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Shape dynamics of a red blood cell in Poiseuille flow
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We use numerical simulations to study the dynamics of red blood cells (RBCs) in un-
confined and confined Poiseuille flow. Previous numerical studies with three-dimensional
(3D) vesicles have indicated that the slipper shape observed in experiments at high capillary
number can be attributed to the bistability due to the interplay of wall push and outward
migration tendency at higher viscosity contrasts. In this paper, we study this outward
migration and bistability using numerical simulations for 3D capsules and provide phase
diagrams of RBC dynamics with and without viscosity contrast. We observe a bistability
of slipper and croissants in confined Poiseuille flow with viscosity contrast as observed in
experiments.
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I. INTRODUCTION

The study of red blood cells (RBCs), a major component of mammalian blood, has been a
fascinating topic of research for several decades due to its importance in quantitative understanding
of microscale blood dynamics. These cells are highly deformable [1–3] and lead to rich dynamics
when subjected to viscous forcing. Understanding shape dynamics of a single red blood cell is a
complex fluid-membrane interaction problem of fundamental importance in expanding our under-
standing of red blood cell suspensions [4–6]. Accurate knowledge of RBC shape dynamics has also
led to applications in microfluidics, for example, cell sorting in deterministic lateral displacement
devices [7].

The shape dynamics of a single RBC in Poiseuille flow has been investigated both experimentally
and numerically over the past few decades because of its importance in microcirculation. The
dynamics depend on the elastic properties of the cell membrane, the reduced volume (denoted by
ν) of the RBC which is defined as the volume of the RBC over the volume of a sphere of equal
surface area, the viscosity contrast (denoted by λ) between the fluid inside and outside the cell, the
confinement (unconfined vs confined in a channel, and the confinement ratio, Cn, defined as the
ratio of diameter of the cell over the diameter of the channel) and the properties of the imposed
flow, for example, the maximum magnitude of the velocity in Poiseuille flow. The most common
shapes observed in the Poiseuille flow are “slippers” and “croissants” (see Fig. 1). The slippers
are asymmetric shapes and the croissants are axisymmetric. Gaehtgens, Dührssen, and Albrecht [8]
observed both these shapes in an experimental study. Experiments in circular capillaries of varying
diameters by Abkarian et al. [9] found a transition from croissants to slipper shapes as the velocity
of the imposed flow is increased. However, the experiments in [9] were done using a viscosity
contrast λ = 0.3 outside the physiological range (λ = 5). Tomaiuolo et al. in [10] reported that,
for confinement ratio Cn ≈ 0.5 and viscosity contrast λ ≈ 5, both asymmetric and axisymmetric
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FIG. 1. Typical (a) slipper and (b) croissant observed in our simulations.

(croissant) shapes are observed at low velocities (≈1.1 mm/s). They also observed off centered
slippers along with croissants in equal proportions at high velocities (≈36 mm/s).

Several numerical studies have modeled RBCs as a membrane enclosing a viscous Newtonian
fluid and suspended in a Newtonian fluid (ignoring the cytoskeleton and viscoelastic effects). The
membrane is typically endowed with bending elasticity and shear elasticity. This is referred to
as the capsule model for the RBCs. Vesicles (which do not have shear resistance and are locally
inextensible) have also been used to study the dynamics of RBCs. In two dimensions, there is
no difference between capsules and vesicles as there is no notion of shear resistance but in three
dimensions they have different dynamics [11,12]. Numerical studies with vesicles [13–15] in
Poiseuille flow have shown that a transition from asymmetric slippers to axisymmetric parachutes
takes place as the flow velocity is increased. Simulations by Noguchi and Gompper in [16] for
a three-dimensional (3D) capsule in confined Poiseuille flow with viscosity contrast λ = 1 and
confinement around Cn ≈ 0.5 found a transition from a discocyte shape to the parachute shape as the
flow velocity was increased. Fedosov, Peltomäki, and Gompper in [17] used a capsule model for 3D
simulations of confined Poiseuille flow with viscosity contrast λ = 1 and presented a phase diagram
in the parameter space of confinement ratio and capillary number. Their simulations also showed
a transition from slipper to croissants as the flow velocity is increased. All these numerical results
are in contrast to the experiments [9,10] where asymmetric shapes (including slippers) are observed
at high flow velocity. Recent numerical studies with 3D vesicles have speculated that the existence
of these slipper shapes in experiments at high flow velocities could be due to the bistability (both
slipper and croissants as stable states) created due to the confinement and the outward migration
of the vesicles in the presence of viscosity contrast (λ > 1) [15,18,19]. But vesicles have no shear
resistance and are quite different from RBCs. Guckenberger et al. in [20] observed this bistability
with a 3D capsule in a confined microchannel with λ = 5 and Cn ≈ 0.54. However, their simulations
assume the stress-free reference shape of the capsule to be a biconcave shape of reduced volume
ν = 0.65. The stress-free reference (or “resting”) RBC shape determines the residual stress field
and is an important factor in determining the shape dynamics of an RBC. Simulations of an RBC in
shear flow [21–23] have revealed that choosing the stress-free shape of the RBC to be an oblate near
sphere leads to results consistent with the experiments [22,24,25]. This is again in contrast to the
previous numerical studies [16,17,20] of a 3D capsule in Poiseuille flow which assume the classical
initial biconcave shape to be stress free.

