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A vesicle is a common model used to represent red blood cell (RBC) in silico and
in vitro. We investigate here the dynamics and the rheology of a vesicle under shear
flow confined between two parallel walls in wide ranges of applied shear rate and the
viscosity contrast (viscosity ratio between the internal and external fluids of the vesicle).
The Helfrich model is used to describe the vesicle membrane energy and the spectral
boundary integral method to compute the velocity of the vesicle membrane. Multilobe
shapes are observed in a wide range of shear rates and viscosity contrasts. A phase diagram
is determined in this parameter space. The cytoskeleton of a RBC is not necessary for the
multilobe manifestation, in contrast with recent claims. Here we show that these shapes
are due to membrane tension only. This highlights the fact that the two-dimensional (2D)
vesicle model used here, besides its relevant predictions in previous studies (such as slipper
and parachute shapes), can capture several other shapes and dynamics observed for RBCs.
The 2D vesicle can thus be used as a reliable model, at least as an exploration basis, to
investigate blood flow where the three-dimensional model may prove to be computationally
demanding, especially for dense suspensions. We investigate the rheology of the multilobe
shapes in the dilute regime and find that the effective viscosity exhibits a significant jump
associated with a transition to multilobe dynamics. We provide simple interpretations to
these findings. We discuss the stability of the centered solutions and the emergence of the
off-centered ones.

DOI: 10.1103/PhysRevFluids.7.093603

I. INTRODUCTION

Blood is a complex fluid, with about 55% of its volume consisting of plasma and 45% is
composed of red blood cells (RBCs), whereas white blood cells and platelets together account for
less than 1%. The RBCs are responsible for oxygen transport from lungs to the tissues and the
removal of the carbon dioxide from the tissues to the lungs. RBCs are not oxygen carriers only,
but they also transport several other chemical species, the most prominent of which is ATP, playing
a pivotal role in blood flow regulation via a complex biochemical signaling involving endothelial
cells [1,2]. The alteration of RBC dynamics and morphologies may influence the blood viscosity and
thus blood perfusion, impacting the distribution of oxygen, and other species, to tissues and organs
[3]. The dynamics and the morphology of RBCs and of their biomimetic counterparts (vesicles
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and capsules) have been the subject of intensive studies during the last two decades, theoretically
[4-7], experimentally [8—16], and numerically [17-25]. In blood circulation, RBCs have the ability
to assume several morphologies. The most common shapes are (1) parachute, which is a symmetric
shape [26,27], and (2) the asymmetric shape, called a slipper [11,19,27,28], to cite a few examples.
More recent studies reported the existence of other shapes (snaking, pin, peanut) [29]. Under
shear flow, a single RBC exhibits three main dynamics: (1) tank-treading motion (TT) where the
cell adopts a fixed orientation and its membrane rotates like a tank tread [30-32], (2) tumbling
(TB) motion where the cell flips like a solid particle [13,31], and (3) vacillating breathing (also
called swinging) [6,33], where the cell orients along some direction and its long axis undergoes
oscillations.

One of the main questions is to identify whether or not a given shape or dynamics is common to
a wide range of soft particles (like vesicles, capsules, RBCs), or if it is specific to a given type of
particle. Most of the aforementioned dynamics, under both shear and Poiseuille flows, are common
to RBCs, vesicles and capsules [9,13,20,34-40]. Vesicles are two-dimensional (2D) incompressible
fluid membranes that form a closed surface containing fluid inside. The membrane is composed of
two layers of phospholipid molecules, each having a hydrophilic head and two hydrophobic tails
[41]. Vesicles are characterized by a bending rigidity of the membrane and the ratio between the
viscosities of the internal and the external fluids. Contrary to vesicles, capsules are endowed with
shear elasticity, mimicking the cytoskeleton of RBCs. The bending of the membrane is generally
described by the Helfrich model [42], which involves the membrane curvature. The Skalak model
[43] is generally used to describe the shear elasticity of the cytoskeleton of RBCs (spectrin network).
From a mechanical point of view vesicles differ from RBCs by the absence of shear elasticity due
to cytoskeleton. Despite this simplification, vesicles have often revealed to have many shapes and
dynamics in common with RBCs. The comparison between vesicles and RBCs can help identifying
features which are specific or not to cytoskeleton. For example, at low shear rates the RBC model
exhibits TB, whereas vesicles show TT at low enough viscosity contrast for any shear rate. The
occurrence of TB for RBCs at low shear rates is due to the cytoskeleton, since TT of RBCs would
be accompanied by a distortion of cytoskeleton that is significant in comparison to a TB regime. It
is only at high enough shear rate (when hydrodynamic shear stress overcomes elastic stress due to
cytoskeleton) that RBCs show TT. Regarding shapes, such as slipper or parachute, they are known
to be exhibited both by RBCs and vesicles, and the role of cytoskeleton affects only their occurrence
region in the parameter space.

In a more recent study [44], Lanotte et al. have reported experimentally on a type of shape
exhibited by RBCs at high enough shear rates, which has been named the multilobe shape (see
later). This shape was briefly discussed earlier by Fischer [45]. Subsequently, a systematic numerical
study [46] was devoted to these morphologies using two different simulation techniques (dissipative
particle dynamics and volume of fluid method), taking into account the cytoskeleton shear elasticity,
bending rigidity, and cytosol viscosity. A rich phase diagram showing a transition from TB to
multilobe (MB) shapes at high viscosity contrast and high shear rate has been reported. It has been
concluded that the cytoskeleton elasticity has an essential role in the manifestation of the MB shape.

