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Spontaneous rupture of surfactant-covered thin liquid sheets
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Rupture of thin free films of Newtonian fluids is analyzed when the sheets’ two free
surfaces are covered with insoluble surfactant and surface rheological effects are important.
The analysis relies on a long-wavelength model composed of a system of one-dimensional
evolution equations for film thickness h(z, t ), lateral velocity v(z, t ), and surfactant con-
centration �(z, t ) (z: lateral coordinate, t : time). As the dynamics near the space-time
singularity in sheet rupture is asymptotically self-similar when surfactants are convected
away from the rupture point, the partial differential equations are also reduced to a set of
ordinary differential equations in similarity space. For both highly viscous fluids in the
Stokes limit and moderately viscous fluids, it is shown that the dominant balance involves
van der Waals pressure and bulk viscous as well as surface viscous stresses while surface
tension pressure and Marangoni stress are negligible. In the Stokes limit, self-similarity is
of the second kind and h ∼ � ∼ τ 1/3, z ∼ ταz , and v ∼ ταz−1 where τ is time remaining
until rupture and αz is the lateral scaling exponent. Although αz cannot be determined by
dimensional arguments, it is shown to equal 0.249. For moderately viscous fluids, inertia
also enters the picture and self-similarity is of the first kind (h ∼ � ∼ τ 1/3, z ∼ τ 1/2, and
v ∼ τ−1/2). Scalings determined from theory are confirmed by numerical solution of the
evolution equations. Closed-form expressions for the sheet’s thinning rate, which have
heretofore been lacking, are also reported.
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I. INTRODUCTION

Thinning and rupture of liquid films play a central role in diverse technological applications and
nature [1–3]. In a free liquid film or a liquid sheet, which has two free surfaces and is surrounded by
air or another liquid, if the thickness of the film is less than the order of a micrometer, long-range
intermolecular van der Waals attractive forces between the molecules in the liquid film can become
significant and influence the thinning dynamics [4,5]. Indeed, van der Waals attractive forces can
cause the film to destabilize and rupture despite the stabilizing action of surface tension if the film
is tens to hundreds of nanometers in thickness. For films of thickness of the order of μm or larger,
van der Waals forces are not operative, and hence, not responsible for film rupture [6]. A striking
example of sheet rupture is provided in the paper by Debrégeas et al. [7] who observed it while
studying experimentally the bursting of bubbles at air–liquid interfaces. These authors have reported
that the liquid sheet that forms between the bubble and the interface spontaneously ruptures below
a thickness of 70 nm due to van der Waals forces. The destabilizing van der Waals attractive forces
in liquid sheets are key to controlling foam instability due to sheet rupture [8], emulsion stability
due to drop coalescence [9,10], and bubble coalescence in gas-liquid dispersions [11] (also, see
below). They also play a key role in determining appropriate operating conditions for preventing film
rupture in industrial processes such as manufacturing of polymer films [12] and curtain coating [13].
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Similarly, van der Waals attraction between the molecules in the liquid and a solid can cause rupture
of films deposited on solid surfaces, which have one free surface, and is crucial to understanding of
the formation of dry spots in diverse coating flows [14,15] and the rupture of the tear film covering
the cornea [16].

In many of the aforementioned applications involving sheet rupture as well as in a plethora of
other free-surface or interfacial flows, surfactants are often present by design, e.g., as in spraying
applications [17] but also sometimes as undesirable contaminants. A primary action of surfactants
in these flows is attributable to their preferential adsorption onto interfaces and the concomitant
lowering of surface tension, and hence capillary pressure [18,19]. However, surfactant concentration
is often nonuniform at an interface in a free-surface flow. The nonuniformity is caused by changes
in interfacial area by compression or expansion due to normal dilatation as well as tangential
stretching, and also because of surfactant transport by convection and diffusion. Gradients in
surfactant concentration give rise to gradients in surface tension and hence tangential interfacial
or Marangoni stresses [20–22]. The Marangoni effect is perhaps the most studied consequence of
surfactants, and manifests itself and brings about rich physics in problems as diverse as interfacial
turbulence in mass transfer, tears of wine, microthread cascades in drop and jet breakup, inkjet
printing, droplet bouncing, and evaporating colloidal droplets [20,23–27]. However, lowering of
surface tension, which is often referred to as the solutocapillary effect, and gradients in surface
tension, or the Marangoni effect, may not be the sole consequences of surfactants at interfaces.
Surfactants may also induce surface rheological or viscous effects [19] as surfactant molecules are
transported along an interface and give rise to frictional losses as the molecules deform against
one another [28]. While the implication of these effects has been investigated in a number of film
flows such as coating flows [18,29–31], only a handful of studies to date have considered the effects
of surface rheology on sheet rupture (see below). The major goal of this paper is to advance the
understanding of the effects of surface viscosities on the finite-time hydrodynamic singularity that
arises as a liquid sheet of initial thickness of the order of a micrometer or less and whose two
surfaces are initially uniformly covered with surfactant begins to thin spontaneously and tends
toward rupture.

Consider a quiescent liquid sheet of a pure fluid of uniform thickness 2h̃i that is surrounded by
a passive gas, e.g., air. The surface tension of the liquid-gas interface is denoted by σp. We note
that if the undisturbed thickness of the sheet is one micrometer, the gravitational Bond number
Bo ≡ ρg(2h̃i )2/σp, where ρ is the density of the film liquid and g is the acceleration due to gravity,
that measures the relative importance of gravitational to surface tension force is 1.4 × 10−7 for a
water film. Therefore, for such a sufficiently thin sheet, the pressure within the film is uniform and
exceeds the exterior pressure by AH/[6π (2h̃i )3], where AH is the Hamaker constant, due to van der
Waals attraction between the molecules in the film. Next consider that the two surfaces of the sheet
are subjected to two-dimensional, sinusoidal perturbations of amplitude ε and wavelength λ̃ that are
symmetric about the mid-plane of the film. When subjected to such perturbations, surface tension
causes the pressure to rise (fall) underneath the peaks (valleys) of the disturbed free surface since
the surface tension-induced capillary pressure equals the surface tension σp times the curvature.
The difference in the capillary pressure between the peaks and the valleys scales as σp(εh̃i/λ̃

2).
By contrast, van der Waals attraction between the molecules of the film causes the pressure to rise
underneath the valleys and to fall underneath the peaks of the perturbed free surface. The difference
in the van der Waals-induced pressure between the valleys and the peaks scales as ε(AH/h̃3

i ).
Balancing the stabilizing capillary pressure and the destabilizing van der Waals pressure yields
that there is a critical wavelength λ̃c ∼ h̃2

i /d , where d ≡ √
AH/σp is of the order of the molecular

length scale: the sheet is unstable with respect to disturbances of wavelengths exceeding λ̃c whereas
it is stable when λ̃ < λ̃c. As h̃i is of the order of micrometers and d is of the order of nanometers,
λ̃c/h̃i ∼ h̃i/d � 1 and therefore the instability is a long-wavelength one. Sheludko [32] and later
Vrij [33] (see also the review by Sheludko [34]), who both used energy arguments, and subsequently
Ruckenstein and Jain [35], who carried out a hydrodynamic linear stability analysis, have shown that
the exact value of the critical wavelength is λ̃c = 8π3/2h̃2

i /d .
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Erneux and Davis [36] made use of the long-wavelength nature of the problem, and derived and
solved a set of one-dimensional (1D) evolution equations to analyze Newtonian film rupture. These
authors showed that nonlinear effects led to acceleration of thinning and resulted in rupture times
that are much smaller than those predicted by linear theory. In film rupture, the dynamics close to the
space-time singularity (z̃R, t̃R), where z̃R and t̃R are the lateral location z̃ and time t̃ at which the film
ruptures, is set solely by the approach to the singularity. As the finite-time singularity is approached,
the film half-thickness h̃, the lateral length scale z̃′ = z̃ − z̃R, and the timescale τ̃ = t̃R − t̃ , which is
the time remaining until rupture, will be orders of magnitude smaller in the vicinity of the rupture
point than those in the far field. Therefore, the rupture dynamics is expected to be self-similar and
described in terms of similarity solutions. Following an early numerical study by Ida and Miksis
[37], Vaynblat et al. [38] carried out a combined theoretical and numerical analysis that focused
on the self-similar dynamics that arises during rupture of sheets of Newtonian fluids. These authors
analyzed by using a set of 1D evolution equations the thinning and pinch-off of Newtonian sheets
undergoing line—sometimes also referred to as two-dimensional—as well as point—also referred
to as axisymmetric—rupture. Vaynblat et al. [38] showed using kinematic and dynamic balance
arguments that the asymptotic balance of forces is between inertial, viscous, and van der Waals
forces while surface tension force is negligible. These authors further showed that the self-similarity
is of the first kind [39] and that the film half-thickness, lateral length scale z̃′, and lateral velocity ṽ

vary with time until rupture as h̃ ∼ τ̃ 1/3, z̃′ ∼ τ̃ 1/2, and ṽ ∼ τ̃−1/2.
More recently, Thete et al. [40] have analyzed the self-similar dynamics of rupture of Newtonian

sheets undergoing Stokes and inviscid flow. For sheets with negligible inertia, Thete et al. [40] have
shown that the dominant balance of forces involves solely viscous and van der Waals forces, with
capillary force remaining negligible throughout the thinning process, and the self-similarity is of
the second kind [39]. These authors have shown that in this viscous or Stokes flow regime, the film
half-thickness, lateral length scale, and lateral velocity vary with time until rupture as h̃ ∼ τ̃ 1/3,
z̃′ ∼ τ̃ 0.26, and ṽ ∼ τ̃−0.74. However, for a sheet of an inviscid fluid for which the effect of viscosity
is negligible, it was shown that the dominant balance of forces is between inertial, capillary, and van
der Waals forces as the film evolves towards rupture, and the self-similarity is of the first kind [39].
In this inviscid regime, the film half-thickness, lateral length scale, and lateral velocity vary with
time until rupture as h̃ ∼ τ̃ 2/7, z̃′ ∼ τ̃ 4/7, and ṽ ∼ τ̃−3/7. Furthermore, it was also shown by these
authors that as real fluids have finite viscosity, the aforementioned viscous and inertial regimes are
only transitory and can only describe the initial thinning dynamics of highly viscous and slightly
viscous sheets, respectively. Moreover, Thete et al. [40] have further demonstrated that regardless
of the fluid’s viscosity, for sheets that initially thin in either of these two regimes, their dynamics
eventually transition to a late stage or final inertial-viscous regime in which inertial, viscous, and
van der Waals forces balance each other while capillary force remains negligible, in accordance
with the results of Vaynblat et al. [38].

Effects of surfactants on rupture of Newtonian sheets have been studied by Matar [41] and more
recently by Choudhury et al. [42]. Matar [41] considered situations when surface viscosity is absent
(η = 0 where η stands for the dimensionless surface viscosity) and also ones in which surface
viscosity is independent of surfactant concentration or is a constant (η = 1). Choudhury et al. [42]
considered situations when surface viscosity is absent but also ones in which surface viscosity is
either a constant or a function of surfactant concentration. In their notation, η = 1 + β(� − 1),
where the dimensionless parameter 0 � β � 1 and � is the dimensionless concentration of sur-
factant at the interface. Thus, β = 0 reduces to the case of constant surface viscosity. When
β = 1, η = �, i.e., surface viscosity equals surfactant concentration but vanishes where there is
no surfactant—a constitutive relation that has been widely adopted in the recent literature (see
below). However, for 0 < β < 1, surface viscosity is not only a function of surfactant concentration
but nonzero even where � = 0. Choudhury et al. [42] have explicitly stated that regardless of the
thinning dynamics that the sheet may exhibit as it tends toward rupture, capillary and Marangoni
forces are always negligible near pinch-off. Matar [41] and Choudhury et al. [42] both found that
in the absence of surface viscosity, the dominant balance of forces is between van der Waals,

094005-3



WEE, WAGONER, AND BASARAN

inertial, and bulk viscous forces and h̃ ∼ τ̃ 1/3, z̃′ ∼ τ̃ 1/2, ṽ ∼ τ̃−1/2, and �̃ ∼ τ̃ 1/3 (�̃: dimensional
surfactant concentration). In situations in which surface viscosity is present, Matar [41]—when
surface viscosity is constant—and Choudhury et al. [42]—when surface viscosity is either a constant
(β = 0) or a function of � but β �= 1—both found that the dominant balance of forces is between
van der Waals, inertial and surface viscous forces while bulk viscous force is negligible. Under the
aforementioned balance of forces, h̃ ∼ τ̃ 1/2, z̃ ∼ τ̃ 1/4, ṽ ∼ τ̃−3/4, and �̃ ∼ τ̃ 1/2. From the standpoint
of the present paper, the most interesting and relevant case considered by Choudhury et al. [42] is
that when β = 1 so that η ∼ �. In this case, Choudhury et al. [42] found that the dominant balance
is between van der Waals, inertial and bulk viscous forces—the same as in the absence of surfactants
or when surfactants are present but surface viscous effects are absent—and surface viscous force is
asymptotically negligible as the sheet tends toward rupture (but see below).

In this paper, we consider situations in which the two free surfaces of a thin sheet of a New-
tonian fluid are initially covered uniformly with a monolayer of insoluble surfactant and surface
rheological effects are important. It should be emphasized that we are concerned in this work with
the spontaneous rupture of a surfactant-covered liquid sheet after its two free surfaces have been
subjected to perturbations of infinitesimal amplitude. In this context, the presence of van der Waals
forces is crucial for film rupture as has already been explained above (but also see below). However,
when the interfaces of the sheet are subjected to perturbations of sufficiently large amplitude, it
has been shown that the film can rupture without van der Waals forces. Perhaps the best-known
example of such a situation can be found in the work of Burton and Taborek [43]. In that paper, the
authors showed that an inviscid free film can undergo finite-time pinch-off (rupture) due to nonlinear
Bernoulli effects. However, for films of finite viscosity in the absence of van der Waals forces, the
films do not exhibit rupture because of the dissipative effect of viscosity [36,44]. Indeed, it has been
specifically stated by Bowen and Tilley [45] that when viscous stresses are included in the system of
1d inviscid sheet equations, the resulting evolution equations are dissipative in nature and additional
physical effects need to be introduced in order for the sheet to rupture.

However, if the films are initially subjected to large surface tension gradients due to either
chemical or thermal inhomogeneity, it has been shown that the concomitant strong Marangoni
stress-driven flows can induce rupture in the absence of van der Waals forces [6,45,46]. Furthermore,
it has also been shown that film rupture can only occur for sufficiently large values of the Marangoni
number [45,46]. In this paper, however, we focus on sheet rupture not only when the Marangoni
number is small but also when surfactants initially cover the interface uniformly, i.e., in the absence
of an initial Marangoni stress.

