
PHYSICAL REVIEW FLUIDS 7, 094302 (2022)

Interaction of a rigid buoyant sphere and a deforming bubble with a vortex
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In bubbly turbulent flows, the deformation of the bubble is known to play an important
role in the interaction between the carrier phase and the dispersed phase. In the present
paper, we experimentally study an idealized version of the problem where we look at
the interaction of a deforming air bubble (nonzero Weber number) and a rigid buoyant
particle (zero Weber number) with a single vortex ring (in water) for a large range of
ring-circulation-based Reynolds numbers (Re = �/ν=6000–67 300; �=ring circulation,
ν=kinematic viscosity of water). We are able to obtain the particle to fluid density
ratio (ρparticle/ρwater ≈ 0.008) to be very low and of the same order as that of the bubble
(ρbubble/ρwater ≈ 0.001), with the main difference being the distinct difference in their
deformability. The buoyant low density (rigid) particle and the deforming bubble are
directly engulfed into the core of the vortex ring and enable measurements of the effects
of particles or bubbles on the vortex ring. On the particle (and bubble) dynamics side,
distinct differences can be seen right from the capture phase, as unlike the rigid particle,
the bubble undergoes a large axial elongation and, consequently, a quicker capture than the
particle. After capture by the ring, the bubble experiences an azimuthal pressure gradient,
which leads to its elongation into a thin long bubble whose diameter is relatively small
compared to the vortex core size. In sharp contrast, the particle does not deform and
remains effectively localized along the rings azimuthal direction. These differences in
the shape of the bubble and particle within the ring lead to distinct differences in the
ring’s convection speed, azimuthal vorticity, and enstrophy at later times. In particular,
the measurements indicate that the localized large perturbation to the vorticity in the
rigid particle case (an equivalent of a rigid bubble, zero Weber number) leads to a larger
disruption of the vortex ring as seen in terms of higher reduction in the rings convection
speed and azimuthal enstrophy than for the deforming bubble (nonzero Weber number)
case. These results could have implications in bubbly turbulent flows such as in bubble
drag reduction (BDR), where many studies [like Van Gils et al., J. Fluid Mech. 722, 317
(2013)] indicate that deforming bubbles are better for drag reduction than nondeforming
bubbles at higher flow Re, where the dominant mechanism is the lifting of structures away
from the wall. The present results suggest that in cases where vortex disruption is the
primary mechanism for BDR [for example, at lower flow Re, Sugiyama et al., J. Fluid
Mech. 608, 21 (2008)], better drag reduction would occur with nondeforming bubbles.
The current study thus brings us insight into the role of deformability in the interaction
of bubbles with a vortical structure, which could be important in helping us model and
understand bubble-turbulence interactions.
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I. INTRODUCTION

Turbulent dispersed multiphase flows are common in numerous engineering and environmental
applications and have been studied for decades (Balachandar and Eaton [1]). Typical examples of
such flows are the dispersion of particles or bubbles in chemical reactors, bubbles at the ocean
surfaces and mixing layers, dispersed pollutants in the atmosphere, and when bubbles are injected
into a water boundary layer for drag reduction. In these flows, the presence and deformation of
bubbles or particles can have a dramatic influence on the mass, momentum and energy transfer of the
continuous phase flow fields and vice versa (see, for example, Refs. [1–4]). Although the turbulence
modulation by the dispersed phase has been carried out by several researchers, as discussed in many
reviews [1,2,5], the mechanisms behind turbulence modulation are not completely understood due
to the complex nature of the interaction among the primary and the dispersed (secondary) phases. In
their review article, Balachandar and Eaton [1] stated that “mechanisms of turbulence modulation
and their parametric dependence are poorly understood and are wide open for fundamental
investigation.” They suggested that to improve our understanding of these turbulent dispersed
flows, experimental techniques proficient in yielding simultaneous measurements of both the carrier
and dispersed phases (bubbles or particles) should be developed and need to be used for further
investigations. Driven by this motivation and the often discussed role of bubble deformability in
the interactions, in the present paper, we experimentally study an idealized version of the problem
where we look at the interaction of a deforming air bubble and a rigid buoyant particle (an equivalent
of a rigid bubble) with a single vortex ring (in water), with the broad focus being on understanding
the role of the bubble’s deformability in these interactions.

In bubbly turbulent flows, the deformation (and breakup) of bubbles is known to play a critical
role in the mass, momentum, and energy transport between the primary (carrier) phase and the
bubbles [1,6]. In these flows, the deformation and possible breakup of a bubble, as discussed in
many studies [7,8], depends on the potential of the hydrodynamic forces exerted by the surrounding
fluid to deform the bubble against surface tension forces [8]. Several studies have also investigated
the role of deforming and nondeforming bubbles on the dynamics of the local and the instantaneous
properties of flow turbulence [6,9,10]. For example, in vertical channel bubbly turbulent flows, Lu
and Tryggvason [6] and Dabiri et al. [10] reported differences in bubble void fraction distribution
between deformable and rigid bubbles, and they attributed this to bubble deformation causing
differences in the lift force on the bubble [11]. Also, they reported differences in the carrier phase
flow turbulence modulation between deforming and nondeforming bubbles. For example, Bunner
and Tryggvason [9] in their direct numerical simulation (DNS) study of bubbles in a homogeneous
turbulent vertical channel shear flow reported larger velocity fluctuations in the carrier phase fluid by
deforming bubbles than (nearly) rigid bubbles. These studies clearly show that the bubble’s deforma-
bility could significantly affect the overall characteristics of the flow. Nondeforming bubbles in a
bubbly turbulent flow are important in a few different contexts (studies). These include numerical
studies where the interactions with nondeforming bubbles are investigated using the point bubble
approach [12,13], cases where the bubbles are very small (low Weber numbers) [14,15], and in van
den Berg et al. [16] due to the actual presence of buoyant rigid particles in Taylor-Couette flow.

Several studies have investigated the effects of bubbles on the integral properties of turbulence,
such as the structure-function, acceleration probability density function, energy redistribution, and
scaling laws [17,18]. Mazzitelli et al. [17] in their study on the effect of microbubbles (nondeform-
ing) on the distribution of energy at different scales in the flow reported a reduction in energy at
the large scales and an increase at the small scales induced by the bubbles interacting with vortices.
In free shear flows, for example, in a bubbly mixing layer, as reported by Climent and Magnaudet
[19], the presence of bubbles (nondeforming) could significantly affect the large-scale coherent
structures present in the flow, which in turn causes meandering of the large-scale structures in
the lateral direction and an increase in the rate of spreading of the mixing layers. One practical
application of bubble injection in turbulent shear flows is drag reduction [3,5,20]. Murai [5] and
Van Gils et al. [21] discussed several possible mechanisms involved in bubble drag reduction (BDR)
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FIG. 1. A schematic of a bubble (and buoyant particle) of diameter Db and a vortex ring of diameter 2Ro

and core diameter of 2ao, traveling vertically upward in z direction with velocity uco.

in turbulent shear flows, including (i) nondeforming bubbles disrupting and breaking the coherent
structures [12,22,23], (ii) nondeforming bubbles introducing effective compressibility of the flow
[24], and (iii) deforming bubbles pushing the near-wall high vorticity region away from the wall
[16,21,25]. As discussed by Murai [5], depending on the flow Re, bubble size, and other conditions,
one mechanism could dominate over the other(s). For example, in Taylor-Couette flows, at low Re,
the mechanism for BDR is disruption of the large-scale structures [12,23,26] by bubbles. On the
other hand, at large Re, the primary mechanism is related to bubble deformability [16,21], as the
deforming bubbles push the near-wall high vorticity regions away from the wall [25], caused by
changes in the lift force on the bubble due to its deformation [27].

Turbulent flow consists of eddies or vortices of various length scales [28], with these vortical
structures playing a fundamental role in turbulence. Hence, to understand bubbly turbulent flows,
it is useful to focus on the effects of bubbles on the dynamics of these vortical structures. In
bubbly turbulent flows, the interplay of bubbles with turbulent structures can be seen as many
bubbles interacting with a large set of vortical structures, making such interactions quite complex
to understand. Hence, driven by the motivation to understand the role of bubbles’ deformability
on turbulence modulation, in the present paper, we study an idealized version of the problem by
investigating the interaction of a deforming air bubble and a buoyant rigid particle (a rigid bubble)
with a single water vortex ring (see Fig. 1), with the broad focus being on understanding the role of
bubble’s deformability and nondeformability in vortex ring-bubble interactions.

A few studies have reported the effects of bubbles or solid particles on a vortex ring. Sridhar and
Katz [29] reported that a few microbubbles could distort the vortex ring core, with the core returning
to its initial state after the bubbles escape. The circulation was found to be almost constant, with
about a 20% rise in the core’s peak vorticity. Cihonski et al. [30] performed a DNS of the Sridhar
and Katz [29] configuration and showed that the bubble-induced reaction force on the liquid is
very small and hence unable to distort the core. The numerical simulation by Finn et al. [31] of
bubble entrainment and interaction with a 2D vortex found vortex decay by the bubble-induced local
reaction forces. Ferrante and Elghobashi [32], in their numerical simulations on minute microbubble
interactions with a Taylor-Green vortex, observed bubbles settling in the core’s high enstrophy
region, causing vorticity reduction due to positive local divergence and enstrophy reduction in
the highest enstrophy region. More recently, Jha and Govardhan [33] and Biswas and Govardhan
[34–36] experimentally investigated a vortex-ring interaction with single and multiple bubbles,
respectively. At low Weber number (We), they reported fragmentation of the vortex core, a large
reduction in ring convection speed, azimuthal enstrophy, and peak vorticity, while the circulation
remained broadly conserved. Very recently, Foronda-Trillo et al. [37] numerically investigated the
effects of bubble to vortex-size ratio and Weber number on the breakup of an air bubble that is
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FIG. 2. Drag coefficient (C̃D) of freely rising bubbles (for bubble diameter < 1.5 mm): A comparison is
shown between the present results in tap water (contaminated) with an empirical relation for a rigid sphere
from Clift et al. [48], experimental results for contaminated bubbles (Takagi et al. [49]), numerical results for
a clean bubble (Mei et al. [52]), and experimental results for clean bubbles (Takagi et al. [49], Duineveld [50],
Tagawa et al. [51]).

colliding with a transitional vortex ring. In their 3D simulation, they reported reduction in azimuthal
enstrophy after interaction with the bubble, although the overall enstrophy remained nearly constant.