The purpose of this paper is to contribute to the understanding of the minimal ingredients for
the occurrence of the MB shapes and investigate the effect of this shape on the rheology. We have
thus conducted 2D simulations for a confined vesicle model (only membrane bending is included).
Our results show that MB does exist in this model, ruling thus out the necessity of cytoskeleton. In
addition, as these shapes appear at high enough shear rates, bending elasticity is not essential either
(they occur in a regime where hydrodynamic shear stress overcome bending stress). Our results
clearly show that the birth of MB is due to competition between the applied flow and tension of the
membrane. We will present a full phase diagram, in the plane of flow strength and viscosity contrast.
The MB shapes appear at high enough shear rates and high enough viscosity contrast, as obtained in
three dimensions for the RBC model [46]. We shall see that there are two branches of MB solutions
that can coexist in some range of parameters. These two branches correspond to solutions that are
regular or irregular in time. Which branch is chosen depends on the initial configuration. The next
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step will be dedicated to the study of rheological properties, namely, the effective viscosity and
normal stress difference. We find that the MB transition is accompanied by a significant change
of the intrinsic viscosity as well as the normal stress difference. We will provide a few qualitative
explanations for these behaviors.

II. MODEL
A. Fluid flow

We focus here on the simplest model (2D phospholipid vesicle), where only bending elasticity
and membrane incompressibility are included. The 2D vesicle model has been shown to capture
several known characteristics for RBCs. Shapes like parachute and slipper [19,47], dynamics such
as TB and TT [21,48] are manifested by both systems (RBCs and 2D vesicles). Other phenomena
such as lateral migration of RBCs [49] and the shapes of RBCs within aggregates [50-52] have been
shown to be captured by the 2D vesicle model.

The 2D vesicle is represented by a membrane contour that contains a viscous fluid inside and
is suspended in another fluid filling the channel. The internal fluid viscosity is denoted as n; and
the suspending fluid viscosity as 79. The system is bounded by two rigid walls located at y = 0
and y = Ly, where L, is the channel width. The fluid in the channel is subject to a linear shear flow
vy =y —L,/ 2) where y is the shear rate. Periodic boundary conditions are used along x axis
(the flow direction). The period L, is taken large enough in order to avoid any artifact due to periodic
boundary conditions. Typically L, = 4L, has proven to be sufficient for our purposes.

The RBC:s typical linear size is about 3 um, and under physiological conditions the typical shear
rate value at the vessel wall, which depends on vessel diameter, ranges from 102 s~! to 10* s~! [53].
The blood plasma viscosity is about 7790 = 1073 mPas. The Reynolds number, by taking the RBC
size as a length scale, is quite small (in the range 10~* to 1072), so that it is legitimate to take the
zero Reynolds number limit. In this case the velocity of the inner (i.e., inside the vesicle) and the
outer fluids is described by the Stokes equations:

—VP +nAv =0, (D

V.v=0, )

where i = 0 inside the vesicle and i = 1 outside the vesicle, P is the pressure, and v is the velocity
field. The Stokes equations (1) and (2) are supplemented by the following boundary conditions:

(1) The no-slip boundary conditions at the walls

(2) The periodic boundary conditions for the velocity v and the pressure P

(3) The continuity of the fluid velocity at the membrane

(4) The force balance at the membrane, which dictates that the sum of the viscous forces applied
by the inner and outer fluids on the membrane is balanced by the membrane force f, the expression
for which is given below.

These boundary conditions define a unique solution of Egs. (1) and (2), which depends on the
membrane conformation and forces f.

B. Membrane forces

The force applied by the membrane on the surrounding fluid is obtained by a functional derivative
of the following energy, which is the sum two contributions: the bending energy (the Helfrich energy
[54]) and the membrane incompressiblity contribution:

E = IZ’%CCIS%—deS 3)

where s represents the curvilinear coordinate on the vesicle contour, c is the local curvature of the
membrane, kj, is the membrane bending rigidity, and ¢ is a local Lagrange multiplier associated with
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the constraint of local perimeter inextensibility. The functional derivative (providing the force) of
the bending energy can be found in Ref. [55]. The total force has the following form:

d? 1 d
f:k;,[—c+—c3i|n—c§n+d—§t, 4)
s

n and t are the normal and tangential unit vectors, respectively. The force can be rewritten in a
dimensionless form:

f dc + 18 n—ctn+ dEt (5)
= —_— — —C —1,
a2 " 2° Mt
where dimensionless variables are defined as follows:
~ RS f s
= 7, c = R 3 §=— . 6
f % c=cRy, = Ry (6)

Here Ry = (Ao/m)"/? is the characteristic size of the vesicle (A is the area inside the vesicle). Due
to some computational reasons, we do not use ¢ directly in the numerical scheme of the force. The
local extension of the membrane is instead prevented by the penalization energy Ei., that replaces
the second term in the right-hand side of Eq. (3):

Eo = / NE 2d 7
ns — A~ -V - o,
© 2 0 da

where k; is the extension modulus of the membrane, L is the prescribed perimeter of the vesicle,
and « is the reference coordinate. The reference coordinate is used to parametrize the position of the
membrane points as Imem (o). We choose the parametrization in such a way that the position ryem ()
travels exactly the whole membrane as « increases continuously from O to 1. The parametrization is
continued periodically for other values of alpha: ryem (o + 1) = ryem(a).

The tension force for energy (7) is

fions = j—it —ctn, where ¢ =ky(ds/da —L), (8)
which coincides with the tension contribution in Eq. (4) with the Lagrange multiplier ¢ replaced by
the local tension . Furthermore, the tension ¢ in Eq. (8) tends to the Lagrange multiplier ¢ as k; is
increased to infinity.

Equation (8) provides an explicit link between the stretching of the membrane and the local
tension. The cost of this simplification is that the local arc length is never exactly equal to the
prescribed value py. However, this difference is negligible for large enough k. We set kag [ky =
4 x 103 in our simulations, which results in a good conservation of local arc length for all parameters
explored in this study.

