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Thin liquid films play a central role in coating processes and other industrial and
natural applications. Efficient optimization of these processes requires an understanding
of capillary leveling, Marangoni flow, evaporation, and related phenomena. Although
mathematical models are useful for gaining such understanding, it can be difficult to
extract physical insight as the number of phenomena considered increases, so simplifying
assumptions such as the vertical-averaging (VA) approximation for solute concentration are
often employed. In this work, we consider two-component films consisting of a solute and
volatile solvent and use lubrication theory to examine the performance of the VA approx-
imation for three common evaporation models: constant, one-sided, and diffusion-limited.
Whereas the VA approximation typically assumes ε2Pe � 1, where ε is the aspect ratio
and Pe is the Péclet number, we find that the critical value of ε2Pe beyond which the VA
approximation breaks down is often much larger than unity and depends on the evaporation
rate. Furthermore, applying the VA approximation outside of its regime of validity results
in drastically different film-height and solute-distribution predictions depending on the
evaporation model. Scaling relations are derived from physical arguments to show how
the critical value of ε2Pe depends on the evaporation rate under each evaporation model.

DOI: 10.1103/PhysRevFluids.7.094002

I. INTRODUCTION

Thin liquid films play a key role in numerous industrial processes including the application of
paint [1–3] and the creation of flexible electronics [4]. Optimization of these processes requires
fundamental understanding of film behavior, which is also useful for gaining insight into many
natural processes [5–9]. Theoretical models are desirable for developing this understanding because
they allow one to systematically explore the influence of various phenomena such as capillary and
Marangoni flow, solute transport, and evaporation. However, theoretical models quickly become
cumbersome as the number of phenomena considered increases, so it is extremely useful to make
well-justified simplifications.

It is often desired that thin liquid films have controlled thicknesses and species distributions so
that they exhibit desired functionality. To model species transport in a binary film with a solvent and
solute, one usually takes the solute concentration to be governed by a convection-diffusion equation.
A general formulation considers solute transport through the film depth as well as across the film
width, which significantly increases the computational cost of a numerical solution. However, when
solute diffusion is sufficiently rapid, one may approximate vertical diffusion as a quasi-steady-state
process and consider only solute transport across the film width. This drastically reduces model
complexity and is the basis of the vertical-averaging (VA) approximation introduced by Jensen
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and Grotberg [10]. However, the formal assumptions underlying this approximation are strict
for physical systems and the limits of its validity have not been systematically explored under
evaporation [11]. Still, the VA approximation (or assumption of vertical uniformity) is popular due
to the simplicity it provides [3,12–19].

For industrial applications, liquid films are often solidified through evaporation, curing, or other
mechanisms. With evaporation, solvent evaporates from the film, leaving behind a solute-rich,
solidified film. The process of evaporation consists of two main steps. First, solvent molecules
escape from the liquid phase into the gas phase (the phase-change step). Second, the gaseous solvent
molecules diffuse away from the liquid-air interface (the diffusion step). To include evaporation in
a theoretical model, one must use an equation to express evaporative fluxes in terms of known
quantities such as the film height and solute concentration.

Evaporation models have been developed in previous work, typically assuming a different portion
of the evaporative process is limiting. The one-sided evaporation model assumes evaporation is
limited by the phase-change step [20,21], whereas the diffusion-limited model assumes evaporation
is limited by the diffusion step. Another common approach is to simply assume evaporation is
uniform and constant. As will be discussed below, previous studies on the evolution of evaporating
thin films and droplets have employed various combinations of evaporation models and the VA
approximation. We will show in Sec. III that the choice of evaporation model, as well as use of the
VA approximation, leads to significant qualitative differences in model predictions.

A. Constant evaporation

Constant evaporation is a simple, convenient approximation that assumes the evaporation rate is
uniform and constant, making it useful for probing fundamental mechanisms. Considering constant
evaporation, Serpetsi and Yiantsios [22] examined the stability of a drying binary film and Yiantsios
and Higgins [23,24] studied the influence of soluble surfactants and colloidal particles on the
evolution of drying films. Yiantsios et al. [25] studied the evolution of a drying polymer film, finding
strong dependence on the formation of vertical concentration gradients. Because of its simplicity,
constant evaporation has also been used in other studies where the problem is already complex due
to factors such as the problem geometry or the presence of colloidal particles [4,19,26–28].

B. One-sided evaporation

The evolution of drying films and droplets consisting of a pure volatile liquid has been extensively
studied under one-sided evaporation [5,6,20,21,29,30]. Pham et al. [12] studied the evolution
of multicomponent thin films on substrates with topography using this evaporation model. The
distribution of colloidal particles in evaporating droplets has also been studied [13,18,31–33]. Many
of these studies employ a VA approximation or an assumption of vertical uniformity to ease model
complexity. However, Maki and Kumar [32] did not use the VA approximation and were able to
capture skin formation (buildup of colloidal particles at the liquid-air interface), which has been
shown to inhibit evaporation [34] and significantly affect evolution dynamics [35].

C. Diffusion-limited evaporation

Diffusion-limited evaporation is commonly used for evaporating droplets, but has also been
used for evaporating films [9,36–38]. Deegan et al. [39,40] provided an analytical solution for the
evaporative flux of a spherical-cap droplet. Other studies have examined the influence of contact
angles [41], species concentration [42,43], and many other important quantities on droplet evolution
under diffusion-limited evaporation [14,15,44–46]. To ease computational complexity, many of
these studies assumed vertical uniformity of any species in the droplets. However, Diddens et al.
[42] have demonstrated that vertically nonuniform temperature and solute concentration in binary
droplets can have significant effects on droplet evolution. In Sec. III, we will examine the effects of
nonuniform solute concentration on diffusion-limited evaporation in thin films.
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FIG. 1. Schematic of an evaporating film containing a nonvolatile solute. Shading depicts solute buildup at
the liquid-air interface due to solvent evaporation.

Previous studies have examined the accuracy of the one-sided and diffusion-limited evap-
oration models under various experimental conditions, but are largely limited to evaporating
droplets. Sodtke et al. [29] demonstrated excellent agreement between theory and experiment
using the one-sided evaporation model for evaporating droplets on heated substrates. Assuming
spherical-cap droplets, Deegan et al. [40] highlight agreement between theory and experiment
using diffusion-limited evaporation. Hu and Larson [41] built on this work, also showing excellent
agreement between theory and experiment with diffusion-limited evaporation. Many other studies
have reported experimental data regarding evaporation that has found agreement with subsequent
theoretical studies using the one-sided or diffusion-limited evaporation models [14,15,37,47,48].

Few studies have directly addressed the differences between the common evaporation models
[37,48], and to the best of our knowledge, none have addressed the performance of the VA
approximation in the presence of evaporation [11]. The importance of phenomena driven by vertical
concentration gradients (and thus the validity of the VA approximation) strongly depends on the
rate of diffusion; rapid vertical diffusion will quickly smooth out gradients in species concentration.
However, precisely what is considered “rapid” diffusion has not been well established. The VA
approximation offers a desirable simplicity, but its influence on the predicted interface shape
and species distribution remains unexplored. Therefore, this work presents an analysis of the VA
approximation under evaporation for the foundational case of a two-dimensional binary film with
volatile solvent and nonvolatile solute. In Sec. II, we derive a two-dimensional (2D) description
of the film height and solute concentration in the film which is then simplified using the VA
approximation. To focus on solutal Marangoni flow, we neglect any thermal Marangoni flow induced
by evaporation of solvent (discussed further in Sec. II D). In Sec. III, we compare results from the 2D
description and VA approximation for different evaporation models to gauge the performance of the
VA approximation. We then develop scaling relations to gain physical insight into the mechanisms
that the VA approximation fails to capture. Conclusions are given in Sec. IV.

