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This work explores the turbulence anisotropy behavior of a fluidized gas-particle sus-
pension obtained from highly resolved kinetic-theory-based two-fluid model simulations.
Therein, the phase-filtered anisotropy Reynolds stress tensor is considered to classify the
possible states of turbulence in the barycentric anisotropy invariants map. The temporal
turbulence trajectories have revealed a nonlinear converging demarcation line that evolved
differently on the gas and solid phases. It isolates the prolate-like cluster’s turbulence from
the oblate-like background strain on the solid phase, while on the gas phase, the trajectories
turn from nearly three-dimensional (3-D) turbulence inside the clusters to 1-D turbulence in
the transition regions (from dense to dilute), which then develops into 2-D turbulence in the
dilute areas. The converged trajectories at the demarcation lines are found to move always
toward isotropy, revealing the return-to-isotropy problem and the tendency to extinguish
the bulk anisotropy. The prevalent turbulence type on the solid phase has indicated a 1-D
turbulence preference, which is consistent with the reported cluster-induced turbulence in
the literature. Moreover, the granular temperature as a quantitative measure of uncorrelated
particle agitation is found to accumulate predominantly in 1-D turbulence (dominant solid
divergence and strain) and moderately in 2-D turbulence (dominant solid convergence) at
the upstream parts of clusters. Similar disclosure of turbulence types is adopted as well, for
the variance of solid concentration, drag production, and the magnitudes of the gas-phase
Reynolds stress and rate-of-strain tensors. They have demonstrated a similar preferential
turbulence anisotropy, which in turn promotes the applicability of the eddy-viscosity
approach for modeling the gas-phase Reynolds stress contributions.

DOI: 10.1103/PhysRevFluids.7.094301

I. INTRODUCTION

Any inhomogeneous turbulent single-phase flow at the geometry-dependent large scales tends
to return to isotropy at the small scales (the so-called return-to-isotropy [1]) with an equiparti-
tioned energy state through the energy cascade. This phenomenon is characterized by turbulence
anisotropy. This latter is mainly sustained by turbulent shear stresses (transporting momentum)
and the redistribution of energy between Reynolds stress components through the pressure-strain
interactions [1]. Studying the anisotropy of turbulence in disperse multiphase flows can be of great
interest due to the anomaly of turbulence modulation occurring upon the presence of interphase
forces. This means that, in particle-laden turbulent flows, it has been evidenced that the drag force
appears as an additional source or sink of the turbulent kinetic energy. The particles therewith
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drain kinetic energy from the carrier fluid at the larger scales, while at a dense cluster shape,
they give energy back to the fluid, feeding its turbulent momentum at the small-scale motions
[cluster-induced turbulence (CIT)] [2,3]. Investigating anisotropic turbulence, which is potentially
relevant to the pressure-rate-of-strain impact (Rotta model [4]), can play a major role into building
second-moment models, such as for the Reynolds stresses and turbulent interfacial work. Apart
from that, it serves for better understanding of the still ambiguous physics of multiphase turbulence.
This widespread physics forms the paradigm of countless applications in environment and industry,
such as dynamics in atmospheric cloud and pollutant particles turbulence, sediment transport, debris
flows, spray combustion, and pharmaceutical and/or chemical fluidized bed reactors. Analyzing the
involved properties helps us to meliorate the design of technological devices and mitigate negative
implications of multiphase turbulence, leading to improved turbulence modeling for industrial scale
applications.

Anisotropy of turbulence is commonly examined and quantified through the normalized
anisotropy Reynolds stress tensor, i.e., the deviatoric (traceless) part of Reynolds stress tensor
normalized by turbulent kinetic energy. In fact, simpler than considering all the six independent
components of anisotropy tensor, the anisotropy degree and nature are described by only the second
II and third III invariants tensor, in the so-called anisotropy invariant map (AIM) or Lumley triangle
[5]. This representation allows a unique mapping of any realizable state of turbulence onto a 2-D
nonlinear map spanned by the two invariants. It is introduced as a tool to guide the development
of turbulence models analytically, where all turbulent states are bounded inside the invariants
space. Any points outside correspond to nonrealizable Reynolds stresses with negative or complex
eigenvalues. The AIM has been extensively used to study the trajectories of II and III invariants
in diverse sets of fluid shear and wall-bounded flows. It exposes how the turbulence trajectories
evolve from a two-component state at the walls to an axisymmetric near-isotropic state in the bulk
center [6]. However, due to the nonlinearity hidden in the invariant definitions, some claims and
confusions arise, particularly related to whether the borders of the AIM describe the shape of the
stress tensor (energy ellipsoid) or the eddies of turbulence [1]. Moreover, the diagonalization of
the anisotropy tensor provides three eigenvalues (magnitudes) and three eigenvectors (directions)
of the turbulence anisotropy. The invariants II and III are only functions of eigenvalues, while
ignoring the eigenvectors impedes the information about the directional distribution. Afterward, the
anisotropy eigenvalue map introduced by Lumley [7] is utilized to study the anisotropy trajectories
in the first and second eigenvalues’ linear plane, for different flow configurations [8]. Recently,
and as an equivalent linear representation of AIM, the barycentric anisotropy map (BAM) has been
proposed by Banerjee et al. [6]. The BAM is based on the convex combination of scalar metrics
dependent on eigenvalues. It provides a nondistorted visual representation of turbulence anisotropy
on an equilateral triangle and more recently with the addition of point-specific color triples [9].
It allows thereby the visualization of turbulence states directly in the physical domain. BAM has
been vastly considered in various single-phase flows, as, for instance, in turbulent channel flow
[6] and inhomogeneous atmospheric boundary layer turbulence [10], for the analysis of turbulence
trajectories. The visual BAM assessment of different Reynolds-averaged Navier-Stokes (RANS)
turbulence modeling behavior was employed by Emory and Iaccarino [9] in flows through an urban-
like canopy, wavy wall channel, and oblique shock-boundary layer interaction. A main inclusion
of BAM framework is, moreover, to quantify the epistemic uncertainties of RANS models by
incorporating perturbations to the eigenvalues and the eigenvectors of the modeled Reynolds stress
tensor [11]. Each kind of these physical-based perturbations extends the isotropic eddy-viscosity-
based model to a general anisotropic eddy-viscosity model [12]. Then, the perturbations lead to a
set of different predictions of turbulence quantities, where its union gives an interval estimate of
the model uncertainty from the RANS model. Nowadays, machine learning models, for example,
the one trained by a random forest model [13], are used to learn the perturbations’ magnitude for
that eigenspace uncertainty quantification method. This data-driven method has been inspected and
advanced for different applications such as flow over a wavy wall and Buice 2-D diffuser [14]. Far
from the deep learning and single-phase flows, the BAM has been successfully used to characterize
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the anisotropic hemodynamics turbulence in patient-specific cardiovascular flows [15]. It appears as
potential method in relevance to blood damage predictions, where RANS turbulence modeling and
the 4-D flow MRI (3-D, time-resolved, phase-contrast magnetic resonance imaging) measurements
are evaluated against well-resolved large-eddy simulation (LES) results using BAM. Very recently,
the BAM has been used to study the effect of the bubbles on the carrier-phase turbulence for vertical
channel bubbly flow simulated by direct numerical simulation (DNS) [16]. The authors extend the
BAM approach to allow quantification and visualization of anisotropy and componentiality of the
flow at any scale. They found that the inclusion of bubbles significantly enhances the anisotropy in
the flow at all scales in comparison with the unladen case. In particular, the introduction of small
bubbles has strongly increased the intermittency at the dissipation range, but suppressed it at larger
scales (similar trends are captured for particle-laden turbulence [2]).

To our best knowledge, no study has explored and characterized the turbulence anisotropy
employing BAM in moderately dense gas-solid suspensions. It is a critical space of barycentric coor-
dinates that convey information on the orientation of turbulence and the magnitude of anisotropy [6].
With three limiting borders, BAM classifies the turbulence to 1-D, 2-D isotropic, and 3-D isotropic
states, covering any possible state inside its boundaries. Then, following a particular definition of
phase stresses, the turbulence shape on that phase can be depicted in any position of the physical
domain by a single point in BAM. One of the most feasible numerical methods used to describe
particulate flows is the Eulerian continuum approach. Such a method principally treats the particles
as interpenetrating continuum, like a fluid, to allow a reliable simulation of turbulent fluidization
in large systems. Basically, the domain is discretized into small volumetric units of continuum
solid and gas phases, where the interparticle (collisional, dispersion, and rotational) interactions are
retrieved basing on the kinetic theory of granular flow [17]. These Eulerian methods are referred to
as two-fluid model (TFM) [18,19], and have been shown to properly predict (to a practical, accurate
extent) the clustering topology and back-reaction turbulence on sufficiently fine numerical grids
[20–22] (resolution on the order of a few particle diameters). In the light of Eulerian similarity,
absolute advanced and recent modeling methods for efficient simulations of coupled particle-fluid
flows appear to be worth mentioning. For instance, one can recognize the Reynolds-stress mod-
eling proposed by Baker et al. [23] applied for the multiphase Reynolds-averaged Navier-Stokes
(RANS) [24] TFM in vertical channel particle-laden flows and the sparse regression model closures
developed by Beetham et al. [25] for the RANS TFM application in homogeneous, fully developed
gas-particle flows. On the base of a Lagrangian probability density function (PDF) formalism, the
stochastic modeling, served for the TFM development for dense turbulent particle-laden channel
flow, was reported by Innocenti et al. [26]. In a related aspect, Lattanzi et al. [27] developed a
force Langevin model that treats neighbor-induced drag fluctuations as a stochastic force within
an Eulerian-Lagrangian method. Some other closures were derived as large-eddy simulation type
models, using a spatial filtering, as in the dynamic-closured spatially averaged two-fluid model
(SA-TFM) [28] and the approximate deconvolution model (ADM-TFM) for moderately dense gas-
particle flows [29]. In this paper, nonetheless, and on the basis of highly resolved TFM simulations,
we propose to investigate the turbulence anisotropy on the gas and solid phases for a moderately
dense fluidized gas-solid suspension. To that end, the phase-filtered anisotropy Reynolds stress
tensor is computed on each phase to build the turbulence trajectories in the barycentric anisotropy
map. We study a fully periodic (unbounded) fluidization of Geldart type A particles in a cubic
box domain. The turbulence trajectories are inquired spatially, as functional of the solid volume
fraction, in order to depict the turbulence state from the dilute regions toward inside the clusters.
On the other hand, we have identified the turbulence type of essential mechanisms such as the
turbulent interfacial work, CIT, solid variance, and granular temperature (pseudo-thermal energy
produced by uncorrelated particles’ agitation). This study eventually yields to a solid understanding
of the underlying physics of turbulence anisotropy driven by the gravity-induced vertical slip, and
therefore is a reference for building better models.