Our contributions. In this study, we used a 3D biconcave capsule with a residual stress field to
numerically simulate the dynamics of a single RBC in both confined and unconfined Poiseuille flow.
We confirm that taking the stress-free configuration of the RBC to be an oblate near-sphere leads
to results consistent with experiments. This is the first study that provides phase diagrams for a
3D capsule in unconfined and confined Poiseuille flow with viscosity contrast and initial conditions
(initial shape and residual stress field) relevant to the experiments. We also provide a qualitative
explanation of the bistability observed in confined flow using the results of outward migration
from our unconfined flow phase diagrams. Our results extend the observations made in [18] to
3D capsules and offer a possible explanation of the observation of slipper shapes at high capillary
numbers in experiments [20,26].
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FIG. 2. (a) Problem setup for unconfined flow. Biconcave red boundary γ is the capsule membrane filled
with fluid of viscosity μi. Fluid outside has a viscosity of μe. u∞ is the imposed background velocity.
(b) Problem setup for confined flow (side view). Red boundary is the capsule membrane γ filled with fluid
of viscosity μi. � is the fixed rigid enclosing boundary, which models a channel of circular cross section with
axis parallel to x axis. D is the diameter of the circular cross section. We impose the parabolic flow imposed as
shown by red arrows. Gray region is filled with fluid of viscosity μe.

II. PROBLEM FORMULATION AND METHODOLOGY

Our formulation follows the three-dimensional vesicle formulation given in [18] but now we
include shear resistance. We assume a neo-Hookean constitutive law for shear. We assume that
the RBC is perfectly locally inextensible so the tension is a Lagrange multiplier that enforces this
constraint.

A. Unconfined flow formulation

The formulation for a capsule in unconfined flow is given below. A representation of the setup
is shown in Fig. 2(a). The Reynolds number is low so the inertial effects can be ignored. The PDE
formulation of the flow is as follows:

−μ(x)�u(x) + ∇P(x) = 0∀x ∈ R3\γ , (1)

div(u(x)) = 0∀x ∈ R3\γ , (2)

[[−Pn + (∇u + ∇uT )n]] = fonγ , (3)

∂x
∂t

= u(x)∀x ∈ γ , (4)

u(x) → u∞(x)as||x|| → ∞, (5)

divγ (u(x)) = 0∀x ∈ γ , (6)

f = fb + fσ + fs, (7)

fb(x) = −4κb[�γ H + 2H (H2 − K )]n,∀x ∈ γ , (8)

fσ (x) = σ�γ x + ∇γ σ∀x ∈ γ , (9)

fs(x) = divγ τ∀x ∈ γ , (10)
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where γ is the capsule membrane, u(x) is the velocity of the fluid, and P(x) is the pressure. The
viscosity μ is given by the piecewise function

μ(x) =
{
μi if x ∈ ω,

μe if x ∈ R3\ω.

[[q]] denotes the jump of the quantity q across the capsule membrane and n is the outward unit
normal to the membrane. Equation (3) is the balance of momentum on membrane, which requires
the surface traction jump to be equal to the total force (denoted by f) exerted by the interface onto
fluid. Equation (4) enforces a no-slip boundary condition on the capsule membrane and Eq. (5)
sets the far field velocity to be the background velocity. The viscosity contrast, λ, is defined to be
λ := μi

μe
. Equation (6) enforces the inextensibility of the capsule membrane which is mathemati-

cally equivalent to requiring that the surface divergence of velocity should vanish on the capsule
membrane. Equation (7) gives the elastic force f due to the capsule membrane elasticity which
is comprised of a bending component fb, a tension component fσ , and a shear component fs. The
expressions for the bending and the tension components are given in Eqs. (8) and (9), respectively
(please refer to [18,27] for details), where κb is the membrane’s bending modulus, H and K are
the mean and Gaussian curvature, respectively, of the membrane at x ∈ γ , and σ is the tension at
the membrane point x. Equation (10) gives the shear force, denoted by fs. It is equal to the surface
divergence of the symmetric part of the in-plane shear stress tensor τ [28]. We ignore the anti-
symmetric part of τ , which arises due to the bending moment, since we have already included the
bending force albeit in a different form. The evaluation of τ is discussed later in this section. With
this shear force at our disposal, following [28,29] the capsule dynamics equations can be written in
integral form for x ∈ γ ,