On the vortex-ring interaction with solid particles, very few studies have been reported so far.
For example, Uchiyama and Yagami [38] numerically studied collision between a gas vortex ring
and small glass particles that are considerably heavier than the gas. In this process, the strength and
convection velocity of the vortex ring was found to be reduced. Domon et al. [39] experimentally
studied the transport of solid particles by a vortex ring, and observed reduction in the convection
speed of the vortex ring compared to the no-particle case, and they speculated that this was due to
changes in the ring’s properties.

In the present paper, we experimentally investigate the similarities and differences between the
interaction of a single deforming bubble with a vortex ring and that of a single buoyant rigid
spherical particle (an equivalent of a rigid bubble; surface tension, σ → ∞) with a single vortex ring.
In both cases, the bubble (and particle) size (Db) is of the order of the ring core diameter (Db/2ao ≈
0.8 to 1.4; ao=vortex core radius), and the ring has a nondimensional core radius (ao/Ro; Ro=vortex
ring radius) of about 0.2, considered to be a thin core vortex ring [40]. The present experiments
are carried out in tap water, and thus, the air-liquid interface may effectively be considered to
correspond to the no-slip boundary condition due to the presence of impurities (see Fig. 2). We are
experimentally able to obtain the density ratio of the rigid particle (ρparticle/ρwater ≈ 0.008) to be very
small and close to the deforming air bubble (ρbubble/ρwater ≈ 0.001). Although there is a difference
between the two cases, the variation in density is small compared to the displaced fluid density
(0.7% of fluid density), and a quick calculation of the buoyant energy contribution to the ring from
the bubble and particle as a percentage of the ring energy [41] indicates that they are relatively small
(about 9% even at the lowest ring Re of 6000), with a small variation (0.7%) between the bubble
and particle. Hence, we feel that it will not lead to any significant differences in the ring dynamics
during the interactions. Therefore, the main difference between the bubble and the particle cases
studied would be the deformability of the bubble.

In these interactions, the parameters quantifying the vortex ring include the ring radius (Ro),
its core radius (ao) being represented in terms of the nondimensional core thickness (ao/Ro), and
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the ring circulation (�)-based Reynolds number, Re = �/ν (ν=kinematic viscosity). On the bubble
(particle) side, it is the rigid buoyant spherical particle’s diameter and the deforming bubble’s equiv-
alent diameter Db. In terms of the ring-bubble (particle) interactions, the coupled parameters are the
bubble (particle) to ring core volume ratio [VR = (πD3

b/6)/(2π2Roa2
o)] or the bubble (particle) to

ring core diameter ratio (Db/2ao), and ring-circulation-based Weber number (We), defined along
the lines of Choi et al. [42], as We=�P/(σ/Db), where �P= 0.87ρwater(�/2πao)2 is the pressure
difference between the vortex core center and the ambient and σ is the surface tension ≈ 0.072
Nm−1. In the present paper, the bubble (particle) to ring core volume ratio (VR) was varied between
0.02 to 0.1 corresponding to Db/2ao values between 0.8 and 1.4, although the main focus of the
paper is on the Db/2ao of the 1.4 case.

In bubbly turbulent flows, the strength of the vortical structures can vary considerably, and hence,
in the present paper, the vortex ring strength in terms of its circulation (�)-based Re is varied. It
should be noted that the interaction of a vortex ring with a rigid buoyant particle corresponds to a
nondeforming bubble with We=0, while the case of a deforming bubble corresponds to We > 0. In
particular, we focus our attention on the differences between the two cases to help us understand the
importance of bubble deformability on the interaction processes between the bubble and the ring,
including the capture dynamics, the postcapture dynamics within the ring, and from the vortex ring
side, on the ring diameter’s growth, its deformation, propagation speed, azimuthal vorticity, and
azimuthal enstrophy. In this paper, we directly contrast the interaction of a rigid and deformable
bubble with a vortical structure.

The layout of this paper is as follows. In Sec. II, we discuss the experimental setup and
methodologies adopted to measure different aspects of the bubble and particle dynamics and vortex
ring dynamics. Following this, in Sec. III, we contrast the bubble and particle capture dynamics
and their motion within the vortex core. In Sec. IV, from the vortex ring dynamics side, we discuss
the differences and similarities between the effects of bubble and particle on the ring’s propagation
speed, ring diameter, deformation of the ring quantified by the ring’s aspect ratio, modulation of the
vortex core azimuthal vorticity distribution including integral measures of it such as the circulation
and azimuthal enstrophy. The conclusions from the paper are then summarized in Sec. V.

II. EXPERIMENTAL METHODS

For the studies, a vortex ring was generated in a transparent water tank (see Fig. 3) by impulsively
pushing a slug of water through a ring generator (a circular nozzle) with a diameter (DG) of 15 mm
using a piston-cylinder arrangement (for details, see Jha and Govardhan [33]). The nondimensional
piston stroke length LP/DG was always kept lower than 4 to avoid any trailing jet [43] (LP is the
piston stroke length). The vortex rings thus formed had a relatively thin core with a nondimensional
core radius (ao/Ro) of about 0.2 (ao=core radius, Ro=ring radius) (see Table I). The generated
ring traveled vertically upward with a circulation strength (�), which was varied by changing the
piston velocity profile to obtain a wide range of ring Re (= �/ν) of 6000–67 300, covering laminar,
transitional, and turbulent regimes [44]. The ring was characterized by its circulation (�), ring
radius (Ro), and core radius (ao), all obtained from time-resolved particle image velocimetry (PIV)
measurements (for details of PIV measurements, refer to Refs. [33,34]). Vortex ring circulation
(�) was measured using the surface integral of azimuthal vorticity (

∫
ω dA) taken over a surface

enclosed by a large closed loop enclosing the vortex core. The radius of the vortex ring (Ro) and
its core (ao) were found from the vertical component of velocity measured along a horizontal line
joining the center of both cores (Sullivan et al. [45]) after the complete formation of the vortex ring.
All the experiments reported here were performed after the vortex ring was fully formed.

The deforming bubble and buoyant particle were released adjacent to the vortex ring generator
with both the bubble and particle interacting with the ring as they convected vertically upward. The
bubble (particle) studied had a diameter (Db) of approximately 5.7 mm (in most of the cases),
with the particle being spherical and the bubble having an equivalent diameter of 5.7 mm, as
estimated from size measurements from different views. Studies were also done with smaller Db
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FIG. 3. Schematic of the side view of the present experimental setup for a single bubble (particle) interact-
ing with a vortex ring. A piston-cylinder arrangement was used to generate the vortex ring and a bubble (and
buoyant particle) was released near the vortex ring. The vortex having a diameter 2Ro and core diameter 2ao,
while convecting upward with a convection speed of uco, captures the bubble (particle) with diameter Db. The
dynamics of the interactions were recorded from both the side- and top-view visualizations.

of 4.4 mm and 3.1 mm to investigate the effects of bubble (particle) size on the interactions.
Before conducting experiments on the interaction of the vortex ring and the bubble, the bubble
size was measured independently from zoomed-in visualizations of the bubble immediately after its
pinch-off. From these experiments, the (equivalent) spherical bubble diameter (Db) was calculated
from measurements taken in two perpendicular planes. This (equivalent) bubble diameter was then
averaged over multiple runs to obtain the nominal equivalent spherical bubble diameter (Db). This
equivalent diameter was found to differ by less than 2% between different runs. After release, the
buoyant bubble (particle) moved upward and was subsequently pulled into the vortex ring core

TABLE I. Table shows different nondimensional numbers before interacting with a bubble (particle).

Re ao/Ro Db/2ao VR Weparticle Webubble

6000 0.19 1.47 0.12 0 12
13 200 0.19 1.47 0.12 0 46
25 800 0.20 1.41 0.11 0 160
39 900 0.22 1.36 0.10 0 321
56 700 0.22 1.36 0.10 0 601
67 300 0.22 1.36 0.10 0 763
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due to the low pressure within the core, and the interaction begins. It may be noted here that in
these interactions, the modulations in the vortex ring dynamics and bubble dynamics depends on
the strength of the vortex ring (Re = �/ν) and on the bubble to vortex size ratio (Db/2ao), and
both these effects are studied in the present paper. All the bubble sizes studied in the present paper
fall nominally in the wobbly bubble regime (Tripathi et al. [46]) for a freely rising bubble case.
However, in the present interaction cases, the nominal bubble regime in free rise does not seem to
be important, as the results indicate that the bubble is rapidly pulled in toward the low-pressure ring
core, with this resulting in the deformation of the bubble into a well-defined bullet-shaped nearly
axisymmetric form. During the capture process, and later within the ring, the dynamics of the bubble
is thus mainly governed by the relatively strong effects that the ring has on the bubble and not by the
bubble regime in the free rising bubble case. The experiments were carried out in tap water, where,
due to the presence of impurities, the air-liquid interface may effectively be considered to correspond
to the no-slip boundary condition (Magnaudet and Eames [27], Takagi and Matsumoto [47]). Before
conducting experiments on ring-bubble (particle) interactions, the effective boundary condition at
the air-water interface (for the bubble) was checked by measuring the drag coefficient of freely
rising small bubbles in the tap water used for the experiments. This was done by releasing small
bubbles with equivalent diameters smaller than 1.5 mm in the same water, and the resulting drag
coefficients (C̃D) obtained from measured terminal velocities are shown in Fig. 2 as a function of the
bubble Reynolds number (ReB,T ). Also shown in the plot is the empirical relation for a rigid sphere
(Clift et al. [48]), results for bubbles in contaminated water (Takagi et al. [49]), bubbles in clean
water (both experimental (Duineveld [50]; Takagi et al. [49]; Tagawa et al. [51]), and numerical
(Mei et al. [52])). The comparison shows that the present results clearly lie along the contaminated
water (rigid sphere) drag line and are very distinct from the drag on bubbles in clean water. This
indicates that due to contamination present in the tap water used, the boundary condition at the
air-water interface (for the bubble) can be regarded as a no-slip one like on a rigid sphere. However,
in the ring-bubble interactions, the bubble is free to deform during the interactions as seen in the
visualizations in the following section. In the case of the buoyant particle, a low relative density
was a critical requirement, and this was achieved by making the particle from expanded polystyrene
material, which has a density of approximately 8 kg/m3, and as required does not deform during
the interactions with the ring. It may be noted that the surface tension of the tap water used was
measured and found to be approximately 0.072 Nm−1 at room temperature.