The remainder of the paper is organized as follows. A short overview of the numerical TFM
simulations adopted for the turbulent fluidization case is given in Sec. II. Then, the theoretical
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TABLE I. Summary of main physical properties and simulation parameters for the (unbounded) triply
periodic cubic domain of turbulent fluidization studied.

Property Symbol Unbounded triply periodic cube

Maximum packing limit εmax
s 0.6

Gas density ρg 1.224 kg m−3

Gas dynamic viscosity μg 1.8 × 10−5 Kg m−1 s−1

Internal friction coefficient μst
i 0.28

Gravity magnitude g 9.81 m s−2

Geldart type group A
Particle density ρs 1500 kg m−3

Particle diameter ds 75 × 10−6 m
Terminal settling velocity ut 0.22 m s−1

Particle relaxation time τs = ut/g 0.0224 s
Particle Froude number Fr = u2

t /(dsg) 66
Archimedes number Ar 23
Domain size Lx = Ly = Lz 6 cm
Domain discretization Nx × Ny × Nz 256 × 256 × 256
Grid size � 3ds

Mean particle concentration 〈εs〉 0.15
Mean mass loading Φ 216
Cluster length scale L 31ds

A priori cluster length τ 2
s g 66ds

barycentric anisotropy map and relevant turbulence classification are described in Sec. III. Therein,
the spatial and temporal turbulence trajectories are inspected on gas and solid phases. Section IV
explores the associated physics of the interfacial work and drag production using BAM, while the
granular solid temperature is scrutinized in Sec. V. Section VI then outlines the variance solid
concentration and drift velocity turbulence anisotropy. Finally, conclusions and future remarks are
given in Sec. VII.

II. NUMERICAL METHODS AND TWO-FLUID MODEL

We consider a triply periodic cubic domain to investigate the unbounded fluidization of Geldart
A particles. This moderately dense gas-particle flow was simulated using a highly resolved two-fluid
model (TFM) employing a sufficiently fine grid good enough to resolve all relevant heterogeneous
structures [21,30–32]. The main physical parameters considered, besides the simulation details, are
summarized in Table I. A schematic representation of the turbulent fluidization case rendered on
an instantaneous solid volume fraction outcome εs is displayed in Fig. 1(a). Principally, the present
case is identical to the turbulent fluidization case considered in Dabbagh and Schneiderbauer [33],
holding the same grid size � validated but using a different aspect ratio of the box. The TFM
approach [34] is adopted employing the classical kinetic theory of granular flows [17]. Namely,
considering the gas and solid phases as interpenetrating continua on local mean volumetric units,
the solid stresses arising from particle-particle collisions and the translational dispersion of grains
are closed by adapting the kinetic theory of gases [17]. In this work, we use consecutive data sets
gathered over several time step periods in the statistically stationary flow stage. They ensure a good
convergence of qualitative analysis with a minimum sampling number of about 400. Each single
datum provides more than 16 millions points information to compute the Reynolds anisotropy tensor
and turbulence trajectories, the converged granular temperature, and drag terms in each coordinate
(abscissa, ordinate) inside BAM.

Similar to Ref. [33] and for the sake of brevity, the model equations and constitutive relations
of dynamics are summarized in Table II. Namely, the Eulerian transport equations of mass, ρlεl ,
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FIG. 1. (a) Schematic representation of the triply periodic cubic domain of turbulent fluidization, rendered
on instantaneous εs outcomes in the TFM simulation. (b) Two-point correlation profiles of εs, computed in all
directions for the studied case, where the inset simply enlarges the statistics to highlight its decay.

momentum, ρlεlul , and pseudo-thermal energy �s (on solids) are precisely derived on each phase, l .
Therein, ε denotes the volume fraction, while ρ and u = (u, v,w) represent the density and velocity
field in x = (x, y, z) coordinates, respectively, in correspondence to the subscript gas (g) or solid (s)
phase. In dense regions, i.e., where the solid volume fraction is close to maximum packing condi-
tions and the interparticle forces are dominated by long enduring multiple frictional contacts, the
solid stress is closed by using an inertial number dependent rheology [35]. The highly resolved TFM
simulation is performed using the OpenFOAM (v6) routine with the SuperBee flux limiter [36] for
the spatial discretization of convective terms, and least squares method for the derivatives appearing
in the diffusion terms. The phasic velocity-pressure coupling was established by the phase-coupling
implicit PIMPLE algorithm [37]. For further details about model equations described in Table II,
the reader is referred to Ref. [35]. In building the simulation case, a uniform suspension undergoing
the infinite fluidization is applied. Namely, on the base of the gravity g = (0, 0,−g)t body force
acting only in the negative vertical z direction, the gas-phase pressure p is adjusted to oppose the
body forces and support the weight of the suspension, as

−∂ p

∂z
= g[〈εs〉ρs + (1 − 〈εs〉)ρg], (1)

so that no net force acts on the mixture in the z direction. The angle brackets in (1) and hereafter
indicate an averaging over the entire domain (likewise, it denotes the ensemble average in the
statistical analysis). The number of particles used is determined based on the mean mass loading,
given as [38]

Φ = ρs

ρg

〈εs〉
1 − 〈εs〉 , (2)

where 〈εs〉 is the mean solid concentration (provided in Table I). An important nondimensional
number is the Archimedes number, defined as

Ar = ρg(ρs − ρg)
d3

s g

μ2
g

. (3)
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TABLE II. TFM equations for gas-particle flows, similar to those outlined in Ref. [35].

Continuity equation, momentum equation, and transport equation for pseudo-thermal energy [20,34,42]
∂

∂t
εgρg + ∇ · (εgρgug) = 0, (5)

∂

∂t
εsρs + ∇ · (εsρsus ) = 0, (6)

∂

∂t
(εgρgug) + ∇ · (εgρgugug) = −εg∇p + ∇ · εgΣg − β(ug − us ) + εgρgg, (7)

∂

∂t
(εsρsus ) + ∇ · (εsρsusus ) = −εs∇p − ∇ · (Σkc

s + Σ f r
s

)+ β(ug − us ) + εsρsg, (8)

3

2

(
∂

∂t
(εsρs�s ) + ∇ · (εsρsus�s )

)
= −Σkc

s : ∇us − ∇ · q + Γs − Jv − σ�s (9)

Interphase momentum exchange [39]

β = 3

4
CD

εgεsρg‖ug − us‖
ds

ε−2.65
g

with CD =
⎧⎨⎩

24
Res

[1 + 0.15Re0.687
s ] Res < 1000

Res = εgρgds‖ug − us‖
μg0.44 Res � 1000

(10)

Gas-phase and solid-phase stress tensors

Σg = 2μgSg, Σkc
s = (pkc

s − λkc
s tr(Ss)

)
I − 2μkc

s Sd
s , Σ f r

s = 2μ f r
s Ss − pf r

s I

Sl = 1

2
(∇ul + (∇ul )t ), Sd

s = Ss − 1

3
tr(Ss)I

(11)

Radial distribution function

g0 = 1

1 − (εs/εmas
s

) (12)

Solid viscosity (L is the characteristic length scale of actual physical system and is set to the height of
domain)

μkc
s =
(2 + α

3

){ μ∗

g0ηs(2 − ηs )

(
1

1 + ls
L

+ 8

5
εsηsg0

)(
1 + 8

5
ηs(3ηs − 2)εsg0

)
+ 3

5
ηsμb

}

μ∗ = μ

1 + 2βμ

(εsρs )2g0�s

, μ = 5ρsds
√

π�s

96
, μb = 256με2

s g0

5π
,

α = 8

5
, ηs = 1

2
(1 + es ), ls = ds

6
√

2g0εs

(13)
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TABLE II. (Continued.)