II. MATHEMATICAL MODEL

We seek to model the film height and species concentration in an evaporating binary thin film
as depicted in Fig. 1. The liquid consists of a solvent and solute such that solute concentration
gradients create Marangoni stresses that drive Marangoni flow, which in turn creates film-height
nonuniformities as shown in Fig. 1. Film height h′(t ′, x′) and solute concentration c′(t ′, x′, z′) vary
with time t ′ and the spatial variables x′ and z′. The evaporative solvent mass flux J ′(t ′, x′) is
expressed as a function of h′ and c′ through evaporation models. We assume periodic boundary
conditions in the x′ direction.

A. Hydrodynamics

The liquid is assumed Newtonian with constant density ρ and viscosity μ. Surface tension σ ′
is scaled by the pure solvent surface tension σ0 and solute concentration c′ is scaled by an initial
concentration c0. It is assumed that the ratio of the vertical and lateral characteristic lengths ε =
H/L � 1, allowing the application of lubrication theory. Here, H is the initial film height and L is
obtained by balancing viscous and Marangoni stresses at the interface:

μ
σ0H2

μL3
∼ ω0c0

L

∂σ ′

∂c′ ⇒ L ∼ H√
Ma

, (1)
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where ω0 is the initial mass/mole fraction of solute. The viscous scale used in this balance is
based on a capillary velocity found by considering mass and momentum balances [11]. Relation
(1) shows that ε ∼ √

Ma, and thus lubrication theory requires that
√

Ma � 1. The Marangoni
number Ma is the dimensionless change in surface tension with solute concentration, Ma =
−(ω0c0/σ0)∂σ ′/∂ c′|c′=0. It is assumed that the solute lowers the surface tension of the liquid so
that Ma > 0. The case of Ma < 0 can also occur in practice [12] but is not investigated here for the
sake of brevity.

The liquid motion is described by the Navier-Stokes equations supplemented with no-slip and
no-penetration conditions at the substrate and stress balances at the liquid-air interface. Pressure p′
is scaled by p∗ = σ0ε

2/H , x-velocity v′
x by v∗

x = ε3σ0/μ, z-velocity v′
z by v∗

z = εv∗
x , and time t ′ by

t∗ = H/v∗
x ε. These scales are derived by balancing the relevant terms in the mass and momentum

balances [11]. Finally, we use the scale J∗ for the evaporative mass flux J ′ that will be given in
Sec. II C. For the remainder of this work, we use dimensionless variables (indicated without a prime
superscript):

x′ = ε−1Hx, z′ = Hz, h′ = Hh, σ ′ = σ0σ, c′ = c0c,

v′
x = v∗

x vx, v′
z = εv∗

x vz, p′ = p∗ p, t ′ = t∗t, J ′ = J∗J. (2)

The surface tension σ varies linearly with solute concentration c at the interface z = h,

σ = 1 − Ma c|z=h. (3)

This assumes a dilute solute (ω0 � 1) and has been used in previous studies (e.g., Refs. [12] and
[22]). Here we neglect thermal Marangoni flow to focus on solutal Marangoni flow, but we will
revisit thermal effects in Sec. II D after deriving expressions for the evaporative flux under each
evaporation model. Applying lubrication theory, we retain only leading-order terms in the Navier-
Stokes equations to obtain

∂2vx

∂z2
= ∂ p

∂x
, (4)

∂ p

∂z
= 0, (5)

∂vx

∂x
+ ∂vz

∂z
= 0. (6)

No-slip, no-penetration, and stress balance conditions yield the boundary conditions

vx|z=0 = vz|z=0 = 0, (7)

p|z=h = −∂2h

∂x2
, (8)

∂vx

∂z

∣∣∣∣
z=h

= −∂c|z=h

∂x
. (9)

Note that due to the choice of lateral length scale L = H/
√

Ma, the Marangoni number Ma does not
appear in tangential stress balance (9). Solving these equations for the liquid velocities yields [6]

vx = −
(

1

2
z2 − hz

)
∂3h

∂x3
− ∂c|z=h

∂x
z, (10)

vz =
(

1

6
z3 − 1

2
hz2

)
∂4h

∂x4
+ 1

2

(
∂2c|z=h

∂x2
− ∂h

∂x

∂3h

∂x3

)
z2. (11)

Mass conservation at the interface z = h leads to the kinematic condition

vz = ∂h

∂t
+ vx

∂h

∂x
+ EJ, (12)
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where the evaporative number E = J∗/ρv∗
x ε (ratio of evaporative flux to convective flux) and mass

flux J arise from solvent evaporation. The definitions of J and J∗ depend on the evaporation model
and are discussed in Sec. II C. Substituting Eqs. (10) and (11) into Eq. (12) yields the thin-film
equation

∂h

∂t
= −1

3

∂

∂x

[
h3 ∂3h

∂x3

]
︸ ︷︷ ︸
Capillary Flow

+ 1

2

∂

∂x

[
h2 ∂c|z=h

∂x

]
︸ ︷︷ ︸
Marangoni Flow

− EJ
︸︷︷︸

Evaporation

. (13)

Thus, the evolution of film height h is coupled to that of solute concentration c through Marangoni
flow and evaporation.

B. Solute concentration

The VA approximation simplifies the convection-diffusion equation under the assumption of
rapid vertical diffusion. We begin by deriving a 2D description that does not employ the VA
approximation in Sec. II B 1 and then give a derivation of the VA approximation in Sec II B 2. To
gauge the performance of the VA approximation, we compare results from the VA approximation to
those from the 2D description in Sec. III.

1. 2D description

The solute is assumed to have constant diffusivity D in the solvent and is governed by the
dimensionless convection-diffusion equation

∂c

∂t
+ vx

∂c

∂x
+ vz

∂c

∂z
= 1

Pe

∂2c

∂x2
+ 1

ε2Pe

∂2c

∂z2
. (14)

Here, the Péclet number Pe = Hv∗
x /Dε gives the ratio of the lateral diffusive and convective

time scales. Similarly, ε2Pe gives the ratio of the vertical diffusive and convective time scales.
Equation (14) is subject to a no-flux condition at the substrate z = 0 and a mass-conservation
condition at the interface z = h:

∂c

∂z

∣∣∣∣
z=0

= 0,
∂c

∂z

∣∣∣∣
z=h

− ε2 ∂h

∂x

∂c

∂x

∣∣∣∣
z=h

= ε2PeEJc|z=h. (15)

Specific forms of the mass flux J and its scale J∗ (which determines E ) are given in Sec. II C. The
2D description is defined as Eq. (13) coupled with Eq. (14) to describe the film height and full 2D
concentration field.

2. Vertical-averaging (VA) approximation

When ε2Pe � 1, vertical diffusion is rapid and Eq. (14) may be transformed to describe an
approximate, vertically uniform concentration field [10]. To begin, we expand the concentration c
as a perturbation series in powers of ε2Pe:

c(t, x, z) = c0(t, x, z) + ε2Pe c1(t, x, z) + O
[
(ε2Pe)2

]
. (16)

Substituting Eq. (16) into Eq. (14) gives the O(1) problem

∂2c0

∂z2
= 0, (17)

where we have neglected lateral diffusion because it is an O(ε2) effect. Equation (17) is subject to
the O(1) no-flux boundary conditions

∂c0

∂z

∣∣∣∣
z=0

= ∂c0

∂z

∣∣∣∣
z=h

= 0. (18)
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Equation (17) also requires that ε2PeE � 1, but given that typically, E � 1, this assumption is
valid even if ε2Pe ∼ 1. Equation (17) with boundary conditions (18) reveals that c0 is independent
of z; the system is under pseudo-steady-state diffusion at leading order.