C. Dimensionless parameters

Dimensionless numbers are used to describe the vesicle and the flow characteristics:
The capillary number: Allows one to quantify the flow strength over bending rigidity of the
membrane

_ noy Ry
kp

The confinement: Describes the ratio between the effective diameter of the vesicle and the channel
width

G

=Y. (€))

C, = —. (10)
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The viscosity contrast: The ratio between the viscosities of the internal and external fluids

A= (11)
Mo
The reduced area: Combining the vesicle perimeter L and its enclosed area Ag:
A
= (Ao/7) . (12)
(L)27)?

Throughout this paper, we will use the following scales: Ry for the distance, 7, for the time, and
no for the viscosity.

III. NUMERICAL PROCEDURE

A. General outline

In order to preserve high accuracy we use Fourier basis for discretization of all functions on the
membrane contour and compute all derivatives in Fourier domain [56,57]. The shape of the vesicle
at time ¢ is described by a periodic function ryem(c, t) of the reference coordinate «, as defined
above. We parametrize this function by a Fourier series

Kmax

Fmem,+(@) + iFmem y (@) = Y e, (13)
k=—kmax

where the complex amplitudes r; are the shape parameters of the membrane and kp,x defines the
number of Fourier harmonics used to represent the membrane shape (typically, we use k. = 31,
which gives 63 harmonics in total).

One time step of the simulation takes a set of values of r; and proceeds as follows:

(1) We use r; to reconstruct the shape of the membrane rpem(,?), and the derivatives
a(xrmem(av t)’ 8aarmem(av t)-

(2) We use Imem (@, 1), 0uTmem (¢, 1), and e rmem (¢, t) to compute the membrane force, mem-
brane normal, arc length element of the membrane, perimeter, enclosed area, and so on.

(3) We use the above force, shape, normal, and arc element to compute the flow in the channel.

(4) We expand the velocity field at the membrane into a Fourier series and update the Fourier
components 7.

The implementation details for steps 2 and 3 are given below. Step 4 is done using a simple
explicit Euler scheme. This step also involves a procedure to conserve exactly the area enclosed by
the membrane contour. Physically, this area is conserved by the incompressibility of the enclosed
fluid and the impermeability of the membrane but this exact conservation is lost after numerical
discretization. We thus use homogeneous deflation or inflation along the normal direction to
conserve the area inside the vesicle at each time step.

B. Force calculation

We compute the force directly in the Fourier space by taking the variation of the membrane
energies (3) and (7) with respect to the amplitudes ry. The energy itself is calculated in the coordinate
space, by discretizing the membrane contour by a large number of points homogeneously distributed
in the « space o; = i/Nmem, I € {0, 1, ..., Nmem — 1}. Here Npen is the number of points used to
discretize the membrane; we take Nyem = 2(kmax + 1).

The derivatives with respect to the arc length are calculated as d; = 9, /(ds/dw). The integration
with respect to the arc length element is reduced to the integration with respect to « by the
substitution ds = da(ds/da). Here ds/da = |dryem/da|. The integration with respect to o is
performed using the trapezoid rule (here the sum over all «; divided by Npem). This method shows
super-algebraic convergence with Ny for smooth periodic functions. The Fourier components of
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the membrane force are calculated from the virtual work principle, using the variation £ — E + §E
of the energy upon a small variation of the membrane shape I'yem (@) = Fmem () + 6rmem (@):

1 [ kmas ¥ K
SE = — f f-Orpemds = —Re/ ( Z erZ”ki“> ( Z (Srkez”k/i“)da
0

k=—kmax K'=—kmax

Kmax

=— Y Re(Fsn), (14)
k=—kmax
where F; and 8r; are the coefficients of the Fourier series for [fi(a)+ify(a)lds/da and
87mem,x (@) + 87 mem,y (0r), respectively. We thus define the force amplitudes from Eq. (14) as
oE

F=- . 15
ek dlmry, (15)

Re Fk = — s
8Rerk
Calculating the amplitudes F; allows us to reconstruct the forces fds/da which are used to calculate
the fluid velocity as explained below.

C. Flow solver

Due to the linearity of Stokes equations we can transform the set of fluid equations into an
integral equation which is nonlocal. This is based on the use of Green’s function techniques [58].
This method enjoys quite a good precision. We used the Green’s functions that satisfy directly the
no-slip boundary condition at the channel walls in our previous works. Those Green’s functions
do not have an explicit representation in elementary functions. Instead, the Green’s function values
were calculated numerically on a fixed grid and stored in a table. The values for arbitrary positions
were obtained by interpolation. Here we use a different approach which we have found to result
in lower computational cost of the simulation, in particular for a dense suspension. We take the
Green’s functions that satisfy the periodic boundary conditions along the x direction and use an
explicit discretization of the wall. The wall force and residual velocity at the wall are parametrized
by a Fourier series thanks to the periodicity in x direction, as explained below. The advantage
of this method is that a relatively small number of Fourier harmonics is sufficient to reduce the
residual velocity at the wall to machine precision, unless there are membrane points very close to
the wall. This is because the self-interactions of the walls are calculated exactly in Fourier space
using analytical expressions.

The velocity at any point r in the simulation domain satisfies the following equation:

A)v(r) = v(r) + v'(r) + v¥(r), (16)

where v*°(r) is the imposed velocity field (a linear shear flow as defined above), v’ is the velocity
field produced by the vesicles, and v*' is the velocity field produced by the wall. The coefficient A
is defined as

A if r is inside a vesicle
A(r) =411+ A)/2 ifrison avesicle membrane a7
1 if r is outside all vesicles or is on a wall.