The main nondimensional parameters in this paper are the ring-circulation-based Weber numbers
(We), defined along the lines of Choi et al. [42], as We=�P/(σ/Db), the bubble (particle) to
ring core volume ratio [VR = (πD3

b/6)/(2π2Roa2
o)] and bubble (particle) to ring core diameter

ratio (Db/2ao) (see details in Table I), where �P = 0.87ρwater(�/2πao)2 is the pressure difference
between the vortex core and the ambient and σ = 0.072 Nm−1 is the surface tension of water. As
seen in Table I, although there are variations caused by ring Re and its effects on the core size (ao),
broadly Db/2ao and VR are kept approximately fixed at 1.4 and 0.1, respectively, corresponding
to the Db of the 5.7 mm bubble (particle) case. The different stages of the ring-bubble (-particle)
interactions were captured by high-speed imaging of the side view using shadowgraphy and through
direct imaging of the top view of the interactions, both using a Photron SA5 camera. These views
were captured separately due to different illumination requirements, after ensuring that the broad
features remain repeatable and similar. During these interactions, to visualize the ring, microbubbles
were generated through electrolysis at the vortex generator tip, with these microbubbles being
seen in Fig. 4. These bubbles were much smaller then the millmeter-sized main bubble (particle)
of diameter Db and the core radius ao, and therefore their impacts on the broad features of the
ring are expected to be negligible. This was also verified by comparing the convection speed of
the ring measured using the microbubbles with a separate set of measurements done using dye
visualizations, and no perceivable difference in convection speed was found due to the presence
of the microbubbles. Also, to verify that the tracer microbubbles were reasonably close to the
vortex core center, the distance between the left and right core centers was measured using PIV
(in the absence of microbubbles) and compared with the one measured from the visualizations
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( ) SideI

( ) SideI

( II) SideI
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FIG. 4. Time sequence of images of the side view and top view visualizations of a bubble (particle)
interacting with a single (a) laminar (Re=6000), and (b) turbulent (Re=25 800) vortex ring. As seen in the
figure, the bubble undergoes large elongation before and after capture by the ring and breaks into several
smaller bubbles within the ring. On the other hand, as expected, the rigid particle does not deform. Here, the
nondimensional times (tuco/Ro) corresponding to the instances shown are (i) 2.4, (ii) 2.59, (iii) 3.89, and (iv)
5.9, respectively. In all cases shown, Db/2ao ≈ 1.4.

with microbubbles. Again, no perceivable difference was found between these two measurements,
indicating that the position of these microbubbles do reasonably represent the core center. The
velocity and vorticity fields were obtained by time-resolved PIV (TRPIV) at a high repetition rate
using a LDY-301 laser (for details, see Ref. [33]). The initial convection speed of the vortex ring (uco)
and the initial ring radius (Ro) just before capture of the particle (bubble) were used to normalize the
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dimensional time (t), the ring’s vertical position (z), and the azimuthal vorticity (ω). For each of the
experiments with and without a bubble (particle), a minimum of three repetitions of the experiments
were carried out, and the average value of these is shown in plots in the following sections, along
with vertical bars to indicate the variation between the runs.

III. BUBBLE (PARTICLE) DYNAMICS

In this section, we present and contrast the bubble dynamics and particle dynamics during their
interactions with the vortex ring. This include the process of bubble (particle) capture by the ring
and, postcapture, their motions within the ring for a large range of vortex ring Re (≈6000 to
67 300). We begin by presenting in Fig. 4 the high-speed imaging of a typical interaction of a
deforming bubble (We > 0) and a rigid buoyant particle (a nondeforming bubble, We=0) with a
laminar [Re=6000 in Fig. 4(a)] and a turbulent vortex ring [Re=25 800 in Fig. 4(b)]. Both cases
correspond to Db/2ao ≈ 1.4, which is the focus of the present paper, with the effect of variations
in Db/2ao being discussed later in Sec. IV E (Fig. 14). In each case, both the side view and top
view of the interactions are shown to give a better feel of the interactions. These two views are
captured separately due to different illumination requirements after making sure that the broad
features remain the same. We now directly focus on contrasting the bubble and the particle dynamics
in their interactions with the vortex ring. In Fig. 4, in both the laminar (Re=6000) and turbulent
(Re=25 800) ring-bubble (-particle) interaction cases, the first image in the sequence shows the
bubble (particle) outside the ring, with the subsequent images showing the capture of the bubble
(particle) by the vortex ring due to the low pressure within the vortex core. It may be noted here
that, although there is a possibility that the initial position of the bubble (particle) is also a parameter,
our experimental results indicate that irrespective of the initial position of the bubble (particle), the
vortex ring dynamics remain broadly the same from the instant of bubble (particle) capture by the
ring. The time of capture of the bubble (particle) by the ring is, however, dependent on the initial
location due to the larger distance that the bubble (particle) has to travel, and hence the capture
time discussed in the next subsection does have a well-defined initial radial location (3ao) to enable
uniform comparison across cases. The fact that the initial location is not important may also be seen
from the model for the capture time of a bubble (particle) by a thin vortex ring (discussed in the
next subsection), where due to the negligible inertia of the bubble (particle), there is effectively a
radial force balance between the inward pressure force and the outward drag force that completely
determines the radial bubble (particle) velocity at any given radial location, irrespective of the initial
bubble (particle) location.

Now, the fact that the buoyant low density (rigid) particle and (deforming) bubble are directly
captured by the vortex ring enables measurements of the effects of the particle and bubble on
the vortex ring. During the capture phase and, subsequently, within the vortex ring, the bubble
deformation is apparent in the bubble case, with it being stretched axially before capture and
azimuthally after capture within the ring, the latter due to the pressure gradients within the core
after capture (Jha and Govardhan [33]). This azimuthal bubble elongation within the ring after
capture leads to the formation of a long thin bubble thread along the core. On the other hand, as
expected, the rigid particle before and after capture does not deform, although the capture happens
in a qualitatively similar way due to the comparatively low relative density of the buoyant particle.
Unlike the bubble elongating and breaking within the ring postcapture, the rigid particle does not
deform and remains effectively localized along the rings azimuthal direction. Also, looking at the
top-view visualization images, it is clear that as the ring strength (Re) is increased, the number of
broken bubbles also increases. During the ring-bubble (-particle) interactions, these differences in
the shape of the bubble and the particle lead to distinct differences in the ring convection speed,
azimuthal vorticity, and enstrophy, and will be discussed in the following section. During this
entire ring-bubble (-particle) interaction time, while the ring convects vertically upward (z) with
a convection speed of uc, the velocity and vorticity fields are obtained from PIV at a high repetition
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rate. In this section, we present and contrast the bubble dynamics and particle dynamics during their
interactions with the vortex ring.

A. Bubble (particle) capture

In bubbly turbulent flows, the preferential concentration of bubbles is governed by the probability
of capture of these bubbles by the vortical regions, which in turn would decide the interaction
between these bubbles and vortices, and the modulation of the global flow properties. Balachandar
and Eaton [1] in their review discuss the preferential concentration of particles, droplets, and bubbles
in turbulent flows and their importance in determining the dynamics of the carrier phase flow, and
state that there have been relatively fewer experimental studies of the preferential concentration
of bubbles compared to particles and hence recommend further investigations. Driven by this
motivation, in the present paper, along with bubble-induced modulation of a vortex in the next
section, we also investigate the effects of bubble’s deformability on the bubble capture process of
the vortex ring.

In the conceptually simple configuration of vortex-bubble interactions, the dynamics of bubble
capture by a vortex has been discussed by a few previous studies [31,33,53]. In the present paper, we
directly focus on the contrast between the capture of a deforming bubble and a rigid particle (rigid
bubble) to understand the effects of a bubble’s deformability on the capture process. As mentioned
earlier, in both the bubble and particle cases in our study, the ratio of the bubble (particle) diameter to
the core diameter (Db/2ao) is maintained to be approximately 1.4. As seen in Fig. 4, the interaction
between the vortex ring and the bubble (particle) begins with its capture by the ring. As the bubble
(particle) comes close to the vortex ring, the low pressure within the vortex core induces a motion
of the bubble (particle) that leads to their spiraling motion into the vortex core, as seen in Figs. 4(a)
and 4(b). During this process, unlike the particle that remains undeformed, the bubble experiences
a large elongation as seen in Figs. 4(a)(I)(ii) and 4(b)(I)(ii), and the bubble reaches a radial position
within the vortex core, where it is in radial equilibrium, with any subsequent motion (deformation)
being restricted only to the azimuthal direction.