pseudo-thermal energy (PTE) flux vector q = κ∇�s, rate of dissipation of PTE σ�s , rate of dissipation of
PTE by viscous damping Jv , and rate of production of PTE by gas-particle slip Γs

q = −κ∗

g0

⎧⎪⎨⎪⎩
⎛⎜⎝ 1

1 + ls

L

+ 12

5
ηsεsg0

⎞⎟⎠+
(

1 + 12

5
η2

s (4ηs − 3)εsg0

)
+ 64

25π
(41 − 33ηs )η2

s ε
2
s g2

0

⎫⎪⎬⎪⎭∇�s,

σ�s = 48√
π

ηs(1 − ηs )
ρsε

2
s

ds
g0�

3/2
s , κ∗ = κ

1 + 6βκ

5(εsρs )2g0�s

,

κ = 75ρsds
√

π�s

48ηs(41 − 33ηs )
, Γs = dsβ

2‖ug − us‖2

4εsg0ρs
√

π�s
�,

Jv = 54εsμg�s

d2
s

Rdiss, where � and Rdiss are given in Eqs. (51) and (52), following Ref. [20] (14)

Solid pressure and bulk viscosity

pkc
s = εsρs

⎛⎜⎝ 1

1 + ls

L

+ 4ηsεsg0

⎞⎟⎠�s, λkc
s = 8

3
ηsε

2
s ρsdsg0

√
�s

π
(15)

Frictional pressure and viscosity [35] (b ≈ 0.2, I0 = 0.279, μst
i = tan(20.9◦), μc

i = tan(32.76◦))

pf r
s = 4ρs

(
bds

√
Ss : Ss/2

εmax
s − εs

)2

, μ f r
s

(
Is, pf r

s , Ss

) = μi(Is)pf r
s

2
√

Ss : Ss/2
,

μi(Is ) = μst
i + μc

i − μst
i

I0

Is
+ 1

, Is = 2ds

√
Ss : Ss/2√
pf r

s /ρs

(16)

Alternatively, a Froude number is introduced to characterize the balance between gravitational and
inertial forces, defined as Fr = u2

t /(dsg), where ut is the terminal settling velocity computed used
Wen and Yu drag [39]. Another important quantity is the characteristic cluster length scale, which
can be estimated a priori as τ 2

s g [20,38,40], where τs = ut/g is the particle relaxation time (or drag
time). An accurate value of the characteristic cluster length scale, L, can be measured a posteriori
by computing the two-point correlation of εs in the three-direction domain. Namely, the two-point
correlation formulas given by

Rεsεs = 〈ε′
s(x)ε′

s(x + r)〉〈
ε′2

s

〉 (4)

are plotted in all three directions in Fig. 1(b). 〈ε′2
s 〉 in Eq. (4) implies the temporal variance of εs,

and by taking the integral of the two-point correlation curves, i.e.,
∫

Rεsεs dr (commencing from
1 till the first zero decay), we obtain the cluster length scale L, given in Table I. The two-point
correlation values, on the other hand, assure the domain size adequacy, where all profiles in Fig. 1(b)
fall to zero at separations less than one-half distance. At the end, it is worth mentioning that the
resolution results using the kinetic-theory-based TFM have been previously validated by Dabbagh
and Schneiderbauer [33]. Therein, as mentioned above, an unbounded periodic box turbulent
fluidization is adopted, while we use here identical grid size � and simulation parameters (same
mass loading) in a triply periodic cubic domain. The prediction for the slip velocity defined as
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the absolute difference global and phase-averaged streamwise phase velocities [21] yields a value
of 0.25 m/s, which is nearly indistinguishable from the value of TFM simulations reported by
Fullmer and Hrenya [21] using MFIX (at the same mass loading). Moreover, our slip velocity value
is quite comparable with the 0.29 m/s result using Eulerian-Lagrangian simulations by Radl and
Sundaresan [41] (at the same mass loading). It is notable that the box employed in Ref. [41] is about
2–8 times smaller than our cubic domain, which in turn shows a good convergence for the cluster
size [Fig. 1(b)].

III. ANISOTROPY STRESS TENSOR AND BARYCENTRIC MAP

We consider a phase-filtered Reynolds stress tensor, i.e., spatially filtered and phase aver-
aged (PA), as a measure of a phase-weighted local ensemble correlation of two fluctuating
velocities. Therefore, by defining a volumetric mean or locally averaged filter for any field vari-
able as ξ (x, t ) = ∫V G�̄(x, x′, �̄)ξ (x′, t )dVx′ , with a weighting function G�̄(x, x′, �̄) satisfying∫

V G�̄(x, x′, �̄)dVx′ = 1, then the phase average analogous to Favre averaging in variable density
flow can be written as

〈ξ 〉l = εlξ

εl
, (17)

where l is the phase notation (solid or gas). Subsequently, the subfilter fluctuations are

ξ ′ = ξ − ξ, (18)

u′′′
g = ug − 〈ug〉g, about PA gas velocity. (19)

u′′
s = us − 〈us〉s, about PA solid velocity. (20)

The phase-filtered Reynolds stress tensors are then given on each phase by

〈u′′
s ⊗ u′′

s 〉s = 〈us ⊗ us〉s − 〈us〉s ⊗ 〈us〉s, (21)

〈u′′′
g ⊗ u′′′

g 〉g = 〈ug ⊗ ug〉g − 〈ug〉g ⊗ 〈ug〉g. (22)

The trace of Eqs. (21) and (22) are twice the turbulent kinetic energy, i.e.,

2ks = 〈u′′
s · u′′

s 〉s = 〈usus〉s − 〈us〉s〈us〉s, (23)

2kg = 〈u′′′
g · u′′′

g 〉g = 〈ugug〉g − 〈ug〉g〈ug〉g, (24)

indicating the intensity of turbulence, while the off-diagonal components are responsible for trans-
porting momentum by the turbulence anisotropy. The anisotropy stress tensors are defined as the
deviatoric (traceless) part of Reynolds stress tensors normalized by twice the turbulent kinetic
energies [7], as follows:

Bs = 〈u′′
s ⊗ u′′

s 〉s

2ks
− 1

3
I, (25)

Bg = 〈u′′′
g ⊗ u′′′

g 〉g

2kg
− 1

3
I, (26)

where I is Kronecker’s delta. Since the Reynolds stress tensor is a symmetric, second-order, and
positive semi-definite matrix (its individual components satisfy the physical realizability constraints
[43]), the anisotropy stress tensor is also symmetric and can be diagonalized by real eigenvalues
λb1 � λb2 � λb3 ∈ [−1/3, 2/3] and eigenvectors {b1, b2, b3} associated with each eigenvalue, to be
mutually orthogonal. Then, from the spectral decomposition theorem, the anisotropy stress tensor
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1

C1C2

3C
3-D Isotropic Turbulence
(Three-component limit)

2-D Turbulence
(Two-component limit)

1-D Turbulence
(One-component limit)

2-D Isotropic Turbulence
(Two-component axisymmetric limit)

FIG. 2. Barycentric anisotropy map (BAM) based on scalar metrics which are functions of eigenvalues
of the second-order anisotropy stress tensor describing turbulence. It characterizes the shape of energy
ellipsoid (turbulence componentiality) with three limiting states {C1C,C2C,C3C}, representing the vertices of
an equilateral triangle classification. The isotropic point has a metric C3C = 1, the two-component point has
C2C = 1, and the one-component point has C1C = 1. Any physically realizable state of turbulence must lie
inside this triangle. The shapes of turbulence classified are therein described together with super-quadratic
tensor glyphs visualization [44] taken from Ref. [45].

can be written in canonical form as [6]

B̃ = λb1 b1bt
1 + λb2 b2bt

2 + λb3 b3bt
3. (27)

The degree and nature of anisotropy are characterized by the second II and third III invariants of B
identified as functions of the anisotropy eigenvalues,

II = tr(B2)

2
= λ2

b1
+ λb1λb2 + λ2

b2
, III = tr(B3)

3
= −λb1λb2

(
λb1 + λb2

)
. (28)

They represent a relative strength of different fluctuating velocity components, referred to as
turbulence componentiality [9], and compose the two-coordinate system (III, II ) into the bounded
anisotropy invariant map (AIM) or Lumley triangle [5]. All physically realizable states of turbulence
must lie inside this map limited by three states at the corners. Namely, based on the shape of
energy ellipsoid or the componentiality of turbulence, the ellipsoid’s major, medium, and minor
axes are along the B̃ eigenvectors, with scaling factors being the eigenvalues. Then, the rank or the
nonzero eigenvalues of B̃ can reflect three fundamental limiting turbulence states [5,6] (see Fig. 2
in barycentric anisotropy map representation):

(1) One-component limit (1C). It corresponds to one-rank tensor B̃ with λb1 > 0 > λb2 ≈ λb3 .
The turbulence is only one-component of the turbulent kinetic energy (1-D turbulence) acting along
one direction b1. The basis matrix of anisotropy tensor for this limiting state is given by