Here A is the viscosity contrast defined as A = % The vesicle contribution is defined as

. 1
V() = P % G(ro, 1) - £(ro)ds(ro) + (1 — /\)?g v(ro) - L(ro, r) - m(ro)ds(ro),  (18)

where G(ro, r) and T are the Green’s functions (G;; refers to the so-called single-layer contribution,

while 7;j; accounts for the double-layer contribution). Here we take the Green’s functions satisfying
periodic boundary conditions in x direction, which have a known expression in terms of elementary
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TABLE I. Simulation parameters.

Parameters Simulation unit Physical unit
kp, 0.1 4x10717
Mo 1.0 1 mPas
T 10.0 0.54s

functions [58]. These functions reduce the integration over an infinite array of image vesicles
arranged periodically in the x direction to an integral over a single vesicle inside the computational
domain. The integration in Eq. (18) is thus taken along the membranes of all vesicles in the
computational domain.

Note that the above Green’s functions do not satisfy the no-slip boundary condition at the walls
(in contrast to one of our previous studies [59]), therefore the contribution of the walls to the velocity
field has to be taken explicitly. This contribution should precisely guarantee the no-slip condition at
the walls. The wall contribution is written as

) 1
vy = o f G(ry,r)-f(r,)dx, (19)
walls

where r,, is wall position and £ (r,,) is the density of forces applied by the wall on the fluid at a
position r,,. The wall force is not known a priori and needs to be solved for to satisfy the no-slip
condition at the wall, as described below. The contour integral along the walls is simplified to the
integral with respect to the x coordinate in Eq. (19). Note that the above contribution is similar in
form to the first contribution in (18), because in applying the Green’s theorem one has to integrate
over all boundaries (vesicle and bounding walls).

The no-slip boundary conditions at the walls are implemented in the following way: Because the
velocity of the walls is defined by the imposed shear flow [v*° in Eq. ((16), the no-slip condition
reduces to

vves (rw) + vwall (rw) — O (20)

for all r at the wall. The first term in Eq. (20) is given explicitly by Eq. (18), while the second term
is related by a linear operator to the wall forces. We thus need to solve Eq. (20) for the wall forces.
The next step is to use the obtained wall forces to calculate the flow ¥l on the vesicle membranes,
using Eq. (19). The wall forces and the velocity fields measured at the wall remain invariant after
translation by L, in x direction due to the periodic boundary conditions. We thus represent these
three fields by Fourier series in x:

(Ny—1)/2
VS0 Ly /2 £ Ly/2) + iy (x, L2 £ Ly/2) = Y s
k=(1—N,)/2
(Nw—1)/2
oy Ly/2 £ Ly/2) + o), Ly/2 £ Ly/2) = Y vl e 21
k=(1-Ny)/2
(Ny—=1)/2
L0 Ly /2 £ Ly2) +ify M L2 £ Ly/2) = Y e et
k=(1-Ny)/2

where v it [l /,, and f,?’;"l are the corresponding Fourier components. The second index u in
V% refers to the upper wall [y = L, in the left-hand side of Eq. (21)], while [ refers to the lower
wall [y = 0 in the left-hand side of Eq. (21)]. N,, sets the number of Fourier harmonics used for wall
discretization.
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The coefficients v; , can be calculated directly without calculating the velocity at the wall in

the coordinate space:

Viuyt = f Giuyi(ro) - £(ro) ds(ro) + (1 — )»)f v(ro)- T (xro)-n(ro)ds(ro), (22)

ku/l

where the kernels Gy ,/;(rp) and T (ro) depend only on the wall position and L,. These kernels

Zku/l
can be expressed in elementary functlons as shown in Ref. [58].

The amplitudes vﬁ“u s and fal o /1 can be related to each other as

(V2) = 5, G O (f2E)- (23)

where (¥ s and (/. WI?IL ;1) are 4D complex vectors composed of the corresponding components

and G¥(k) is a 4 x 4 complex matrix, which depends only on L, and L, and whose explicit
expression is given in Ref. [58].
The wall force amplitudes are thus obtained by solving

1
(in:/z)+ GWﬂ“(k)(fr,?IL/,) 0, k>0 (24)

for the four-dimensional complex vector (v z) computed from Eq. (22). Note that Eq. (24) is
degenerate for k = 0, since normal forces with constant amplitude produce no flow.

Finally, the wall contribution to the velocity field in the fluid domain can be obtained from known
wall

(fE ) as
(Nyw—1)/2

VWall(r) Z Z Gk,j(r)fwall- (25)

0 ietuly k=(1-Ny)/2

IV. RESULTS

A. The effect of the confinement on the phase diagram

We have fixed the reduced area to 0.65 which is the typical value for RBCs, and we have analyzed
systematically the vesicle dynamics at low confinement (C, = 0.2), where the walls play a minor
role. The simulations parameters used throughout this article are tabulated in Table 1. The vesicle
center was located on the central axis of the channel. The stability of such centered solutions is
discussed below.

We have produced a phase diagram [Fig. 1(a)] in a wide range of capillary number C, and
viscosity contrast A. Many previous studies [48,60-63] have investigated the dynamics of a single
vesicle under shear flow using 2D simulations, but we are not aware of a previous report on a
multilobe vesicle. Despite quite high values of shear rates the perimeter and the surface of the
vesicle are well conserved during the simulation; the relative error of the perimeter is less than 1%
in all our simulations. Three regimes have been identified: tank treading (TT), tumbling (TB), and
multilobe (MB). The present phase diagram is in a good qualitative agreement with Ref. [46] (their
Fig. 2). In other words, the topologies of both phase diagrams are quite similar, in the sense that the
relative positions of the three modes in the phase diagram present the same typical picture: at low
viscosity contrast A TT always prevails as shown in Ref. [48]. In our phase diagram TT remains
stable at high capillary number showing no transition, whereas at high viscosity contrast A, the TB
prevails at small shear rate y and undergoes a transition towards MB at high shear rate y. Note
that the rolling stomatocyte, dyscocyte, and tumbling stomatocytes in three dimensions [46] all
degenerate into TB in two dimensions, since there is no other analog in two dimensions. Figure 1(a)
shows three transitions, from TB to MB occurring at A > 5.8 and in the range of 35 < C, < 50,
the second transition takes place from TT to MB occurring at A > 5.7 and C, > 38, and the last
transition is between TT and TB at C, < 35and 5.5 < A < 5.8.
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FIG. 1. Phase diagrams showing the dynamics of a single vesicle. The simulation data are shown as dots.
(a) C, = 0.2, (b) C, = 0.4. Top and bottom have the same color code.