Following recent works on the closely related problem of the breakup of surfactant-covered jets
[47–49], we adopt the physically-based ansatz that surface viscosity is a function of surfactant
concentration but that it vanishes where surfactant concentration also vanishes. To fix ideas, we
focus our attention in this paper on the dynamics of sheet rupture in two situations: when the film
fluid is (1) highly viscous so that the sheet is undergoing Stokes flow and (2) moderately viscous so
that inertia cannot be neglected. In free-surface flows involving transport of an insoluble surfactant
at an interface, the relative importance of surfactant transport by convection to that by diffusion is
given by the Peclet number Pe. As discussed in the experimental and computational study by Liao
et al. [50], the value of Pe for common surfactants would range between several hundred and several
million because of the low values of surfactant diffusivities which lie between 10−6 and 10−5 cm2/s.
Therefore, we take Pe � 1 in the remainder of this article. The analysis employed herein relies on
the use of a long-wavelength model composed of a system of spatially one-dimensional evolution
equations for film half-thickness h̃, lateral velocity ṽ and surfactant concentration �̃. As the
dynamics near the space-time singularity where the film ruptures is asymptotically self-similar when
surfactants are convected away from the rupture point, the transient partial differential evolution
equations are also reduced to a set of ordinary differential equations in similarity space. In the
Stokes limit, it is shown that self-similarity is of the second kind [39] and the dominant balance of
forces involves van der Waals pressure that drives rupture and bulk viscous as well as surface viscous
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stresses while surface tension pressure and Marangoni stress are negligible. For moderately viscous
fluids, inertia also enters the picture and self-similarity is of the first kind [39]. Therefore, in contrast
to earlier work [42], we demonstrate that surface viscous stresses are asymptotically important at
breakup even as surfactant is depleted from the rupture location. Moreover, closed-form expressions
are also obtained for the minimum sheet thickness and/or the sheet’s thinning rate in both situations,
a result that had been lacking in earlier studies. Given their simple forms, these analytical results
can be readily used to infer surface viscosity from experiments.

In this work, as in Refs. [41] and [42], we treat the surfactant as being insoluble and hence
confined to the liquid-gas interface. However, it has been shown in Ref. [24] and elsewhere that
the solubility of common surfactants like sodium dodecyl sulfate (SDS) in glycerol-water mixtures,
which are widely used in experiments on pinch-off [24,50], does not affect the surface tension or its
gradient along the interface in studying breakup as the surface-adsorption dynamics of the surfactant
is at least two orders of magnitude slower than the flow dynamics or the timescale over which rupture
takes place. Moreover, in Ref. [50], the authors have shown how the insoluble surfactant limit can
be realized in laboratory experiments involving pinch-off.

In this paper, as in earlier studies of rupture singularities that arise during the breakup of
surfactant-covered liquid sheets [41,42], it is taken that only van der Waals interactions are important
in determining the disjoining pressure within the film. However, it is well known that intermolecular
forces other than van der Waals forces may also play a role in thin film flows in situations as
diverse as the rupture of supported and free films, drop and bubble coalescence, and spreading
(see, e.g., Refs. [11,19,51,52]). In particular, another possible contributor to disjoining pressure is
electrostatic force that may exist in aqueous thin films containing ionic surfactants [19]. However,
the mechanism(s) for film rupture (is) are not yet clear in all situations. As articulated by Langevin
[11], the mechanisms for bubble coalescence, where a thin film separates two bubbles prior to their
merging, are now well understood in the absence of surfactants even for salt solutions. However,
Langevin [11] has also noted that a complete model is not yet available for surfactant solutions.
Therefore, in this paper we assume that the surfactants are nonionic and that the sole contribution
to the intermolecular or thin-film forces comes from van der Waals forces. We further note that this
assumption has also been adopted by Dai and Leal [53] and Vannozzi [54] who have carried out
detailed boundary integral simulations of the coalescence of surfactant-laden drops.

The paper is organized as follows. Section II describes the mathematical formulation of the
problem. First, the two-dimensional (2D) system of equations, boundary conditions, and initial
conditions governing the thinning and rupture of a Newtonian sheet whose surface is covered with
a monolayer of insoluble surfactant is presented. Next, since the instability leading to sheet rupture
is a long-wavelength one and the profile of the sheet in the vicinity of the rupture singularity is
expected to be slender, a spatially one-dimensional (1D) set of slender-sheet evolution equations are
derived that governs the dynamics of thinning and breakup. In the following section (Sec. III),
sheet thinning and rupture are analyzed in the limit of Stokes flow when Pe = ∞. First, the 1D
evolution equations in physical space are cast into similarity space by adopting the similarity ansatz
and that all variables have simple power-law dependencies on time remaining until rupture. As
the analysis of rupture for sheets undergoing Stokes flow leads to a self-similarity of the second
kind, one of the scaling exponents is left undetermined and the analysis in this case leads to a
more complicated mathematical problem than that in which inertia is important (see below). In
lieu of using numerical solutions of the evolution equations as was done in the original analysis
of jet breakup [55] and sheet rupture [40] in Stokes flow, we determine analytically the value
of the missing scaling exponent. In the following section, we present numerical solutions of the
evolution equations and also confirm the theoretical predictions made in the earlier sections of the
paper. In the next section (Sec. IV), sheet thinning and rupture are analyzed in situations in which
inertia cannot be neglected when Pe = ∞. Here, the analysis leads to a self-similarity of the first
kind and all scaling exponents can be readily determined by dimensionality arguments. In the next
section (Sec. V), we relax the assumption of infinite Peclet number and consider the dynamics of
sheet rupture at large but finite Pe. In the following section (Sec. VI), we provide a physically based
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FIG. 1. A free liquid film or liquid sheet: perspective view (top) and cross-sectional view depicting the
problem domain (bottom). All the variables in the figure are dimensionless so that the half-thickness of the
undisturbed sheet equals unity as shown. As discussed in the text, the same variables but with tildes over them
are the dimensional counterparts of those shown here.

discussion as to how surface viscous forces remain asymptotically important as rupture nears even
though surfactant concentration and hence surface viscosities tend to zero as the sheet thickness
tends to zero. In Sec. VII, we show how some of the results that are obtained in this paper under the
assumption that surface viscosities vary linearly with surfactant concentration can be generalized for
an arbitrary constitutive equation relating those variables. The paper comes to a close in Sec. VIII
with concluding remarks and a brief discussion on possible directions for future studies.

II. PROBLEM FORMULATION

The system is isothermal and consists of a free film of an incompressible Newtonian fluid of
constant density ρ and constant viscosity μ of unperturbed thickness 2h̃i that is surrounded by a
dynamically passive ambient gas that simply exerts a constant pressure, which is taken here to be the
pressure datum, on the sheet (Fig. 1). The surface of the sheet—the liquid-gas (L-G) interface—is
uniformly covered with a monolayer of an insoluble surfactant and the surface tension of the L-G
interface when it is devoid of surfactant is given by σp. In this paper, we analyze the line rupture
of the sheet. Thus, it proves convenient to use a Cartesian coordinate system (x̃, ỹ, z̃) such that the
x̃-z̃ plane coincides with the midplane of the undisturbed film that is parallel to and lies half way
between the film’s initially two flat surfaces. The ỹ axis emanates from the sheet’s midplane and
points in the direction perpendicular to the midplane. In line rupture, the dynamics is invariant, or
translationally symmetric, in the x̃ direction.

A. Mathematical formulation: Governing equations, boundary conditions, and initial conditions

In this paper, the van der Waals-driven rupture of a surfactant-covered, quiescent liquid film is
initiated by subjecting its two free surfaces at time t̃ = 0 to shape perturbations that are symmetric
with respect to the sheet’s midplane. The perturbations have wavelength λ̃ > λ̃c in the lateral or z̃
direction but are of arbitrary amplitude ε in the thin-sheet direction so that the profile of the top
surface of the free film at the initial instant is given by

ỹ(z̃, t̃ = 0)

h̃i
= 1 − ε cos

2π z̃

λ̃
, (1)
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Therefore, we hereafter restrict our analysis to the evolution of the sheet profile and the flow within
it to the 2D domain whose lateral extent equals half of a wavelength of the imposed perturbation
(0 � z̃ � λ̃/2). Thus, the problem domain Ṽ (t̃ ) is the region bounded above by the free surface S̃(t̃ ),
which is unknown a priori, bounded below by the midplane of the film located at (ỹ = 0, 0 � z̃ �
λ̃/2), and bounded on the sides by the symmetry planes located at z̃ = 0 and z̃ = λ̃/2 as shown in
Fig. 1.

The dynamics of the thinning and rupture of the sheet are analyzed by solving the transient
free boundary problem consisting of the continuity and Navier-Stokes equations for fluid velocity
ṽ = ũey + ṽez, where ũ and ṽ are the components of the velocity in the ỹ and z̃ directions and ey

and ez are the unit vectors in those directions, and pressure p̃ within the free film Ṽ (t̃ ) and the
convection-diffusion equation for surfactant concentration �̃ on S̃(t̃ ) [56]:

∇̃ · ṽ = 0 in Ṽ (t̃ ), (2)

ρ

[
∂ ṽ
∂ t̃

+ (ṽ · ∇̃)ṽ
]

= ∇̃ · T̃ in Ṽ (t̃ ), (3)

∂�̃

∂ t̃
+ ∇̃s · (�̃ṽ) = Ds∇̃2

s �̃ on S̃(t̃ ). (4)

In Eq. (3), T̃ = −p̃I + μ[∇̃ṽ + (∇̃ṽ)T ] is the total stress tensor for a Newtonian fluid and I is
the identity tensor. In Eq. (4), Ds is the surfactant diffusivity, ∇̃s ≡ Is · ∇̃ is the surface gradient
operator, and Is ≡ I − nn is the surface identity tensor with n denoting the outward pointing unit
normal to S̃(t̃ ). As Eqs. (2) and (3) are balances of mass and momentum in the bulk Ṽ (t̃ ), the
corresponding principles of mass and momentum conservation at the L-G interface S̃(t̃ ) are the
kinematic and traction boundary conditions [57,58]. In the absence of bulk flow or mass transfer
across the interface, the kinematic boundary condition is given by

n · (ṽ − ṽs) = 0, (5)

where ṽs is the velocity of points on the interface. In this work, the L-G interface is a compressible,
two-dimensional Newtonian fluid and surface rheological effects that arise over and beyond the
ordinary capillary and Marangoni stress effects are taken to be described by the Boussinesq–Scriven
constitutive equation [58]. Therefore, the traction or the stress-balance boundary condition at the
free-surface is given by

n · T̃ = 2H̃σ̃n − AH

6π (2h̃)3
n + ∇̃sσ̃ + 2H̃(μd + μs)

(∇̃s · ṽ
)
n

+ ∇̃s
[
(μd + μs)

(∇̃s · ṽ
)]

. (6)

Here, 2H̃ ≡ −∇̃s · n is twice the mean curvature of the free surface the location of which is given by
ỹ = h̃(z̃, t̃ ) where h̃(z̃, t̃ ) is the interface shape function or the local value of the film half-thickness.
In Eq. (6), σ̃ is the surface tension, and μs and μd are the surface shear and dilatational viscosities
(see below). The first three terms on the right-hand side of Eq. (6) correspond to the capillary
pressure, the van der Waals pressure and the Marangoni stress due to surface tension gradients. The
remaining terms account for surface rheological effects.

Surface tension as well as the surface shear and the surface dilatational viscosities are all func-
tions of surfactant concentration �̃, viz. σ̃ = σ̃ (�̃), μs = μs(�̃), and μd = μd (�̃). Here, surface
tension σ̃ is related to surfactant concentration �̃ via the Szyskowsky equation of state [19,50,59]

σ̃ = σp + �̃mRgT ln

(
1 − �̃

�̃m

)
, (7)

where �̃m is the maximum packing density of surfactant, Rg is the gas constant, and T is the absolute
temperature. As opposed to the problem of jet breakup in which a cylindrical coordinate system is
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the natural coordinate system used in the analysis (see, e.g., Wee et al. [48]), we note that here
surface viscosities always appear grouped together in the form μd + μs as a consequence of the
Cartesian coordinate system used in the analysis of sheet rupture. For notational simplicity, we
therefore let

γs ≡ μd + μs (8)

and use γs alone in the remainder of the paper. Furthermore, as has already been stated above, we
adopt a model for surface viscosity such that γs vanishes when �̃ = 0. The simplest but physically
realistic model for surface viscosity is that it is a linear function of �̃. Therefore, following recent
works in the literature [47–49,60], the surface viscosity is taken to vary linearly with �̃ with respect
to a reference state as

γs = γsr�̃/�̃r, (9)

where γsr is the value of the reference surface viscosity at the reference surfactant concentration �̃r .
The formulation of the problem is completed by the specification of boundary conditions. These

consist of symmetry conditions along the horizontal plane of symmetry located at ỹ = 0 and the two
vertical planes of symmetry located at z̃ = 0 and z̃ = λ̃/2.

B. 1D slender-sheet equations

In this section, a set of 1D long-wavelength or slender-sheet equations are derived to analyze the
dynamics of sheet rupture by taking advantage of the fact that the sheet thickness is much smaller
than the lateral length.

1. Characteristic scales and leading order expressions for fluid velocity and pressure

In what follows, the length scale in the ỹ or film thickness direction is taken to be hc ≡ h̃i, i.e.,
the initial film half-thickness, and the length scale in the z̃ or lateral direction is referred to as lc (see
below). Because of the slenderness of the sheet, ε ≡ hc/lc 	 1 where ε is the slenderness ratio.
Thus, |∂ h̃/∂ z̃| = O(ε). If the scales of the velocity components in the ỹ and z̃ directions are denoted
by uc and vc, it follows from the continuity Eq. (2) that uc = εvc or that uc 	 vc. To determine the
appropriate scales for the various components of the stress tensor and also to derive the 1D evolution
equations (see below), it proves expedient to evaluate the normal and tangential components of the
stress vector n · T̃ at the L-G interface. These are given by

n · T̃ · n = 1

1 + (∂ h̃/∂ z̃)2

{
T̃yy − 2

∂ h̃

∂ z̃
T̃yz +

(
∂ h̃

∂ z̃

)2

T̃zz

}
(10)

and

n · T̃ · t = 1

1 + (∂ h̃/∂ z̃)2

{
∂ h̃

∂ z̃
(T̃yy − T̃zz ) +

[
1 −

(
∂ h̃

∂ z̃

)2
]

T̃yz

}
, (11)

where t is the unit tangent to the free surface and, as usual, T̃i j is the i jth component of the stress
tensor T̃. The flow in a thinning slender liquid sheet is extensional in nature. For a clean interface,
n · T̃ · t = 0. It then follows from Eq. (11) that the shear stress is a factor of ε smaller than the
normal stresses or, equivalently, if the scale of the normal stresses T̃zz and T̃yy is Tc, then the scale of
T̃yz is εTc. Indeed, the relative orders of magnitude of the stress components remain unchanged when
surfactants are present at the interface (see below). This is especially straightforward to appreciate
from the z̃ component of Eq. (3) when the sheet is undergoing Stokes flow so that the left-hand side
of this equation is identically zero:

0 = ∂T̃yz

∂ ỹ
+ ∂T̃zz

∂ z̃
. (12)
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Along the plane of symmetry ỹ = 0, T̃yz = 0. It then follows from Eq. (12) that |T̃yz| = O(ε|T̃zz|),
thereby confirming that shear stress is indeed a factor of ε smaller than normal stress. For a
Newtonian fluid, T̃zz = −p̃ + 2μ(∂ ṽ/∂ z̃) and, therefore, Tc = μvc/lc. Also for a Newtonian fluid,
T̃yz = μ(∂ ṽ/∂ ỹ + ∂ ũ/∂ z̃). Since the shear stress is a factor of ε times smaller than the normal stress,
∂ ṽ/∂ ỹ = O(ε ∂ ṽ/∂ z̃). Hence, the lateral velocity ṽ is asymptotically independent of the vertical
coordinate ỹ, i.e., to leading order, ṽ = ṽ(z̃, t̃ ). The dominant flow in the lateral direction is initiated
upon the imposition of the interface perturbation at t̃ = 0. Thus, vc ≡ lc/tc and the timescale tc can
be taken to be ρl2

c /μ when the fluid has finite density and viscosity (but see below).
We next consider the ỹ component of Eq. (3). With the scales introduced above, the dimensionless

counterpart of that equation is given by

ε2

(
∂u

∂t
+ u

∂u

∂y
+ v

∂u

∂z

)
= ε2 ∂Tyz

∂z
+ ∂Tyy

∂y
, (13)

where variables without tildes are the dimensionless counterparts of those with tildes, e.g., ũ is
dimensional whereas u ≡ ũ/uc is dimensionless. It follows from Eq. (13) that to leading order, Tyy

is constant or does not vary over the cross-section of the sheet. The same conclusion also holds for
Tzz as these two normal stresses are of the same order of magnitude. Therefore, to leading order,
the pressure, in addition to the lateral velocity, is simply a function of the lateral coordinate and
time, viz. p̃ = p̃(z̃, t̃ ). Also to leading order, it follows from Eq. (2) that the component of the fluid
velocity in the ỹ direction is not only much smaller than the lateral velocity ṽ = ṽ(z̃, t̃ ) but is given
in dimensional form by ũ(ỹ, z̃, t̃ ) = −ỹ (∂ ṽ/∂ z̃). In summary, the leading order expressions for the
components of the fluid velocity and pressure are given by

ṽ = ṽ(z̃, t̃ ), ũ = ũ(ỹ, z̃, t̃ ) = −ỹ
∂ ṽ

∂ z̃
, p̃ = p̃(z̃, t̃ ). (14)

2. 1D mass balance

If the free surface shape is represented as ỹ = h̃(z̃, t̃ ) (Fig. 1), then the kinematic boundary
condition can be rewritten as

ũ = ∂ h̃

∂ t̃
+ ṽ

∂ h̃

∂ z̃
. (15)

It is noteworthy that as has already been deduced from the continuity equation, balancing of the
different terms in Eq. (15) also reveals that |ũ| = O(ε|ṽ|). Integrating the continuity Eq. (2) across
the cross-section of the sheet or, equivalently, from the plane of symmetry ỹ = 0 to the free surface
ỹ = h̃, using the symmetry boundary condition that ũ = 0 at ỹ = 0, and making use of Eq. (15)
reveals that

∂ h̃

∂ t̃
+ ∂

∂ z̃

∫ ỹ=h̃(z̃,t̃ )

ỹ=0
ṽ dỹ = 0. (16)

However, ṽ is independent of ỹ to leading order. Therefore, Eq. (16) can be reduced to

∂ h̃

∂ t̃
+ ṽ

∂ h̃

∂ z̃
+ h̃

∂ ṽ

∂ z̃
= 0. (17)

Alternatively, Eq. (17) can also be obtained by evaluating the leading order expression for ũ [see
Eq. (14)] at the L-G interface, i.e., ỹ = h̃, and substituting the result into Eq. (15). Following earlier
works, Eq. (17) will henceforward be referred to as either the 1D mass balance or the kinematic
boundary condition (KBC) that governs the transient evolution of the sheet half-thickness h̃.

3. 1D surfactant transport equation

In a quite straightforward manner, the general convection-diffusion Eq. (4) can be readily
reduced to its appropriate form in the long-wavelength limit, which is henceforth referred to as
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the 1D convection-diffusion (CD) equation. The appropriate equation, which governs the transient
evolution of the surfactant concentration along the interface, is given by

∂�̃

∂ t̃
+ ṽ

∂�̃

∂ z̃
+ �̃

∂ ṽ

∂ z̃
− Ds

∂2�̃

∂ z̃2
= 0. (18)

4. 1D momentum balance

In this paper, the 1D momentum balance will be derived in a slightly different manner than the
approach used by Matar [41] and Choudhury et al. [42] in their studies on surfactant-covered free
films. The analysis is expedited by first considering the stress balance at the L-G interface at leading
order. Taking the inner product of the traction boundary condition (6) with the unit tangent t to the
interface and making use of Eq. (11), the resulting equation after nondimensionalization becomes

ε Oh2√
1 + ε2(∂h/∂z)2

{
∂h

∂z
(Tyy − Tzz ) +

[
1 − ε2

(
∂h

∂z

)2]
Tyz

}

= 1

ε

dσ

d�

∂�

∂z
+ ε Oh2 ∂

∂z

[
Bu

∂v
∂z + ε2 ∂h

∂z
∂u
∂z

1 + ε2(∂h/∂z)2

]
, (19)

where � ≡ �̃/�̃m is the dimensionless surfactant concentration and σ ≡ σ̃ /σp = 1 + B∗ ln(1 − �)
is the dimensionless surface tension with B∗ ≡ �̃mRgT/σp denoting the surfactant strength param-
eter. Here, the two dimensionless groups Oh and Bu are the Ohnesorge and Boussinesq-Scriven
numbers given by

Oh ≡ μ√
ρσphc

and Bu ≡ γs

μhc
. (20)

It should be noted because γs = γs(�) = γsr�/�r where �r = �̃r/�̃m is the dimensionless reference
surfactant concentration, Bu ≡ Bu(�) can be rewritten as

Bu = γs

μhc
= Br

�

�r
= B0�, (21)

where Br ≡ γsr

μhc
is the reference Boussinesq-Scriven number and B0 ≡ Br/�r is the normalized

reference Boussinesq-Scriven number. We use Br and/or B0 in the remainder of the paper. We
further note that in Eq. (19), the dimensionless surface tension gradient ∂σ/∂z—the Marangoni
stress—has been rewritten as ∂σ/∂z ≡ (dσ/d�)(∂�/∂z). It is important to note that Eq. (19) reveals
that while the dimensional normal stresses T̃yy and T̃zz are O(1) and the dimensional shear stress T̃yz

is smaller than them by a factor of ε, the dimensional Marangoni stress ∂σ̃ /∂ z̃ is at best of O(ε2).
Thus, following earlier studies on thin-sheet dynamics with Marangoni stresses induced by gradients
in surfactant concentration or gradients in temperature [45,46,61], we restrict ourselves to situations
where ∂σ/∂z = O(ε2). Equivalently, we say that dσ/d� remains O(ε2) and rescale the surfactant
strength parameter so that B∗ = ε2B. Therefore, keeping the highest-order contributions in Eq. (19),
we conclude that the tangential stress balance at leading order is given by

Oh2Tyz|y=h(z,t ) = Oh2 ∂h

∂z
(Tzz − Tyy) + B

� − 1

∂�

∂z
+ Oh2 ∂

∂z

(
B0�

∂v

∂z

)
. (22)

Next, we take the dot or inner product of the traction boundary condition (6) with the unit normal
n to the interface and make use of Eq. (10). The resulting equation is then nondimensionalized
by using as the characteristic length in the lateral direction lc ≡ √

48πσph4
c/AH , which arises

from balancing the destabilizing van der Waals pressure driving sheet rupture with the stabilizing
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capillary pressure and is of the order of the critical wavelength for linear instability, and is given by

Oh2

1 + ε2(∂h/∂z)2

[
Tyy − 2ε2 ∂h

∂z
Tyz + ε2

(
∂h

∂z

)2

Tzz

]

= − 1

h3
+ ∂2h/∂z2

[1 + ε2(∂h/∂z)2]3/2

[
σ + Oh2B0�ε2

ε2 ∂u
∂z

∂h
∂z + ∂v

∂z

1 + ε2(∂h/∂z)2

]
. (23)

Keeping the highest-order contributions in Eq. (23) leads to

Oh2Tyy|y=h(z,t ) = ∂2h

∂z2
− 1

h3
. (24)

As Tyy does not vary with y as shown earlier, Eq. (24) gives the value of the normal stress Tyy

throughout the cross-section of the film. Comparison of Eqs. (24) and (22) makes clear that the
contribution of surface viscosity to sheet thinning and rupture in the long-wavelength limit comes
only from the tangential stress balance. By contrast, the effect of surface viscosity manifests itself
in jet breakup through the normal stress as well as the tangential stress boundary conditions [47].
Before proceeding onto the completion of the derivation of 1D momentum equation, it is worth
noting that while v, p, Tyy, and Tzz do not vary with y, Tyz is a function of y: it vanishes at y = 0
because of symmetry and takes on the value given by Eq. (22) at the L-G interface.

Now that expressions have been obtained to leading order for all components of the stress tensor,
the 1D force balance or the 1D momentum equation can be derived. Taking the z component of
Eq. (3) at leading-order and integrating the resulting expression over the cross-section of the sheet
yields

∂v

∂t
+ v

∂v

∂z
= 1

h
Tyz|y=h(z,t ) + ∂Tzz

∂z
. (25)

When Eqs. (22) and (24) are substituted into Eq. (25), the 1D momentum equation governing the
dynamics of a surfactant-covered free film is obtained:

Oh2

(
∂v

∂t
+ v

∂v

∂z

)
= ∂3h

∂z3
− ∂

∂z

(
1

h3

)
+ B

h(� − 1)

∂�

∂z

+ 4Oh2

h

∂

∂z

(
h
∂v

∂z

)
+ Oh2

h

∂

∂z

(
B0�

∂v

∂z

)
. (26)

The various terms in the 1D force balance correspond to the inertial force on the left-hand side of the
equation and capillary force, van der Waals force, Marangoni force, bulk viscous force, and surface
viscous force(s), respectively, on the right-hand side.

5. Boundary conditions for the 1D evolution equations

The 1D slender-sheet equations are solved over a lateral distance corresponding to half of
a wavelength of the imposed perturbation. These evolution equations are solved subject to the
boundary conditions that ∂h/∂z = 0, ∂�/∂z = 0, and v = 0 at both ends of the 1D domain, viz.
z = 0 and z = λ/2.

III. SHEET RUPTURE FOR HIGHLY VISCOUS FLUIDS: STOKES LIMIT WHEN Pe = ∞
We first examine sheet rupture for highly viscous fluids or in the limit of Stokes flow. In this

limit, ρ = 0 or equivalently 1/Oh = 0. As density cannot appear in the problem formulation in this
limit, the use of the characteristic time tc = ρl2

c /μ and characteristic velocity vc = lc/tc employed
in the derivation of the long wavelength equations are no longer appropriate while the characteristic
film thickness and characteristic length scale in the lateral direction, referred to here as hvis and lvis,
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remain unchanged, i.e., hvis = hc ≡ h̃i and lvis ≡ lc = (48π h̃4
i σp/AH )1/2. Here, the proper timescale

is obtained by balancing viscous and van der Waals forces and is thus given by tvis = 48π h̃3
i μ/AH .

It is worth noting that the two characteristic times are related as tvis = tcOh2. Similarly, the
characteristic velocity scale in this limit is given by vvis ≡ lvis/tvis. Thus, vvis = vc/Oh2. With these
new time and velocity scales, Eq. (26) can be rewritten as

1

Oh2

(
∂v

∂t
+ v

∂v

∂z

)
= ∂3h

∂z3
− ∂

∂z

(
1

h3

)
+ B

h(� − 1)

∂�

∂z

+4

h

∂

∂z

(
h
∂v

∂z

)
+ 1

h

∂

∂z

(
B0�

∂v

∂z

)
. (27)

Furthermore, we once again use the maximum packing concentration of surfactant as the charac-
teristic surfactant concentration, viz. �vis ≡ �c = �̃m. Prior to the imposition of the interface shape
perturbation, the surface of the sheet is covered uniformly with surfactant at concentration �̃0 or
dimensionless concentration �0 ≡ �̃0/�̃m. The dimensionless 1D evolution equations governing the
dynamics of sheet thinning in the Stokes limit are then obtained by setting 1/Oh2 = 0 in Eq. (27)
and making Eqs. (17) and (18) dimensionless with the characteristic scales that have just been
introduced:

∂h

∂t
+ ∂ (hv)

∂z
= 0, (28)

∂3h

∂z3
− ∂

∂z

(
1

h3

)
+ B

h(� − 1)

∂�

∂z
+ 4

h

∂

∂z

(
h
∂v

∂z

)
+ 1

h

∂

∂z

(
B0�

∂v

∂z

)
= 0, (29)

∂�

∂t
+ ∂ (�v)

∂z
= 1

Pe

∂2�

∂z2
. (30)

Here, Pe ≡ tD/tvis is the Peclet number, where tD ≡ l2
vis/Ds is the diffusion timescale, which denotes

the relative importance of surfactant convection to diffusion. In Eq. (29) [see, also, Eqs. (9), (20),
and (21)] and in the remainder of this paper, we take �r = �0 so that the reference surface vis-
cosity γsr ≡ γs|�̃=�̃0

. Therefore, the Boussinesq-Scriven number Bu is given by Bu = Br�/�0. The
reader is reminded that the reference Boussinesq-Scriven number Br ≡ γsr/μh̃i and the normalized
reference Boussinesq-Scriven number B0 ≡ Br/�0.

A. Dominant balances and similarity solutions

In this and the following section, we analyze the dynamics of sheet rupture in the limit of
indefinitely large Pe, viz. when Pe = ∞. In such situations, surfactants are swept away from the
location of the space-time singularity and are hence highly nonuniformly distributed along the L-G
interface. We note that in this limit, the 1D mass balance (28) governing the time evolution of sheet
half-thickness h and the 1D convection-diffusion Eq. (30) governing the time evolution of surfactant
concentration � become identical. Hence, in this limit, surfactant concentration can be written as
�(z, t ) = c(z, t )h(z, t ). Here, the function c(z, t ) is governed by Dc/Dt = 0 where D/Dt is the 1D
material time derivative. We show in the paragraph after the next one that in the vicinity of rupture,
c(z, t ) is in fact equal to a certain constant that arises from the analysis of the governing equations in
similarity space.

As the finite-time singularity (zR, tR) is approached, it is expected that the length and timescales
of the motion in the vicinity of the rupture singularity will be orders of magnitude smaller than
those in the farfield and therefore the film profile, lateral velocity and surfactant concentration can
be described by similarity solutions of the form

h(z, t ) = ταh H (ξ ), v(z, t ) = ταvV (ξ ),

�(z, t ) = τα� G(ξ ), ξ ≡ (z − zR)/ταz , (31)
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where τ = tR − t is the dimensionless time to rupture, ξ is the similarity variable, αh, αv , α� , and αz

are scaling exponents, and H , V , and G are scaling functions. Substitution of the similarity solutions
(31) into the 1D mass balance (28) and enforcement that the resulting equation be independent of
time or, equivalently, carrying out a kinematic balance, reveals that αv = αz − 1. With the use of
this result, the 1D mass balance can be written as

H ′

H
= αh − V ′

V + αzξ
, (32)

where primes denote differentiation with respect to the similarity variable ξ . As a consequence
of the boundedness of V (ξ ), there exists a point ξ0 where the denominator on the right-hand side
of Eq. (32) vanishes [38,55,62], viz. V (ξ0) = −αzξ0. To ensure that the scaling function for the
interface shape H (ξ ) is well behaved, the numerator on the right-hand side of this equation must
also vanish at ξ0, revealing that V ′(ξ0) = αh. The scaling exponent αh can be determined from a
dynamic balance which entails balancing of the dominant forces as rupture is approached. However,
before doing so, we first demonstrate that the function c(z, t ) has to equal a constant.