B̃1C =
⎛⎝2/3 0 0

0 −1/3 0
0 0 −1/3

⎞⎠. (29)
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(2) Two-component axisymmetric limit (2C). It corresponds to two-rank tensor B̃ where λb1 ≈
λb2 > 0 > λb3 . The turbulence is two-component isotropic (2-D isotropic turbulence), where one
component of the turbulent kinetic energy vanishes with the remaining two being equal. It acts
uniformly in a plane spanned by the two eigenvectors b1 and b2. The basis matrix of anisotropy
tensor for this limiting state is given by

B̃2C =
⎛⎝1/6 0 0

0 1/6 0
0 0 −1/3

⎞⎠. (30)

(3) Three-component limit (3C). It corresponds to three-rank tensor B̃ where λb1 = λb2 = λb3 .
The turbulence is three-component isotropic (3-D isotropic turbulence) acting randomly in a sphere;
the axes of sphere are spanned by the eigenvectors b1, b2, and b3. The basis matrix of anisotropy
tensor for this limiting state is given by

B̃3C =
⎛⎝0 0 0

0 0 0
0 0 0

⎞⎠. (31)

The borders between these limiting states are described by a mix of intermediate characteristics:
(1) Two-component limit connects 1C and 2C and represents an ellipse planer-like 2-D turbu-

lence.
(2) Axisymmetric expansion connects 1C and 3C and represents a prolate-like turbulence.
(3) Axisymmetric contraction connects 2C and 3C and represents an oblate-like turbulence.
(4) Plane-strain limit. Along this line one anisotropy eigenvalue λbi is zero except at 3C, and the

mean momentum exchange due to turbulent fluctuation only occurs along a plane.
Hence, the anisotropy tensor B̃ [Eq. (27)] can be expressed as a convex combination of the three

limiting states (1C, 2C, 3C) [6] as

B̃ = C1CB̃1C + C2CB̃2C + C3CB̃3C, (32)

where {C1C,C2C,C3C} are the coordinates of the anisotropy tensor B̃ in the tensor basis
{B̃1C, B̃2C, B̃3C}. To obtain a measure of anisotropy from the anisotropy tensor B̃, metrics of three
different kinds of anisotropy are provided in a normalizing manner, such that

C1C + C2C + C3C = 1, (33)

where C1C is a linear measure of anisotropy and C2C is the planar measure of anisotropy. The
normalization is done in such a way that all metrics {C1C,C2C,C3C} are in the range [0,1]. It is
worth noting that B̃3C is a null matrix which can make Eq. (32) nonunique but the restriction on C3C

using Eq. (33) forces it to be unique. Thus, by setting

C1C = λb1 − λb2 , (34)

C2C = 2
(
λb2 − λb3

)
, (35)

C3C = 3λb3 + 1, (36)

an equilateral triangle barycentric anisotropy map (BAM) can be constructed to characterize tur-
bulence within the three limiting states (1C, 2C, 3C) representing the three vertices of this map
[6]. Note that Fig. 2 displays the BAM with all turbulence state descriptions together with super-
quadratic tensor glyphs visualization [44] taken from Ref. [45]. At each vertex, one of the metrics
{C1C,C2C,C3C} has a value of 1 to express the normalized weight of anisotropy nature. Any point
inside the map has local coordinates {C1C,C2C,C3C}, which help to know directly the weighting of
the three limiting states of turbulence. The BAM is then plotted in an Euclidean space where the
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limiting states are placed at (x1C, y1C ) = (1, 0), (x2C, y2C ) = (0, 0) and (x3C, y3C ) = (1/2,
√

3/2),
and the coordinates system (xB, yB) are defined such that

xB = C1Cx1C + C2Cx2C + C3Cx3C = C1C + 1

2
C3C = λb1 − λb2 + 1

2
(3λb3 + 1), (37)

yB = C1Cy1C + C2Cy2C + C3Cy3C =
√

3

2
C3C =

√
3

2

(
3λb3 + 1

)
. (38)

The plane-strain line function is thus defined as

yps = 6

(
xps − 1

2

)
+

√
3

2
. (39)

In contrast to the Lumley triangle [5], the barycentric map conveys information on the orientation
of turbulence and magnitude of anisotropy and does not introduce any visual bias of the limiting
states (1C, 2C, 3C), which are located equidistantly on the vertices triangle [6].

Now, we inspect the classification of turbulence states in BAM using the highly resolved TFM
simulation data for moderately dense (gas-particle) turbulent fluidization case. Taking the solid
phase, the phase-filtered anisotropy stress tensor [Eq. (25)] is computed about a filter length
�̄ = 3� < L smaller than the cluster size to ensure disclosing the underlying turbulence structures
inside clusters. Note that the spatial filtering can imply a similar picture to the temporal averag-
ing (ensemble time-averaged fluctuating velocity correlation used to study the anisotropy in the
single-phase literature); here we exclude the weighted-phase fluctuations about a filter length and
ensemble them locally and temporally (using multiple snapshots) in the constraint of BAM. Namely,
we perform a statistical analysis for the turbulence anisotropy by evaluating the joint probability
density function (JPDF) of the scalar metrics xB and yB in BAM [Eqs. (37) and (38)], based on the
solid-filtered anisotropy stress tensor [Eq. (25)], utilizing multiple snapshots. The most dominant
turbulence state on solids dynamics shows a 1-D turbulence type, as demonstrated in Fig. 3(a). It
arises from the slip velocity acting vertically in the gravity direction to suspend the particles by drag,
and makes the vertical z component of turbulent kinetic energy prevalent. This can be a remarkable
signature on the turbulence anisotropy driven essentially by the streamwise component of phase
Reynolds stress tensor in gravity-driven CIT, reported consistently in the literature [25,26,46,47].
For instance, Ferrante and Elghobashi [48] show that the fluid flow crossing large particles through
turbulent eddies creates local gradients in the fluid due to particle drag and causes the turbulence to
become anisotropic, with turbulent kinetic energy level always higher as compared to unladen case.
It is worth mentioning that similar trends of turbulence preference are found on the gas phase (due to
the gas-solid interaction) but not shown here. On the other hand, the use of wider filter length does
not influence the essential turbulence distribution on BAM. It only makes the picture tend toward
3C because of the inclusion and enlargement of solid slots. The JPDF (xB, yB) gave a qualitative
statistical image of the predominant turbulence state over the entire domain and involved dynamics;
nonetheless, identifying the anisotropy in particular regions can be of more interest. To that end, we
investigate the turbulence trajectories, changed spatially and colored by the solid volume fraction,
in order to depict the turbulence state from dilute regions toward inside the clusters. Namely, we
assemble the values of (xB, yB) (from space and time) in each bin width for the solid volume
fraction and plot it as a point in BAM. Considering both phases, the resulting spatial turbulence
trajectories are rendered in Figs. 3(b) and 3(c), for the gas and solid phases, respectively, where the
color bar follows the value of ε̄s. They evolve differently; the gas-phase turbulence is essentially
2-D planer-like in the dilute regions, altering to 1-D turbulence in transition areas and going upward
to 3-D turbulence (elongated pancake-like) at the interface and inside the clusters (cluster limits
assumed by ε̄s ∈ [0.3, 0.6]). This observation agrees well with our reported findings in Ref. [33],
showing that the gas-phase flow topology in moderately dense turbulent fluidization presents a
strong tendency to the boundary-layer-like 2-D turbulence. The solid-phase scenario nonetheless, is
different, starting from ε̄s = 0.05 where the turbulence trajectories are identified 1-D turbulence, and
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FIG. 3. (a) JPDF of (xB, yB ) coordinates in BAM, corresponding to the solid-phase-filtered anisotropy stress
tensor [Eq. (25)] with �̄ = 3�. (b) displays the gas-phase turbulence trajectories in BAM, changed spatially
as functional to ε̄s (varying color), and using two filter lengths �̄ = {3�, 6�} (varying symbol). (c) shows the
solid-phase turbulence trajectories as in (b). All trajectories are enlarged in a circle subset, and the data are
taken from the TFM turbulent fluidization case.

move directly upward in prolate-like toward 3-D turbulence at the interface and inside the clusters.
Two filter lengths are investigated in the bounds of clusters size, i.e., �̄ = {3�, 6�} < L ∼ 10�,
and revealed no impact on the turbulence trajectories behavior; this latter only goes upward at wider
filter, creeping toward 3C because of the smearing effect.

