found by conducting two branches of experiments with the freestream
velocity increasing and decreasing, respectively. The dominant tone exhibited different behavior,
depending on the increasing or decreasing freestream velocity. Several representative cases around a
small hysteresis were presented with respect to the dynamical response of the tones in the spectrum.
The experimentally acquired flow and noise data were analyzed from the perspective of modern
dynamical systems. The boundary-layer flow was viewed as a forced oscillator, with the acoustic
wave being the forcing. Concerning the relationship between forcing and natural frequencies, the
nonlinear oscillator demonstrated periodic and quasiperiodic oscillations. The natural frequency
suddenly changed at specific freestream velocities, inducing a large difference from the forcing
frequency. In the freestream velocity increasing process, such a sudden change did not signifi-
cantly affect oscillations because the forcing amplitude was sufficient to retain synchronization.
Accordingly, only a single tone existed in the spectra. In contrast, when the freestream velocity
decreased, the maximum growth rate in the boundary layer became lower than before. The acoustic
forcing due to the diffraction of instability waves was subsequently weakened. The system lost
synchronization and exhibited quasiperiodic oscillations, producing dual tones. To summarize,
different noise spectra existed in the same flow conditions in the two branches, constituting the
hysteresis phenomenon.

The bifurcation theory and the Poincaré section were introduced to describe transitions when
freestream velocity changed. The associated qualitative analysis agreed well with typical features
in the noise spectra. The successful application of modern dynamical systems implies that the
associated control theory can be introduced for boundary-layer manipulation and noise reduction.
Additionally, we wish to emphasize that although the present work only focuses on the boundary
layer instability noise-dominated region, the hysteresis was also observed at other regimes, for ex-
ample, 12 m/s < u∞ � 16 m/s, where the vortex shedding noise and the boundary-layer instability
noise coexisted. This, however, will be left as a future topic.
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