The O(ε2Pe) problem is

∂c0

∂t
+ vx,0

∂c0

∂x
= 1

Pe

∂2c0

∂x2
+ ∂c1

∂z2
, (19)

where vx,0 is the O(1) component of the lateral velocity given by

vx,0 = −
(

1

2
z2 − hz

)
∂3h

∂x3
− ∂c0

∂x
z. (20)

Equation (19) is subject to the O(ε2Pe) no-flux and mass-conservation conditions

∂c1

∂z

∣∣∣∣
z=0

= 0,
∂c1

∂z

∣∣∣∣
z=h

− 1

Pe

∂h

∂x

∂c0

∂x
= EJc0. (21)

Applying the averaging operator 1
h

∫ h
0 ·dz to Eq. (19) and using conditions (21) allows one to

eliminate c1 and obtain the governing equation

∂c0

∂t
+ vx

∂c0

∂x
= 1

h

1

Pe

(
h
∂c0

∂x

)
+ 1

h
c0EJ (22)

for c0. Here, vx is the vertically averaged O(1) lateral velocity given by

vx = 1

h

∫ h

0
vx,0dz = 1

3
h2 ∂3h

∂x3
− 1

2
h
∂c0

∂x
. (23)

Equation (22) governs the vertically uniform O(1) profile c0 and thus contains no dependence
on the vertical coordinate z. The VA approximation couples Eq. (13) with Eq. (22) to predict the
film-height and 1D (vertically uniform) concentration profile. Note that ε2Pe � 1 is only a formal
assumption to allow asymptotic expansion (16), so it possible that the VA approximation is accurate
even outside of this regime (as will be discussed in Sec. III).

C. Evaporation

As discussed in Sec. I, there are several commonly used evaporation models, three of which
we examine in this work. Constant evaporation has the advantage of simplicity and allows one to
more easily probe fundamental mechanisms without choosing constitutive models. The one-sided
model is also popular for its relative simplicity (compared to the diffusion-limited model) since
one only needs to consider transport in the liquid phase. Diffusion-limited evaporation is the most
complicated of the three; since gaseous solvent molecules affect the evaporation rate, one must
solve coupled transport equations in the liquid and gas phases. In the following sections, we present
a brief derivation of each evaporation model and the resulting expressions for the scale J∗ and mass
flux J that appear in Eqs. (13), (15), and (22).

1. Constant evaporation

Constant evaporation is a convenient approximation that is useful for exploring fundamental
mechanisms. Under constant evaporation, we simply take the dimensionless mass flux to be J = 1
and J∗ is left arbitrary. Thus, the magnitude of the evaporative term EJ in Eqs. (13), (15), and (22)
is controlled entirely by the constant parameter E .

2. One-sided evaporation

The one-sided evaporation model gives a constitutive equation for the dimensional mass flux
J ′ which is derived from kinetic theory and has been modified to account for capillary pressures
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[21,30]:
√

2πRTsat

ρv

J ′ = 1

ρ
p′|z′=h′ + Lm

Tsat
(T ′|z′=h′ − Tsat ). (24)

Here, R is the ideal gas constant, Tsat is the saturation temperature of the solvent, ρv is the density
of the gaseous solvent, and Lm is the latent heat of vaporization of the solvent. The dimensional
capillary pressure p′ is [after applying scalings (2) to Eq. (8)]

p′ = −σ0
∂2h′

∂x′2 . (25)

The unknown T ′ is the dimensional temperature of the liquid which can be determined analytically
under the lubrication approximation.

We introduce the dimensionless temperature T = (T ′ − Tsat )/�T where �T = (Tb − Tsat ). The
quantity Tb is the substrate temperature so that we enforce T ′ = Tb at z = 0. We take T to be
governed by an energy conservation equation [similar to Eq. (14)], which at leading order is

∂2T

∂z2
= 0. (26)

This is subject to the boundary conditions

T |z=0 = 1, − ∂T

∂z

∣∣∣∣
z=h

= J, (27)

where the latter assumes the air above the film has negligible thermal conductivity and the evapora-
tive mass flux J is scaled by J∗ = �T k/LmH . In dimensionless form, Eq. (24) reads

KJ = δp|z=h + T |z=h, (28)

where

K =
√

2πRT 3
satk

ρvL2
mH

, δ = p∗Tsat

ρLm�T
. (29)

Equation (26) is readily solved subject to boundary conditions (27), giving

T = 1 − Jz. (30)

Substituting Eqs. (8) and (30) into Eq. (28) gives an explicit expression for J ,

J = 1 − δ ∂2h
∂x2

K + h
, (31)

in terms of only the film height h. Because we assume a dilute solute, we have used the solvent
properties in this derivation and there is no dependence on the solute concentration c. In this work,
we take K = 3.2 × 10−4 and δ = 5.9 × 10−7, which are representative of water with a temperature
difference of �T ≈ 3 K. Note that evaporation is generally more rapid at smaller film heights (J ∼
1/h) due to the heated substrate.

3. Diffusion-limited evaporation

To derive an explicit expression for the mass flux J under diffusion-limited evaporation, we must
solve for the solvent concentration in the gas phase c′

g. We define the dimensionless concentration
cg = c′

g/cv , where cv is the equilibrium vapor pressure of the solvent. Previous studies have shown
through scaling arguments that transient terms in the gas-phase convection-diffusion equation are
negligible [37], and neglecting convective transport gives Laplace’s equation governing cg:

∂2cg

∂x2
+ ∂2cg

∂z2
= 0. (32)
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One may wish to consider a semi-infinite domain bounded below by the liquid film. A natural
boundary condition is then cg → 0 as z → ∞, assuming the ambient vapor pressure is negligible.
Unfortunately, such a boundary condition is ill-posed for Laplace’s equation in 2D [37]. Instead, we
must consider a finite domain [36] of height L and apply the boundary condition

cg|z=L = 0. (33)

Appropriate values for the evaporation length parameter L are unclear, but we will see that it
has little effect on the qualitative behavior of this model. Because the liquid film is thin, its thickness
and curvature are O(ε) effects in the gas phase and we apply Raoult’s law at z = 0:

cg|z=0 = f (c) = 1 − ω0c|z=h (34)

where f (c) = 1 − ω0c|z=h is the mole fraction of solvent in the liquid at the interface. Note that the
concentration c is defined in the liquid phase where the film thickness is O(1), and thus is evaluated
at the liquid-air interface z = h. The simple form of Eq. (34) is a result of assuming a dilute solute
(ω0 � 1) so that we may approximate the liquid’s properties as those of the solvent. In this work,
we fix ω0 = 0.1 since changes in it do not qualitatively affect the results presented in Sec. III. To
compute the evaporative mass flux, we note that Fick’s law gives

J = − ∂cg

∂z

∣∣∣∣
z=0

(35)

where the mass flux is scaled by J∗ = cvDgε/L . Here, Dg is the diffusivity of the gaseous solvent
in air.

Equation (32) subject to boundary conditions (33) and (34) can be solved on the domain x ∈
(0, 2π/α) and z ∈ (0,L ) by separation of variables to obtain the flux

J = f

L
+

∑
k �=0

f̃ke−αkixαk coth(αkL ), (36)

where f = f̃0 is the spatial average of f , f̃k is the kth Fourier coefficient of f , and α is the
wavenumber of the perturbation described in Sec. III. A detailed derivation of this expression is
given in the Appendix. We see that the evaporative flux J contains a laterally uniform component
f /L that scales linearly with the solvent mole fraction at the interface and inversely with the
evaporation length L . This term is like constant evaporation, except that it decreases with time
as solute builds up and f decreases. We will see in Sec. III that the additional terms in Eq. (36) are
self-inhibiting and thus J is essentially laterally uniform. Therefore, the parameter L only affects
the magnitude of the evaporative flux and has little effect on its qualitative behavior. In this work,
we fix L = 5, but results for different L are given in the Supplemental Material [49] for reference.