Another important insight into the turbulence anisotropy can be obtained from studying its
decaying evolution. Meaning, if we analyze the material derivative of B̃, one can get trajectories

094301-12



ANISOTROPY CHARACTERIZATION OF TURBULENT …

FIG. 4. Conditional mean vectors of 〈DxB/Dt〉 and 〈DyB/Dt〉 in (xB, yB ) BAM together with some integral
trajectories (green circles) and �̄ = 3�. They inspect the temporal turbulence trajectories or rate of return-to-
isotropy on the gas (a) and solid (b) phases of the TFM turbulent fluidization case.

within the Lumley triangle [5], revealing the rate of return-to-isotropy [49] for decaying homo-
geneous single-phase turbulence. Therefore, in this work, we decide to look at the evolution of
scalar metric xB and yB in BAM, to unveil how the states of turbulence change over time in the
frame of a moving observer following a phase parcel. Namely, taking the Lagrangian derivatives,
DxB/Dt = (∂xB/∂t ) + (〈u〉l · ∇ )xB and DyB/Dt = (∂yB/∂t ) + (〈u〉l · ∇ )yB, we compute the mean
trajectories (〈DxB/Dt〉, 〈DyB/Dt〉), yielding 2-D vectors conditioned by (xB, yB) space or BAM
constraint. These vectors are plotted in Figs. 4(a) and 4(b) for the gas and solid phases, respectively.
The converging vectors are found to be placed at the demarcation lines, while all vectors are
uniformly rendered and normalized by their own magnitude. Some trajectories are incorporated as
green circles to enhance the streamlines capturing. In principle, and as can be seen from Fig. 4(a),
the turbulence trajectories on the gas phase reveal almost a rotating behavior centralized in the
lower part of BAM. They read that any prolate-like 3-D turbulence interacting or colliding with
clusters develops to 1-D turbulence and then to 2-D turbulence to continue toward disk-like or
proceed developing toward 3-D turbulence following the demarcation line and driven by the clusters.
The turbulence trajectories on solid phase [Fig. 4(b)], however, show a clear demarcation line that
isolates any prolate-like cluster’s turbulence which develops to 3-D isotropic, from any oblate-like
background strain on solids which develops to 2-D disk-like or pancake-like turbulence.

Our decaying evolution might depart principally from the linear Rotta model [4] or the nonlinear
Sarkar-Speziale model [50] for the return-to-isotropy problem. These models give a representation
of the slow pressure-strain correlation term as a function of the anisotropy stress tensor and viscous
dissipation. They make use of vanishing the rapid part of pressure-strain correlation by removing
the velocity gradients in a decaying, homogeneous anisotropic turbulence, meaning that the shear
production and diffusive transport are neglected in the transport equation of Reynolds stress tensor,
and any initial turbulence anisotropy will relax toward isotropy. The evolution of anisotropy stress
tensor is then written in terms of the viscous dissipation, turbulent kinetic energy, the tensor itself,
and its invariants (II, III ) [50]. For any initial anisotropy state expanded between 1C and 2C
in the phase space AIM (II, III ), a nonlinear trajectory can be built by resolving the evolution
transport of II and III (or ξ 3 = (−1/2)λb1λb2 (λb1 + λb2 ) and η2 = (1/3)(λ2

b1
+ λb1λb2 + λ2

b2
), in the
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Sarkar-Speziale model [50]), relaxing to 3C. In fact, our initial anisotropy state is only one spatially
phase-filtered map which might be represented as one starting point trajectory in the Sarkar-Speziale
model (if we integrate over the whole domain). But, we have starting points for trajectories every
where in BAM and we append more moments, averaging in time to get a converged set of trajectories
at the demarcation lines. Note that the demarcation line in Fig. 4 on both gas and solid phases is
nonlinear and always moves toward 3C to indicate the smearing effect for cluster’s turbulence. We
might consider it as a tendency to extinguish the bulk anisotropy as originally conceived by Rotta [4]
(thus the label return-to-isotropy may be adopted here). Sampling more moments is like using wider
filter lengths and the cluster’s turbulence or the gas turbulence parcels driven by the clusters become
more prolate-like toward 3C. If we compare our converging demarcation lines with the trajectory
points obtained by Stiperski et al. [10], who use clustered data from atmospheric boundary layer
turbulence at different bulk anisotropy, one can notice a close behavior of the gas-phase demarcation
points to the two-component bulk anisotropy trajectories, whereas the solid-phase demarcation
points might close the one-component bulk anisotropy trajectory. Notably, our turbulent fluidization
is not a decaying turbulence and none of the budget terms can be ignored. Thus, the nonlinear
return-to-isotropy models, such as Sarkar-Speziale, are not comparable to our trajectories (Fig. 4),
precisely as reported by Stiperski et al. [10]. Therein, all atmospheric surface layer turbulence
trajectories were found to depart significantly from those of Ref. [50], particularly the two- and
one-component turbulence, in (ξ, η) AIM. At the end, our trajectories reveal a rate of change for
nonrelaxing turbulence induced by a gravity-driven gas-particle coupled flow.

IV. INTERFACIAL WORK AND CLUSTER-INDUCED TURBULENCE

The key complexity of disperse (particle-laden) multiphase flows arises from the interfacial
momentum coupling between particles and the carrier fluid. More precisely, when the particles
mass loading in the flow is sufficiently high and subject to a mean force (e.g., gravity), the particles
tend to organize into dense clusters due to the nonlinear drag force [20]. In statistically station-
ary conditions, the fluctuations in the particle concentration and fluid velocity can generate and
sustain fluid-phase turbulence (pseudo-turbulence), which is referred as cluster-induced turbulence
(CIT), even in the absence of mean shear [46]. In this context, we aim to depict the inherent
turbulence state corresponding to the essential mechanisms of turbulent interfacial work (drag-
dissipation-and-exchange) and CIT production [38,46]. Following previous studies [24,38,46,51–
53], the microscopic drag coefficient divided by the solid volume fraction can be approximated
by the zeroth-order Taylor series expansion about the filtered components, i.e., (εs, 〈ug〉g, 〈us〉s) in
moderately dense gas-particle flows. Thus, the filtered drag force is estimated as

−β(ug − us) ≈ − β̃

εs
εs(ug − us) = β̃(〈us〉s − 〈ug〉g − vd ), (40)

which is a good approximation of the filtered drag force [53,54]. Here, β̃ is evaluated from filtered
quantities, i.e., β̃ = β(εs, εg, 〈ug〉g, 〈us〉s). The turbulent interfacial work arising in the transport
equation of gas-phase turbulent kinetic energy [51] is then expressed as a combination of drag-
dissipation-and-exchange rate DEg and drag production DP [38,51], as

DEg = β̃(〈u′′′
g · u′′

s 〉s − 〈u′′′
g · u′′′

g 〉s), (41)

DP = β̃vd (〈us〉s − 〈ug〉g), with vd = 〈ug〉s − 〈ug〉g. (42)

In the turbulent kinetic energy equation of the solid phase, the turbulent interphase coupling raises
only a drag-dissipation-and-exchange rate DE s [51] written by

DE s = β̃(〈u′′′
g · u′′

s 〉s − 〈u′′
s · u′′

s 〉s). (43)

Equations (41) and (43) describe how kinetic energies on both are dissipated and exchanged between
the phases by gas-solid velocity cross correlation. Equation (42) represents an additional turbulence
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production on the gas phase generated by the drift velocity vd and termed as drag production.
This latter (vd ) constitutes a measure of the subfilter gas-phase velocity fluctuations induced by
the particle clustering and principally responsible for generating gas-phase turbulent kinetic energy.
Now, employing the averaging identities of Germano [55], the (un)mixed averages appearing in the
mesoscale work terms can be expanded as [51]

〈u′′′
g · u′′

s 〉s = 〈ugus〉s − 〈ug〉s〈us〉s, (44)

〈u′′′
g · u′′′

g 〉s = 〈ugug〉s − 2〈ug〉s〈ug〉g + 〈ug〉g〈ug〉g, (45)

〈u′′
s · u′′

s 〉s = 〈usus〉s − 〈us〉s〈us〉s. (46)

Moreover, the drag coefficient β̃ is evaluated upon the filtered variables, and by adopting the Wen
and Yu [39] drag law

β̃ = 3

4
C̃D

εgεsρg‖〈ug〉g − 〈us〉s‖
ds

ε−2.65
g (47)

and

C̃D =
{

24
[
1 + 0.15R̃e

0.687
s

]
/R̃es if R̃es < 1000

0.44 if R̃es � 1000
and, R̃es = εgρgds‖〈ug〉g − 〈us〉s‖

μg
. (48)

The idea is to map and sample the values of drag-dissipation-and-exchange rates and drag pro-
duction, given by Eqs. (41), (42), and (43), in condition of JPDF (xB, yB) in BAM for the gas and
solid phases, respectively. In other words, the average values of 〈DEg|(xg

B, yg
B)〉, 〈DP|(xg

B, yg
B)〉, and

〈DE s|(xs
B, ys

B)〉, which are conditioned by the most probable JPDF of xB and yB, utilizing a filter
length �̄ = 3�, are plotted and shown in Figs. 5(a), 5(b), and 5(c). The drag terms values are
rendered by coloring and converged with a minimum sampling number about 400 in each bin-width
coordinates in BAM. They are given in dimensionless form in terms of the terminal settling velocity
ut , ρs, and g, as the characteristic velocity, density, and acceleration [56] and the dimensional
quantities for length u2

t /g, time ut/g, drag or stresses terms ρsut g, and the granular temperature u2
t .