Suppose that the function c(z, t ) is given by c(z, t ) = ταcC(ξ ) where αc and C(ξ ) are yet another
scaling exponent and another scaling function. Substitution of this expression into Dc/Dt = 0 yields
C′(V + αzξ ) = αcC. Since the terms in the parenthesis in the left-hand side of this equation vanish
at ξ = ξ0 and C(ξ0) �= 0, it is clear that αc must equal zero. Therefore, C′ = 0 and hence C(ξ ) = c0,
a constant. Thus, c(z, t ) = c0 and �(z, t ) = c0h(z, t ). It then follows from Eq. (31) that the scaling
exponents in the expressions for h(z, t ) and �(z, t ) are equal, viz. α� = αh. Thus, once the scaling
function H (ξ ) is determined, the scaling function G(ξ ) is readily determined as G(ξ ) = c0H (ξ ).
Determination of c0 will be discussed after that of the scaling exponent αh. It is noteworthy that since
α� = αh > 0, as the finite-time singularity is approached (τ → 0) and the thickness of the sheet
tends to zero (αh > 0) at the location where the sheet will pinch-off, surfactant concentration must
also tend to zero at that location—a realization that accords with intuition in the limit of Pe → ∞.
Moreover, this fact allows the Marangoni stress in Eq. (29) to be rewritten as −(B/h)∂�/∂z as
τ → 0 in the vicinity of the rupture point.

Now that it has been shown that αh = α� and that αv = αz − 1, two scaling exponents, say αh and
αz, still remain unknown. To determine the remaining unknown exponents, we substitute Eq. (31)
into Eq. (29), set G(ξ ) = c0H (ξ ), and carry out a dynamical balance argument between the various
terms in the resulting momentum equation in similarity space:

0 = H ′′′ταh−3αz + 4 + B0c0

H
(HV ′)′ταv−2αz + 3

H4
H ′τ−3αh−αz . (33)

Since sheet rupture considered here is driven by attractive intermolecular van der Waals forces
[38], the term that accounts for van der Waals force—the last term in Eq. (33)—is always involved
in carrying out a dominant balance analysis. Thus, we first note that in arriving at Eq. (33), we
have already neglected the term that accounts for Marangoni stress (−BG′/H )τ−αz as this term
is smaller than and hence negligible compared to van der Waals force (3H ′/H4)τ−3αh−αz as the
finite-time singularity is approached. It is noteworthy that the surface viscous force is as important
as the bulk viscous force, as revealed by each of the two contributions to the middle term in Eq. (33).
Since αv = αz − 1, balancing van der Waals force with viscous and/or surface viscous forces yields
αh = 1/3. Balancing van der Waals force with capillary force results in αz = 2/3. However, it is
shown later on in this section that αz = 0.249 when the flow is inertialess and in the following
section that αz = 1/2 in the presence of inertia. Hence, letting αz = 1/2 − εz where εz � 0, it is
readily seen from Eq. (33) that the capillary force varies as τ−3/2+(1/3+3εz ) whereas the other forces
vary as τ−3/2+εz as τ → 0, thereby revealing that the latter blow up at a faster rate than the former.
Therefore, the dominant balance in the Stokes regime is between viscous, surface viscous and van
der Waals forces while capillary force, along with the Marangoni force which has already been
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shown to be unimportant, is negligible. With this realization, Eq. (33) becomes

0 = 4 + B0c0

H
(HV ′)′ + 3

H4
H ′. (34)

We note that the ODEs (32) and (34) in similarity space are invariant under the transformation
ξ → −ξ , H → H and V → −V . Results of numerical simulations of sheet thinning and rupture to
be reported below reveal that the film profile is an even function and the velocity profile is an odd
function with respect to ξ = 0 in similarity space and z = 0 in physical space. Thus, ξ0 = 0 and
V (ξ0) = 0.

Since breakup is a local phenomenon, the solution far away from the rupture region should vary
slowly. Therefore, in the far field in similarity space or as |ξ | → ∞, the scaling functions should
asymptotically vary as

V (ξ ) ∼ |ξ |αv/αz = |ξ |1−1/αz , (35)

H (ξ ) ∼ |ξ |αh/αz = |ξ |1/3αz . (36)

That the bulk and surface viscous forces appear together in one term in the final form of the
momentum Eq. (34) in similarity space signals that it may not only prove convenient but result
in great simplification if a slightly different set of scales is introduced to take advantage of this fact.
Therefore, after setting χ ≡ (1 + B0c0/4), we define a new characteristic timescale as tn ≡ χtvis

and a new characteristic velocity scale as vn ≡ lvis/tn = vvis/χ but retain the same values of the
characeristic scales for lateral length, film thickness, and surfactant concentration. With the use of
these new scales, the self-similar expressions for the dependent variables become

h(z, t̄ ) = τ̄ αh H̄ (η), v̄(z, t̄ ) = τ̄ αvV̄ (η), η ≡ z/τ̄ αz , (37)

where t̄ ≡ t̃/tn = t/χ , v̄ ≡ ṽ/vn = vχ , τ̄ ≡ τ/χ , and η is the new or rescaled similarity variable.
The new scaling functions H̄ (η) and V̄ (η) are related to those in Eq. (31) as H̄ (η) = H (ξ )χαh and
V̄ (η) = V (ξ )χαv+1, respectively. Substitution of these variables into Eqs. (32) and (34) gives

0 = 4

H̄
(H̄V̄ ′)′ + 3

H̄4
H̄ ′, (38)

H̄ ′

H̄
= −1/3 − V̄ ′

V̄ + αzη
, (39)

where primes denote differentiation with respect to the rescaled similarity variable η. Now that
the ODEs in similarity space have been rescaled, it is readily seen that the regularity condition
on the new velocity scaling function requires that V̄ (0) = 0 and V̄ ′(0) = 1/3. In the far field, the
new scaling functions asymptotically vary as V̄ (η) ∼ |η|1−1/αz and H̄ (η) ∼ |η|1/3αz as |η| → ∞. An
especially noteworthy outcome of the formulation that has just been carried out by the introduction
of χ and the aforementioned rescalings is that the governing ODEs (32) and (34) that account for
the effects of surface viscosity due to the presence of surfactants on sheet thinning and rupture
are now identical to the equations that govern the dynamics of highly viscous liquid sheets in the
absence of surfactants [40]. As has already been pointed out earlier in this section and also by
Thete et al. [40], the self-similarity that arises in this case is of the second kind and the lateral
scaling exponent αz, which cannot be inferred by kinematic and dynamic balance arguments, still
needs to be determined. In their paper, Thete et al. [40] determined αz by solving the 1D evolution
equations numerically in physical space. Here, we use a more elegant and accurate technique that is
based on a Lagrangian transformation method [63] to determine analytically the value of αz. While
doing so, we also improve slightly upon the value of αz that was reported by Thete et al. [40].

094005-14



SPONTANEOUS RUPTURE OF SURFACTANT-COVERED …

B. Determination of αz

In most studies of jet and film breakup in which the determination of similarity solutions is one
of the key goals, the ODEs in similarity space are derived in terms of a similarity variable that is
defined in terms of the Eulerian coordinate or independent variable z. In the approach to be used
in this section, a different viewpoint is adopted where a Lagrangian variable s (defined below) is
adopted and a set of ODEs is obtained in terms of the similarity variable that is based on s rather
than z. In this approach, let s represent or mark a fluid area (volume per unit length in the neutral
direction x in Fig. 1) in the form of a slice h̄(z, t̄ )dz = ds so that instantaneous area of the sheet at
any time t̄ between two lateral locations z1 and z2 is given by

∫ z2

z1
h̄(z, t̄ ) dz = ∫ s2

s1
ds and let z(s, t̄ )

denote the position of the area s at time t̄ . Since h̄(z, t̄ )dz = ds and s marks a material object, it
readily follows that that zs = 1/h̄(z, t̄ ) and zt̄ = v̄, where subscripts denote partial differentiation
with respect to those variables. Furthermore, by using the chain rule of differentiation, it is readily
shown that ∂/∂z = z−1

s ∂/∂s and, moreover, that ∂ v̄/∂z = zst̄/zs. In Lagrangian coordinates, it can be
readily shown that the 1D mass balance is automatically satisfied [44]. Thus, in the new formulation,
there is no counterpart of Eq. (39) in similarity space based on the Lagrangian variable s. To derive
the counterpart of Eq. (38), we first need to transform the 1D momentum equation in physical space
to its appropriate counterpart with respect to the Lagrangian coordinate. To make further progress,
we rewrite the resulting equation in conservative form and integrate once. Upon substitution of the
relations h̄(z, t̄ ) = 1/zs and ∂ v̄/∂z = zst̄/zs into the resulting equation, we obtain the 1D momentum
balance in Lagrangian coordinates:

zst̄

zs
= zs

4

[
T (t̄ ) + 3

2
z2

s

]
, (40)

where the integration constant T (t̄ ) is in fact the tension. The sheet thickness in Lagrangian
coordinates is given by Ĥ (s, t̄ ) = z−1

s . When this expression is used, Eq. (40) can be written as

∂Ĥ

∂ t̄
= −1

4

[
T (t̄ ) + 1

Ĥ2

]
. (41)

In arriving at Eq. (41), the numerical factor of 3/2 in Eq. (40) has been eliminated by rescaling time
and the tensile force: t̄ → 2t̄/3 and T (t̄ ) → 3T (t̄ )/2. We next note that Eq. (40) can be recast into
the form

vs = 1

4

[
T

Ĥ2
+ 1

Ĥ4

]
. (42)

Integrating Eq. (42) from s− to s+, we obtain

T (t̄ ) = −
∫ s+

s−
1

Ĥ4 ds∫ s+
s−

1
Ĥ2 ds

. (43)

Here, s− and s+ denote the location of boundaries far away from the rupture region at which the
lateral velocity vanishes. Equation (43) shows that T (t̄ ) is determined by the profile Ĥ (s, t̄ ) in a
nonlocal fashion: when Eq. (41) is solved for Ĥ , Eq. (43) has to be satisfied simultaneously.

To make further progress and find the local self-similar solutions of Eq. (41), we adopt the
following similarity ansatz:

Ĥ (s, t̄ ) = τ̄ αhψ (ξl ), T (t̄ ) = τ̄ αT T0, ξl ≡ s/τ̄ αδ , (44)

where τ̄ = t̄R − t̄ is the dimensionless time to rupture measured in terms of tn, ξl is the similarity
variable based on the Lagrangian variable s, αh, αT , and αδ are scaling exponents (where we have
retained the symbol αh for one of the scaling exponents), and ψ and T0 are scaling functions. Note
that because the function T (t̄ ) depends only on time, its scaling function T0 is nothing but a constant.
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In writing ξl , we have already made use of the fact that rupture is symmetric. Since h̄(z, t̄ )dz = ds,
the scaling exponent αz is related to the new scaling exponents as αz = αδ − αh. Inserting Eq. (44)
into Eq. (41) and carrying out a dynamical balance, we obtain

4

3
ψ3(ξl ) − 4αδξlψ

2(ξl )ψ
′(ξl ) − T0ψ

2(ξl ) − 1 = 0, (45)

with αh = 1/3 and αT = −2/3. Equation (45) is an ODE for ψ but requires that we determine T0

self-consistently. Since the profile is symmetric about the rupture point, the expansion of ψ in the
vicinity of the minimum is

ψ (ξl ) = ψ0 + ξ 2
l + ψ2ξ

4
l + ... (46)

Here, we have used the fact that there is an arbitrary scale factor in the lateral length scale and
have therefore chosen to normalize the quadratic coefficient by setting it equal to one [40]. Inserting
Eq. (46) into Eq. (45), we then obtain

T0 = 2ψ0(1 − 2αδ ), (47)

ψ3
0 = 3

12αδ − 2
. (48)

Normalizing ψ by ψ0, i.e., ψ = ψ0 f (ξl ) where f (ξl ) stands for the right-hand side of Eq. (46)
divided by ψ0, and substituting Eqs. (47) and (48) into Eq. (45), we obtain

12αδ f 2df

4 f 3 − 6(1 − 2αδ ) f 2 + 2 − 12αδ

= d ln ξl . (49)

Integrating Eq. (49) once and differentiating the resulting expression with respect to ξl , one can find
fξl ≡ df /dξl in terms of f (ξl ) and αδ . It should be noted that when the integration is carried out, an
arbitrary constant of integration arises. The presence of the constant of integration in the analysis,
however, does not come into play in finding αδ . To determine αδ , we use the constraint (43) which,
in similarity variables, becomes

T0ψ
2
0 = −

∫ ∞
−∞

1
f 4 dξl∫ ∞

−∞
1
f 2 dξl

. (50)

It is important to note that the integrals are dominated by local contributions near the singularity so
that s− and s+ do not appear in the previous expression. To evaluate the integrals in Eq. (50), we
transform the integration variable from ξl to f using∫ ∞

−∞

1

f i
dξl = 2

∫ ∞

1

1

fξl f i
df . (51)

With the use of Eqs. (47) and (48), Eq. (50) becomes

6αδ − 3

6αδ − 1
=

∫ ∞
1

1
fξl f 4 df∫ ∞

1
1

fξl f 2 df
. (52)

Equation (52) is a nonlinear equation for αδ . We have solved Eq. (52) using MATLAB and have
thereby determined that αz = 0.249 up to three decimal places. As stated earlier, the value of αz

determined in the manner that has just been outlined constitutes an improvement over the value of
this exponent that was reported in Ref. [40]. Although the value of αz determined by those authors to
three decimal places was 0.256 [64], its value was reported in that publication as 0.26 after rounding
off to two decimal places.
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(a)

(b)

(c)

FIG. 2. Simulation results for the instantaneous profiles of the free-surface shape h(z, t ) and surfactant
concentration �(z, t ) that depict the initial and late stage dynamics of a Stokes sheet, and the evolution in
time of the function c(z, t ) = �(z, t )/h(z, t ) determined from numerical solution of the evolution equations.
(a) Interface shape h(z, t ) and (b) surfactant concentration �(z, t ) at the initial instant (curves marked as t = 0)
and at the instant when hmin = 2.84 × 10−4 (the unmarked curves). (c) Temporal evolution of the function
c(z, t ) = �(z, t )/h(z, t ) between t = 0 and the time when hmin = 2.84 × 10−4. As discussed in the text, as
t → tR or hmin → 0, c(z, t ) asymptotically tends to a fixed profile that is invariant in time and, therefore,
despite the entirely different initial conditions for h(z, t ) and �(z, t ), the interface shape and surfactant con-
centration profiles become virtually identical in form in the vicinity of the singularity as the sheet approaches
rupture. Here, the reference Boussinesq-Scriven number is Br = 1 (or equivalently the normalized reference
Boussinesq-Scriven number B0 ≡ Br/�0 = 2).

C. Numerical simulations

In this section, results are reported of solutions of the 1D evolution Eqs. (28)–(30) that have
been obtained numerically. The evolution equations are solved subject to the boundary conditions
that ∂h/∂z = 0, ∂�/∂z = 0, and v = 0 at z = 0 and z = λ/2, where λ > λc (specifically, all of the
simulation results that are reported in the remainder of this paper have been obtained using λ = 4λc).
Whereas the initial condition on the profile of the initially quiescent film, v(z, 0) = 0, is sinusoidal
in shape [see Eq. (1)], surfactant is taken to uniformly cover the interface at the initial instant. In the
simulation results to be reported in this section and also in Sec. IV, the amplitude of the disturbance
to the film’s surface at the initial instant t = 0 is taken to be ε = 0.2 (or, equivalently, the value of
h0 = 0.8—see Fig. 1) and the value of the uniform surfactant concentration at t = 0 is taken to be
�0 = 0.5.