D. Thermal Marangoni effects

While we have neglected thermal Marangoni effects in the derivation of this model (see
Sec. II A), they warrant a brief discussion because solvent evaporation will induce temperature
variations. To account for thermal Marangoni flow in the film, we must solve for the lateral
temperature gradient at the interface z = h. However, the constant and diffusion-limited evaporation
models do not include a temperature profile in their derivations, so the temperature profile is not
uniquely defined and depends on how one handles heat transfer at the solid substrate [48,50,51].
This is beyond the scope of this work, so we will not discuss thermal Marangoni effects for constant
or diffusion-limited evaporation, though they can be appreciable [23,30,38,50–53]. However, for
one-sided evaporation, the temperature profile at the interface is given by Eq. (30),

T |z=h = 1 − Jh ≈ K

K + h
≈ K

h
⇒ ∂ T |z=h

∂x
≈ − K

h2

∂h

∂x
, (37)
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TABLE I. Table of important dimensional parameters and their typical values.

Parameter Definition Typical values

H (m) Film thickness 10−5–10−4

μ (Pa s) Solvent viscosity 10−4–10−3

σ0 (N/m) Solvent surface tension 10−2–10−1

D (m2/s) Solute diffusivity 10−9

ω0 Solute mass/mole fraction 10−2–10−1

Tsat (K) Saturation temperature 3 × 102

k (W/m K) Thermal conductivity 10−1–100

ρ (kg/m3) Liquid density 102–103

ρv (kg/m3) Vapor density 10−1–100

Lm (J/kg) Latent heat of vaporization 105–106

where we have neglected the contribution from capillary pressure since δ � 1. Equation (37) shows
that temperature gradients form over the same O(1) length scale as film-height gradients. Further-
more, K � 1 as discussed in Sec. II C 2, so the dimensionless temperature gradient ∂T/∂x ∼ K � 1
is negligible and we do not expect thermal Marangoni effects to be important under one-sided
evaporation.

E. Numerical method and parameter values

There are three dimensionless groups that appear in Eqs. (13), (14), and (22). The first is the
Péclet number Pe, which gives the ratio of the lateral diffusive and convective time scales. The
second is the Marangoni number Ma = ε2, which gives the ratio of Marangoni forces to capillary
forces but also defines the lateral length scale L = H/

√
Ma. The Marangoni number appears in the

lumped parameter ε2Pe = MaPe that gives the ratio of the vertical diffusive and convective time
scales. Note that ε2Pe does not appear in Eq. (22) because vertical diffusion is quasi-steady under
the VA approximation. The third is the evaporative number E which controls the magnitude of the
evaporative-flux term EJ . Typical values of dimensional and dimensionless parameters are given in
Tables I and II, respectively. The effects of varying these parameters are explored in Sec. III.

For the 2D description (see Sec. II B 1), Eq. (14) is subject to mass-conservation condition (15) at
the moving boundary z = h(t, x). To circumvent numerically solving a moving-boundary problem,
a coordinate transformation (x, z, t ) → (ζ , η, τ ) is performed with the relations [54]

η = z

h
,

∂ζ

∂x
= 1,

∂τ

∂t
= 1. (38)

Here, η is a scaled vertical coordinate, ζ is the lateral coordinate, and τ is the time coordinate. The
interface at η = 1 is now constant, but the governing equations become significantly more complex

TABLE II. Important dimensionless parameters and typical values.

Parameter Definition Physical meaning Typical values

ε H/L,
√

Ma Vertical length/lateral length 10−2–10−1

Ma �σω0/σ0 Marangoni forces/surface-tension forces 10−3–10−1

E J∗μ/ρσ0ε
4 Evaporative flux/convective flux 10−4–10−2

Pe Hσ0ε
2/Dμ Diffusion time/convection time 1–106
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with the derivative transformations

∂

∂x
= ∂

∂ζ
− η

h

∂h

∂ζ

∂

∂η
,

∂

∂z
= 1

h

∂

∂η
,

∂

∂t
= ∂

∂τ
− η

h

∂h

∂τ

∂

∂η
. (39)

After applying transformation (38) to Eqs. (13) and (14), a psuedospectral method is employed
to solve the resulting set of coupled fourth-order nonlinear partial differential equations on the
constant domain ζ ∈ (0, 2π/α) and η ∈ (0, 1) [54–56]. To enforce periodicity, the lateral domain
is discretized into 64 Fourier modes, while the vertical domain is discretized into 20 Chebyshev
polynomials. The equations for the VA approximation contain no dependence on the vertical
coordinate, so transformation (38) is not used and the expansion is in Fourier modes only. Note
that this is a significant simplification that results in 20 times fewer computational nodes. Time
stepping is performed via MATLAB’s solver ode15i which is a variable-step, variable-order
solver employing backward differentiation. The model and numerical method have been verified
by reproducing results for pure film leveling and simple cases of evaporating binary films [6,11,22].
We have also verified that the 2D description and VA approximation are in quantitative agreement
at low Pe (fast vertical diffusion) in Sec. III.

III. RESULTS AND DISCUSSION

While the VA approximation formally assumes ε2Pe � 1 (see Sec. II B 2), the actual limits
of validity under evaporation have not been established. To examine the performance of the VA
approximation, we compare predictions to those from the 2D description (see Sec. II B 1) as the
Péclet number Pe varies. We begin by establishing a metric to compare the VA approximation and
2D description. The initial conditions

h(t = 0) = 1, c(t = 0) = 1 + cp cos(αx) (40)

represent an initially uniform film thickness and a concentration field with a small lateral pertur-
bation of magnitude cp. For all presented results, we take cp = 10−2 and α = 0.3 since changes to
these parameters do not qualitatively influence the results.

Simulations are stopped at time t = tmax, when the thinnest point of the film reaches hmin = 0.1,
for three reasons. First, we do not include a disjoining pressure in this work that would be required
to describe ultrathin films. Second, the transformation described by Eq. (38) becomes stiff, making
numerical integration difficult. Third, the diffusion-limited evaporative flux in Eq. (36) decreases in
magnitude as solute builds up, reaching 0 when c|z=h = ω−1

0 . Consequently, with ω0 = 0.1, it can
be shown that a spatially uniform film under diffusion-limited evaporation will not decrease below
h = ω0 = 0.1.

The perturbation imposed in Eq. (40) causes the film to deform in response to Marangoni flow
toward the lateral center of the film (x = π/α); the perturbation is a depletion of solute in the
center of the film, causing a locally high surface tension and Marangoni stresses that drive flow
toward the center of the film to form a crest in the film height. However, evaporation of solvent is
simultaneously acting to decrease the film height and causes a buildup of solute at the interface. The
effects of evaporation on the film height depend on the evaporation model, and the buildup of solute
depends on the vertical diffusion time scale ε2Pe (assumed negligible in the VA approximation).
Figure 2 shows concentration contours from the 2D description and VA approximation under
each evaporation model near parameter values where we first observe discrepancies between the
2D description and VA approximation (Pe = 1.7 × 104, E = 3 × 10−3, and ε = 0.1). Note the
differences in the film-height and solute-concentration profiles between the predictions from each
approach.

Figures 2(a) and 2(b) show that under constant evaporation, the 2D description predicts a signif-
icantly smaller film-height perturbation than the VA approximation. This is due to sharp vertical
concentration gradients that form as solute builds up at the interface from solvent evaporation;
this will be discussed in Sec. III A. Figures 2(c) and 2(d) show a different trend under one-sided
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FIG. 2. Concentration contours for Pe = 1.7 × 104, E = 3 × 10−3, and ε = 0.1 at t = tmax. Note the
qualitative differences in both the film-height and solute concentration profiles. The value of Pe chosen is near
the value where differences between each approach become visible. The corresponding times are (a) tmax =
2.56 × 102, (b) tmax = 2.35 × 102, (c) tmax = 1.39 × 102, (d) tmax = 1.41 × 102, (e) tmax = 7.30 × 102, and (f)
tmax = 6.76 × 102. A side-by-side comparison of these profiles is shown in the Supplemental Material [49].

evaporation, where the 2D description predicts a larger film-height perturbation due to the sensitivity
of one-sided evaporation to changes in the film height, which will be discussed in Sec. III B. The
results under the diffusion-limited evaporation model, depicted in Figs. 2(e) and 2(f), are similar
to the case of constant evaporation in Figs. 2(a) and 2(b). This is because the diffusion-limited
evaporation model behaves qualitatively like constant evaporation, as will be discussed in Sec. III C.
(Figures at larger Pe are provided in the Supplemental Material [49] where these differences are
accentuated.) Figure 2 shows that the size of the film-height perturbation is a useful metric for
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FIG. 3. The height perturbation �h for (a) E = 3 × 10−3, (b) E = 2.3 × 10−2, and (c) E = 3 × 10−2 for
varying Pe and constant evaporation. Note that �h predicted by the 2D description decreases at large Pe for
small E , but increases at large Pe for larger E .

comparing predictions from the various approaches. At t = tmax, we denote the peak-to-trough
height of the film as �h.