We have investigated the effect of confinement on the evolution of the phase diagram. By
reducing the distance between the two walls (C, = 0.4) we have observed that the confinement
plays an essential role regarding the MB shape [Fig. 1(b)]. Indeed the area of MB phase shrinks by
about twice when the confinement is doubled, and TT prevails in this case. It is likely that walls
affect excursion of membrane protrusions (which are pronounced for MB) and tend to reduce the
domain of existence of MB phase.

Figure 2 shows snapshots of the MB mode (see the corresponding movie in the Supplemental
Material [64]). Two types of MB motions can be identified: the irregular one [Fig. 2(a)] and the
regular one [Figs. 2(b) and 2(c)]. We have found that these two motion types correspond to different
branches of MB solutions that can coexist in a certain region of A: We have analyzed this coexistence
by tracing the bending energy of the vesicle as a function of A for C,, = 0.2 and C, = 100 using two
initial configurations, one corresponding to the irregular MB solution [such as the one shown in
Fig. 2(a)] and the other one corresponding to the regular MB solution [such as the one shown in
Fig. 2(c)]. The final state of the two MB solutions at a nearby value of A was used as the initial
states of the simulation in order to follow both branches as far as possible. The results are shown in
Fig. 3. As can be seen, three different branches of multilobe dynamics can be identified: a chaotic
motion with irregular protrusions traveling along the membrane and two types of trilobe dynamics.
Interestingly, the transitions between the states are discontinuous.

If the initial configuration is prepared to be an elliptical vesicle in the channel center as shown in
Fig. 4, in the multilobe regime the vesicle starts tumbling and after a few 7, it undergoes a transition
towards a quadrilobe shape which is unstable (transient state) and persists for less than 1000z.. Over
long time the shape becomes a trilobe (a stable shape). Note that, in agreement with our finding, the
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Y/Ro

1218 1222 1235 1237 1241
Time/t,

FIG. 2. Snapshots showing dynamics of a single vesicle. We set C, = 0.2 and C, = 60.0. (a) A = 5.8,
(b) A =7.0, (c) A = 14.0. Snapshots (a) show the evolution of the vesicle shape (see movie 1 [64]). Panels
(b) and (c) show the dynamics of a vesicle over one period (see movie 1 [64]).

35
—=— chaotic
301 —=— irregular
—e— regular
251 el

Ep*Ro/kp
N
(@)

=
5]

4x10° 6x10° 101 2x10! 3x10!

FIG. 3. Average bending energy of vesicle shapes as a function of viscosity contrast. Insets show charac-
teristic shape sequences for different types of multilobe dynamics. C, = 0.2, C, = 100.

I XY LY L

21.0 900.0 1010.0 1188.0 1194.0 1202.0
Time/T,

y/R

FIG. 4. Snapshots show the evolution of the vesicle shape from the initial configuration to the steady state.
Here we set the confinement C, = 0.2, the capillary number C, = 60.0, and the viscosity contrast . = 7.0 (see
movie 2 [64]). The steady-state dynamic is shown in movie 1 [64].
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FIG. 5. Vesicle orientation angle as a function of viscosity contrast X.

quadrilobe shape is not observed as a permanent state in the three-dimensional (3D) simulations of
Refs. [44,46].

We clearly see that the MB shape occurrence does not require a shear elasticity of the cytoskele-
ton. The MB shapes occur at large enough capillary numbers where also the bending rigidity is
not essential (large capillary number, where MB occurs, means that bending stress is small in
comparison to imposed hydrodynamic stress). These shapes result solely from an interplay between
tension (resisting compression) and the imposed flow. This finding corroborates the fact that most of
the shapes and dynamics observed so far for RBCs are also common to pure lipid vesicles. Typical
examples are parachute shape, slipper, bullets, croissant, and so on, exhibited by vesicles and RBCs
both experimentally and numerically.

Finally, it is interesting to note that the topology of phase diagram [Fig. 1(a)] is very reminiscent
of that studied in three dimensions for vesicles by several groups [20,65—69], where the relative
position of TT, TB and MB phases (obtained here) are to be compared to those corresponding to
TT, TB, and VB (vacillating breathing, aka swinging, trembling, initially reported in Ref. [6]). It is
tempting to speculate that the mechanism behind the manifestation of MB mode is similar to that of
VB mode. Initially the VB phase was studied for a quasispherical vesicle, in which the amplitude
of membrane deformation in the VB phase is small. Later, a numerical study dealing with more
deflated vesicles [23] shows shapes similar, to some extent, to the MB ones (see Figs. 2 and 3
in Ref. [23]). Like the VB mode [6] the MB mode takes place from TT mode when the angle of
orientation of the vesicle with respect to the flow direction is close to zero (positive or negative small
values of the angle). Figure 5 shows the behavior of this angle as a function of viscosity contrast A.
This type of behavior is also reported for 3D simulations of RBCs [46]; the MB shape takes place
when the orientation angle is close to zero.