Figure 2 shows simulation results for the evolution in time of the free-surface shape h(z, t ),
surfactant concentration �(z, t ) and the function c(z, t ) = �(z, t )/h(z, t ). Despite the entirely dif-
ferent initial conditions that are imposed on the free-surface shape and surfactant concentration,
Figs. 2(a) and 2(b) shows that as t → tR or hmin → 0, the profiles of h and � in the vicinity of
the singularity become nearly identical in form. Therefore, their ratio, c(z, t ) = �(z, t )/h(z, t ),
becomes invariant in time in the rupture zone as shown in Fig. 2(c) and in accordance with the
local theoretical analysis reported in the previous section. The evolution in time of c(z, t ) is dictated
by Dc/Dt = 0. Therefore, ∂c/∂t = −v∂c/∂z and hence, at any instant in time, ∂c/∂t is nonnegative
over the entire domain. Hence, it is expected that c(z, t ) should increase as time advances. However,
because of symmetry, ∂c/∂t = 0 at both ends of the domain. Thus, c(0, t ) and and c(λ/2, t ) remain
invariant for all time, and hence the ratio of surfactant concentration to film half-thickness also
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(a) (b)

FIG. 3. Scaling behavior of key variables during rupture of liquid sheets undergoing Stokes flow: evolution
in time remaining to rupture τ of the minimum sheet half-thickness hmin and surfactant concentration �min at
that location and lateral length z′ and lateral velocity v′. The data points represent simulation results and the
straight lines are the theoretical predictions. (a) Computed variation with τ of hmin (green square � symbols)
and �min ≡ �|hmin (blue gradient � symbols). In accord with theory, the simulations predict that the scaling
exponents αh = α� = 1/3 as indicated in the figure. Inset: Zoomed-in view of the variation of hmin with τ near
rupture that highlights the excellent agreement between the simulations (green data points) and the theoretical
predictions—the top equation in the legend [Eq. (53)] and the black line. The bottom equation in the legend and
the straight red line represent the theoretical prediction for a clean interface or when surface rheological effects
are absent. (b) Computed variation with τ of z′ (orange diamond � symbols) and v′ (red circle ◦ symbols). In
accord with theory, the simulations predict that the scaling exponents for the lateral length and lateral velocity
are given by αz = 0.249 and αv = −0.751 as indicated in the figure. In both this figure and the next one, the
reference Boussinesq-Scriven number is Br = 1 (or equivalently the normalized reference Boussinesq-Scriven
number B0 ≡ Br/�0 = 2).

remain constant and equal to their initial values for all time at these two locations. Furthermore, it
follows from Dc/Dt = 0 that ∂c/∂t ≈ 0 when v ≈ 0 or ∂c/∂z ≈ 0. The former holds well outside
the rupture zone where the fluid is nearly stationary so that v ≈ 0. The latter applies in the rupture
zone where the value of c(z, t ) in the vicinity of the singularity quickly increases to c(0, t = 0) due
to the strong convective flow and where ∂c/∂z ≈ 0. Therefore, in accord with the local theoretical
analysis presented in the previous section, the simulations show that as time advances and the film
approaches rupture, c(z, t ) or the ratio of surfactant concentration to film half-thickness becomes
constant, �(z, t )/h(z, t ) = �0/h0, over the entire rupture zone.

Figure 3(a) shows the results obtained from 1D simulations of the variation with time remaining
until rupture τ of the computed value of the minimum film half-thickness hmin ≡ h(z = 0, t ) and
surfactant concentration at that location (henceforward referred to as the minimum surfactant con-
centration) �min ≡ �(z = 0, t ). This figure makes plain that the simulation results are in excellent
agreement with the scaling results predicted from theory that hmin ∼ τ 1/3 and �min ∼ τ 1/3. To
determine the scaling of the lateral length scale with time remaining until rupture from simulation
data, the variation with τ of the z coordinate of a point located on the interface for which the film
half-thickness equals a multiple of hmin is monitored [47,48,65]. Once again, the computed variation
of the lateral scale z′ with τ , which is shown in Fig. 3(b), is seen to be in excellent accord with the
theoretical prediction of z′ ∼ τ 0.249. The simulations further show [Fig. 3(b)] that the variation with
τ of the lateral velocity v′ calculated at z′ is also in excellent agreement with the scaling result
predicted from theory that v′ ∼ τ−0.751.

A result of perhaps greatest utility to experimentalists is the variation with time of the minimum
value of the half-thickness of the thinning sheet. The minimum sheet half-thickness hmin can be
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FIG. 4. Evolution in time of the free-surface profile and self-similarity of the interface shape during rupture
of sheets undergoing Stokes flow. The main figure shows the film profile h(z, t ) determined from simulations at
ten instances in time and confirms that sheet rupture is symmetric as predicted from theory. Inset: appropriately
rescaled interface shapes obtained from solution of the transient partial differential evolution equations in
physical space (curves) agree well with the normalized similarity profile obtained from solution of the ODEs
in similarity space (symbols). The individual curves obtained from the simulations are hard to distinguish from
one another because of the excellence of the collapse and/or the closeness of the collapsed solutions to one
another.

calculated from Eq. (48) after recalling that τ̂ = 3τ/2χ and αδ = αz + αh:

hmin = ψ0τ̂
1/3 =

[
9

4(6αz + 1)χ

]1/3

τ 1/3. (53)

The inset to Fig. 3(a) shows that both the scaling with τ of hmin and the value of the prefactor in
the theoretical result (53) are in excellent agreement with the scaling with τ and the prefactor of
hmin obtained from the numerical solution of the transient system of 1D partial differential evolution
equations. Here, the red solid line is the solution reported by Thete et al. [40], hmin = 0.958τ 1/3,
for a sheet with a clean interface or a surfactant-covered sheet in the absence of surface rheological
effects. We note that as the Boussinesq-Scriven number Bu → 0, χ → 1 and Eq. (53) reduces to
hmin = 0.966τ 1/3, which is in excellent agreement with the solution reported by Thete et al. [40]—
both analyses show that hmin ∼ τ 1/3—but improves slightly upon the value of the prefactor of 0.958
reported by them.

To demonstrate the self-similarity of the interface profiles, it is instructive to plot together the
scaling function H (ξ ) from theory and appropriately collapsed film profiles obtained from the so-
lution of the evolution equations. The scaling function H (ξ ) determined from theory can be used to
express the similarity solution for the interface profile in normalized form as h/hmin = H (ξ )/H (0).
Similarly, instantaneous interface shape profiles obtained from the solution of the transient PDEs
(Fig. 4) can be normalized as h/hmin = h(z, t )/h(0, t ). Moreover, since ξ = z/[hmin/H (0)]αz/αh ,
rather than plotting the normalized interface shapes as a function of ξ , it is more convenient to plot
h/hmin as a function of z/h0.747

min where αz/αh = 0.249/(1/3) = 0.747. The inset to Fig. 4 shows that
transient profiles obtained from the solution of the transient PDEs in physical space when collapsed
in the manner just described tend as t → tR or hmin → 0 to the self-similar profile predicted from
the solution of the ODEs in similarity space.
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D. Validity of the long-wavelength or slenderness approximation in Stokes flow

In the Stokes limit, the local slope ∂h/∂z varies with time to rupture τ as ταh−αz = τ 1/3−0.249 =
τ 0.0843. Thus, the sheet becomes locally more slender as τ → 0 and approaches rupture.

E. Asymptotic validity of the neglect of inertia

When Oh � 1, the thinning and rupture of liquid sheets are expected to follow the Stokes scaling
laws that have been obtained in this section. According to Eq. (27), when Oh � 1, the dominant
forces—van der Waals, bulk viscous and surface viscous forces—all scale as τ−αz−1 as the sheet
thins. If, however, one then estimates the variation with time remaining to rupture of the inertial
terms which are set equal to zero in the Stokes limit, it is found that both of these terms scale as
ταz−2/Oh2. Therefore, the inertial terms, which are neglected in the analysis of the Stokes limit,
blow up at a faster rate than the forces that enter the dominant balance of forces in that limit when
Oh is large but not infinite. Thus, as τ → 0, it is expected that inertia would catch up to the van der
Waals, bulk viscous and surface viscous forces. Therefore, the neglect of inertia is asymptotically
inconsistent and the Stokes regime is only an initial or transitory regime when Oh � 1.

The time and/or the value of the minimum sheet half-thickness when this transition occurs can
be estimated by balancing the inertial terms with the terms corresponding to the van der Waals, bulk
viscous and surface viscous forces, viz.

1

Oh2 ταz−2 ≈ τ−αz−1. (54)

Thus, the transition from the Stokes regime to an inertial-viscous regime (to be analyzed in the next
section) where inertia is no longer negligible can be estimated to occur when

τ ≈ Oh
2

2αz−1 . (55)

However, since hmin ∼ τ 1/3, the minimum value of the film half-thickness at which the transition
occurs can be estimated to be

hmin ≈ Oh
2/3

2αz−1 ≈ Oh−1.328. (56)

Thus, when Oh = 103, the transition would occur when hmin ≈ 10−4. Hence, if the dimensional
initial film half-thickness is 1 μm, the transition is expected to occur when h̃min has fallen to 0.1 nm.
Since this value is well below the continuum limit of 10 nm, the dynamics is expected to remain
in the Stokes regime during the entire period of thinning. If, however, Oh = 10, then the transition
should occur when hmin ≈ 0.04. For a film of the same initial thickness, the transition would then
occur when h̃min ≈ 40 nm and should be observable in the laboratory.

IV. SHEET RUPTURE WITH INERTIA WHEN Pe = ∞
In this section, we first properly nondimensionlize the evolution equations governing sheet

rupture when inertia is no longer negligible. We then carry out a local theoretical analysis of sheet
thinning and rupture, and conclude the section by presenting numerical solutions of the evolution
equations. For slightly viscous sheets, the appropriate timescale is that which is obtained from a
capillary–van der Waals balance. Hence, instead of taking tc = ρl2

c /μ, we take the new timescale
to be tcap = (ρl4

cap/σph̃i )1/2 but retain the same choice for lateral length as before so that lcap = lc.
Thus, tcap = tcOh. With these two scales, the new velocity scale is vcap = lcap/tcap = vc/Oh. Upon
the introduction of these new time and velocity scales, Eq. (26) can be rewritten as

∂v

∂t
+ v

∂v

∂z
= ∂3h

∂z3
− ∂

∂z

(
1

h3

)
+ B

h(� − 1)

∂�

∂z

+ 4Oh

h

∂

∂z

(
h
∂v

∂z

)
+ Oh

h

∂

∂z

(
B0�

∂v

∂z

)
. (57)
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Although the characteristic time and velocity scales are now different from those for Stokes flow,
the dimensionless KBC and CD equations remain unchanged when Pe → ∞, and hence are given
by

∂h

∂t
+ ∂ (hv)

∂z
= 0, (58)

∂�

∂t
+ ∂ (�v)

∂z
= 0. (59)

A. Dominant balances and similarity solutions

In the absence of surfactants, Vaynblat et al. [38] have shown that as rupture is approached, sheets
with clean interfaces asymptotically thin according to

h̃min

h̃i
= 0.7401

(
τ̃

tμ

)1/3

, (60)

where tμ ≡ ρl2
μ/μ and lμ = (48π h̃3

i μ
2/ρAH )1/2. The characteristic scales in Eq. (60) are intimately

tied to the dynamical balance between the three forces at play: van der Waals, inertia, and bulk vis-
cous forces. Here, the power-law exponent of 1/3 that determines how the minimum half-thickness
scales with time remaining until rupture, viz. h̃min ∼ τ̃ 1/3, and the amplitude or coefficient of 0.7401
in the nondimensional scaling law (60) are universal. Remarkably, when surfactants are present but
surface rheological effects are neglected and diffusion is sufficiently weak, the same balance of
forces is observed to hold during sheet thinning [41,42]. To date, however, neither a self-similar
analysis predicting this thinning rate has been carried out nor an expression analogous to Eq. (60)
for surfactant concentration has been obtained. In the next few paragraphs, we remedy this situation
by providing such analyses in both the absence and presence of surface rheological effects.

Following Vaynblat et al. [38], we measure the sheet half-thickness h̃, the lateral velocity ṽ and
the lateral length z̃ in units of h̃i, lμ/tμ, and lμ and adopt the following similarity ansatz:

h(z, t ) = τ 1/3H (ξ ), v(z, t ) = τ−1/2V (ξ ), ξ ≡ z/τ 1/2, (61)

Vaynblat et al. [38] have already shown that the governing ODEs in similarity space for a Newtonian
sheet with a clean interface are given by

1

2
V + ξ

2
V ′ + VV ′ = 4

H
(HV ′)′ + 3

H4
H ′, (62)

H ′

H
= −1/3 − V ′

V + αzη
, (63)

subject to the far field conditions that

V (ξ ) ∼ ξαv/αz = ξ−1, (64)

H (ξ ) ∼ ξαh/αz = ξ 2/3, (65)

as |ξ | → ∞. It is noteworthy that the universal scaling exponents αh = 1/3, αv = −1/2, and
αz = 1/2 result as a consequence of balance of forces between inertial, van der Waals and bulk
viscous forces. If one were to perform the same analysis for a Newtonian sheet using the different
characteristic scales h̃i, lc, and tcap, one would obtain almost the same albeit slightly altered set of
governing ODEs, scaling exponents and far field conditions such that Oh would now appear in front
of the term that accounts for the bulk viscous force.

For surfactant-covered Newtonian sheets in the absence of surface rheological effects in the
limit that Pe → ∞, the same scaling exponents result as a consequence of the balance of the three
aforementioned forces and the insignificance of Marangoni force as the sheet tends toward breakup
[41]. In other words, the ODEs that arise from the momentum and mass balances in similarity space
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remain unchanged when surfactants are present because the 1D momentum equation is decoupled
from the 1D CD equation [48] as a consequence of the Marangoni stress being subdominant in
the limit when surfactants are convected away from the rupture zone (Pe → ∞). Therefore, in this
limit, � = c0h, and the scaling function for � in similarity space is linearly proportional to H (ξ ) via
the proportionality constant c0. Hence, it is not necessary to solve for � in similarity space. Since
the governing ODEs are the same with or without surfactants, the thinning rate in the presence of
surfactants must be the same as that given by Eq. (62). When account is taken of the difference in
characteristic timescales used here and by Vaynblat et al. [38], viz. tcap or tμ such that tμ = Oh tcap,
Eq. (60) can be rewritten as follows when t̃ has been nondimensionalized by tcap:

hmin = 0.7401

Oh1/3 τ 1/3. (66)

When surface rheological effects are present, the aforementioned decoupling in similarity space
between the 1D momentum and the 1D CD equations does not occur, thereby necessitating a more
involved analysis for determining the counterpart of Eq. (66) which takes proper account of surface
rheolgoical effects. However, such a complicated analysis can once again be avoided in the limit that
Pe → ∞. Here, we remind the reader that surface rheological effects are accounted for by a single
additional term in the 1D momentum balance equation and that this term can be combined with its
bulk counterpart in similarity space by the introduction of the parameter χ , which represents the
importance of bulk viscous force to its surface counterpart, into the definition of the characteristic
timescale [see the transformation of Eq. (34) into Eq. (38)]. Thus, surface rheological effects are
just as important as their bulk counterparts when Pe → ∞ and inertia is not negligible. We note that
Marangoni stresses are once again subdominant in this limit due to the dominance of convection,
which tends to evacuate surfactant out of the rupture zone, over diffusion. In summary, surface
viscosity brings about a new dynamical regime in which inertial, van der Waals, bulk viscous and
surface viscous forces are in balance and the scaling exponents are unaltered compared to those in
the absence of surface rheological effects.