Figure 2 exemplifies the differences between each modeling approach. From Figs. 2(a) and 2(c),
it is clear that the evaporation model significantly affects the predicted film-height profile and solute
distribution. Furthermore, Figs. 2(a) and 2(b) show that the VA approximation can lead to drastically
different predictions compared to the 2D description. In the following sections we consider each
evaporation model in detail and discuss the mechanisms that give rise to the differences between the
2D description and VA approximation.

A. Constant evaporation

Figures 2(a) and 2(b) show that under constant evaporation with E = 3 × 10−3, the 2D descrip-
tion predicts a significantly smaller film-height perturbation �h than the VA approximation at large
Pe. However, when Pe is small, one expects rapid vertical diffusion and thus the VA approximation
to agree well with the 2D description. To confirm this, Fig. 3(a) shows �h for a range of Pe
under constant evaporation with E = 3 × 10−3. Notably, the 2D description (red circles) and VA
approximation (blue diamonds) agree well at small Pe, but the 2D description predicts a significantly
smaller height perturbation �h than the VA approximation at large Pe [consistent with Figs. 2(a) and
2(b)]. However, at a larger evaporative number E = 9 × 10−2 [Fig. 3(c)], the opposite trend occurs,
where the 2D description predicts a larger �h. Consequently, there is a region at intermediate E
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where the 2D description transitions from predicting a smaller �h to a larger �h, as shown in
Fig. 3(b). To understand the trends in Fig. 3, we first explain the behavior at small Pe, then establish
precisely what is meant by small or large Pe, and finally elucidate the mechanisms that the VA
approximation fails to capture at high Pe.

At sufficiently small Pe, Fig. 3 shows that the 2D description and VA approximation agree well
and predict an increasing �h as Pe increases. Since the evaporative term scales as c/h in the VA
approximation [Eq. (22)], solute buildup from evaporation increases as the film thins. Thus, thinner
parts of the film (edges) will develop higher solute concentration than thicker regions (center),
exacerbating the perturbation imposed in Eq. (40). The strong Marangoni flows that result can even
cause a double-peak film-height profile to develop like that shown in Fig. 2(b). As Pe increases,
lateral diffusion slows, so solute concentration perturbations decay less over time and give larger
Marangoni stresses and thus larger film-height perturbations for the VA approximation, as shown in
Fig. 3.

At large enough Pe, the 2D description and VA approximation no longer agree well. To have
a consistent metric for evaluating performance of the VA approximation, we consider the 2D
description and VA approximation to not agree well when predictions for �h differ by more than
10%. The value of Pe at which this first occurs is denoted the critical Péclet number Pecrit and is
marked in Figs. 3(a) and 3(c). We have not marked Pecrit on Fig. 3(b) because the value changes
erratically as the system transitions between the two regimes shown in Figs. 3(a) and 3(c). For
large Pe (Pe > Pecrit) the 2D description and VA approximation do not agree well, with the 2D
description predicting either a smaller or larger �h depending on the value of E . Note that the
values of Pecrit shown in Figs. 3(a) and 3(c), Pecrit ≈ 104 and Pecrit ≈ 103, respectively, are larger
than the asymptotic assumption ε2Pe � 1 would suggest (Pecrit ≈ 102), so the VA approximation is
“overperforming.”

The VA approximation is an asymptotic analysis that retains only the leading-order term c0(t, x)
in Eq. (16). Thus, we may learn what mechanisms it fails to capture by examining the neglected
first-order correction c1(t, x, z). By subtracting Eq. (22) from Eq. (19), we obtain a second-order
ordinary differential equation for c1 that can be integrated twice to obtain

c1 − c1|z=0 =
[∫ z

0

∫ z′

0
vx,0 − vxdz′′dz′

]
∂c0

∂x
+ z2

2hPe

∂h

∂x

∂c0

∂x
+ z2c0

2h
EJ, (41)

where z′ and z′′ are dummy integration variables and c1|z=0 is an unknown function of t and x. This
term remains because boundary conditions (21) are insufficient to fully determine c1; rigorously
following the asymptotic analysis, we must go to O[(ε2Pe)2] to determine c1|z=0. However, we are
only interested in the qualitative behavior of c1, so we instead enforce the condition 1

h

∫ h
0 c1dz = 0

which implies that c0 is the vertical average of c and c1 is a perturbation around this average. A
derivation of c1 is given in the Appendix.

Figure 3 indicates that the evaporation rate is important in determining when the VA approxima-
tion breaks down (i.e., Pecrit), suggesting that evaporation is likely the dominant term in Eq. (41).
Thus, we substitute Eq. (A14) for c1|z=0 and neglect all terms except evaporation to obtain

c1(t, x, z) ≈ EJhc0

2

[( z

h

)2
− 1

3

]
. (42)

Note that c1 is parabolic in z and decreases as we move away from the interface z = h. Therefore, c1

represents vertical solute concentration gradients from evaporation that are not captured by the VA
approximation. By examining the magnitude of these gradients, we can determine scaling relations
for Pecrit.

In the system investigated here, Marangoni flow is the only process through which solute
concentration affects film height. The strength of Marangoni flow is determined by the magnitude
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of the Marangoni stress

∂c|z=h

∂x
= ∂c0

∂x
+ ε2Pe

∂c1|z=h

∂x
+ O

[
(ε2Pe)2

]
. (43)

The first-order correction is not captured by the VA approximation, so when this is significant we
expect to see film-height profile deviations between the 2D description and VA approximation.
Noting that this occurs when Pe ∼ Pecrit, we expect that

∂c0

∂x
≈ ε2Pecrit

∂c1|z=h

∂x
∼ ε2PecritE

∂

∂x
(Jhc0), (44)

where we have used Eq. (42). Under constant evaporation, J = 1 and is constant, but in general
J = J (x) so we retain it in this derivation. Expanding the derivative in Eq. (44) gives

∂c0

∂x
∼ ε2PecritE

(
Jc0

∂h

∂x︸ ︷︷ ︸
(a)

+ Jh
∂c0

∂x︸ ︷︷ ︸
(b)

+ hc0
∂J

∂x︸ ︷︷ ︸
(c)

)
, (45)

which contains contributions from (a) height gradients, (b) lateral concentration gradients, and (c)
nonuniform evaporation rates.

By examining each term in Eq. (45), we can understand why the VA approximation breaks down,
how Pecrit scales with E , and if the 2D description will predict a larger or smaller �h than the VA
approximation. Term (a) in Eq. (45) represents a correction for vertical concentration gradients;
using boundary conditions (21),

EJc0
∂h

∂x
≈ ∂c1

∂z

∣∣∣∣
z=h

∂h

∂x
, (46)

where we have neglected a small diffusive correction. Thus, term (a) in Eq. (45) represents vertical
concentration gradients coupling with film-height gradients. Recalling that the solute lowers the
surface tension of the liquid, the lateral height (∂h/∂x) and concentration (∂c0/∂x) gradients are
opposite in sign (this can be observed in Fig. 2). Since ∂c1/∂z > 0 due to evaporation, term (a) in
Eq. (45) counteracts Marangoni stresses and if dominant, shows that the 2D description will predict
a smaller �h. Consider Fig. 2(a); if the film were to deform more, then the troughs would descend
into regions of lower concentration, which would raise the surface tension. This will pull fluid away
from the crests toward the troughs, tending to reverse the deformation. Through this mechanism,
vertical concentration gradients can inhibit lateral Marangoni flow. Figure 3(a) shows that the 2D
description predicts smaller �h at lower E , and thus we expect this mechanism to be dominant at
low E (slow evaporation).