Starting with the gas phase, the DP in Fig. 5(a) implies a preferential 1-D turbulence state favoring
the gravity-aligned turbulent kinetic energy and the (relative) mean slip velocity, vr = 〈us〉s − 〈ug〉g

[Eq. (42)]. Note that vd and vr are found to be directly (counter)aligned [33]; moreover, the
magnitude of vd was found to obey a vortex-sheet (2-D) turbulence complied on equivalent
rotational and straining structures, i.e., balanced QΩg = −QSg , where Q is the second invariant of
rate-of-rotational Ωg and rate-of-strain Sg gas-phase tensors [33]. Hence, this can explicate why the
distribution of DP on BAM is skewed toward 2-D turbulence. The utmost (degenerate) values of
DEg in Fig. 5(b) follow exactly the same turbulence distribution of DP with an opposite negative
sign. It indicates therewith the dominance of gas-phase turbulent kinetic energy seen by particles
〈u′′′

g · u′′′
g 〉s over the interacting cross-correlated turbulence between phases 〈u′′′

g · u′′
s 〉s. On the solid

phase, the drag-dissipation-and-exchange rate DE s plotted on BAM [Fig. 5(c)] shows, similarly,
a 1-D turbulence preference to be fairly upturned (toward 3C) around its highest positive values.
It might render with this shape the interfacial prolate-like turbulence around the clusters, whereas
DE s is totally negative inside the clusters. Because DP is vanished inside the clusters [Fig. 5(a)],
the turbulent kinetic energy of the gas phase is not sufficiently high to support the turbulent kinetic
energy on the solid phase, and hence DE s is even negative, meaning that energy is dissipated due
to the unresolved gas flow around the particles, where the momentum transfer is closed by a drag
force. To get closer insight into this phenomenon, detailed particle-resolved DNS (PR-DNS) would
be necessary, which resolves the flow around the particles, and a no-slip condition would be applied
on the particle surface instead of using a drag correlation [57].

More interesting queries come to mind about how the interfacial turbulence changes spatially in
different flow regions, e.g., from the dilute areas toward inside the clusters. Therefore, we retrieve
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FIG. 5. Mean-ensemble values of (a) DP , (b) DEg, and (c) DE s, normalized by ρsut g and conditioned on
(xB, yB ) BAM using a filter length �̄ = 3�, for the TFM turbulent fluidization case.

the same turbulence trajectories constructed on gas and solid phase and previously unveiled in
Figs. 3(b) and 3(c), respectively. They run in functional to ε̄s, but now we color the points by
the production values, DP , DEg, and DE s. Namely, in each bin width of filtered solid volume
fraction, we ensemble the coordinates (〈xB|ε̄s〉, 〈yB|ε̄s〉), to get the points trajectories in BAM, and
we average the terms 〈DEg|(xg

B, yg
B)|ε̄s〉, 〈DP|(xg

B, yg
B)|ε̄s〉, and 〈DE s|(xs

B, ys
B)|ε̄s〉, in condition of

those coordinates. Taking the turbulence trajectories filtered about �̄ = 6�, the coloring results for
DP , DEg, and DE s, are represented in Figs. 6(a), 6(b), and 6(c), respectively. It can be noted that
the prevalent DP and −DEg are, by logic, located in the interfacial areas (ε̄s around 0.35), which
are classified as elongated pancake-like turbulence. They are clearly negligible in the dilute regions

094301-16



ANISOTROPY CHARACTERIZATION OF TURBULENT …

FIG. 6. The same turbulence trajectories taken from Fig. 3(b) on the gas phase and Fig. 3(c) on the solid
one, at a filter length �̄ = 6�. They are plotted in (xB, yB ) BAM constraint and in condition of ε̄s, but colored
by the mean-ensemble values of dimensionless (a) DP , (b) DEg, and (c) DE s (normalized by ρsut g). All
trajectories are enlarged in a circle subset, and the data are taken from the TFM turbulent fluidization case.

and inside the clusters, since the phases are homogeneous there (e.g., no clusters, no drift velocity
vd = 0, and no gas energy seen by solid, while moreover, variance solid concentration is zero inside
the clusters). Correspondingly, the utmost solid-phase DE s is similarly located in the interfacial
areas, which are classified as prolate-like turbulence on solids, while DE s becomes totally negative
inside the clusters (as argued above).
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FIG. 7. (a) Mean-ensemble value of 〈�s〉s, normalized by u2
t and conditioned on (xB, yB ) BAM using a

filter length �̄ = 3�. (b) represents the same mean-ensemble normalized magnitude of �s conditioned on
(QΩs ,−QSs ) invariant space. All data analyzed correspond to the TFM turbulent fluidization case.

V. GRANULAR TEMPERATURE

In the framework of TFM [34], the concept from the gas kinetic theory is used to describe the
effective stresses of the solid phase resulting from particle-particle collisions and the translational
dispersion of particles. Namely, by allowing an inelastic collision of particles, the Chapman-Enskog
expansion is used to provide constitutive relations for the solid pressure tensor [17], which is
decomposed into an isotropic contribution represented by the granular temperature �s and the
solid-phase viscous stress tensor [46]. The granular temperature �s is introduced as a quantitative
measure of the local uncorrelated particle fluctuations and defined as the residual component of the
instantaneous particle velocity [46]. The total granular energy, then, discerns the difference between
the (correlated) solid-phase turbulent kinetic energy ks = (1/2)〈u′′

s · u′′
s 〉s and the uncorrelated

pseudo-thermal granular energy (3/2)〈�〉s, as a sum of both, ks + (3/2)〈�〉s. Taking one third of
the trace of solid pressure tensor [46], a balance equation of �s transport is found and given in
Table II [Eq. (9)]. In this context, we suggest inspecting the underlying turbulence states associated
to 〈�s〉s by depicting its value in BAM, similar to that performed for the turbulent interfacial work
in Fig. 5. It means that we evaluate 〈〈�s〉s〉 in condition of JPDF (xB, yB) in BAM on the solid phase
and employ a filter length �̄ = 3�. Similar to the drag terms, the 〈�s〉s value is made dimensionless
by u2

t , and the resultant map is presented in Fig. 7(a). It can be seen that the highest granular
temperature is located on 1-D turbulence preference with moderate nontrivial values expanded
on the planar-like 2-D turbulence. This means that �s avoids taking any prolate-like turbulence
inside clusters or any oblate-like (pancake-like) turbulence, holding only linear and planar solid
turbulence. In order to get an explanation, �s is studied in the condition of the most probable
JPDF (QΩs ,−QSs ), a space that provides important physical information about the dominant flow
topologies with respect to the kinetic energy dissipation. Horizontal points inside (QΩs ,−QSs )
space indicate prevalent solid-body rotational structures, while vertical points represent irrotational
straining domination. The points on the diagonal line portray a balanced enstrophy and dissipation
QΩs = −QSs occurring at vortex-sheet structures and 2-D boundary-layer-like turbulence. The JPDF
map of (QΩs ,−QSs ) for moderately dense turbulent fluidization has been previously investigated on
the base of a traceless weighted-phase velocity gradient tensors in our recent work [33]. Here, we
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FIG. 8. Visualization of the three scalar metrics {1C, 2C, 3C}, computed on the solid-phase physical
instantaneous domain with a filter length �̄ = 3�. The three scalar metrics {1C, 2C, 3C}, bounded between
[0,1], are rendered by three colors (gray, green-yellow, magenta), respectively, together with the isolines of
highest 〈�s〉s (b) and clusters εs ∈ [0.3, 0.6] (a). Note that all representations are planar taken from the TFM
turbulent fluidization case.

build the JPDF (QΩs ,−QSs ) map for the current turbulent fluidization case and print the averaged
�s value coloring in each bin-width space, as demonstrated in Fig. 7(b). It is worth noting that the
utmost values of �s are located on the large-scale irrotational solid strain-dominated slots, with
a moderate distribution on the 2-D boundary-layer-like turbulence (diagonal). This picture agrees
very well with BAM representation in Fig. 7(a) and leads to the conclusion that �s obeys a prevalent
1-D turbulence in corresponding to the viscous shear straining solids.

To highlight the distribution of �s in the context of turbulence anisotropy, a visualization of
specific-point color triplets {1C, 2C, 3C}, which allows us to render turbulence states in physical
domain, is built and shown in Figs. 8(a) and 8(b). Therein, we plot the three scalar metrics
{1C, 2C, 3C} [defined in Eqs. (34), (35), and (36), respectively] computed on the base of the
solid-phase anisotropy stress tensor [Eq. (25)] and filter length �̄ = 3�, using three colors (gray,
green-yellow, magenta). It thus permits the recognition of 1-D, 2-D isotropic, and 3-D turbulence
positions on the solid-phase physical instantaneous domain. Furthermore, the contours of utmost
〈�s〉s in Fig. 8(b) and clusters ε̄s ∈ [0.3, 0.6] in Fig. 8(a) are rendered above as fine white lines. One
can notice how the granular temperature places away from the clusters following preferential 1C
turbulence and slight 2C turbulence, while the clusters tend to assemble in 3C turbulence (consistent
with the trajectories observations).