As the details of the approach have already been laid out in the Stokes flow analysis presented
earlier, we shall simply summarize here how the parameter χ is used in the derivation of the
expression of the thinning rate. By using as characteristic timescale tn ≡ Oh tcap χ instead of tcap,
it is straightforward to show that the governing ODEs, scaling exponents and far field conditions
are identical to Eqs. (62)–(65) in similarity space when inertia cannot be neglected. Thus, after
exploiting the similarities between the analysis of sheets undergoing Stokes flow and that of sheets
undergoing inertial-viscous flow and with the appreciation of the competitive interplay between
bulk viscous force and its surface counterpart, the rate of thinning of a surfactant-covered sheet in
the presence of surface rheological effects can be shown to be given by

hmin = 0.7401

Oh1/3χ1/3
τ 1/3. (67)

We note that as the Boussinesq-Scriven number Bu → 0, χ → 1 and Eq. (67) reduces to Eq. (66).

B. Numerical simulations

In this section, results are presented of solutions of the 1D evolution Eqs. (58) and (59) that have
been obtained by simulation. The approach follows that which has already been summarized in the
analysis of thinning of liquid sheets undergoing Stokes flow.

Figure 5(a) shows the results obtained from 1D simulations of the variation with time remaining
until rupture τ of the computed value of the minimum film half-thickness hmin and surfactant
concentration at that location �min. This figure makes plain that the simulation results are in excellent
agreement with the scaling results predicted from theory that hmin ∼ τ 1/3 and �min ∼ τ 1/3. The
scaling of the lateral length is determined in the same manner as that described earlier in Sec. III C.
Once again, the computed variation of the lateral length z′ with τ is seen to be in excellent accord
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(a) (b)

FIG. 5. Scaling behavior of the minimum sheet half-thickness hmin, surfactant concentration �min at that
location, lateral length z′, and lateral velocity v′ during rupture of liquid sheets undergoing inertial-viscous
flow or when inertia is not negligible: evolution in time remaining to rupture τ of hmin, �min, z′, and v′. The data
points represent simulation results and the straight lines are the theoretical predictions. (a) Simulation results for
the computed variation with τ of hmin (green square � symbols) and �min ≡ �|hmin (blue gradient � symbols).
The simulations predict that the scaling exponents αh = α� = 1/3, in accord with theory and as indicated in the
figure. Inset: Zoomed-in view of the variation of hmin with τ near rupture that highlights the excellent agreement
between the simulations (green data points) and the theoretical predictions—the top equation in the legend
[Eq. (67)] and the black line. The bottom equation in the legend and the straight red line represent the theoretical
prediction [Eq. (66)] for a clean interface or when surface rheological effects are absent. (b) Computed variation
with τ of z′ (orange diamond � symbols) and v′ (red circle ◦ symbols). The simulations predict that the scaling
exponents for the lateral length and lateral velocity are given by αz = 1/2 and αv = −1/2, in accord with theory
and as indicated in the figure. Here, the Ohnesorge number Oh = 0.5 and the reference Boussinesq-Scriven
number is Br = 2 (or equivalently the normalized reference Boussinesq-Scriven number B0 ≡ Br/�0 = 4).

with the theoretical prediction of z′ ∼ τ 1/2 as shown in Fig. 5(b). The simulations further show
[Fig. 5(b)] that the variation with τ of the lateral velocity v′ calculated at z′ is also in excellent
agreement with the scaling result predicted from theory that v′ ∼ τ−1/2.

The inset to Fig. 5(a) shows that both the scaling with τ of hmin and the value of the prefactor
in the theoretical result (67) (denoted by the black line) are in excellent agreement with the scaling
with τ and the prefactor of hmin obtained from the numerical solution of the transient system of
1D partial differential evolution equations. The inset also shows for comparison the corresponding
solution for a sheet with a clean interface or a surfactant-covered sheet in the absence of surface
rheological effects (χ = 1, denoted by the red line).

To demonstrate the self-similarity of the interface profiles, the normalized scaling function
h/hmin = H (ξ )/H (0) is plotted together with the appropriately collapsed film profiles h/hmin =
h(z, t )/h(0, t ) as shown in figure 6. Since ξ = z/(hmin/H (0))αz/αh , the scaled profiles are plotted
as a function of z/h1.5

min. Figure 6 makes plain that the interface profiles obtained from the solution
of the governing transient PDEs are in excellent agreement with the normalized similarity profile
obtained from the solution of the ODEs in similarity space.

C. Validity of the long-wavelength approximation in inertial-viscous flow

When inertia is not negligible, the local slope ∂h/∂z of the interface varies with time to rupture
τ as ταh−αz = τ 1/3−1/2 = τ−1/6. Therefore, the local slope diverges as τ → 0 and would become of
order one no matter how small its initial value. However, the long-wavelength approximation would
be valid for all time if molecular length scales are reached before the interface slope becomes of
O(1).
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FIG. 6. Self-similarity of the interface shape during rupture of sheets undergoing inertial-viscous flow.
Appropriately rescaled interface shapes obtained from solution of the transient partial differential evolution
equations in physical space (curves) agree well with the normalized similarity profile obtained from solution
of the ODEs in similarity space (symbols). The individual curves obtained from the simulations are hard to
distinguish from one another because of the excellence of the collapse and/or the closeness of the collapsed
solutions to one another. Here, the Ohnesorge number Oh = 0.5 and the reference Boussinesq-Scriven number
is Br = 4 (or equivalently the normalized reference Boussinesq-Scriven number B0 ≡ Br/�0 = 8.)

Initially, the sheet is slender and the initial value of the slenderness ratio � is given by

�|t=0 ≡ ε = h̃i

lc
≈ h̃i

h̃2
i /d

= d

h̃i
	 1. (68)

The reader is reminded that the molecular length scale d is of the order a nanometer and the initial
film half-thickness is of the order of a micrometer. Since the dimensional sheet half-thickness scales
as h̃iτ

1/3 and the dimensional lateral extent of the rupture zone scales as lcτ 1/2, the instantaneous
value of the slenderness ratio � scales as

� ∼ h̃iτ
1/3

lcτ 1/2
≈ d

h̃i
τ−1/6 ≈ ετ−1/6. (69)

The slenderness ratio becomes of O(1) when ετ−1/6 ≈ 1. Since h ∼ τ 1/3, the minimum value
of the dimensionless sheet half-thickness when this happens is given by hmin ≈ ε2. Therefore,
the slenderness ratio becomes O(1) when the dimensional values of the film half-thickness and
the lateral length scale are of the order of h̃iε

2 ≈ d2/h̃i ≡ d (d/h̃i ) 	 d . Thus, the continuum
assumption breaks down well before the long-wavelength assumption does.

V. SHEET THINNING AND RUPTURE AT LARGE BUT FINITE PECLET NUMBER

So far in this paper, we have only considered sheet thinning when Pe = ∞. In this section, we
consider the effect of large but finite Pe on sheet thinning and rupture.

To understand the effect of finite Pe on the dynamics, we examine the CD equation in nondimen-
sional form:

∂�

∂t
+ ∂ (�v)

∂z
= 1

Pe

∂2�

∂z2
. (70)

Here, we have used the same characteristic scales to nondimensionalize surfactant concentration �̃

and lateral length z̃, viz. � ≡ �̃/�̃m and z ≡ z̃/lc. We have nondimensionalized time t̃ as t ≡ t̃/t∗
where the characteristic time t∗ is tvis in the Stokes limit and tcap in inertial-viscous flow. In both
cases, we have defined the characteristic velocity as v∗ ≡ lc/t∗. The Peclet number in the two cases
is given by Pe ≡ l2

c /Dst∗.
Once again, we take that as the finite-time singularity (zR, tR) is approached, the length and

timescales of the motion in the vicinity of the rupture singularity will be orders of magnitude smaller
than those in the farfield and therefore the film profile, lateral velocity, and surfactant concentration
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(a) (b)

FIG. 7. Scaling behavior of the minimum sheet half-thickness hmin, surfactant concentration �min at that
location, lateral length z′, and lateral velocity v′ during rupture of liquid sheets undergoing (a) Stokes flow and
(b) inertial-viscous flow at large but finite Peclet number Pe = 100: evolution in time remaining to rupture τ of
hmin and �min (main figures) and of z′ and v′ (insets). The data points represent simulation results and the straight
lines are the theoretical predictions when Pe = ∞. Main figures: simulation results for the computed variation
with τ of hmin (green square � symbols) and �min ≡ �|hmin (blue gradient � symbols). The simulations predict
that the scaling exponents αh = α� = 1/3, in accord with theoretical and simulation results when Pe = ∞ and
as indicated in the figure. Insets: simulation results for the computed variation with τ of z′ (orange diamond �
symbols) and v′ (red circle ◦ symbols). The simulations predict that the scaling exponents αz = 0.249 and αv =
−0.751 in Stokes flow and αz = 1/2 and αv = −1/2 in inertial-viscous flow, also in accord with theoretical and
simulation results when Pe = ∞ and as indicated in the figure. In panel (a), the reference Boussinesq-Scriven
number is Br = 1 (or equivalently B0 ≡ Br/�0 = 2). In panel (b), the Ohnesorge number Oh = 0.5 and the
reference Boussinesq-Scriven number is Br = 4 (or equivalently the normalized reference Boussinesq-Scriven
number B0 ≡ Br/�0 = 8).

can be described by similarity solutions of the form given by Eq. (31). In similarity space, Eq. (70)
can be written as

αzξG′ − α�G + (GV )′ = τ 1−2αz

Pe
G′′, (71)

where we have made use of the fact that the kinematic balance once again reveals that the scaling
exponents αv and αz are related as αv = αz − 1. In Eq. (71), the relative importance of diffusion
compared to convection is given by the prefactor τ 1−2αz/Pe multiplying G′′. In Secs. III and IV
where Pe = ∞, the right-hand side of Eq. (71) is exactly zero and diffusion is negligible compared
to convection during the entire period of sheet thinning. The physics, however, is more complex
when 0 < Pe < ∞.

When Pe is finite but nonzero, it follows from Eq. (71) that diffusion is unimportant as τ →
0 if αz < 1/2. More precisely, diffusion becomes negligible compared to convection when τ <

Pe1/(1−2αz ). Therefore, for a liquid undergoing Stokes flow, if the value of the lateral scaling exponent
αz when Pe �= ∞ remains unchanged compared to when Pe = ∞ or has some other value that is
nevertheless less than 1/2, diffusion will be asymptotically negligible compared to convection as
the sheet tends toward rupture. According to Eq. (71), if αz = 1/2, then the relative importance of
diffusion to convection remains unchanged as the sheet thins. Therefore, for a liquid undergoing
inertial-viscous flow, if the value of the lateral scaling exponent αz when Pe � 1 but not infinite
remains unchanged compared to when Pe = ∞, then diffusion should be negligible compared to
convection during the entire period of thinning.

Figure 7 shows results obtained from the numerical solution of the 1D evolution equations—
Eqs. (28), (29), and (70) for a sheet undergoing Stokes flow (Oh = ∞) and Eqs. (58), (59), and

094005-25



WEE, WAGONER, AND BASARAN

(70) for a sheet undergoing inertial-viscous flow (Oh = 0.5)—when Pe = 100. The main parts
of Figs. 7(a) and 7(b) show the results obtained from 1D simulations of the variation with time
remaining until rupture τ of the computed value of the minimum film half-thickness hmin and
surfactant concentration at that location �min. The inserts in both parts (a) and (b) of this figure show
the variation with τ of the lateral length z′ and the lateral velocity v′. According to the results that are
depicted in Fig. 7, the values of the scaling exponents when Pe = 100 are identical to those obtained
earlier from theory and simulations when Pe = ∞ regardless of whether inertia is negligible or
inertia cannot be neglected.

VI. WHY SURFACE VISCOSITIES AND SURFACE VISCOUS STRESSES ARE IMPORTANT
EVEN WHEN SURFACTANTS ARE SWEPT AWAY FROM THE RUPTURE ZONE

According to the foregoing results, surfactants are swept out of the rupture zone and surfactant
concentration tends to zero as sheet thickness approaches zero when Pe � 1. Therefore, it is
remarkable but counterintuitive that surface viscosities can be important even when surfactants
are swept away from the rupture zone and, consequently, surface viscosities vanish. A simple
explanation of this interesting result lies in the competition between two effects. A differential
section of axial length dz of a slender sheet has volume per unit length in the neutral direction
dV = 2h dz and interfacial area per unit length in the neutral direction dA = 2 dz (the factors of
two account for the presence of the two halves and two free surfaces of the sheet). Thus, surface
area to volume ratio scales as 1/h and increases without bound as the sheet thickness tends to zero
(h → 0). Moreover, it follows from the 1D momentum equation that the ratio of surface viscous
to bulk viscous force scales as B0�/4h. When Pe = ∞, h ∼ �. Thus, surface viscous stress can
remain comparable to bulk viscous stress even as surfactants are swept away from the rupture zone
and surface viscosities are tending to zero because surface area-to-volume ratio 1/h → ∞ as h → 0.

VII. GENERAL CONSTITUTIVE RELATION FOR γs

Although the use of a specific constitutive relation for surface viscosity γs(�̃) ≡ μs(�̃) + μd (�̃)
or equivalently the Boussinesq-Scriven number Bu ≡ γs/μhc [recall Eq. (21)] is necessary in
numerical simulations, the analytical formulas presented in this paper that account for the pres-
ence of surface viscous effects, and provide the necessary modifications to the results by Thete
et al. [40] and Vaynblat et al. [38] for clean interfaces, can yet be generalized further without
relying on any specific constitutive relation. Therefore, rather than assuming the linear relation that
Bu = Br�/�r = B0�, one can take Bu = Br f (�) where the function f is such that it equals unity at
the reference surfactant concentration, viz. f (�r ) = 1, and vanishes when surfactant concentration
equals zero, viz. f (0) = 0. A Taylor series expansion of f (�) about � = 0 then reveals that

f (�) = f (0) + df

d�

∣∣∣∣
�=0

� + O(�2) = f ′(0)� + . . . (72)

Thus, Bu = Br f ′(0)� as � → 0 in the rupture zone. Hence, the generalization of the results given
earlier but now without any dependence whatsoever on a particular constitutive relation can be
obtained by replacing B0 by Br f ′(0) in χ .

VIII. CONCLUSIONS

In this paper, the thinning and rupture of thin liquid sheets of incompressible Newtonian fluids
whose two free surfaces are covered with a monolayer of insoluble surfactant have been analyzed
when surfactant convection is dominant over surfactant diffusion, viz. the Peclet number Pe � 1,
and surface rheological effects are important. The dynamics close to the space-time rupture singu-
larity has been analyzed both theoretically and by simulation when Pe = ∞. The dynamics in the
vicinity of singularity has also been analyzed by simulation when Pe � 1 and the local dynamics

094005-26



SPONTANEOUS RUPTURE OF SURFACTANT-COVERED …

has been shown to be the same as when Pe = ∞. Thus, in the remainder of this section, discussion
of our new findings pertain to situations in which Pe = ∞. In carrying out both the theoretical
analysis and the simulations, advantage has been taken of the film’s slenderness—the initial film
half-thickness h̃i is much smaller than the wavelength of the perturbation causing instability of the
sheet—and solving a long-wavelength model composed of a system of one-dimensional evolution
partial differential equations for the film half-thickness h̃(z̃, t̃ ), lateral velocity ṽ(z̃, t̃ ) and surfactant
concentration �̃(z̃, t̃ ) where z̃ is the lateral coordinate and t̃ is time. As the dynamics near the
space-time singularity where the film ruptures is asymptotically self-similar when surfactants are
convected away from the rupture point, the partial differential evolution equations are also reduced
to a set of ordinary differential equations in similarity space. Specifically, the dynamics has been
analyzed in two distinct situations: one when inertia is negligible so that the sheet is undergoing
Stokes flow and another when inertia cannot be neglected (inertial-viscous flow).