An important quantity related to the capture process is the bubble (particle)’s capture time (tc)
and, in the present context, we compare the capture times of a deforming bubble and nondeforming
particle, the latter being relatively unstudied in the literature. Here, the capture time is defined as the
time the bubble (particle) takes to travel from r = 3ao to r≈ao/2, where r is the radial location of the
bubble center from the center of the vortex core similar to the definition in Oweis et al. [53]. Here,
the reference radial location r=0 is taken at the center of the core. We experimentally measure this
capture time (tc) from time sequences of the bubble (particle) visualization (as in Fig. 4) for different
ring Reynolds numbers. This is summarized in Fig. 5(a) by showing the radial location (r/ao) of the
bubble (particle) as a function of time for a laminar (Re=6000) and turbulent (Re=25 800) ring, and
in both cases, the deforming bubble is seen to move more rapidly to the center of the vortex core,
with the capture time (tc) in the deforming bubble cases being roughly half of the nondeforming
(particle) value in both the laminar and turbulent ring cases. In Fig. 5 and the subsequent figures in
the paper, rigid particle (P) and deforming bubble (B) are subscripted by L and T, and these represent
a laminar (Re=6000) and a turbulent (Re=25 800) ring case, respectively.

To get a broader view of the contrast in capture times (tc) of the bubble and the particle, the
normalized capture times (tcuco/Ro) of the bubble and particle are shown in Fig. 5(b) for all the Re
cases studied, with the variation between repetitions of experiments shown by the uncertainty bars.
We can see that the capture time for the particle is considerably larger than the deforming bubble
in all the Re cases studied. The smaller capture time of the deforming bubble is due to the axial
deformation of the bubble during the capture, which leads to a smaller drag on the deforming bubble
than the rigid particle. Further, as seen in the figure, it is clear that in the deforming bubble case,
tcuco/Ro reduces considerably with increasing Re, due to the larger axial deformation of the bubble
during its capture phase at higher ring strengths (ring Re) as seen in the (side view) visualizations of
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FIG. 5. (a) The nondimensional radial distance (r/ao) of the bubble (particle) from the vortex core center
with time (t ′uco/Ro) as the bubble (particle) travels from r/ao=3 to r/ao ≈1/2, shown for a laminar (Re=6000)
and turbulent (Re=25 800) ring; here, t ′ is the dimensional time and is taken to be zero when the bubble
(particle) is at r/ao=3. (b) The variation of the nondimensional capture time (tcuco/Ro) with ring Re for the
particle and bubble cases. The capture time computed from a simplified model initially proposed by Oweis
et al. [53] is also shown. In this figure and subsequent figures in the text, rigid particle (P) and deforming
bubble (B) are subscripted by L and T, and these represent a laminar (Re=6000) and a turbulent (Re=25 800)
ring case, respectively.

the interaction. In contrast, in the particle case, the reduction in tcuco/Ro with increasing Re is very
small and is related purely to the direct Re effect, as there is no deformation.

A simple model for the capture time of bubble (particle) may be obtained from a radial force
balance model as proposed by Oweis et al. [53]. In this model, the capture time is computed from a
radial force balance between the drag force (FD) resisting the inward radial motion and the pressure
gradient induced inwards pull (FP) on the bubble (particle). In the force balance, the bubble (particle)
acceleration and the shear lift force are neglected, as these are small compared to FP and FD due
to bubble’s (particle’s) low density and the negligible vorticity outside the vortex core, respectively.
Therefore, the radial force balance on the bubble (particle) simplifies to the balance between the
pressure gradient induced force (FP ) and the drag force (FD) on the bubble (particle). Further, with
the additional assumption that the largest component of bubble (particle) velocity is in the radial
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FIG. 6. The variation of the (a) sphericity 	 and (b) crosswise sphericity 	⊥, with ring Re for deforming
bubble and rigid particle cases. (c) The drag coefficient (CD) variation with ring Re for the spherical particle and
elongated bubble cases during their capture process, obtained from the expressions of Haberman and Morton
[54] and Hölzer and Sommerfeld [55], the latter based on the measured elongated shape.

direction (ub,r ), the radial force balance can be expressed as

ρu2
θVb

r
= 1

2
ρCD

(π

4

)
D2

bu2
b,r . (1)

In the above expression [Eq. (1)], uθ is the bubble’s (particle’s) azimuthal velocity, and Vb is the
volume of the bubble (particle). In the present case, as we have a relatively thin vortex core, its
azimuthal velocity (uθ ) may be approximated by the induced velocity of a line Gaussian vortex.
The bubble’s (particle’s) radial velocity (ub,r) may be obtained from the above radial equilibrium
equation, taking care to use an appropriate expression for CD of the bubble (particle), which is valid
over the range of bubble (and particle) Reynolds numbers (Reb = ub,rDb/ν) experienced during the
capture process. To find the capture time (tc) from the model, we perform an integration of the
obtained radial velocity (ub,r ) from bubble’s (and particle’s) initial radial location of r = 3ao to
r=ao/2. In Oweis et al. [53] and Jha and Govardhan [33], the CD for a bubble was obtained from
standard expressions for the drag on a sphere at low (Stokes drag [48]) and at moderate Re [54].

As seen in the present visualizations for the deforming bubble earlier, the bubble shape can be
far from spherical and, hence, the drag force based on a sphere is not really valid for a deformed
bubble. Therefore, to account for this deformation of the bubble, we use an expression for CD of an
elongated particle from Hölzer and Sommerfeld [55] given as

CD = (8/Reb)(1/
√

	⊥)+(16/Reb)(1/
√

	)+(3/
√

Reb)(1/	3/4)+0.42100.4(−log	)0.2
(1/	⊥), (2)

where 	 and 	⊥ are the sphericity and crosswise sphericity of the elongated bubble during the
capture process. The sphericity (	) is defined as the ratio of the surface area of the volume
equivalent spherical bubble to the surface area of the elongated bubble, and the crosswise sphericity
(	⊥) is the ratio of the cross-sectional area of the volume equivalent spherical bubble and the
projected cross sectional area of the elongated bubble [55], both evaluated from visualizations of
the bubble capture process at each of the ring Re cases studied. In Figs. 6(a) and 6(b), the variation
of 	 and 	⊥ are shown with ring Re, for both the elongated bubble and the spherical particle. For
the particle, both 	 and 	⊥ are 1, as it remains spherical in shape. While, for the bubble, these
changes with increasing ring Re are due to the increasing deformation (elongation) of the bubble,
and consequent reduction in CD. On the other hand, the CD for the nondeforming spherical particle
(rigid bubble) is purely dependent on the Re and is obtained over the required Re range using the
expression [Eq. (3)] from Haberman and Morton [54]:

CD = (24/Reb)(1 + 0.197Re0.63
b + 0.00026Re1.38

b ). (3)

These expressions for CD of both the particle (We=0) and the deforming bubble (We >0) are
valid for the entire range of bubble (and particle) Reynolds number (Reb) in the present paper.
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To evaluate the Reynolds number of the bubble (particle) (Reb) during their capture phase, their
velocity during the capture phase was obtained from the side-view images (as in Fig. 4). To compare
the CD of particle (We=0) and bubble (We > 0), the CD values obtained from the above-mentioned
standard expressions [Eqs. (2) and (3)] are shown with ring Re in Fig. 6(c). We can see that the
CD of the elongated bubble (We >0) is significantly smaller than that of the particle (We=0) that
is approximately 0.4 over the range of ring Re studied. In contrast, for the deforming bubble, CD

is significantly smaller than a particle and found to be varying with ring Re due to the bubbles
increasing axial deformation with ring Re. For example, CD ≈0.35 at Re=6000 and CD ≈0.2 at
Re=67 300.

In Fig. 5(b), the capture time obtained from the model (tc,model) is plotted with Re, and we can see
that there is a significant reduction in tc,model with increasing Re for the deforming bubble (We > 0).
This decrease in tc,model is due to the reduction in CD of the deforming bubble leading to its smaller
capture time. On the other hand, for the rigid particle (We=0), as we can see in Fig. 6, the CD remains
nearly the same at all Re, and hence, the capture time obtained from the model remains relatively
constant with increasing Re. In Fig. 5(b), it can be noticed that although the model correctly shows
a significantly reduced capture time for the deforming bubble compared to the rigid particle, it
should be noted that there is a considerable difference in capture time between the model and the
experimentally measured values. This is likely due to several factors such as the effects of added
mass and lift forces that become more important as the bubble (and particle) approach the vortex
core (Oweis et al. [53]), besides the fact that the bubble (and particle) modify the core vorticity
distribution.

The above observations in our idealized study indicate that in bubbly flows there would be a
significantly faster capture of deforming bubbles in vortical regions than nondeforming bubbles
leading to differences in their preferential distribution. This in turn could result in differences in
the global flow properties in deforming and nondeforming bubbly flows in terms of the bubble-flow
interactions and bubble-bubble interactions (such as bubble coalescence).

B. Bubble (particle) dynamics within the vortex ring

We shall now proceed to discuss and compare the dynamics of the bubble and particle within the
vortex ring subsequent to the capture process. We have already seen in Fig. 4 that postcapture, the
bubble elongates azimuthally due to the azimuthal pressure gradient [33] within the core, in contrast
to the particle that remains undeformed. From the top-view visualizations, such as Figs. 4(a)(II)
and 4(b)(II), the bubble’s elongation information as a function of time are obtained until the time
the first breakup of the azimuthally extended bubble occurs. The elongated bubble length (L∗

b) is
shown with time in Fig. 7(a); here, L∗

b=Lb/2πR′, where Lb and 2πR′ are the instantaneous bubble
azimuthal length and the rings instantaneous perimeter, respectively. As we can notice in Fig. 7(a),
at ring Re of 25 800, the elongation is higher and faster at later times compared to the ring with Re
of 6000. In the case of the particle, as expected, no elongation occurs and L∗

b remains constant at
Lb/2πR′=Db/2πR′ ≈0.08 in the given experiment.