Term (b) in Eq. (45) is always the same sign as the leading-order Marangoni stress ∂c0/∂x and
will lead to larger �h in the 2D description. This term represents a lateral concentration gradient that
is localized to the interface. Note the latter of boundary conditions (15) that shows solute buildup
at the interface from evaporation (∂c/∂z) is proportional to the value of the concentration at the
interface. Due to the imposed perturbation, the concentration is higher near the edges (troughs)
and lower in the center (crest). Thus, concentration will build up locally at the interface faster in
the troughs than at the crests, creating a lateral concentration gradient localized to the interface.
Through this mechanism, vertical concentration gradients can exacerbate lateral Marangoni flow.
Figure 3(c) shows the 2D description predicting larger �h, and thus we expect this mechanism to
be dominant at higher E (fast evaporation). Term (c) in Eq. (45) is identically zero for constant
evaporation but will be discussed in more detail in Sec. III B.

Figure 3(a) shows that at low E , the 2D description predicts a smaller �h at high Pe and thus
we expect term (a) in Eq. (45) is dominant. From this, we can obtain a scaling relation for Pecrit by
determining how the film height and concentration scale with E . To obtain an order-of-magnitude
estimate for c0, consider the case of a laterally uniform, evaporating film; to conserve mass, we must
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have c0 = 1/h and so we can expect c0 ∼ 1/h in a nonuniform system. To obtain an estimate for h,
recall that at the end of the numerical simulations, the minimum value of h is hmin = 0.1 and thus
the maximum value is hmax = 0.1 + �h. The average of these two values gives

h ∼ 1

2
(hmin + hmax) = 0.1 + 1

2
�h ∼

{
constant �h � 0.1
�h �h � 0.1 . (47)

Observe in Figs. 3(a) and 3(c) that �h � 0.1 at low E and �h � 0.1 at higher E . Intuitively, very
fast evaporation (higher E ) causes the film to dry out before Marangoni flow can develop a large
film-height perturbation, so �h is smaller at higher E . Therefore,

c0 ∼ 1

h
, h ∼

{
constant higher E
�h low E . (48)

Because we are only interested in the scaling with the evaporative number E and the lateral
domain is constant, we take ∂h/∂x ∼ �h and ∂c0/∂x ∼ �c. From Eq. (45), we then have at low E
[using term (a)]

�c ∼ ε2PecritE ⇒ ε2Pecrit ∼ �c

E
(low E), (49)

and at higher E [using term (b)]

�c ∼ ε2PecritE�c ⇒ ε2Pecrit ∼ 1

E
(higher E). (50)

Relation (50) for higher E implies that the VA approximation breaks down when ε2PeE ∼ constant.
The grouping ε2PeE represents the relative strengths of vertical diffusion and evaporation, so it is
intuitive that this grouping is indicative of the importance of vertical concentration gradients and
breakdown of the VA approximation. This is true when evaporation is fast and film-height gradients
are unimportant. But when evaporation is slow, there is a coupling between vertical concentration
gradients and film-height gradients that leads to a different relation given by Eq. (49). To close
relation (49), we must quantify the size of lateral concentration gradients (�c) by considering
Eqs. (13) and (22).

Note that at the maximum deformation, Marangoni and capillary flow must balance each other,
and thus we expect that they scale similarly. From Eqs. (13) and (48), this implies (for low E )

�h4 ∼ �h2�c ⇒ �c ∼ �h2. (51)

For this analysis, we assume that this relation holds at t = tmax despite not obtaining the maximum
deformation. Next, recall that the film-height perturbation develops over time due to Marangoni
flow, and thus we balance the time derivative with Marangoni flow in Eq. (13) to obtain

�h

�t
∼ �h2�c ⇒ �t ∼ 1

�h�c
. (52)

Finally, the evolution of the concentration field is primarily due to evaporation, so we balance the
time derivative with evaporation in Eq. (22) to obtain

�c

�t
∼ E

�h2
⇒ �t ∼ �h2�c

E
. (53)

Combining these three relations with relations (49) and (50) gives

ε2Pecrit ∼
{

E−5/7 low E
E−1 higher E

. (54)

To verify Eq. (54), we plot Pecrit for various values of the evaporative number E obtained from
numerical simulations in Fig. 4. Figure 4(a) shows a numerical scaling Pecrit ∼ E−0.7 at low E
which is close to the analytical scaling Pecrit ∼ E−5/7 from Eq. (54). Figure 4(b) shows a numerical
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FIG. 4. Pecrit at various values of E under constant evaporation for (a) low E and (b) higher E . The system
transitions between these two scaling regimes at intermediate E and Pecrit appears erratic, so these values are
not shown.

scaling Pecrit ∼ E−1 at higher E which is exactly the analytical scaling from Eq. (54). However,
despite these scaling exponents being similar in magnitude to each other (−5/7 and −1), the type
of disagreement between the 2D description and VA approximation is qualitatively different as
shown in Figs. 3(a) and 3(c) due to the mechanisms discussed above. The weaker scaling at low E
(Pecrit ∼ E−5/7) is a result of slower evaporation; there is more time for Marangoni flow to develop
significant film-height perturbations which decreases the relative importance of evaporation in the
system.

When deriving relations (54), we assumed that the vertical concentration gradients from evapo-
ration [reflected in Eq. (42)] lead to the dominant mechanisms that the VA approximation fails to
capture. The agreement between relations (54) and the numerical results shown in Fig. 4 shows that
the disagreement between the 2D description and VA approximation is indeed due to significant
vertical concentration gradients that are important for film evolution. Equation (45) shows the
three mechanisms through which vertical concentration gradients influence Marangoni stresses.
Term (a) is dominant for slow evaporation and represents direct coupling of vertical concentration
gradients with film-height gradients that acts to inhibit Marangoni stresses [see Eq. (46)]. Term (b)
is dominant for fast evaporation and represents lateral concentration gradients that develop locally
at the interface and exacerbate Marangoni stresses. These two mechanisms cause the discrepancies
between the 2D description and the VA approximation for Pe > Pecrit shown in Fig. 3 and lead to
two different relations for Pecrit given in Eq. (54).

B. One-sided evaporation

Figures 2(c) and 2(d) show that under one-sided evaporation with E = 3 × 10−3, the 2D
description predicts a larger film-height perturbation �h than the VA approximation. This is in
contrast to what we observe under constant evaporation in Figs. 2(a) and 2(b) at the same value
of E . Figure 5(a) shows �h for a range of Pe and E = 3 × 10−3 under one-sided evaporation.
Like the case of constant evaporation, we observe good agreement between the 2D description and
VA approximation at low Pe (Pe < Pecrit), but for Pe > Pecrit there is no longer good agreement
because vertical concentration gradients become significant. However, the deviation between the
2D description and VA approximation in Fig. 5(a) is qualitatively different from that observed under
constant evaporation in Fig. 3(a); for all values of E investigated, the 2D description predicts larger
�h as Pe increases.

Figure 5(b) shows numerically computed Pecrit for a large range of E . At higher E , we see the
same scaling Pecrit ∼ E−1 as under constant evaporation in Fig. 4(b), but the behavior is different
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FIG. 5. (a) The height perturbation �h for E = 3 × 10−3 and varying Pe under one-sided evaporation.
Note that �h predicted by the 2D description increases at large Pe. (b) Pecrit at various values of E .

at low E ; the erratic transition discussed in Sec. III A is not present, and we instead see a smoother
transition with the local slope increasing steadily (becoming less negative) as we decrease E .
Unfortunately, numerical difficulties arising from the large height nonuniformities coupling with
the nonuniform evaporation rate have prevented us from obtaining data at lower values of E than
those presented in Fig. 5(b) (E < 3 × 10−3). Nevertheless, the behavior at lower values of E is
qualitatively distinct from that observed under constant evaporation. To understand the mechanisms
that cause this, we first briefly discuss the behavior for Pe < Pecrit and then revisit Eq. (45) to show
how one-sided evaporation causes the 2D description to predict larger �h even at low E .