B. The rheology of multilobe vesicles

The aim of this section is to investigate the effect of the MB shape discussed above on the
rheological behavior of a single vesicle. We quantify the normalized viscosity and the normalized
normal stress difference. The effective viscosity has the following form:

n = no(1l + [n]¢), (26)

where ¢ is the suspension concentration, equal to the ratio between the vesicle area and the area of
the calculation domain, and [n] is the normalized viscosity (called also the intrinsic viscosity when
¢ — 0) representing the vesicle contribution to the viscosity. The effective viscosity is the ratio
between the xy component of stress tensor and the applied shear rate:

_ (o)

= , 27
14
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FIG. 6. The normalized effective viscosity [1] as a function of viscosity contrast A for different capillary
number C,. Circle symbols correspond to tumbling, crosses to tank treading, and triangles to multilobes. Left:
C, = 0.4; right: C, = 0.2.

where the bracket (-) denotes an average over the wall length. Alternatively the viscosity can also
be obtained as an integral over the vesicle perimeter. Following the Batchelor formula [70], the
normalized effective viscosity is given by

— 1
[n] = n=mno _ . [—/yfx ds +no(A — 1)/(;1,51{v —l—nyvx)ds] (28)
no¢ noAoy m m

The first term of the normalized viscosity describes the dynamical contribution which is due to the
membrane force, and the second term is the kinematic contribution of the vesicle (the membrane
velocity). The normal stress difference is defined as N = (o,,) — (o,,), which was normalized as

(Oxx) — (Uyy>

[N]= . (29)
(n —mno)y
in Ref. [71]. Here the averaged stress tensor is given by
1 1
(0ij) = LL box[—P5ij + no(div; + 9;v:)]dA — L J, rifids
-2
+ 1o LL, m(”ivj +njv;)ds, (30)

where §;; is the Kronecker symbol, and r; is a component (x or y) of the membrane position vector.
The first integral is performed over the calculation domain. Here, the vesicle dynamic plays a crucial
role on the rheology. The pertinent parameters of interest are the viscosity contrast and the capillary
number. It has been reported in Refs. [72,73] that the effective viscosity of a single vesicle is not
monotonous with the viscosity contrast A, the minimum of the effective viscosity is associated with
the critical value of the viscosity contrast of the transition between tank treading and tumbling.
The effective viscosity was found to decrease with the viscosity contrast in the TT regime and
suddenly increases after the transition to the TB regime. Figure 6 shows the behavior of the effective
viscosity as a function of viscosity contrast A. We see there the above feature, namely, that the
viscosity decreases with A in the TT regime and increases in the TB one. Here we find that the
viscosity increases in the MB regime, as with the TB one, but here the increase is relatively more
pronounced. Despite the fact that the area spanned by a TB vesicle is larger than with a MB vesicle,
the resulting effect on viscosity due to a MB vesicle is larger. We believe that the presence of
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FIG. 7. The normalized viscosity [n] as a function of capillary number C, for different viscosity contrast
M. The confinement is C, = 0.2. Circles correspond to the TB and triangles to MB dynamics.

protuberance in the MB shape cause a stronger dissipation in the surrounding fluid, resulting in
a higher dissipation. During tumbling of MB the presence of three protuberances causes a higher
average (over a period which corresponds to a membrane material point making a full turn) cross
section against flow as compared to a TB vesicle.

Let us analyze the evolution of viscosity as a function of capillary number. It has been reported
that the effective viscosity of a vesicle suspension may exhibit both shear thinning and shear
thickening depending on the viscosity contrast [74]. For a given viscosity contrast and upon
increasing capillary number, we have a transition from TB to MB (Fig. 1). In the TB regime we
find a weak shear thinning (Fig. 7). At the TB-MB transition the viscosity exhibits a large jump.
In this sense the system exhibits a sudden shear thickening. Within the MB regime, and for not too
large viscosity contrast, the suspension shows a shear thinning. For a large enough viscosity contrast
the suspension viscosity exhibits a plateau. The sudden increase of the viscosity in the MB regime
is traced back to a higher cross section (as explained above). The increase of viscosity in the MB
regime is consistent with the experimental report shown in Fig. 4 of Ref. [44]. The shear thinning
in the MB regime (red triangles in Fig. 7) is due to the fact that the MB shape explores less space as
the capillary number increases. To quantify this effect, we plot the center of mass as a function of
time for two capillary numbers (Fig. 8). For each case the center of mass describes an ellipse with

— (C3=50.0

—— (C54=100.0

-0.2 0.0 0.2
X(Ro)

FIG. 8. The center of mass trajectory for two capillary numbers.
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FIG. 9. The average occupancy as a function of C, for two different values of X.

an area which decreases with C,, causing a smaller viscosity. We have further analyzed the origin of
the behavior of the viscosity. We determine the average (over long time) of the occupancy of the cell
in the channel. This is reported in Fig. 9 as a function of C, for different values of viscosity contrast
A. We find the following features: (1) when we cross the boundary (as a function of C,) of the
TB-MB phase (occurring at about C, ~ 40) the average occupancy jumps meaning the cell explores
more the channel width, and this triggers a jump in the viscosity. (2) For the upper panel, in the
MB occupancy decreases with C,, explaining the shear thinning for A = 7. (3) In the lower panel
the occupancy in the MB phase remains practically constant leading to a plateau in the viscosity
behavior.