In both situations, it has been shown that the dominant balance of forces involves van der Waals,
(bulk) viscous and surface viscous forces—inertia also enters the dominant balance when the sheet
is undergoing inertial-viscous flow—while capillary (surface tension) and Marangoni forces are
negligible as the sheet thins and tends toward rupture. For both sheets undergoing Stokes and
inertial-viscous flow, similarity solutions have been obtained for the problem variables that have
power-law dependencies on time remaining until rupture τ̃ and are of the form given by the product
of a scaling function multiplied by τ̃ raised to some power (scaling exponent). In Stokes flow, the
dynamics is shown to exhibit self-similarity of the second kind [39] and the power-law dependencies
are given by

h̃ ∼ τ̃ 1/3, �̃ ∼ τ̃ 1/3, z̃ ∼ τ̃ 0.249, ṽ ∼ τ̃−0.751, (73)

and in inertial-viscous flow, the dynamics entails self-similarity of the first kind [39] and the power-
law dependencies are given by

h̃ ∼ τ̃ 1/3, �̃ ∼ τ̃ 1/3, z̃ ∼ τ̃ 1/2, ṽ ∼ τ̃−1/2. (74)

In both situations, expressions have also been derived from theory for the minimum sheet half-
thickness h̃min, results that are likely to be of great value to experimentalists who would be interested
in measuring the temporal evolution of h̃min and/or the sheet’s thinning rate, i.e., the time derivative
of h̃min. In Stokes flow, the sheet half-thickness has been shown to be given by [cf. Eq. (53)]

h̃min

h̃i
=

(
9

4(6αz + 1)χ

)1/3

τ 1/3 = 0.966χ−1/3

(
τ̃

tvis

)1/3

, (75)

where αz = 0.249, and in inertial-viscous flow, the sheet half-thickness has been shown to be given
by [cf. Eq. (76)]

h̃min

h̃i
= 0.7401

Oh1/3χ1/3

(
τ̃

tcap

)1/3

, (76)

where Oh = μ/
√

ρh̃iσp is the Ohnesorge number. In both expressions, χ ≡ 1 + B0c0/4 where
B0 ≡ Br/�0, with Br ≡ γsr/μh̃i standing for the reference Boussinesq-Scriven number, B0 standing
for the normalized reference Boussinesq-Scriven number, γsr denoting the reference value of the
surface viscosity evaluated at � = �0, and c0 ≡ �0/h0 (h0: initial minimum value of the film
half-thickness upon the imposition of a sinusoidal perturbation of the sheet’s surface at t = 0 which
corresponds to the location where the film will rupture). In the expression for χ , B0c0/4 represents
the relative importance of surface viscous force to its bulk counterpart to leading order near the
space-time singularity. The latter makes plain that surface rheological effects indeed compete with
their bulk counterparts as τ̃ → 0. A similar outcome has already been observed in pinch-off of
surfactant-covered Newtonian jets/threads of highly viscous fluids undergoing Stokes flow (limit
of zero density or negligible inertia) [47] and moderately viscous fluids undergoing inertial-viscous
flow (situations in which inertia is nonnegligible) [48].
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Given the aforementioned findings, it is appropriate to compare the results obtained in this
paper with those reported in Refs. [41] and [42] in which the authors also considered the role of
surface rheology in sheet rupture. As has already been explained in previous sections, the primary
difference between the three works stems from the constitutive relation used to relate surface
viscosity and surfactant concentration. In this paper, we, as in several recent papers on the subject
[47–49,60], have adopted the physically-based ansatz that surface viscosity varies linearly with
surfactant concentration. Moreover, it has been shown in Sec. VII that because surfactant evacuates
the location where sheet thickness is a minimum, surface viscosity γs varies linearly with surfactant
concentration �̃ as the sheet approaches rupture regardless of the constitutive equation used to
relate γs and �̃. Therefore, the Boussinesq-Scriven number that measures the relative importance
of surface viscous and viscous forces is given by Bu = B0�. By contrast, Matar [41] took surface
viscosity to be a constant regardless of surfactant concentration. However, Choudhury et al. [42]
adopted a functional form for surface viscosity such that Bu = B0[1 + β(� − 1)] where 0 � β � 1.
When β = 1, their expressions for surface viscosity and hence Boussinesq-Scriven number become
identical to ours. The limit of β = 0 reduces to the case analyzed by Matar [41]. Thus, the
expressions for the surface viscosity adopted by Matar [41] (β = 0) and by Choudhury et al. [42]
when β �= 1 are physically unrealistic because they predict that γs is nonzero even at locations on the
interface where surfactant concentration is identically zero. Moreover, Matar [41] and Choudhury
et al. [42] did not address sheet rupture in the Stokes limit. Furthermore, regardless of whether
sheet rupture takes place when inertia is negligible or important, the present paper is the only one
to date that has provided an analytical expression for hmin as a function of τ or the sheet’s thinning
rate. Additionally, when β = 1, an incorrect conclusion was reached in Ref. [42] regarding the
asymptotic balance of forces that exists as the sheet tends toward rupture. A succinct summary of
all of these findings is presented in Fig. 8.

The dynamics of thinning and rupture of liquid sheets with clean interfaces as well as ones
with surfactant-covered interfaces in the presence of surface viscous effects can be conveniently
displayed in a single phase diagram as shown in Fig. 9. Based on experience with other interfacial
flows with pinch-off singularities such as jet/drop breakup [66], it turns out to be convenient here to
construct such a diagram in the (Bloc, Re) phase space. Here, Re is the Reynolds number, which is
the reciprocal of the Ohnesorge number Oh, and Bloc is the local Boussinesq-Scriven number given
by Bloc = Bu/h. It should be noted that the Reynolds number is either Re = 0 or Re ∼ 1 or Re = ∞.
The local Boussinesq-Scriven number is the instantaneous value of the ratio of the surface viscous
to bulk viscous stress in the rupture zone. In this work, Bloc = B0�/h. Since both � and h scale as
τ 1/3, Bloc ∼ 1 throughout the time that the sheet is thinning and tending toward rupture, viz. surface
and bulk viscous forces remain in balance as the sheet tends toward breakup. In Refs. [41,42],
Bloc = B0[1 + β(� − 1)]/h. Since β = 0 in Ref. [41] and when β �= 1 in Ref. [42], Bloc → ∞ as
the sheet tends toward rupture or as h → 0. Although mathematically correct, this portion of the
phase space is unlikely to be attained in practice because surface viscosity cannot be constant or be
nonzero where surfactant concentration vanishes. For sheets with clean as well as surfactant-covered
interfaces, transitions are possible from initial regimes that are either bulk-viscous force or inertia
dominated to ones where bulk-viscous and inertial forces are equally important, as discussed earlier
and shown in Fig. 9.

In this paper, sheet thinning and rupture have been considered for two-dimensional perturbations
as opposed to axisymmetric ones which lead to the film rupturing at a point. In the literature on
the thinning and rupture of free and supported films of Newtonian fluids, researchers have studied
both types of rupture. Vaynblat et al. [38] state that sheet rupture is unstable to perturbations in the
transverse direction, as capillary force would be too weak to stabilize the film against them. We shall
report in a future publication results on the analogous problem of axisymmetric or point rupture of
surfactant-covered liquid sheets.

In the presence of surfactants, surface tension has a value that is lower than that when the
interface is devoid of surfactant and is reduced by an amount that depends on the local concentration
of surfactant. As summarized in a countless number of review articles and monographs
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FIG. 8. Publications in which the thinning and rupture of free films of Newtonian fluids have been analyzed
in situations in which the sheets’ two free surfaces are covered with insoluble surfactant and surface rheological
effects are important when Pe � 1 (surfactant convection is dominant over surfactant diffusion). In this figure,
Matar and Choudhoury et al. denote Refs. [41] and [42]. Listed here are three key results and/or conclusions
that have been obtained in these papers: (i) the power-law dependencies of key variables (in black font), i.e.,
the variation with time remaining to rupture τ of the sheet half-thickness h, surfactant concentration �, lateral
length z, and lateral velocity v, (ii) the dominant balance of forces (in red font), and (iii) the theoretically
predicted thinning rate which is given by the time derivative of hmin (in blue font). In this and the next figure,
vdW, I, V, SV, and ST denote van der Waals, inertial, (bulk) viscous, surface viscous, and surface tension
(capillary) forces. The Stokes limit has not been considered in Refs. [41] and [42]. Furthermore, theoretical
expressions for the sheet’s thinning rate are not reported in Refs. [41] and [42] when the sheet is undergoing
inertial-viscous flow.

[19,29,67–69], there now exist dozens of methods for accurately measuring the surface tension
of clean as well as surfactant-covered interfaces. In the presence of surface rheological effects, the
standard approach, which has also been adopted in this manuscript, has consisted of describing the
interface as a compressible two-dimensional Newtonian fluid with surface shear and dilatational
viscosities obeying the Boussinesq-Scriven equations [58]. However, in contrast to measuring the
value of surface tension, measurement of material properties of interfaces has proven challenging
and elusive [70]. For example, Stevenson [71] has articulated in a review article that researchers have
reported measured values of surface shear viscosity that differ by orders of magnitude. One possible
culprit for the discrepancies in measurements may be that many experimental methods generate
a mixed interfacial flow, with both shear and dilatational components, and the surface shear and
dilatational viscosities cannot be uniquely determined from measurements of a single mixed-type
flow [28]. Another culprit may be that the flows induced in different experiments often give rise to
gradients in surface tension which then makes it virtually impossible to separate the contributions of
the resulting Marangoni stresses from those due to surface viscosities. Given the fact that Marangoni
stresses become negligible compared to surface viscous stresses in sheet rupture, thinning liquid
sheets can provide a convenient experimental platform for inferring surface viscosities by using
Eq. (75) or Eq. (76) (also, see below).

While many of the key results in this theoretical and computational study have been presented
in terms of dimensionless variables, it is of interest to briefly address what might be observed
in laboratory experiments where it would be necessary to consider the actual values of physical
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FIG. 9. Summary of the dynamical responses of liquid sheets undergoing van der Waals driven thinning and
rupture: phase diagram in (Bloc, Re) space. In this figure, Matar, Choudhoury et al., Vaynblat et al., and Thete
et al. denote Refs. [41], [42], [38], and [40]. Theoretical scaling laws exist when Re = 0 (Oh = ∞), Re ∼ 1
(Oh ∼ 1), and Re = ∞ (Oh = 0), and are now known in these limits for sheets with both clean interfaces
(Bloc = 0) and ones that are covered with a monolayer of insoluble surfactant in the presence of surface
viscous effects. The inertial-viscous scaling regime in the limit of Bloc → ∞, highlighted in red, constitutes a
mathematically correct solution of the governing equations but may be unattainable in practice because of the
aphysical nature of the relationship between surface viscosity and surfactant concentration that was assumed
in those papers, i.e., γs = constant or γs �= 0 when �̃ = 0. The star in the box in the middle of the diagram
(“This paper∗”) indicates that the power-law dependencies for the regime where (Bloc ∼ 1, Re ∼ 1) for which
γs ∝ �̃ have also been obtained in Ref. [42] but the authors of that paper have incorrectly concluded that
surface viscous force is negligible at the incipience of sheet rupture and have not reported an exact analytical
expression for the sheet’s thinning rate as has been done in this paper. Reynolds (Ohnesorge) number cannot
equal zero or infinity in real systems. Thus, for systems for which Re 	 1 (Oh � 1) or Re � 1 (Oh 	 1), the
dynamics would transition from an initial Stokes or inviscid scaling regime to a final inertial-viscous scaling
regime as indicated by the arrows in the figure.

properties and film thickness. Since glycerol-water solutions are some of the most commonly used
fluids in studies of pinch-off singularities [24,50,72], we use such mixtures in the numerical example
that will be provided. Hence, we consider two liquid sheets of identical initial film half-thickness of
h̃i = 1 μm where the solvent in one case is water and the other a glycerol-water solution of viscosity
fifty times that of water [50]. For the sheet for which the solvent is water, Oh = 0.12. As shown in
this paper, as rupture nears, such a liquid sheet would thin and break up in the inertial-viscous
regime, as summarized in Figs. 8 and 9. If, however, the solvent is the glycerol-water solution that
is 50 times more viscous than water, then Oh = 6. After the decay of initial transients, such a liquid
sheet would initially thin in the viscous or Stokes regime. As per the results presented in Sec. III E
and Eq. (56), the dynamics would then transition to the inertial-viscous regime when the minimum
value of the sheet’s half-thickness falls below about 93 nm. The measured rates of thinning in both
regimes can then be used to determine the surface viscosities of the surfactant-covered sheets of
water and the glycerol-water solution that is fifty times more viscous than water.

Despite the aforementioned challenges in accurately measuring surface viscosity, it would also
be valuable to experimentalists as well as practitioners to include here a discussion of the order of
magnitude of the Boussinesq-Scriven number Bu based on realistic values of physical properties.
Typical values of the surface viscosity lie in the range 10−8–10−6 Pa m s [71,73,74] and those of
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the viscosity of glycerol-water solutions are in the range of 10−3–10−1 Pa s. If the liquid sheet’s
initial film half-thickness is 1 μm, then the order of magnitude of the Boussinesq-Scriven number
for such systems would be in the range of 10−1–103. Therefore, in all simulation results reported in
the present study, the value of Bu at the initial surfactant coverage was chosen to lie roughly in the
middle of this range, i.e., between 1 and 10.

ACKNOWLEDGMENTS

The authors thank the Purdue Process Safety and Assurance Center (P2SAC), the Bilsland
Dissertation Fellowship to B.W.W., and the Gedge Professorship to O.A.B. for financial support.
The authors report no conflict of interest.

[1] A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69,
931 (1997).

[2] G. F. Teletzke, H. T. Davis, and L. E. Scriven, How liquids spread on solids, Chem. Eng. Commun. 55,
41 (1987).

[3] D. Lohse and E. Villermaux, Double threshold behavior for breakup of liquid sheets, Proc. Natl. Acad.
Sci. USA 117, 18912 (2020).