Examining Fig. 5(a), we see that �h increases as Pe increases for Pe < Pecrit. This is due to the
same mechanisms as under constant evaporation; larger Pe allows larger concentration gradients
to persist which causes stronger Marangoni flow and thus larger �h (see Sec. III A). However,
comparing Figs. 3(a) and 5(a), we see that �h is generally smaller under one-sided evaporation
than under constant evaporation for Pe < Pecrit. This is because the evaporative flux under one-
sided evaporation J ∼ 1/h [Eq. (31)] is faster overall, reducing the time for film deformation and
giving smaller �h. This evaporative flux is also key to explaining the different trend in Pecrit in
Fig. 5(b). With J ∼ 1/h, evaporation is faster where the film is thinner, so term (c) in Eq. (45) may
be significant. Noting that δ � 1 (see Sec. II C 2), we may neglect pressure contributions in Eq. (31)
to obtain

∂J

∂x
≈ − 1

(K + h)2

∂h

∂x
≈ −J2 ∂h

∂x
. (55)

One-sided evaporation causes solute to build up more rapidly on the edges of the film (where the
film is thin) and more slowly in the center, exacerbating the imposed perturbation at the interface.
This causes larger Marangoni stresses that are proportional to the height gradient ∂h/∂x as shown
in Eq. (55).

Substituting Eq. (55) into relation (45) gives

∂c0

∂x
∼ ε2PecritE

(
Jc0

∂h

∂x︸ ︷︷ ︸
(a)

+ Jh
∂c0

∂x︸ ︷︷ ︸
(b)

− c0hJ2 ∂h

∂x︸ ︷︷ ︸
(c)

)
. (56)

Note that term (a), representing vertical concentration gradients coupling with film-height gradients,
and term (c), representing nonuniform solute buildup from a nonuniform evaporative flux, are
both proportional to the height gradient ∂h/∂x but opposite in sign; the nonuniform buildup of
solute caused by nonuniform evaporation [term (c)] causes larger Marangoni stresses that directly
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counteract the inhibition of Marangoni stresses by vertical concentration gradients [term (a)].
Furthermore, since δ � 1,

1 − hJ = 1 − h
1 − δp

K + h
≈ 1 − h

1

K + h
= K

K + h
≈ KJ, (57)

so Eq. (56) reduces to

∂c0

∂x
∼ ε2PecritE

(
KJ2c0

∂h

∂x︸ ︷︷ ︸
(a)

+ Jh
∂c0

∂x︸ ︷︷ ︸
(b)

)
. (58)

As discussed in Sec. III A, the system will be in the low E regime (where the VA approximation
overpredicts �h) when film-height gradients are large enough for term (a) to be dominant. In
contrast to the case of constant evaporation (Fig. 4), we do not observe a transition to the low E
regime in Fig. 5(b). This is because K � 1, so film-height gradients are not large enough to make
term (a) dominant and the system remains in the higher E regime where term (b), representing
lateral concentration gradients that develop locally at the interface, is dominant. Nevertheless, we
can still derive scaling relations in both the low E and higher E regimes.

Analogous to the case of constant evaporation in Sec. III A, term (b) in Eq. (58) is dominant at
higher E since �h is small and we expect Pecrit ∼ E−1 as shown in Fig. 5(b). However, the case for
low E is different, and we must reconsider how h and c0 scale with E . For mass conservation, we
have c0 ∼ 1/h and from Eq. (31), J ∼ 1/h since K, δ � 1. Taking ∂h/∂x ∼ �h and ∂c0/∂x ∼ �c
as in Sec. III A, we have from Eq. (45)

�c ∼ ε2Pecrit
E

�h2
⇒ ε2Pecrit ∼ �c�h2

E
. (59)

The scaling relation for h is given by Eq. (48), and relations (51) and (52) hold regardless of the
evaporation model. However, the relation obtained from Eq. (22) is different due to a different
scaling for J:

�c

�t
∼ E

�h3
⇒ �t ∼ �h3�c

E
. (60)

Combining this with relations (51), (52), and (59) gives ε2Pecrit ∼ E−1/2. We thus have the relations

ε2Pecrit ∼
{

E−1/2 low E
E−1 higher E

. (61)

While we are unable to verify the scaling at low E numerically, it reveals that Pecrit has an
even weaker dependence on E under one-sided evaporation (Pecrit ∼ E−1/2) than under constant
evaporation (Pecrit ∼ E−5/7). This is because, as discussed above, the nonuniform buildup of solute
from one-sided evaporation counteracts the effects of vertical concentration gradients coupling with
film-height gradients. Consequently, at very low E , we expect the VA approximation to perform
well at higher Pe under one-sided evaporation (Pecrit ∼ E−1/2) compared to constant evaporation
(Pecrit ∼ E−5/7). However, at higher E , the one-sided and constant evaporation models have the
same dominant mechanism (lateral solute concentration gradients developing locally at the inter-
face) and thus have identical scaling relations Pecrit ∼ E−1.

C. Diffusion-limited evaporation

Examining Figs. 2(e) and 2(f), we note that the profiles predicted by both the 2D description
and VA approximation under diffusion-limited evaporation are qualitatively similar to those under
constant evaporation shown in Figs. 2(a) and 2(b). However, diffusion-limited evaporation results in
larger film-height perturbations. Figures 6(a) and 6(b) show �h for a range of Pe and two different
values of E under diffusion-limited evaporation. Comparing Fig. 6(a) to Fig. 3(a), we indeed see
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FIG. 6. The height perturbation �h for (a) E = 3 × 10−3 and (b) E = 3 × 10−2 for varying Pe, and Pecrit

at various values of E under diffusion-limited evaporation for (c) low E and (d) higher E . Note the similarities
to constant evaporation in Figs. 3 and 4.

that the height perturbation �h under diffusion-limited evaporation is larger than that under constant
evaporation. This is because the evaporation rate EJ is generally slower under diffusion-limited
evaporation; as solute builds up, the evaporative flux J decreases, giving a generally slower evapo-
ration rate at a fixed value of E (compared to constant evaporation). Thus, Marangoni flow has more
time to develop film-height nonuniformities which results in larger �h.

Figures 6(a) and 6(b) show that �h has the same qualitative behavior as under constant evapora-
tion shown in Fig. 3. Figures 6(c) and 6(d) show Pecrit as a function of E for the cases of low and
higher E where we see that the numerical scaling relations are identical to the case of constant evap-
oration shown in Fig. 4. These similarities indicate that diffusion-limited evaporation qualitatively
behaves like constant evaporation; observe that the evaporative flux given by Eq. (36) is smaller
where the solute concentration is higher because less solvent is available at the interface. This
inhibits nonuniform solute buildup because any regions of high solute concentration will experience
slower evaporation, which inhibits further solute buildup. Comparing Figs. 2(a) and 2(e), we indeed
see that diffusion-limited evaporation results in a more uniform concentration profile (note the color
bar scales). Thus, diffusion-limited evaporation given by Eq. (36) essentially becomes a spatially
uniform evaporative flux J ≈ f /L that decreases with time as solute concentration increases.