During a bubble’s elongation within the vortex ring, the bubble surface develops Rayleigh-
Plateau instability, and the elongated thread after reaching a critical aspect ratio [56] starts breaking
at multiple azimuthal locations, producing many smaller bubbles. These broken bubbles produced
from the elongated bubble thread can undergo further breakup until at later time the breakup process
is completed. In Fig. 7(b), the number of broken bubbles (Nb) as a function of time (tuco/Ro) is
shown at two-ring Reynolds numbers (Re=6000, 25 800). We start by looking at the case of the
laminar Re of 6000, where the elongated bubble undergoes binary breakup. At this Re, these broken
bubbles stay azimuthally, sufficiently far apart within the vortex core, and the broken bubbles in
some cases experience a further binary split that results on average in about three broken bubbles
at larger times. At higher ring Reynolds numbers, for example, in the turbulent Re=25 800 case,
the elongated bubble thread undergoes breakup at multiple (>3) azimuthal locations, and we can
see that the main bubble breaks (Nb increases) into a relatively larger number of broken bubbles,
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FIG. 7. (a) Bubble’s nondimensional azimuthal elongation (L∗
b ) inside the vortex with nondimensional time

(tuco/Ro), shown for a laminar (Re=6000) and turbulent (Re=25 800) ring; here, L∗
b = Lb/2πR′, where Lb is

the instantaneous bubble’s elongated length and 2πR′ is ring’s instantaneous perimeter. Here, rigid particle
(P) and deforming bubble (B) cases are subscripted by L and T, and these represent the laminar and turbulent
cases, respectively. (b) The number of broken bubbles (Nb) inside the vortex ring shown with nondimensional
time (tuco/Ro). (c) The translation of the rigid particle and a broken bubble along the azimuthal direction (θ )
with time (tuco/Ro). (d) The variation in the rate of rotation of the particle (�particle) normalized by the average
angular rotation rate of the core [�core] is shown with time (tuco/Ro). In (c) and (d), top-view images of a particle
within the vortex ring are attached for a better demonstration of the translational and rotational motions.

and these can undergo further breakup and coalescence (Nb decreases at some times). Finally, after
sufficient time, the breakup is complete and a large number of smaller broken bubbles remain within
the vortex core, with the final broken bubble numbers being significantly higher than in the lower Re
(laminar) case, as seen in Fig. 7(b). Now, these broken bubbles within the ring drift azimuthally and
spread to cover a large azimuthal extent, about 80–100% of the ring, whereas the particle remains
intact and slowly drifts azimuthally by about 10–20% of the ring’s circumference. Hence, a particle
(We=0) acts like a localized large perturbation to the ring, while a deforming bubble (We > 0) acts
as a more distributed perturbation to the ring. We shall see that this difference has a profound impact
on the time evolution of the perturbed vortex ring due to capture of the bubble (particle) in the next
section.

Within the vortex ring, the broken bubbles and the rigid particle undergo azimuthal drift and
this is measured from the top view imaging of the interaction. The azimuthal (θ ) translation of the
particle and a (broken) bubble with time (tuco/Ro) is shown in Fig. 7(c) along with a top view image
of a particle within a ring attached for a better illustration. In Fig. 7(c), θ=0 represents the particle
capture location along the vortex ring’s azimuthal axis, while for the broken bubble, it is taken to
be the azimuthal location where the broken bubble is produced from the breakup of an elongated
bubble thread within the ring. As can be seen in the figure, compared to the particle, a broken bubble
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undergoes comparatively larger azimuthal drift, while the particle remains more localised within the
vortex ring with relatively small azimuthal drift. Now, another interesting quantity to look at is the
rotation of the bubble and the particle within the ring, as we know that during their azimuthal
drift, they will be expected to undergo rotational motion. Similar to translational motion, from the
top-view imaging of the interactions, the rate of rotation of the particle can be easily measured,
while in the case of a bubble, its rotation is not easy to capture and hence is not presented here. The
top view of the interaction shows that the particle undergoes rotation (�particle) about a rotational
axis passing through its center and parallel to the ring’s azimuthal axis; see the top-view image of
Fig. 7(d) for a better representation. In the figure, the rotation rate of the particle after normalising
by the average angular rotation rate of the core (�core) is shown with time (tuco/Ro). As we can see,
there is a reduction in the rate of rotation with time, and this is possibly due to the weakening of the
vortex core from the presence of the particle within the ring which will be discussed further in the
next section.

IV. DYNAMICS OF VORTEX RING INTERACTING WITH BUBBLE/PARTICLE

In this section, we present results from the vortex dynamics side of the interaction with the bubble
(and particle), and again focus our attention on the differences between the deforming bubble case
(We > 0) and the particle (We = 0). In particular, we shall present results on the ring’s radial growth
and deformations, its propagation speed, and the azimuthal vorticity distribution within the cores
during the interaction.

A. Ring growth and deformation

A vortex ring while propagating may slow down due to the growth of the ring’s radius due to
the entrainment of additional ambient fluid into it, which can lead to the ring’s momentum being
shared with increased fluid mass. To understand this, in the present paper, we measure the effects
of the deforming bubble (We > 0) and particle (We=0) on the ring’s radial growth in terms of
its increasing (equivalent) diameter (Dring) and, simultaneously, we measure the deformation of
the ring quantified in terms of the ring’s instantaneous aspect ratio. In the top-view visualization
of the interaction, we see that the asymmetric perturbation caused by the bubble (particle) on
the ring can cause a deformation of the ring into an elliptical one with subsequent oscillatory
axis switching deformations usually seen in elliptic rings. We use the deformed ring perimeter to
define an equivalent circular ring diameter (Dring) with the same perimeter as the deformed ring.
In Figs. 8(a) and 8(b), the (equivalent) diameter and the aspect ratio of the vortex ring are shown
with time at two Re (6000 and 25 800) for both the base and deforming bubble (particle) interaction
cases. In Fig. 8(a), this equivalent diameter (Dring) normalized by the ring’s initial diameter (Dring,O)
just before bubble capture, is shown with time (tuco/Ro). In this plot, the growth of the base
vortex ring’s diameter is found to be around 10% as seen at a later time tuco/Ro ≈25, in both
Reynolds numbers, with the laminar one growing slightly more due to the larger viscous diffusive
entrainment of ambient fluid, as discussed by Maxworthy [57] and Sullivan et al. [58]. In contrast,
the presence of bubble or particle in the laminar case is seen to lead to a drastic increase in the ring
diameter (D∗

ring=Dring/Dring,O) as compared to the base case. As observed in the plot, the deforming
bubble increases D∗

ring significantly more compared to the particle, which is likely due to the bubble
spreading within the ring, and thereby enhancing viscous diffusion induced entrainment. Assuming
the ring holds a constant impulse, as the ring grows bigger, the momentum is shared with more
fluid, which would result in a reduction of the rings velocity as discussed in the next subsection. In
the turbulent ring case, although there is again an increase in diameter, it is much smaller than the
laminar cases.

In bubble and particle-ring interactions, we see that the laminar ring is deformed and takes an
elliptic shape. In contrast, the turbulent interacting rings and of course the base ring cases are seen
to remain nearly circular (aspect ratio, β ≈1). To characterize this, we present in Fig. 8(b) the
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FIG. 8. (a) The variation of the ring-equivalent nondimensional diameter (D∗
ring) with nondimensional time

(tuco/Ro). Here, D∗
ring=Dring/Dring,O ; Dring is ring’s instantaneous diameter and Dring,O is the diameter before

bubble (particle) capture. (b) The variation in aspect ratio (β) of the ring with nondimensional time (tuco/Ro). In
these plots, both the base and interaction cases are shown for a laminar (Re=6000) and turbulent (Re=25 800)
ring. Here, rigid particle (P) and deforming bubble (B) cases are subscripted by L and T, representing a laminar
and a turbulent case, respectively.

variation with time of the aspect ratio (β) of the ring, which we define as the instantaneous ratio of
the major (Dmajor) to minor (Dminor) axis of the deformed vortex ring. As we can see in the figure, in
laminar (Re=6000) cases, both the bubble and particle deform the ring making the aspect ratio (β)
deviate significantly from unity, with the β being larger for the particle, which as seen earlier acts
as a larger asymmetric perturbation to the ring as compared to the bubble that spreads azimuthally
within the ring. In the turbulent ring (Re=25 800) case, no noticeable ring deformation is found to
occur, except for a relatively small deformation (β ≈ 1.05) at the time of particle (bubble) capture
at tuco/Ro ≈2.5. In the large deformation laminar Re cases, it is to be noted that the aspect ratio
does not remain fixed and fluctuates with time, which can affect the ring’s propagation speed. Also,
it may be noted that such oscillatory deformation of the vortex ring can help enhance ambient fluid
mass entrainment into the ring as discussed by Husain and Hussain [59], thus slowing down the
ring’s convection speed as the ring’s momentum is shared with the increased entrained fluid mass.
The significant differences in the vortex ring’s growth and deformation between the low (Re=6000)
and large (Re=25 800) ring Reynolds number cases could possibly be thought of as the influence
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TABLE II. Table shows the buoyant energy contribution from the bubble (particle) as a percentage of the
vortex ring’s energy, at different ring Reynolds numbers.

Bubble Particle
Re Ebuoyant/Ering (%) Ebuoyant/Ering (%)

6000 9.06 8.98
13200 5.55 5.51
25800 3.78 3.75
39900 1.64 1.63
56700 0.87 0.86
67300 0.61 0.60

of the buoyancy of the bubble (particle) relative to the vortex ring energy. To understand this aspect,
we have calculated the energy (Ering) of the base vortex ring at different Re using the relation from
Fraenkel [41], and also calculated the bubble (particle)s buoyant energy (Ebuoyant) contribution to
the vortex ring during its stay within the vortex ring in all the interaction cases. In Table II, the
buoyant energy as a percentage of the ring’s energy [Ebuoyant/Ering (%)] presented for different Re
cases shows that the buoyant energy contribution at Re of 6000 and 25 800 are ≈9% and ≈4% of
the ring energy, which, although different, is not very large. Despite there being no considerable
difference in buoyancy relative to a ring’s energy between these two Re cases, there are still large
differences between these two cases in terms of the ring’s growth and deformation. This indicates
that, rather than buoyancy, the transition of the ring may play a more critical role here.