Now, the question of why the granular temperature is moderately obeying the 2-D turbulence
is still open. To resolve this query, we decide to analyze the principal terms on the right-hand side
(RHS) of granular temperature transport equation [Eq. (9)], in the framework of BAM, precisely
identical to 〈�s〉s in Fig. 7(a). Before that, it can be quite useful to investigate the impact of
solid divergence ∇ · us on both �s and the three turbulence scalar metrics {1C, 2C, 3C}. Hence, for
doing so, the ensemble PDF of �s values in condition of each bin width ∇ · us, and {1C, 2C, 3C}
values in the bin widths ∇ · us, are plotted together in Fig. 9(a). It is worth mentioning that the
divergence solids, similar to �s, are also considered dimensionless using the normalization quantity
g/ut . {1C, 2C, 3C} have no dimension, and the solid divergence range is limited to [−5, 5], which
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FIG. 9. (a) The ensemble PDF of normalized �s in condition of ∇ · us, and {1C, 2C, 3C} values in condition
of normalized ∇ · us using a filter length �̄ = 3�. The normalization quantity for divergence solids is g/ut .
(b) The contours of high �s (gray lines), together with −∇ · us isolines (red lines) and clusters as white gaps.
Note that the representation is planar, and all data are taken from the TFM turbulent fluidization case.

allows a good convergence of sampled terms. Interesting outcomes are obtained from Fig. 9(a): First,
the granular temperature follows predominantly negative values of ∇ · us, which corresponds to a
compressive heating of particle phase [46]. The maximum values of �s comply with meaningful
negative divergence magnitudes −∇ · us located at the upstream parts of clusters, as pictured in
Fig. 9(b). Therein, �s contours are drawn in gray lines, while the −∇ · us is rendered in red
contours, together with the clusters viewed as white gaps. These findings agree rigorously with
the observations reported by Capecelatro et al. [58]. Second, the peak magnitudes of 2C and
3C are mainly in negative divergence range (∇ · us < 0), while the utmost 1C tends to position
toward positive divergence (∇ · us > 0) [Fig. 9(a)]. This can argue the 2-D turbulence nature of �s

distribution, driven by the negative divergence of solids −∇ · us and aligned to the upstream parts
of falling clusters. Moreover, �s holds the prevalent 1-D turbulence in association to the positive
divergence ∇ · us > 0 dynamics, which truly corresponds to the shear straining solids (trace of Ss).

We return to the analysis of the principal terms appeared on the RHS of granular temperature
balance equation [Eq. (9)], after applying a phase-averaged filter [Eq. (17)] with filter length �̄ =
3� on the solid phase. First, the production of granular temperature due to viscous shear 〈−Σkc

s :
∇us〉s simplified to 〈2μkc

s Sd
s : ∇us〉s is considered as an important heat source on the solid phase

[46]. It can be split into two essential terms, the resolved production of 〈�s〉s, i.e., 2μkc
s Sd

s : 〈∇us〉s,
and the turbulent kinetic energy dissipation, i.e., 〈2μkc

s Sd
s : ∇u′′

s 〉s, as [28,46]〈
2μkc

s Sd
s : ∇us

〉
s = 2μkc

s Sd
s : 〈∇us〉s + 〈2μkc

s Sd
s : ∇u′′

s

〉
s. (49)

Hence, we disclose the underlying turbulence states of the two elements in Eq. (49) by plotting
them separately in BAM, precisely identical to 〈�s〉s in Fig. 7(a), as shown in Figs. 10(a) and 10(b).
The magnitude of production terms therein are presented in dimensionless form (similar to drag
terms �s and divergence solid) using a normalization quantity ρsut g. From Fig. 10(a), the resolved
production 2μkc

s Sd
s : 〈∇us〉s exposes a clear 1-D turbulence preference which in turn conforms the

previous conclusions, and thus the resolved shear dissipation stands to be the main source of the
linear-like turbulent solid heating or granular temperature. The turbulent kinetic energy dissipation
term in Fig. 10(b) shows a different distribution. It unveils a positive dominance in more prolate-like
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FIG. 10. Similar pictures to those presented in Figs. 5 and 7(a), but for (a) the resolved production 2μkc
s Sd

s :
〈∇us〉s, (b) the turbulent dissipation 〈2μkc

s Sd
s : ∇u′′

s 〉s, (c) the rate of 〈�s〉s production by gas-solid fluctuating
slip 〈Γs〉s, and (d) the dissipation due to viscous damping 〈Jv〉s. All terms are normalized by ρsut g with �̄ = 3�,
for the TFM turbulent fluidization case.

turbulence, but a trivial negative weight in the turbulence state that supports 〈�s〉s. It might be
worthwhile to remark that the turbulent dissipation term 〈2μkc

s Sd
s : ∇u′′

s 〉s appears in a negative sign
on the RHS transport equation of solid-phase turbulent kinetic energy ks [51] to dissipate ks, but
any negative contribution of it translates into a support of ks. This might be argued and returned to
the consideration of particles as a viscous solid [59], where the high collisions of particles might
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produce the uncorrelated fluctuating dynamics that reflects �s, to be correlated and supports ks.
Further investigations on this argument become important in the TFM framework.

The other two key elements in the 〈�s〉s transport equation are the dissipation due to viscous
damping or inelastic particle-particle collisions 〈Jv〉s and the rate of 〈�s〉s production by gas-solid
fluctuating slip 〈Γs〉s. They are retrieved as

Γs = dsβ
2‖ug − us‖2

4εsg0ρs
√

π�s
�, (50)

where

� = R2
d

(1 + 3.5ε
1/2
s + 5.9εs)

,

Rd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 3(εs/2)1/2 + (135/64)εs ln εs + 17.14εs

1 + 0.681εs − 8.48ε2
s + 8.16ε3

s

, εs < 0.4

10εs

ε3
g

+ 0.7, εs � 0.4
, (51)

and

Jv = 54εsμg�s

d2
s

Rdiss,

Rdiss = 1 + 3ε1/2
s√
2

+ 135

64
εs ln εs + 11.26εs

(
1 − 5.1εs + 16.57ε2

s − 21.77ε3
s

)− εsg0 ln εm,

(52)

where εm = 0.01, as defined by Agrawal et al. [20] (Table II). We then plot the contributions 〈Γs〉s

and 〈Jv〉s in the BAM constraint, normalized by ρsut g, at the same filter length �̄ = 3�, as displayed
in Figs. 10(c) and 10(d), respectively. One can note that the production by slip 〈Γs〉s opposes the
favoring turbulence states of 〈�s〉s, whereas the viscous damping dissipation 〈Jv〉s conforms with
the turbulent dissipation 〈2μkc

s Sd
s : ∇u′′

s 〉s anisotropy with a total positive sign. Since 〈Jv〉s seems to
be dominant over 〈Γs〉s and appears negatively in Eq. (9), then it might balance or cancel the positive
part of 〈2μkc

s Sd
s : ∇u′′

s 〉s leaving the resolved production 2μkc
s Sd

s : 〈∇us〉s to be the main controller
or source of granular temperature anisotropy preference.

VI. VARIANCE OF SOLID CONCENTRATION

The arrangements of particle clustering in statistically stationary homogeneous gravity-driven
particulate flows stimulate volume-fraction and velocity fluctuations that appear as CIT or principal
production component (drag production) for the gas-phase turbulent kinetic energy and Reynolds
stresses [46]. This mechanism is quantified (as mentioned in Sec. IV) by the drift velocity, which
can be expressed following Cloete et al. [60] as a function of the covariance of the solid volume
fraction and the gas-phase velocity,

vd = ε′
su′′′

g

εs(1 − εs)
. (53)

Then, it might be useful to investigate the underlying turbulence states associated to the drift velocity
vd [given inside Eq. (43) in its direct definition] in the framework of BAM. In order to decouple
the vd influence from the large-scale relative velocity vr , a normalized form is employed, reading
as vd · vr/‖vr‖2 and plotted similarly to, e.g., the drag production DP [Fig. 5(a)], in Fig. 11(a). It
shows the map of 〈vd · vr/‖vr‖2〉 with the condition of JPDF (xB, yB) in BAM on the gas phase
using the (same) filter length �̄ = 3�. The (normalized) drift velocity thus implies a preferential
1-D turbulence state that solidly coincides with the drag production DP distribution. One can note
how vd is subtly obeying equivalent rotational and irrotational structures [33], translated into a

094301-22



ANISOTROPY CHARACTERIZATION OF TURBULENT …

FIG. 11. Mean-ensemble values of (a) normalized drift velocity vd · vr/‖vr‖2, (b) variance of solid con-
centration ε ′2

s /ε2
s , (c) ‖〈u′′′

g ⊗ u′′′
g 〉g‖, and (d) 2kg (Reynolds stresses magnitude and turbulent kinetic energy

are normalized by u2
t ), conditioned on (xB, yB ) BAM using a filter length �̄ = 3�, for the TFM turbulent

fluidization case.