The interpretation of the normalized normal stress difference is more complicated than the
normalized effective viscosity. In the TB regime the normal stress difference (Fig. 10) is almost zero,
before becoming negative (meaning contractile stress) and then acquires a large enough positive
value in the MB regime. The membrane incompressibility is a main ingredient, but it enters in an
indirect way. The sign of the normal stress difference in the TT regime is fixed by the angle between
the flow direction and the long axis of the vesicle (see analytical study in Ref. [72]). In the TB regime
there is periodic evolution of normal stress difference during time (the modulus of the maximum

Ca

FIG. 10. The normalized normal stress difference [N] as a function of capillary number C, for different
viscosity contrast A. C, = 0.2. Circles correspond to TB and triangles to MB dynamics.
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and the minimum are equal), and because it switches from positive to negative and it vanishes
when averaged over a period. In the MB regime the vesicle undergoes a complex dynamics. In the
vicinity of the TB-MB transition N is negative (contractile), before becoming positive. Sufficiently
far from the transition point the vesicle with a lower viscosity contrast has the highest value of
normal stress difference. This is traced back to the flexible nature of the shape deformation for
low enough viscosity contrast. In Ref. [72] it has been shown that normal stress difference depends
quadratically with shape amplitude deformation. This gives a hint that less viscous vesicles provide
a higher stress due to their larger flexibility. It would be interesting to perform systematically a
perturbative theory, as in Refs. [6,65-67], in order to analyze analytically the behaviors reported
here.

C. Relation between normal stress difference and migration

It is known that the sign of normal stress difference is related to the lateral migration of particles
in a suspension [75]. Here we use this relation and the measurements of N, obtained above, to
analyze the stability of the centered position of the vesicle. Let us first write the relation between N
and migration velocity in a channel which will inform us on the direction of migration as a function
of the sign of the normal stress difference. For a semiconfined geometry, in which the migration is
caused by a single wall (or in a channel so wide that the effect of the farther wall can be neglected),
the migration velocity v, can be calculated analytically and reads

. NLL,

8710(Yo — Ywan)’
where yj is the lateral position of the vesicle center and yy, is the wall position. Equation (31) is an
asymptotic expression, valid for |yy — ywan| > Ro. This equation is valid whether the wall is above
o — Ywan < 0) or below (yo — ywan > 0) the vesicle. For more details and explanations for Eq. (31)
see Ref. [76].

For a vesicle close to the channel center the contributions of both walls have to be taken into
account. The sum of the expressions (31) with yy,; equal to the upper and lower wall positions

gives the migration velocity that is only qualitatively correct. This sum however gives the correct
scaling for the migration velocity close to the channel center:

N(yo — Ly/2)L,
X———5
nOLy

€2V

vﬂl

m = — (32)
where x is a numerical constant independent of the channel geometry (as discussed in supplemental
material of Ref. [77]). The asymptotic expression (32) is valid under assumptions |y — L,/2| <
Ry < L. We find x = 0.488 by analyzing the flow due to a point stresslet in an infinite channel.

Figure 11 shows the comparison between the migration velocity predicted by Eq. (32) and the
numerical simulation: We place a vesicle close to a wall and measure the lateral migration velocity
vy, as a function of the lateral position y. We then compare the rescaled velocity v,,L,/y R} with the
theoretical prediction —xN(y — L,/2)L,/(y noR(z)) . As can be seen, the agreement is only qualitative
for L, = 10R, because of the effect of higher-order multipoles in the flow perturbation produced by
the vesicle. Increasing L, to 20R, gives a much better agreement because the effect of higher-order
multipoles neglected in (32) diminishes with increasing channel width. Further increasing L, to
40R, makes the numerical curve almost coincide with the analytical expression close to the channel
center. We also observe that changing vesicle parameters, such as viscosity contrast, or reduced area
(not shown) does not affect the validity of (32).

Expressions (31) and (32) show that both the particle’s migration close to a wall and the stability
its centered position are intimately linked to the sign of the normal stress difference generated by
the particle.

According to formula (32), the migration is directed towards center of the channel when N > 0
and away from center in the opposite case. We have investigated the migration for N > 0 and N < 0
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FIG. 11. Rescaled migration velocity as a function of rescaled lateral position, measured numerically and
predicted with Eq. (32). Left: 1 = 3.0 the vesicle shows tank treading, and right A = 10.0 the vesicle shows
multilobe.

by considering a vesicle which is initially localized at different initial positions. When N > 0 we
have found that an initial position away from center always leads to an inward migration that pushes
the vesicle towards the center. The steady final position (which is defined by the y position reaching
a fixed position in time, also by perturbing the final position we could ascertain the stability of the
final position) is at the center (Fig. 12) (red circles; the channel width is L, = 10R, and center of
the channel is at y/Ry = 5). When N < O the migration is found to be outwards, and the vesicle
settles at an off-centered position (red crosses in Fig. 12). It is seen that the value of C, at which
there is a transition from an off-centered to a centered position occurs is approximately equal to
that corresponding to the passage of N from positive to negative (see Fig. 10). The blue symbols in
Fig. 12 refer to situations where the final position depends on initial position. These position values
correspond to a coexistence zone between a centered and off-centered position. The bifurcation
structure in Fig. 12 reveals a subcritical nature. Thus we see that the migration and the normal stress
difference are intimately related.

0.10
5.0 wee ...:
4.5 ® 1o.08
4.0 °
° 0.06
< 35 —_
< [N]=0 [N]<O [N]>0 =
T30 ° 0.04 =
[ ]
25 0.02
2.0 X XX
X
X ox x X 0.00
154X x X X X XX
10° 10! 102
Ca

FIG. 12. Final vesicle position ys/Ry for different values of C,. L, = 10Ry; the center of the channel is at
Y¢/Ro = 5. A = 14. The red circles correspond to final position with N > 0, the red crosses to N < 0. The blue
symbols represent positions which depend on initial conditions. The green symbols represent the normal stress
difference.
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V. SUMMARY AND CONCLUDING REMARKS