To summarize this part, we have observed that at low ring Re, the interaction of the ring with
the bubble or particle leads to a large increase in the ring diameter with significant oscillatory
deformations in shape. More importantly, between the bubble and particle cases, the increase in
the equivalent ring diameter by the bubble is more than the particle. On the other hand, the ring
deformation (aspect ratio) is larger in the case of the particle, which appears to be related to
the very asymmetric perturbation caused by the particle as compared to the bubble that spreads
azimuthally within the ring. The resulting oscillatory deformations of the ring can enhance ambient
fluid entrainment into the ring, thus slowing down the ring’s propagation speed as will be discussed
in the next subsection. In contrast, at large Re, in both the deforming bubble and particle (rigid
bubble) interaction cases, the ring’s diameter and aspect ratio broadly remain similar to the base
ring case.

B. Propagation of vortex ring

In bubbly turbulent flows, the presence of the dispersed phase can attenuate the propagation of
the coherent structures, which in turn modulates the turbulence [61]. In the present subsection, we
try to understand and contrast the role of bubble’s deformability on the ring’s propagation for a large
range of ring strengths (Re). So far, we have seen the comparison between the rigid particle (We=0)
and deforming bubble (We > 0) on vortex ring dynamics, including its growth and deformation,
which are likely to have an effect on the ring’s convection speed. We present in Fig. 9(a) the
nondimensional vertical position (z/Ro) as a function of time for the vortex ring as it interacts with
the bubble (or particle) at two vortex ring Reynolds numbers (Re) of 6000 and 25 800. In Fig. 9(a),
our base (without bubble or particle) laminar and turbulent ring position with time data is seen to
collapse and also shows a good match with the model from Fukumoto and Moffatt [60], represented
by the thick dashed line. The interacting case data in the plot includes the entire time of interaction
between the vortex ring and the bubble (particle), starting from the particle’s (bubble’s) entrainment
into the ring, the particle’s azimuthal drift and bubble’s azimuthal expansion and breakup; and,
lastly, as seen in some cases, the particle (broken) bubbles escaping from the ring (seen at low Re
of 6000). It may be noted that the data shown for each of the cases, as shown in Fig. 9(a), are
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FIG. 9. (a) The nondimensional vertical position (z∗=z/Ro) of the vortex ring with nondimensional time
(t∗=tuco/Ro) shown for laminar (Re=6000) and turbulent (Re=25,800) ring base cases and interaction cases
with both bubble and particle. The blue dashed line represents the base ring’s position obtained from the viscous
vortex ring model [60] and shows a good match with the experimental base ring position data. (b) The percent-
age reduction in ring’s convection speed (�uc) with nondimensional time (tuco/Ro) shown for Re=6000 and
25 800, cases. Here, the reduction in convection speed is calculated as �uc(%) = 100 × (ucbase − ucinteract )/ucbase ;
here, uc,base and uc,interact are the base and interaction case ring’s instantaneous convection speed. In the subplot,
�uc (%) obtained at t∗ of 25 is shown for all Re cases studied. In these plots, rigid particle (P) and deforming
bubble (B) are subscripted by L and T, and these represent the laminar and turbulent ring cases, respectively.

obtained from an average of more than three independent runs, with variation between runs being
indicated by uncertainty bars, which is found to be within ≈0.5Ro. Also marked in Fig. 9(a) are
different bubble dynamics events or stages of interaction, as discussed in Jha and Govardhan [33],
to help correlate the ring dynamics to the bubble dynamics discussed earlier, in particular, the initial
interaction referred to as stage I, where the bubbles (particles) are outside the vortex ring, with the
capture time indicated by the dashed line demarcating stages I and II. Following the capture of
the bubble (particle), in stage II, the bubble undergoes elongation and breakup within the ring and
produces a number of smaller bubbles. Finally, another line demarcates the transition to stage III,
where the particles (broken bubbles) are seen leaving the vortex cores.

One of the most striking features seen in Fig. 9(a) is the difference between the ring’s position in
bubble and particle cases at both low Re (6000) and high Re (25 800) cases. At a relatively large ring
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Re of 25 800, in the interaction cases, the ring’s vertical location (z/Ro) in the case of the interacting
bubble case is relatively close to that of the base case, while in the interacting particle case, there
is a more significant reduction in the ring’s speed. These effects are further amplified in the lower
Re of the 6000 ring case. As seen in the plot, both the particle and bubble cause a significant drop
in the convection speed of the ring, as seen at later times, with the reduction in the particle case
being larger than the bubble. This again indicates that the particle is having a larger impact on the
vortex ring dynamics as compared to the bubble. In this lower ring Re, the significant reduction in
the ring’s convection speed is due to the ring being highly perturbed by the bubble and the particle.
To help understand this, in the next subsection, we will present and discuss the modulation of the
azimuthal core vorticity and enstrophy of the ring by the bubble and the particle.

For a better illustration of the comparison of the deforming bubble (We >0) and rigid particle
(rigid bubble, We=0), the percentage reduction in the ring’s convection speed (�uc) as compared to
the base ring cases is calculated with time and shown in Fig. 9(b). Here, the reduction is calculated
as �uc(%)=100 × (uc,base − uc,interact)/uc,base, where uc,base and uc,interact are the base case and
interaction case ring’s instantaneous convection speed. In this plot, �uc for the base ring cases
is presented by the solid thick dashed black line, which corresponds to �uc of zero for the entire
time. Now, focusing on the interaction cases, we can see that the bubble (and particle) reduces the
laminar ring’s propagation more than the turbulent case, and more importantly, given a ring Re,
the particle causes a larger reduction than the bubble. At a later time of tuco/Ro=25, the �uc is
measured for particle and bubble interaction cases for the entire range of ring Re of 6000 to 67 300
studied in the present paper, and this is plotted with Re in the subplot in Fig. 9(b). In this subplot,
we can see a drastic increase in �uc with decrease in Re from large Re values, with a clear contrast
between the bubble and particle cases. It can be seen that at low and intermediate Re, �uc for the
particle case is higher than the bubble. On the other hand, at very large Re (at about Re �40 000),
the ring’s convection speed remains nearly unaffected by both bubble and particle, and hence, we
find that in these cases �uc is approximately zero. Along with the growth in the ring diameter and
the deformation of the vortex ring as already discussed, the slowing down of a vortex ring seen is
likely also affected by the modified vorticity distribution of the vortex core caused by modifications
to the ring core due to the presence of the bubble (particle), which will be discussed in the next
subsection.

C. Azimuthal vorticity

The vortex ring’s propagation speed is an integral effect of the vorticity distribution within it, and
hence, in this section we contrast the similarities and differences between the deforming bubble and
rigid particle (rigid bubble) cases in terms of their effects in modifying the vorticity within the core.
We present the time sequence of the principal azimuthal vorticity fields (ωRo/uco) of the vortex ring
obtained using 2D time-resolved PIV for the case of bubble and particle at vortex ring Re of 6000
and 25 800 in Figs. 10 and 11, respectively. In both figures, the bubble and particle are marked
as a hatched area with a magenta color, and the rigid particle case is shown on the left and the
deforming bubble case on the right. In these plots, at an early time, as seen in the first instant in all
cases, the bubble (particle) are outside the vortex ring. Following this, they are captured by the low
pressure within the core and the interaction begins, as seen in the subsequent time instances, with
clear modifications noticeable in the core caused by the bubble (particle) by the last time instant,
especially in the laminar case in Fig. 10(a).

We shall now contrast the particle and bubble cases in more detail by specifically discussing the
lower Re of 6000 case in Fig. 10, where the effects on the ring are significantly more than at larger Re
as seen in previous sections. As we can see, both the particle [in Fig. 10(a)] and bubble [in Fig. 10(b)]
modifies the core vorticity significantly at later times (tuco/Ro = 13), with the particle and bubble
distorting and breaking the vortex core, with the distortion of the core being significantly larger in
the particle case. It is to be noted that by this time, the convection speed of the vortex ring (discussed
earlier) has substantially decreased compared to the base ring. As we can see in these plots, the rigid
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FIG. 10. Comparison of the time sequence of nondimensional azimuthal vorticity (ωRo/uco) for the inter-
action of (a) particle and (b) bubble with a laminar (Re=6000) vortex ring. In each image, the particle (bubble)
is marked as a hatched area (magenta online). Here, solid and dashed line contours represent positive and
negative vorticity, respectively. The nondimensional time (tuco/Ro) corresponding to each of the images are
2.7, 6.1, and 13, as shown on the left side. The nondimensional azimuthal vorticity contour levels are shown
on the right.

particle seems to reduce the vortex core’s peak vorticity more than the deforming bubble. This may
be explained by the fact that the bubble immediately after capture by the ring elongates azimuthally
within the ring, thereby resulting in the bubble’s cross-sectional area, reducing locally as seen in
the shadowgraphy image in Fig. 4(b)(II)(iii). This stretched-out bubble is also visible in the right
vortex core in the vorticity field in Fig. 10(b)(ii), along with the modifications to the core vorticity
distribution. As the bubble spreads within the vortex core, this results in a smaller local bubble to
core diameter (Delong/2ao ≈0.4) compared to the particle, which has a larger value of Delong/2ao

which remains constant at Db/2ao. Hence, the particle acts as a localized large perturbation to the
vortex core and disrupts the core more than the bubble. The resulting broken core loses its coherence,
and the pressure within the core is no longer low enough to hold the bubble (or particle), and so they
leave the ring. We want to emphasize here that Sridhar and Katz [29] also observed vortex distortion
in their study, but the vortex core regained its initial undistorted state in that case once the bubble
escaped the vortex core. On the other hand, in our case, the effect of the bubble (particle) on the
vortex core is a more lasting one and, as we can see, the core is left in a permanently fragmented
state even after the escape of the bubble (particle).