[4] P.-G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys. 57, 827 (1985).
[5] H. S. Kheshgi and L. E. Scriven, Dewetting: Nucleation and growth of dry regions, Chem. Eng. Sci. 46,

519 (1991).
[6] B. Néel and E. Villermaux, The spontaneous puncture of thick liquid films, J. Fluid Mech. 838, 192

(2018).
[7] G. Debrégeas, P.-G. De Gennes, and F. Brochard-Wyart, The life and death of “bare” viscous bubbles,

Science 279, 1704 (1998).
[8] S. Cohen-Addad, R. Höhler, and O. Pitois, Flow in foams and flowing foams, Annu. Rev. Fluid Mech. 45,

241 (2013).
[9] Y. Yoon, F. Baldessari, H. D. Ceniceros, and L. G. Leal, Coalescence of two equal-sized deformable drops

in an axisymmetric flow, Phys. Fluids 19, 102102 (2007).
[10] K. Sambath, V. Garg, S. S. Thete, H. J. Subramani, and O. A. Basaran, Inertial impedance of coalescence

during collision of liquid drops, J. Fluid Mech. 876, 449 (2019).
[11] D. Langevin, Bubble coalescence in pure liquids and in surfactant solutions, Curr. Opin. Colloid Interface

Sci. 20, 92 (2015).
[12] Z. Tadmor and C. G. Gogos, Principles of Polymer Processing (John Wiley & Sons, New York, NY, 2013)
[13] M. S. Bazzi and M. S. Carvalho, Effect of viscoelasticity on liquid sheet rupture, J. Non-Newtonian Fluid

Mech. 264, 107 (2019).
[14] S. F. Kistler and L. E. Scriven, Coating flows, in Computational Analysis of Polymer Processing (Springer,

Berlin, 1983), pp. 243–299.
[15] S. J. Weinstein and K. J. Ruschak, Coating flows, Annu. Rev. Fluid Mech. 36, 29 (2004).
[16] R. J. Braun, Dynamics of the tear film, Annu. Rev. Fluid Mech. 44, 267 (2012).
[17] R. Sijs, S. Kooij, and D. Bonn, How surfactants influence the drop size in sprays from flat fan and hollow

cone nozzles, Phys. Fluids 33, 113608 (2021).
[18] P. R. Schunk and L. E. Scriven, Surfactant effects in coating processes, in Liquid Film Coating (Springer,

Berlin, 1997), pp. 495–536.
[19] J. C. Berg, An Introduction to Interfaces & Colloids: The Bridge to Nanoscience (World Scientific,

Singapore, 2010).
[20] C. V. Sternling and L. E. Scriven, Interfacial turbulence: Hydrodynamic instability and the Marangoni

effect, AIChE J. 5, 514 (1959).
[21] L. E. Scriven and C. V. Sternling, The Marangoni effects, Nature (London) 187, 186 (1960).

094005-31

https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1080/00986448708911919
https://doi.org/10.1073/pnas.2011358117
https://doi.org/10.1103/RevModPhys.57.827
https://doi.org/10.1016/0009-2509(91)80012-N
https://doi.org/10.1017/jfm.2017.877
https://doi.org/10.1126/science.279.5357.1704
https://doi.org/10.1146/annurev-fluid-011212-140634
https://doi.org/10.1063/1.2772900
https://doi.org/10.1017/jfm.2019.498
https://doi.org/10.1016/j.cocis.2015.03.005
https://doi.org/10.1016/j.jnnfm.2018.10.007
https://doi.org/10.1146/annurev.fluid.36.050802.122049
https://doi.org/10.1146/annurev-fluid-120710-101042
https://doi.org/10.1063/5.0066775
https://doi.org/10.1002/aic.690050421
https://doi.org/10.1038/187186a0


WEE, WAGONER, AND BASARAN

[22] D. Lohse and X. Zhang, Physicochemical hydrodynamics of droplets out of equilibrium, Nat. Rev. Phys.
2, 426 (2020).

[23] P. T. McGough and O. A. Basaran, Repeated Formation of Fluid Threads in Breakup of a Surfactant-
Covered Jet, Phys. Rev. Lett. 96, 054502 (2006).

[24] P. M. Kamat, B. W. Wagoner, S. S. Thete, and O. A. Basaran, Role of Marangoni stress during breakup of
surfactant-covered liquid threads: Reduced rates of thinning and microthread cascades, Phys. Rev. Fluids
3, 043602 (2018).

[25] Y. Li, C. Diddens, A. Prosperetti, K. L. Chong, X. Zhang, and D. Lohse, Bouncing Oil Droplet in a
Stratified Liquid and its Sudden Death, Phys. Rev. Lett. 122, 154502 (2019).

[26] A. Marin, S. Karpitschka, D. Noguera-Marín, M. A. Cabrerizo-Vílchez, M. Rossi, C. J. Kähler, and M. A.
Rodriguez Valverde, Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops,
Phys. Rev. Fluids 4, 041601(R) (2019).

[27] D. Lohse, Fundamental fluid dynamics challenges in inkjet printing, Annu. Rev. Fluid Mech. 54, 349
(2022).

[28] G. J. Elfring, L. G. Leal, and T. M. Squires, Surface viscosity and Marangoni stresses at surfactant laden
interfaces, J. Fluid Mech. 792, 712 (2016).

[29] Y. M. Tricot, Surfactants: Static and dynamic surface tension, in Liquid Film Coating: Scientific Principles
and Their Technological Implications, edited by S. F. Kistler and P. M. Schweizer (Springer, Netherlands,
1997), pp. 99–136.

[30] B. Scheid, J. Delacotte, B. Dollet, E. Rio, F. Restagno, E. A. Van Nierop, I. Cantat, D. Langevin, and
H. A. Stone, The role of surface rheology in liquid film formation, Europhys. Lett. 90, 24002 (2010).

[31] B. Scheid, S. Dorbolo, L. R. Arriaga, and E. Rio, Antibubble Dynamics: The Drainage of an Air Film
with Viscous Interfaces, Phys. Rev. Lett. 109, 264502 (2012).

[32] A. Sheludko, Certain peculiarities of foam lamellas, Parts I–III, in Proc. Koninkl. Ned. Akad. Wetenschap.
B, Vol. 65 (1962) pp. 76–108.

[33] A. Vrij, Possible mechanism for the spontaneous rupture of thin, free liquid films, Discuss. Faraday Soc.
42, 23 (1966).

[34] A. Sheludko, Thin liquid films, Adv. Colloid Interface Sci. 1, 391 (1967).
[35] E. Ruckenstein and R. K. Jain, Spontaneous rupture of thin liquid films, J. Chem. Soc., Faraday Trans. 2

70, 132 (1974).
[36] T. Erneux and S. H. Davis, Nonlinear rupture of free films, Phys. Fluids A 5, 1117 (1993).
[37] M. P. Ida and M. J. Miksis, Thin film rupture, Appl. Math. Lett. 9, 35 (1996).
[38] D. Vaynblat, J. R. Lister, and T. P. Witelski, Rupture of thin viscous films by van der Waals forces:

Evolution and self-similarity, Phys. Fluids 13, 1130 (2001).
[39] G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Inter-

mediate Asymptotics, Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge,
UK, 1996).

[40] S. S. Thete, C. Anthony, P. Doshi, M. T. Harris, and O. A. Basaran, Self-similarity and scaling transitions
during rupture of thin free films of newtonian fluids, Phys. Fluids 28, 092101 (2016).

[41] O. K. Matar, Nonlinear evolution of thin free viscous films in the presence of soluble surfactant, Phys.
Fluids 14, 4216 (2002).

[42] A. Choudhury, V. K. Paidi, S. K. Kalpathy, and H. N. Dixit, Enhanced stability of free viscous films due
to surface viscosity, Phys. Fluids 32, 082108 (2020).

[43] J. C. Burton and P. Taborek, Two-dimensional inviscid pinch-off: An example of self-similarity of the
second kind, Phys. Fluids 19, 102109 (2007).

[44] J. Eggers and M. A. Fontelos, Singularities: Formation, Structure, and Propagation (Cambridge Univer-
sity Press, Cambridge, UK, 2015).

[45] M. Bowen and B. S. Tilley, On self-similar thermal rupture of thin liquid sheets, Phys. Fluids 25, 102105
(2013).

[46] G. Kitavtsev, M. A. Fontelos, and J. Eggers, Thermal rupture of a free liquid sheet, J. Fluid Mech. 840,
555 (2018).

094005-32

https://doi.org/10.1038/s42254-020-0199-z
https://doi.org/10.1103/PhysRevLett.96.054502
https://doi.org/10.1103/PhysRevFluids.3.043602
https://doi.org/10.1103/PhysRevLett.122.154502
https://doi.org/10.1103/PhysRevFluids.4.041601
https://doi.org/10.1146/annurev-fluid-022321-114001
https://doi.org/10.1017/jfm.2016.96
https://doi.org/10.1209/0295-5075/90/24002
https://doi.org/10.1103/PhysRevLett.109.264502
https://doi.org/10.1039/df9664200023
https://doi.org/10.1016/0001-8686(67)85001-2
https://doi.org/10.1039/f29747000132
https://doi.org/10.1063/1.858597
https://doi.org/10.1016/0893-9659(96)00028-6
https://doi.org/10.1063/1.1359749
https://doi.org/10.1063/1.4961549
https://doi.org/10.1063/1.1516597
https://doi.org/10.1063/5.0016282
https://doi.org/10.1063/1.2800387
https://doi.org/10.1063/1.4824438
https://doi.org/10.1017/jfm.2018.74


SPONTANEOUS RUPTURE OF SURFACTANT-COVERED …

[47] H. Wee, B. W. Wagoner, P. M. Kamat, and O. A. Basaran, Effects of Surface Viscosity on Breakup of
Viscous Threads, Phys. Rev. Lett. 124, 204501 (2020).

[48] H. Wee, B. W. Wagoner, V. Garg, P. M. Kamat, and O. A. Basaran, Pinch-off of a surfactant-covered jet,
J. Fluid Mech. 908, A38 (2021).

[49] H. Wee, B. W. Wagoner, and O. A. Basaran, Absence of scaling transitions in breakup of liquid jets caused
by surface viscosity, Phys. Rev. Fluids 7, 074001 (2022).

[50] Y. C. Liao, E. I. Franses, and O. A. Basaran, Deformation and breakup of a stretching liquid bridge
covered with an insoluble surfactant monolayer, Phys. Fluids 18, 022101 (2006).

[51] F. Brochard-Wyart, J.-M. di Meglio, D. Quére, and P.-G. de Gennes, Spreading of nonvolatile liquids in a
continuum picture, Langmuir 7, 335 (1991).

[52] V. Bergeron, Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films,
Langmuir 13, 3474 (1997).

[53] B. Dai and L. G. Leal, The mechanism of surfactant effects on drop coalescence, Phys. Fluids 20, 040802
(2008).

[54] C. Vannozzi, Coalescence of surfactant-covered drops in extensional flows: Effects of the interfacial
diffusivity, Phys. Fluids 24, 082101 (2012).

[55] D. T. Papageorgiou, On the breakup of viscous liquid threads, Phys. Fluids 7, 1529 (1995).
[56] H. A. Stone, A simple derivation of the time-dependent convective-diffusion equation for surfactant

transport along a deforming interface, Phys. Fluids 2, 111 (1990).
[57] R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics (Courier Corporation, North

Chelmsford, MA, 2012).
[58] L. E. Scriven, Dynamics of a fluid interface equation of motion for Newtonian surface fluids, Chem. Eng.

Sci. 12, 98 (1960).
[59] B. Ambravaneswaran and O. A. Basaran, Effects of insoluble surfactants on the nonlinear deformation

and breakup of stretching liquid bridges, Phys. Fluids 11, 997 (1999).
[60] A. Ponce-Torres, J. M. Montanero, M. A. Herrada, E. J. Vega, and J. M. Vega, Influence of the Surface

Viscosity on the Breakup of a Surfactant-Laden Drop, Phys. Rev. Lett. 118, 024501 (2017).
[61] M. Bowen and B. S. Tilley, Thermally induced van der Waals rupture of thin viscous fluid sheets, Phys.

Fluids 24, 032106 (2012).
[62] J. Eggers, Universal Pinching of 3D Axisymmetric Free-Surface Flow, Phys. Rev. Lett. 71, 3458 (1993).
[63] J. Eggers, Drop formation–an overview, ZAMM-J. App. Math. Mech. 85, 400 (2005).
[64] S. S. Thete (private communication).
[65] B. W. Wagoner, S. S. Thete, and O. A. Basaran, A new experimental method based on volume measure-

ment for determining axial scaling during breakup of drops and liquid threads, Phys. Fluids 30, 082102
(2018).

[66] J. R. Castrejón-Pita, A. A. Castrejón-Pita, S. S. Thete, K. Sambath, I. M. Hutchings, J. Hinch, J. R. Lister,
and O. A. Basaran, Plethora of transitions during breakup of liquid filaments, Proc. Natl. Acad. Sci. USA
112, 4582 (2015).

[67] X. Zhang, M. T. Harris, and O. A. Basaran, Measurement of dynamic surface tension by a growing drop
technique, J. Colloid Interface Sci. 168, 47 (1994).

[68] E. I. Franses, O. A. Basaran, and C. H. Chang, Techniques to measure dynamic surface tension, Curr.
Opin. Colloid Interface Sci. 1, 296 (1996).

[69] M. Hoorfar and A. W. Neumann, Recent progress in axisymmetric drop shape analysis (ADSA), Adv.
Colloid Interface Sci. 121, 25 (2006).

[70] J. M. Lopez and A. Hirsa, Direct determination of the dependence of the surface shear and dilatational
viscosities on the thermodynamic state of the interface: Theoretical foundations, J. Colloid Interface Sci.
206, 231 (1998).

[71] P. Stevenson, Remarks on the shear viscosity of surfaces stabilised with soluble surfactants, J. Colloid
Interface Sci. 290, 603 (2005).

[72] P. M. Kamat, B. W. Wagoner, A. A. Castrejón-Pita, J. R. Castrejón-Pita, C. R. Anthony, and O. A. Basaran,
Surfactant-driven escape from endpinching during contraction of nearly inviscid filaments, J. Fluid Mech.
899, A28 (2020).

094005-33

https://doi.org/10.1103/PhysRevLett.124.204501
https://doi.org/10.1017/jfm.2020.801
https://doi.org/10.1103/PhysRevFluids.7.074001
https://doi.org/10.1063/1.2166657
https://doi.org/10.1021/la00050a023
https://doi.org/10.1021/la970004q
https://doi.org/10.1063/1.2911700
https://doi.org/10.1063/1.4737659
https://doi.org/10.1063/1.868540
https://doi.org/10.1063/1.857686
https://doi.org/10.1016/0009-2509(60)87003-0
https://doi.org/10.1063/1.869972
https://doi.org/10.1103/PhysRevLett.118.024501
https://doi.org/10.1063/1.3693700
https://doi.org/10.1103/PhysRevLett.71.3458
https://doi.org/10.1002/zamm.200410193
https://doi.org/10.1063/1.5030330
https://doi.org/10.1073/pnas.1418541112
https://doi.org/10.1006/jcis.1994.1392
https://doi.org/10.1016/S1359-0294(96)80018-5
https://doi.org/10.1016/j.cis.2006.06.001
https://doi.org/10.1006/jcis.1998.5720
https://doi.org/10.1016/j.jcis.2005.07.070
https://doi.org/10.1017/jfm.2020.476


WEE, WAGONER, AND BASARAN

[73] O. Pitois, C. Fritz, and M. Vignes-Adler, Liquid drainage through aqueous foam: Study of the flow on the
bubble scale, J. Colloid Interface Sci. 282, 458 (2005).

[74] Z. A. Zell, A. Nowbahar, V. Mansard, L. G. Leal, S. S. Deshmukh, J. M. Mecca, C. J. Tucker, and
T. M. Squires, Surface shear inviscidity of soluble surfactants, Proc. Natl. Acad. Sci. USA 111, 3677
(2014).

094005-34

https://doi.org/10.1016/j.jcis.2004.08.187
https://doi.org/10.1073/pnas.1315991111