A main outcome here is the fact that the cytoskeleton of a RBC in not essential for the MB
shape manifestation; only membrane tension is responsible for this effect, since the MB phase takes
place at high enough capillary number, meaning that shear stress overcomes bending resistance. It is
already known that many shapes known for 2D and 3D vesicles (slipper, croissant, parachute, etc.)
[71,78-83] are shared by RBCs models. The present finding provides further evidence highlighting
that a 2D vesicle model already captures many important features. The 2D model can be (due to
its rapid handling from computational point of view) very useful in exploring new phenomena,
especially for dense suspensions, before resorting to the computationally more expensive RBC
model. An interesting line of future investigation is the analytical study of MB shapes, following
the methods exposed in Refs. [6,65—67]. In those studies either second spherical harmonic [6,65,66]
(this is the first excited mode in a linear shear flow), or the fourth-order harmonic [67] have been
included; including the fourth-order harmonic turned out to be decisive to account for full numerical
simulations. In that study centrosymmetry was imposed, an assumption which is clearly not valid
for a MB shape. It will be essential to relax this assumption if we wish to account for this new phase.
It is hoped to investigate this matter in the future.
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APPENDIX A: DETAILS OF THE NUMERICAL SIMULATION METHOD

1. Green’s functions for periodic boundary conditions

The periodic boundary conditions respect the translational invariance of the Green’s kernels,
which depend only on the relative positions of the source and target points, as in the free-space
case: G(rg,r) = G(ro —r), T (ro,r) = T (ro —r). The explicit expressions and their presentation
are copied from Ref. [58]. We have made a small correction, as explained below.

Following Ref. [58] we assume the periodicity direction of the system to be oriented along the
x axis and the period of the system is given by L,. This defines the wave number g = 27 /L,.
Following Ref. [58] we introduce a function A, defined as

A(r) = { In[cosh(gry) — cos(gr,)] — 1 In2. (Al)

The function A represents a solution of the Poisson’s equation for a periodic array of point charges.
Using this function, the Green’s kernels for the Stokes equation can be written as [58]

. 1 (1-A- ry0, A ry0, A
6 = E( R A —A+ ryB,yA>’ (A2)
T () = ly. [—A, —r0,A]
27 T

1

’I}xy(r) = E)fx(r) = T;ch(r) = EV ° [ryarxA’ _A]’
1

chy(r) = ]jwcy(r) = Tyyx(r) = EV * [ —A, ryarxA]’

1
Ty (r) = 5V - [—r0,A, —A]. (A3)
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FIG. 13. The configuration of the shape while showing a tank treading. Here we set C, = 0.2, C, = 1.0,
and A = 1.0. N, is the number of harmonics. Left fipanel is a zoom of the right one.

Note that we have changed the T, expression compared to Ref. [58] (written as V - [—A, —ry0,, A]
there). We have verified that V - [—A, —r,0, A] is the correct expression by taking the limit of small
g, in which the free-space kernel is recovered, as To. (r) = —r2/(wr*) + O(g?).

2. Discretization of Eq. (18)

Numerical integration of Eq. (18) requires particular care due to the singular nature of the kernels
G and T, which diverge when the distance between r and ry tends to 0. We overcome this challenge

by a combination of several techniques:

(1) The kernel G is regularized for r = ry by singularity subtraction technique, in which we
subtract an exact identity from the integral in Eq. (18) to make the first integral in Eq. (18) go to
zero atr = ry [39].

(2) While the kernel T diverges at ry = r, the product T (rg, r) - n(ry) has a finite limit when ry

approaches r along the particle contour. It is thus sufficient to replace the undefined value of the
second integral of Eq. (18) for ry = r with this limit to regularize the second integral [84].

(3) We further improve the precision of computing the integrals in Eq. (18) by using refined
meshes to compute the contributions of near-singular points, for which the distance |rg —r| is
comparable to the spacing between the discretization points for the original coarse mesh. This
technique is based on decomposing the Green’s kernels into a sum of their smoothly varying
long-range part and several short-range parts with finite support [85]. The long-range part is then
integrated using the most coarse mesh, while the short-range parts are integrated using more refined
meshes, where the mesh refinement is consistent with the characteristic length scale of the given
short-range contribution to the Green’s kernel, which is defined by its support. This method provides
a good balance between the computational cost, since the number of kernel evaluations is of the
same order for each mesh, and the precision of the method, since the discretization errors due to the
singular behavior of the kernels are also of the same order for each mesh.

APPENDIX B: MEMBRANE DISCRETIZATION QUALITY AND BENCHMARKING

The vesicle is described at time ¢ by a closed curve r(«, #) in (x, y) plane. The membrane is
discretized into Ny points. To study the effect of the membrane discretization on the shape of the
vesicle, we examine the effect of the variation of the Ny, on the vesicle shape as shown in Fig. 13.
We see clearly (Fig. 13) that all the vesicle configurations are very close. We set Nyeyn = 1024 in all
the simulations presented in this article.
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FIG. 14. The normalized effective viscosity as function of the time step for different values of capillary
number C, and viscosity contrast A. We set T = 0.65 and C,, = 0.2.

We also investigated the effect of the time step dr on the simulation precision. To do this, We
calculated the normalized effective viscosity as described in Eq. (29) for different values of capillary
number C, and the viscosity contrast . We see clearly (Fig. 14) that the time step value dt = 1073
is the typical value which is independent on the capillary number C, and the viscosity contrast A.
For calculation speed and accuracy purposes, the time step value is fixed to df = 107 in all our
simulations in this article.

Finally, we present here a qualitative and quantitative comparison of our simulations with other
method. The selected method is lattice Boltzmann method (LBM). For comparison purposes and
code validation we show (Fig. 15) the steady inclination angle of the vesicle as function of the
confinement C,, our simulation result is in a good qualitative and quantitative agreement with LBM
[60].

o
U
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—¥— Our simulation
—— Kaoui et al (2011)
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0

Steady inclinaison angle /i
o
Ul
N

0.4 0.5 0.6 0.7 0.8
Cn
FIG. 15. The variation of the steady inclination angle associated to a vesicle performing tank-treading
motion in confined geometries as function of the confinement C,. We set t = 0.9 and C, = 1.0 and » = 1.0.
The data were extracted from Kaoui et al. [60].
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