Such breakup of coherent structures by bubbles (particles) in turbulent flows has been observed
by Sugiyama et al. [12]. In their bubbly Taylor-Couette flow drag reduction study, Sugiyama et al.
[12] observed that at low Re, microbubbles could perturb and break the coherent structures, which
in turn could lead to reduction in overall drag. Jacob et al. [22] also showed that the characteristic
dimension and coherence of the near-wall coherent vortices are reduced by microbubbles (rigid)
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FIG. 11. Comparison of the time sequence of nondimensional azimuthal vorticity (ωRo/uco) for the in-
teraction of (a) particle, and (b) bubble with a turbulent (Re=25 800) vortex ring. The nondimensional time
(tuco/Ro) corresponding to each of the images are 2.7, 6.1, and 14, as shown on the left side. All other markings
are as in Fig. 10.

and leads to a reduction in skin friction drag. The recent study by Zhao et al. [62] on turbulence
modulation by microbubbles (rigid) reported that the near-wall streak intensity is reduced due to the
presence of bubbles and, subsequently, the structures become indistinct. All these studies discuss
suppression of coherent structures by bubbles which are much smaller than the vortical structures.
In the present idealized study where the bubble is of the order of the vortex, we observe that the
vortex is perturbed and disrupted more by a rigid bubble (We=0, an asymmetric perturbation) than
a deforming bubble (We > 0, a distributed perturbation). The present observation thus indicates that
in low Re bubbly turbulent flow drag reduction, where vortex disruption is the primary mechanism
for turbulence attenuation (drag reduction), rigid bubbles could disrupt vortices more efficiently
than deforming bubbles, and could lead to larger attenuation of turbulence, and hence greater drag
reduction.

At the higher ring Re of 25 800 shown in Fig. 11, the vorticity field time sequence in the
particle (bubble) cases show that the vortex core remains broadly intact, with a relatively larger
core deformation by the particle compared to the bubble, which as explained earlier is related to the
fact that the bubble azimuthally expands and hence has a lower local Delong/2ao compared to the
particle. In these cases, as we have already seen in Fig. 9(b), the reduction in the vortex ring’s
convection speed �uc is smaller compared to the lower Re cases, showing that the convection
speed of the ring is much less affected by the bubble compared to the particle, and hence is
closer to the base ring case. These observations in our idealized study indicate that at large Re
turbulent flows, a bubble’s deformability or lack of it would not make any considerable difference
to the disruption of the intense vortical structures present in the flow and hence turbulence atten-
uation through this mechanism would not be an effective one. In such cases, other mechanism(s)
would be dominating for turbulence attenuation (and/or drag reduction). This is broadly consistent
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with previous studies, for example, Taylor-Couette (TC) flow drag reduction (flow Re=103–104)
Sugiyama et al. [12], Murai et al. [14], Spandan et al. [23], where they have reported that with
increasing Re, the structures remain nearly undisrupted by the perturbation induced by the bubbles,
and hence turbulence attenuation and drag reduction (DR) requires other mechanisms. At very large
Re (Re≈105–106) TC flows, the dominating DR mechanism is related to the deformations of the
larger bubbles (larger than Kolmogorov scale) pushing the near-wall high vorticity regions away
from the wall [25].

To summarize this section, we have seen that a rigid bubble (We=0) can disrupt the vortex core
more than a deforming bubble (We > 0) due to its local larger bubble to vortex core diameter ratio
(Db/2ao) as compared to the deforming bubble, which has a smaller Delong/2ao due to its elongation
within the vortex core. This larger disruption of the vortex ring by the rigid bubble reflects in a
higher reduction in the ring’s convection speed, as seen in Fig. 9.

D. Azimuthal enstrophy

As the convection speed of the vortex ring is an integral effect of its vorticity distribution,
hence, one way to look at the physics behind the reduction of convection speed is to investigate
the azimuthal enstrophy. In our case, the azimuthal enstrophy of the vortex ring is measured by
taking an area integral of ω over a large area (E=∫

ω2 dA) around both cores as seen in Fig. 10, to
cover all the vorticity in the core. We begin here by presenting in Fig. 12 the azimuthal enstrophy [in
(a) and (b)] and circulation [in (c) and (d)] as a function of time for a typical particle- (bubble-)ring
interaction case at Re of 6000 (laminar), along with the corresponding base cases. The azimuthal
vorticity contours in this Re, at different times, have already been shown in Figs. 10(a) and 10(b).
Here, the azimuthal enstrophy (E ) is normalized by its initial value (Eo), just before the bubble
(particle) capture, and, similarly, the circulation (�) is normalized by the initial circulation (�o).
We can see the transient nature of he left core (LC), right core (RC), and both core averaged (BC)
nondimensional azimuthal enstrophy (E/Eo) and nondimensional circulation (�/�o) at Re of 6000.
In the interaction cases, the capture of the bubble (particle) takes place at tuco/Ro of about 2.5 and,
after the capture, there is a large drop in enstrophy [in Figs. 12(a) and 12(b)]; this being observed
for both cores. This drop in enstrophy after the capture of the bubble (particle) by the ring results
due to a sharp drop in peak vorticity within the vortex core due to the presence of the large bubble
(particle) at the center of the core. Following this, as the bubble elongates in the axial (along the core)
direction, azimuthal vorticity again increases, and hence the azimuthal enstrophy also increases (as
discussed in Jha and Govardhan [33]). This happens in the relatively short timescale of capture
and the subsequent axial elongation of the bubble. This present enstrophy increase mechanism is
different from Foronda-Trillo et al. [37], where it is attributed to the vortex destabilization triggered
by the engulfment of vorticity from the bubble. On the other hand, in the particle case in the present
paper, immediately after capture, there is a drop in peak core vorticity, and unlike in the bubble case,
as there is no azimuthal elongation of the particle, the peak vorticity keeps dropping (seen in both left
and right core, see Fig. 10), resulting in a steady reduction in azimuthal enstrophy, while circulation
remains nearly the same as the base case. It can be noticed in the figure that immediately after
bubble (particle) capture, the reduction in enstrophy in the right core where the capture takes place,
is higher than the left core. However, with increasing time, this difference becomes lesser, and at
later time (tuco/Ro ≈15), the reduction in both the left and right cores are nearly the same, indicating
that the bubble (particle) affects the ring nearly uniformly at later time. Further, as seen in Fig. 12,
at a later time (tuco/Ro ≈15), the base case has about 10% reduction (E/Eo ≈ 0.9) in azimuthal
enstrophy. The interaction cases have much larger reduction in enstrophy, with the reduction being
more for the particle case (≈ 80% reduction from base case) compared to the bubble case (≈ 60%
reduction compared to the base case).

We have already observed in Fig. 10 that as compared to the bubble, in the particle case, there
is a larger reduction in core peak vorticity, and vorticity is spread over a relatively larger area.
Hence, the azimuthal enstrophy reduction in the particle case is expected to be more than the bubble.
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FIG. 12. (a) and (b) show the nondimensional azimuthal enstrophy (E/Eo) with nondimensional time
(tuco/Ro) for the bubble and particle, respectively, at laminar Re=6000. Here, instantaneous enstrophy (E )
is normalized by the enstrophy (Eo) before the bubble (particle) capture. (c) and (d) show the nondimensional
circulation (�/�o) with nondimensional time (tuco/Ro) for the bubble and particle, respectively, at laminar
Re=6000. Here, the instantaneous circulation (�) is normalized by the circulation (�o) before bubble (particle)
capture. In these plots, the enstrophy and circulation are shown for the left core (LC), right core (RC), and
average of both cores (BC).

These differences between the deforming bubble (We > 0) and rigid particle (We=0) enstrophy can
be linked to the larger local Delong/2ao (=Db/2ao≈1.4) in a particle acting as a localized large
perturbation on the ring as compared to the bubble having a smaller Delong/2ao (≈0.4), and leading
to a larger reduction of the ring’s azimuthal enstrophy by the particle than the bubble. In these cases,
it should be noted that the average azimuthal enstrophy of both cores is reasonable close to that of
the left or right core, and hence may be seen as representative of the azimuthal enstrophy in the entire
ring volume. Apart from azimuthal enstrophy, as we also look into the azimuthal circulation of the
base and interaction cases with time in Figs. 12(c) and 12(d), we can see that both core circulations
are very similar in the interaction cases, and also this is close to the base case. It is also observed
that the circulation seems to remain nearly the same in both the base and interaction cases. This
indicates that the in-plane vorticity (azimuthal) broadly remains in-plane, and there is no significant
transfer of azimuthal vorticity into the out of plane (nonazimuthal) directions. This is an indication
that our 2D measurements are representative of the three-dimensional enstrophy of the vortex ring.