balanced linear-prolate and planar energy ellipsoids, and skewed toward 2-D turbulence. Taking the
other definition of vd , deduced from Eq. (53), gives a rise to the variance or fluctuations of the
solid concentration role in CIT and gas-phase turbulence. These solid fluctuations sustained by the
clusters constitute the dominant gas-phase turbulence flux (by vd ) and deserve to be explored in the
background of turbulence type classification. Hence, we consider the variance of solid concentration
(volume fraction) ε′2

s = ε2
s − ε2

s normalized by the large-scale concentration as, ε′2
s /ε2

s , in a way
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similar to vd · vr/‖vr‖2. Interestingly, the distribution results of 〈ε′2
s /ε2

s 〉, rendered on the gas-phase
BAM [Fig. 11(b)], show an identical 1-D turbulence preference as in vd · vr/‖vr‖2 and DP . More
precisely, it becomes closer to the drag production DP behavior, attesting to the strong and direct
connection between the fluctuations of solid concentration and the dominant gas-phase turbulent
kinetic energy production. In similar perspectives, the maps related to the gas-phase turbulent
kinetic energy 2kg and the magnitude of phase-filtered Reynolds stress tensor ‖〈u′′′

g ⊗ u′′′
g 〉g‖ are

inspected and displayed in Figs. 11(d) and 11(c), respectively. They are given in dimensionless
form using u2

t and clearly indicate a (gravity-aligned) 1-D linear turbulence preference with a
strong tendency to the planar-like 2-D turbulence. In a repetition to what previously reported in
Sec. III, Figs. 11(c) and 11(d) give further evidence on the topological finding in Ref. [33], i.e., the
preferential boundary-layer-like 2-D turbulence on the gas phase. Eventually, our current outcomes
on ε′2

s and kg relevant turbulence states promote the applicability of using these two terms in
the estimation of the covariance of solid volume fraction and gas-phase velocity in drift velocity
definition, Eq. (53). One example is the vd model proposed by Rauchenzauner and Schneiderbauer
[51] that assumes a closure of square root variance variables scaled by a linear correlation coefficient
ζεsg, i.e.,

vRau
d = ζεsg

√
2kgε′2

s

εs(1 − εs)
, (54)

where ζεsg is calculated dynamically using test filters [51]. Other drift velocity models are already
available in literature [33,52,61,62], while the assessment of its performance inside the barycentric
anisotropy map is out of the current paper’s scope. It is worth noting from Figs. 11(c) and 11(d)
how the weight of the gas-phase Reynolds stress tensor is fully controlled by its trace, i.e.,
turbulent kinetic energy anisotropy. Then let us compare, as well, the magnitude of the gas-phase
rate-of-strain tensor in an analogous picture as ‖〈u′′′

g ⊗ u′′′
g 〉g‖ [Fig. 11(c)]. Namely, we consider

the filtered gas-phase rate-of-strain tensor S̄g = (1/2)(Ḡg + Ḡt
g), where Ḡg = ∇〈ug〉g, and plot its

magnitude ‖S̄g‖ in the framework BAM (same filter size and normalized by g/ut ), as represented
in Fig. 12(b). It is compelling to see that the weight of resolved gas-phase rate-of-strain tensor is
giving a similar distribution of turbulence anisotropy as the magnitude of phase-filtered Reynolds
stress tensor and turbulent kinetic energy. This in turn encourages the applicability of eddy-viscosity
assumption (Bossinesq hypothesis [49]), as a large-eddy simulation-type closure for the Reynolds
stress contribution on the gas-phase turbulent fluidization, moderately dense cases, i.e.,

〈u′′′
g ⊗ u′′′

g 〉g � τ̄g = 2
3 ε̄gkgI − 2εgνtg

(
S̄g − 1

3 tr(S̄g)I
)
. (55)

Therein, the turbulent viscosity νtg can sympathetically be approached using a simple (dynamic)
Smagorinsky model [49], νtg = (Cs�̄)2(2S̄g : S̄g)1/2, or a Kolmogorov-Prandtl model [49], νtg =
Cm�̄εgk1/2

g , where Cs and Cm are the model constants. Again, an example in this regard is
the spatially averaged two-fluid model (SA-TFM) proposed by Schneiderbauer [63]. It used the
Kolmogorov-Prandtl model in a mixing length assumption to close the Reynolds stress-like con-
tributions on both gas and solid phases turbulence. We investigate the alignment trends of the
eigenframe vectors imposed by our gas-phase filtered Reynolds stress and resolved rate-of-strain
tensors (deviatoric parts). Recalling that both tensors are symmetric and second-order positive
semi-definite matrices, they can thus be given in a decompositional canonical form in terms
of eigenvalue and eigenvectors [similar to Eq. (27)] as τ̄ d

g = λτ1τ1τ
t
1 + λτ2τ2τ

t
2 + λτ3τ3τ

t
3 and

S̄d
g = λs1 s1st

1 + λs2 s2st
2 + λs3 s3st

3, respectively. The eigenvectors’ strain-stress alignments are then
computed and revealed in Fig. 12(a) to show consistent observations with those reported in the liter-
ature for isotropic turbulence [64]. For instance, the same relative preferred orientation of 45 deg for
the most extensional τ1 · s1 and contracting τ3 · s3 eigenvectors, and the perfect parallel orientation
for the principal intermediate τ2 · s2 eigenvectors, are recaptured here (on the gas-phase turbulence).
In the end, our aim behind is only to demonstrate the motivation of applying eddy-viscosity models
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FIG. 12. (a) PDFs of the direction cosines between the eigenvectors of τ̄ d
g and S̄d

g . (b) Mean-ensemble
values of magnitude gas-phase rate-of-strain tensor, similar to Fig. 11, and normalized by g/ut on (xB, yB )
BAM using a filter length �̄ = 3� for the TFM turbulent fluidization case.

for Reynolds stress-like contribution in turbulent fluidization, not discuss the alignment outcomes.
Similar to the drift velocity above, any a posteriori assessment (or even a priori) of Reynolds stress
models utilizing the barycentric anisotropy map is out of this paper’s scope.

VII. CONCLUSIONS

In this work, the turbulence anisotropy in moderately dense turbulent fluidization is characterized
with the aid of the barycentric anisotropy map (BAM) [6]; such a critical space based on the convex
combination of scalar metrics dependent on eigenvalues of the phase-filtered anisotropy stress
tensors. These latter are defined as the deviatoric (traceless) part of the phase-averaged Reynolds
stress tensors normalized by twice the phasic turbulent kinetic energies. The BAM has provided
a nondistorted visual representation of turbulence anisotropy on an equilateral triangle. It conveys
information on the orientation of turbulence and the weighting of anisotropy [6], in terms of three
limiting states, one-component (1-D turbulence), two-component (2-D isotropic turbulence), and
three-component (3-D isotropic turbulence). The data set for analysis was obtained from a highly
resolved kinetic theory-based TFM simulation, performed for fully triply periodic (unbounded)
cubic domain of moderately dense turbulent fluidization (Geldart A particles). The predominant
turbulence state identified on the JPDF map of (xB, yB) BAM coordinates has indicated a 1-D
turbulence type on both phases. It manifests on the dominant streamwise turbulent kinetic energy
component, which generates turbulence anisotropy in gravity-driven cluster-induced turbulence.
The turbulence trajectories, on the other hand, altering upon different flow regimes from dilute areas
toward inside the clusters, are investigated in the framework of BAM on both phases. They have
revealed, on the gas phase, a prevalent 2-D ellipse-like turbulence in the dilute regions, changing
to 1-D turbulence in transition areas, and tend toward 3-D turbulence in elongated pancake-like
turbulence at the interface and inside the clusters. On the solid phase, the trajectories have implied
a shorter change from 1-D linear turbulence in transition areas toward prolate-like 3-D turbulence
at the interface and inside the clusters. The turbulence evolution is investigated considering the
temporal trajectories in BAM, yielding insights into the turbulence decay in the aspect of return-to-
isotropy rate [49]. The turbulence trajectories on the solid phase have shown a demarcation line that
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isolates the evolution of the prolate-like cluster’s turbulence from the development of oblate-like or
planar-like background solid strain. However, the trajectories on the gas phase are found to rotate,
altering any near prolate-like turbulence driven by clusters to a 1-D turbulence, which is then devel-
oped into 2-D turbulence toward disk-like or pancake-like structure. In the same BAM framework of
the JPDF and spatial turbulence trajectories maps, the turbulence anisotropy of turbulent interfacial
work, cluster-induced turbulence (CIT), and the granular temperature, which is defined as a measure
of pseudo-thermal energy produced by uncorrelated particles agitation, have been inspected. The
1-D turbulence preference has been reported for all effective drag-dissipation-and-exchange rates
and drag production. The maximum gas-phase drag magnitudes are found to hold an interfacial
elongated pancake-like turbulence, while it becomes fairly upturned on the solid phase, to obey more
prolate-like interfacial turbulence. In further analysis, the granular temperature 〈�s〉s indicates 1-D
turbulence preference in association with the resolved solid strain dissipation (resolved production
of 〈�s〉s) and positive solid divergence; moreover, it is found to obey moderately a 2-D turbulence
nature under the impact of negative solid divergence, aligned preferentially to the upstream parts
of falling clusters. To complete the study, the variance of solid concentration which is principally
produced by the clusters is analyzed on the BAM framework, together with the drift velocity,
the gas-phase turbulent kinetic energy, and the magnitude of the same phase Reynolds stress and
rate-of-strain tensors. Interestingly, the solid variance has shown an identical distribution to the drag
production, similar to the underlying turbulence anisotropy of the drift velocity and the gas-phase
turbulent kinetic energy. They all favor the 1-D linear turbulence with a strong tendency to the
planar-like 2-D turbulence. This in turn has encouraged the applicability of using the variance solid
concentration and the gas-phase turbulent kinetic energy in the modeling closure of the subgrid drift
velocity. The similar behavior of gas-phase magnitude Reynolds stress and rate-of-strain tensors on
BAM has promoted, as well, the valid use of eddy-viscosity assumption as an appropriate model for
Reynolds stress contribution on the gas-phase turbulence.

These findings eventually enrich our understanding of turbulence anisotropy in turbulent fluidiza-
tion, being a reference to building better second-moments models, e.g., for the Reynolds stresses,
that can be analytically assessed inside the barycentric anisotropy map. This last will constitute our
primary concern in the future.
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