The time-dependence of this uniform evaporation rate does not affect the scaling relations for
Pecrit, since from Eqs. (34) and (36), we have

∂J

∂x
≈ 1

L

∂ f

∂x
= −ω0

L

∂c|z=h

∂x
� 1, (62)
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since ω0 � 1 and c ∼ O(1) [as shown in Fig. 2(e)]. Thus, under diffusion-limited evaporation, we
expect the same scaling relations for Pecrit that we saw for constant evaporation [given by Eq. (44)].
However, note that the transition from low E [Fig. 6(c)] to higher E [Fig. 6(d)] occurs at a higher
value of E than under constant evaporation [Figs. 4(a) and 4(b)]. This is because, as discussed
earlier, diffusion-limited evaporation results in a more uniform concentration profile. This inhibits
the mechanisms that are dominant in the higher E regime since they rely on evaporation forming
large lateral concentration gradients (see Sec. III A). Thus, the system remains in the low E regime,
where the dominant mechanism instead depends on film-height gradients (see Sec. III A), for a
larger range of E .

IV. CONCLUSIONS

We have evaluated the performance of the VA approximation under three common evaporation
models—constant, one-sided, and diffusion-limited—for an evaporating, two-component thin liquid
film. To focus on solutal Marangoni flow, we neglected any thermal effects induced by evaporation
of solvent (discussed in Sec. II D). The model assumes the liquid is Newtonian with constant
viscosity and density, that the solute is dilute, and that the Marangoni number is small. The VA
approximation offers a desirable simplicity when modeling multicomponent systems that has led
to its use in a wealth of previous studies. However, until this work, its limits of validity had not
been systemically explored under evaporation. While the VA approximation is formally presented
with the assumption ε2Pe � 1 (for rapid vertical diffusion) [10], it was found that the necessary
assumption is instead Pe < Pecrit, where Pecrit is a critical Péclet number reflecting the physical
mechanisms underlying film evolution that the VA approximation fails to capture.

It was shown that Pecrit depends on the evaporation model, and scaling relations were derived in
Sec. III A and Sec. III B to elucidate how Pecrit scales with the evaporative number E under each
evaporation model. Notably, it was found that, often, ε2Pecrit � 1, and so the VA approximation
“overperforms” its formal assumption ε2Pe � 1 by several orders of magnitude. However, when
Pe > Pecrit, vertical concentration gradients from evaporation become important and it was found
that the chosen evaporation model greatly influences system behavior. Vertical concentration gra-
dients from evaporation directly inhibit film deformation if the film-height nonuniformity is large
enough, but for sufficiently fast evaporation, large lateral concentration gradients form locally at
the interface and cause larger film-height nonuniformities (see Sec. III A). These lateral concen-
tration gradients near the interface become particularly pronounced under one-sided evaporation,
exacerbating Marangoni stresses and causing larger film-height nonuniformities (see Sec. III B). In
contrast, diffusion-limited evaporation was found to be qualitatively similar to the much simpler
case of constant evaporation because any nonuniformity in the evaporative flux is self-inhibiting
(see Sec. III C).

While the VA approximation overperforms relative to its formal assumptions, one must be
cognizant of the value of ε2Pe when employing the VA approximation, and also how the chosen
evaporation model may qualitatively influence results. If the VA approximation is used outside of its
range of validity, film-height and solute-concentration contours should be interpreted with caution.
For systems at large Pe, it is best to use a 2D description for species distribution and it is crucial to
accurately characterize evaporation. Scaling relations (54) and (61) provide guidelines for what a
large value of Pe is.
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APPENDIX

1. Solution of Laplace’s equation

We wish to solve Laplace’s equation ∇2u = 0 for the function u on the rectangular domain
(x, z) ∈ [0, Lx] × [0, Lz] with periodic conditions in x and the following conditions in z:

u|z=0 = f (x), u|z=Lz = 0. (A1)

Decomposing u = φ(x)�(z) and substituting into Laplace’s equation yields the two ordinary differ-
ential equations

∂2φ

∂x2
+ λ2φ = 0,

∂2�

∂z2
− λ2� = 0, (A2)

where λ is an undetermined (eigen)value. Considering the periodic conditions in x, we must have√
λ = 2πk/Lx for k ∈ Z and solutions are of the form

φ(x) = Ae
2πk
Lx

ix, �(z) = Be
2πk
Lx

z + Ce− 2πk
Lx

z. (A3)

Requiring that u|z=Lz = 0 gives the relation B = −Ce−4πk� where � = Lz/Lx. The function u is
thus of the form

u(x, z) =
∑

k

Ake
2πk
Lx

ix(e− 2πk
Lx

z − e
2πk
Lx

z−4πk�
)
, (A4)

where {Ak}k∈Z are constants. At z = 0, we have u(x, z = 0) = f (x) and thus

f (x) =
∑

k

Ake
2πk
Lx

ix(1 − e−4πk�). (A5)

Multiplying by the basis function e− 2πm
Lx

ix and applying the operator 1
Lx

∫ Lx

0 ·dx gives expressions for
the unknown constants:

Am = 1

Lx

1

1 − e−4πm�

∫ Lx

0
f (x)e− 2πm

Lx
ixdx = f̃m

1 − e−4πm�
, (A6)

where f̃m is the mth Fourier coefficient of f .
The flux at the interface z = 0 is obtained by Fick’s law:

J = − ∂u

∂z

∣∣∣∣
z=0

=
∑

k

2πk

Lx
Ake− 2πk

Lx
ix(1 + e−4πk�) = 2π

Lx

∑
k

f̃ke− 2πk
Lx

ixk coth(2πk�). (A7)

The value for k = 0 must be taken in a limiting sense. It is, however, instructive to separate it from
the sum to see

J = f

Lz
+ 2π

Lx

∑
k �=0

f̃ke− 2πk
Lx

ixk coth(2πk�), (A8)

where f = f̃0 is the average of f over (0, Lx ). Taking Lx = 2π/α and Lz = L as in Sec. II C, the
solution reads

J = f

L
+

∑
k �=0

f̃ke−αkixαk coth(αkL ), (A9)

which is Eq. (36). One may recognize this solution as a discrete Fourier transform, and thus
truncations of it can be efficiently computed by FFT algorithms.
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2. Higher-order terms in VA approximation

In the VA approximation, one expands the concentration field in a perturbation series given by
Eq. (16). Using this, one derives governing Eq. (19) and averages to obtain Eq. (22). By subtracting
these two equations, we obtain

∂2c1

∂z2
= (vx,0 − vx )

∂c0

∂x
+ 1

hPe

∂h

∂x

∂c0

∂x
+ c0

h
EJ, (A10)

which gives c1 purely in terms of c0 and h, and this can be integrated twice to obtain

c1 − c1|z=0 =
[∫ z

0

∫ z′

0
vx,0 − vxdz′′dz′

]
∂c0

∂x
+ z2

2hPe

∂h

∂x

∂c0

∂x
+ z2c0

2h
EJ, (A11)

∫ z

0

∫ z′

0
vx,0 − vxdz′′dz′ = −1

6

(
1

4
z4 − hz3 + h2z2

)
∂[

∂3
]hx − 1

2

(
1

3
z3 − 1

2
hz2

)
∂c0

∂x
. (A12)

The boundary conditions for c1 given by Eqs. (21) are insufficient to fully determine c1, so we
enforce the condition

1

h

∫ h

0
c1dz = 0. (A13)

This implies that c0 is the vertical average of c and that c1 gives a perturbation around this average.
We then have

c1|z=0 = −
[

1

h

∫ h

0

∫ z

0

∫ z′

0
vx,0 − vxdz′′dz′dz

]
∂c0

∂x
− h

6Pe

∂h

∂x

∂c0

∂x
− hc0

6
EJ, (A14)

1

h

∫ h

0

∫ z

0

∫ z′

0
vx,0 − vxdz′′dz′dz = − 1

45
h4 ∂3h

∂x3
+ 1

24
h3 ∂c0

∂x
. (A15)

To evaluate the magnitude of Marangoni stresses, we require the concentration at the interface
c1|z=h. With the above, this is given by

c1|z=h = 1

72

(
−7

5
h4 ∂3h

∂x3
+ h3 ∂c0

∂x

)
∂c0

∂x
+ h

3Pe

∂h

∂x

∂c0

∂x
+ hc0

3
EJ. (A16)
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