To show a broad overview of the final reduction in azimuthal enstrophy for different Reynolds
number rings interacting with bubble and particle, we calculate the percentage reduction in az-
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FIG. 13. The variation in the percentage reduction in (a) enstrophy (�E ) and (b) circulation (��) at
tuco/Ro=15 for bubble and particle cases at all Re studied. Here, the reductions are shown for the left core
(LC), right core (RC), and average of both cores (BC).

imuthal enstrophy (�E ) as compared to the base case, at a later time of tuco/Ro≈15. In Fig. 13, we
report the percentage reduction of azimuthal enstrophy (�E ) and circulation (��) at tuco/Ro ≈15
for the left core, right core, and both cores averaged, and plot them with the ring Re. Here, these
reductions are calculated, as before, as �E (%) = 100 × (Ebase − Einteract )/Ebase, and ��(%) =
100 × (�base − �interact )/�base, where Ebase and Einteract are the base and interaction case azimuthal
enstrophy, while �base and �interact are the base and interaction case circulations, all taken at
tuco/Ro ≈ 15. It can be seen that at low ring Re of 6000, there is a large reduction in enstrophy
with �E ≈60% for deforming bubble (We > 0) and approximately 80% for the rigid particle (rigid
bubble, We=0). With increase in Re, there is reduction in �E , and at large Re, �E is approximately
zero in the bubble case, indicating reduction in enstrophy to be the same as the base case, while for
the particle, �E is still seen to be considerably large at approximately 30%. In this figure, we can
see that for the range of Re studied, nearly 20%–30% difference is there in �E between the particle
and the bubble. We would like to highlight two facts here. First, comparison of the circulation
(in plane) measured in the base ring and the interacting ring case, show that they are nearly the
same, indicating that there is no significant reorientation of azimuthal vorticity in nonazimuthal
directions (as in Jha and Govardhan [33] and Sridhar and Katz [29]). Foronda-Trillo et al. [37]
reported azimuthal enstrophy partly getting transferred into nonazimuthal directions, thus reducing
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it while the total global enstrophy remained conserved (same as the base case), which does not seem
to be happening here. Second, we have measured the azimuthal enstrophy at two diametrically
opposite planes (left core and right core) and the measurements again show that the values are
not significantly different at any time. These two points taken together, we feel, indicate that the
azimuthal enstrophy (core-averaged between the left and right core) is representative of the global
enstrophy. The reasons for the differences with the observations in Foronda-Trillo et al. [37] are not
immediately clear. It should, however, be noted that there are significant differences even in the base
vortex ring azimuthal enstrophy between the present results and that of Foronda-Trillo et al. [37],
with the latter case showing large reduction (approx 60%) in azimuthal enstrophy compared to only
about 10% in the present experiments. This and the other differences seen in the interacting cases
may be related to the different configuration (parameters) of the ring (bubble), such as transitional
ring Reynolds numbers in their numerical study, the different ring nondimensional core thickness
(ao/Ro) between the two cases, and the bubble and vortex rings having large relative velocities
(traveling in opposite directions) in their case compared to the lower values in the present case
(traveling in the same direction).

To summarize this section, after bubble (particle) capture by the ring, a rigid bubble (We=0) can
lead to a higher rate of reduction [see Figs. 12(a) and 12(b)] in the ring’s azimuthal enstrophy than a
deforming bubble (We > 0) due to its local larger bubble to vortex core diameter ratio as compared
to the deforming bubble. At later time, the final reduction in enstrophy is much larger for the rigid
bubble compared to the deforming bubble in all the Re cases studied [Fig. 13(a)]. In particular, we
note that for high Re rings, the change in enstrophy compared to the base ring case is negligible
for a deforming bubble, but is large approximately 30% for the particle. In all cases, the circulation,
however, remains nearly constant in both interaction cases, and are very similar to the base cases,
thus indicating no significant transfer of azimuthal vorticity into the out-of-plane (nonazimuthal)
directions. This along with the fact that there is very little difference between the left and right core
enstrophy indicates that a rigid bubble can lead to a higher reduction in the global (volumetric)
enstrophy of the ring compared to a deforming bubble.

E. Effects of bubble to vortex size ratio

We have seen at a particular bubble to vortex size ratio of Db/2ao ≈1.4 that the bubble de-
formability and the lack of it in the case of a rigid particle leads to striking differences in the
ring convection speed, azimuthal vorticity, and enstrophy. In this subsection, we investigate the
effects of the bubble to vortex size ratio (Db/2ao) on these interactions by varying the bubble
(particle) diameter (Db). In particular, we present results for two other bubble to vortex size ratios
(Db/2ao) of 1.1 and 0.8, which corresponds to We of 9 and 6, respectively, noting that the earlier
case of Db/2ao ≈1.4 corresponded to a We of 12. All the interactions presented in this subsection
correspond to a ring Re of 6000, as the disruption of the vortex by the bubble (particle) is found
to be largest at this Re among the cases studied, as discussed in the previous subsections. In these
interaction cases for the smaller bubble sizes, as seen from high speed visualizations (not included
here), the deformation of the bubble within the vortex ring reduces, as one might expect at lower
Webubble, with the bubble remaining nearly spherical within the ring and not breaking up at the lowest
Webubble of 6 case (Db/2ao = 0.8). Hence, the smallest bubbles are essentially nondeformable like
particles. On the vortex ring dynamics side, the final reduction in the convection speed (�uc) and
azimuthal enstrophy (�E ) calculated at a later time [similar to Figs. 9(b) and 13(a)] are plotted
with Db/2ao in Fig. 14. As can be seen, both �uc and �E reduce as Db/2ao is decreased from
1.4 to lower values, with the reduction in both �uc and �E being larger for the particle at each
size. It is, however, clear that as Db/2ao is decreased from 1.4, the difference between the bubble
and the particle reduces, until at Db/2ao of about 0.8, the difference is quite small, and may be
expected to tend to zero as the size is further reduced. Thus, the present study on the effects
of the bubble to vortex size ratio (Db/2ao) indicates that as the bubble (particle) size is reduced
from larger values of about 1.4, qualitatively the difference between the particle and bubble on the
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FIG. 14. The variation in the percentage reduction in (a) convection speed (�uc), and (b) both core
averaged azimuthal enstrophy (�E ), with Db/2ao, for bubble and particle cases at Re of 6000. Here, the Db/2ao

of 1.1 and 0.8 correspond to Webubble of 9 and 6, respectively.

ring is similar, but as expected the quantitative difference between the bubble and particle cases
reduces as the bubble (particle) size becomes smaller. These observations help us to understand
the effects of bubble size and its deformability on the dynamics of a vortex ring in vortex-bubble
interactions.

V. CONCLUSIONS

We have studied in the present paper an idealized version of the bubble-turbulence interaction
problem, focusing specifically on the effect that bubble deformability has on these interactions. In
particular, we have studied the interaction of a single deforming air bubble (We > 0) or a rigid
buoyant spherical particle (an equivalent of a rigid bubble, We=0) with a single vortex ring, for a
wide range of ring Reynolds numbers (Re ≈6000–67 300). The novelty of the experiment is that
we were able to obtain the particle to fluid density ratio (ρparticle/ρwater ≈0.008) to be very low and
of the same order as that of the bubble (ρbubble/ρwater ≈0.001), with the main difference being the
distinct difference in their deformability. In particular, we measure the motions of the deforming
bubble (rigid particle) directly using high-speed visualizations, while the flow field information is
obtained using time-resolved PIV.

In these interactions, the bubble’s deformability is seen to lead to striking differences in both the
bubble (particle) dynamics and vortex ring dynamics. The interaction begins with the capture pro-
cess, during which, the bubble undergoes large deformation (elongation) and takes a nonspherical
shape, thus experiencing a smaller drag, leading to a nearly 50% lower capture time of the deforming
bubble compared to that of the spherical buoyant particle. Postcapture, inside the ring, the deforming
bubble shows a variety of engaging dynamics such as elongation, breakup, coalescence, and spread
of broken bubbles along the ring circumference, whereas a rigid particle remains intact within the
ring undergoing only small azimuthal drifting motions. Within the vortex core, the azimuthally
elongated bubble results in a smaller local bubble to core diameter, Delong/2ao ≈0.4, compared to
a particle having a larger value, Db/2ao ≈ 1.4. Hence, the rigid particle (a rigid bubble) acts as
a localized large perturbation to the vortex core, while the deformable bubble act as a distributed
perturbation to the ring.

On the vortex ring dynamics side, the observed differences in bubble (particle) dynamics leads
to distinct differences in the ring’s convection speed, azimuthal vorticity, and enstrophy at later
times. In particular, the deformation of the ring and the disruption of the vortex cores is more
extensive by the particle as compared to the deforming bubble. This is shown clearly by the higher
reduction in azimuthal enstrophy of the ring for the particle case, about 80% reduction at Re ≈ 6000,
compared to the about 60% reduction in the bubble case at the same ring Re. Correspondingly, the
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particle causes a larger drop in the ring convection speed (≈40% reduction) compared to that of the
deforming bubble (≈25% reduction). At higher ring Re, the changes in convection speed of the ring
due to interactions with the bubble (particle) become smaller compared to the base case, although
distinct differences are still present in the azimuthal vorticity and enstrophy between the bubble and
the particle interaction cases. This is highlighted by the difference in enstrophy between the bubble
and the particle interaction cases at high ring Re ≈ 70 000, which shows that the enstrophy is close
to the base case for the deforming bubble case, while it continues to be significantly lower than the
base case, by approximately 30%, for the interacting particle case.

These observations in our idealized study have several implications in connection to bubbles’
deformability in turbulent flows. For example, the capture of a deforming bubble by a vortical
structure is much faster than for a nondeforming bubble due to the much lower drag of the
elongated (deformed) bubble, which could lead to higher accumulation of deforming bubbles
in vortical regions as compared to nondeforming bubbles. Hence, deformable bubbles will have
larger probability of interactions with vortical structures. On the other hand, postcapture, rigid
bubbles disrupt the vortical structures more efficiently than deforming bubbles. This observation,
in connection with BDR, implies that when the disruption of vortical structures is the dominating
mechanism for drag reduction, rigid bubbles would disrupt and break the coherent structures more
efficiently than deforming bubbles, and thereby lead to a larger reduction in drag. One more example
would be bubbly mixing layers where rigid bubbles could disrupt large-scale coherent structures
more efficiently, and this could result in differences in the lateral migration and spreading rate of
the shear layer between deforming and nondeforming bubble cases.

In summary, in bubbly turbulent flows, the modulation of the vortical structures by bubbles would
be influenced by both the bubble’s capture probability and the interaction (postcapture) between
bubbles and vortices, both being dependent on the bubble’s deformability. These broad observations
in connection with bubbly turbulent flows could bring us more insight into the role of the bubble’s
deformability in its interaction with a vortical structure, which could be important in helping us
model and understand bubble-turbulence interactions.
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