αu(x) = u∞(x) + Sγ [fb + fσ + fs](x) + Dγ [u](x), (11)

divγ (u(x)) = 0, (12)

∂x
∂t

= u(x), (13)

where α := (1 + λ)/2. The single layer convolution integral is defined as Sγ [f](x) :=∫
γ

S0(x, y)f (y)dγ , with

S0(x, y) = 1

8πμ

1

||r||
(

I + r ⊗ r
||r||2

)
,

where r := x − y, I is the identity operator, ⊗ is the tensor product, and || · || is the Euclidean norm.
The double layer convolution integral is defined as Dγ [f](x) := (1 − λ)

∫
γ

D0(x, y)f (y)dγ , with

D0(x, y) = −3

4π
(r · n)

r ⊗ r
||r||5 .

In-plane shear stress tensor τ . The shear stress tensor, τ , is a function of the relative surface
deformation gradient. Now we discuss in detail the formulation of the shear force in this work. Let
γ denote the capsule membrane in the current configuration and γr denote the membrane in the
reference configuration. For xr ∈ γr , let φ denote the deformation map from the reference config-
uration to the current configuration such that φ(xr ) = x, where x ∈ γ . The Cartesian deformation
gradient F(xr ) for 3D continuum is defined as follows:

F(xr ) = ∂x
∂xr

. (14)

Let nr denote the normal to the membrane surface in the reference state. Then the surface deforma-
tion gradient is the surface projection of the deformation gradient, given by Fs(xr ) := F(I − nrnT).
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Let a1r and a2r be two material fibers tangential to the surface in the reference state γr at xr. If these
tangential fibers are transformed to tangential fibers a1 and a2 in the current state at position x ∈ γ

with x = φ(xr ), then we write

Fsa1r = a1, Fsa2r = a2. (15)

If a1r and a2r are orthogonal, then Fs can be directly written as Fs(xr ) = a1 ⊗ (a1r/||a1r ||2) + a2 ⊗
(a2r/||a2r ||2). We can use the deformation map φ to write the surface deformation gradient in the
current configuration as F̃s(x) = Fs(φ(xr )). From F̃s, we follow [28] to construct the left Cauchy-
Green deformation tensor

V2 = F̃sF̃T
s . (16)

Let λ2
1,2 be the two nonzero eigenvalues of V2 with the third being zero. The surface strain-energy

function W depends on the surface deformation gradient through the strain invariants

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1. (17)

Skalak et al. proposed the following strain energy function for the membrane (please refer to [28]
for details):

W = Es

4

(
0.5I2

1 + I1 − I2
) + ED

8
I2
2 , (18)

where Es is the elastic shear modulus and ED is the dilatation modulus to maintain surface dilatation
of unity. The in-plane Cauchy stress tensor is then given by

τ = Es

2Js
(I1 + 1)V2 + Js

2
(EDI2 − Es)P, (19)

where P = I − nnT is the surface projection tensor with n = n(x) being the normal in the current
configuration of the membrane. We define Js = λ1λ2. Since we are imposing inextensibility of
membrane as a separate constraint, we take ED = 0 in our formulation. The shear force fs(x) is
now given by fs(x) = divγ τ .

Discretization. We use spherical harmonics discretization for the capsule surface γ and the
functions defined on γ . We use the singular quadratures described in [30] to evaluate the integrals.
The system of equations (11)–(13) is then solved using a linearly semi-implicit scheme [18] for the
velocity u and tension σ . Let t n be the time elapsed after n time steps of step size �t such that
t n = n�t . Let xn denote the capsule position at time t n. The discretized system of equations is given
below:

αun+1 = un
∞ + Sγ [fb(xn) + f ′

b(xn)un+1�t + fs(xn) + fσ (σ n+1(xn))] + Dγ [un+1], (20)

divγ (un+1) = 0, (21)

x0
n+1 − xn

�t
= un+1. (22)

Here x0
n+1 denotes the membrane position at time t n+1 before reparametrization. To maintain the

mesh quality for long timescale simulations, we use the reparametrization scheme described in [30]
to move the points x0

n+1 along the surface. The reparametrization scheme moves the discretization
points x0

n+1 to xn+1. Thus the reparametrization scheme changes the material points we are tracking
after each time step. To calculate the surface deformation gradient F̃n+1

s at xn+1 using Eq. (15), we
will require the tangential fibers at these new material points in the reference state, which are not
available. Hence we propose a local linear Taylor approximation to approximate these deformation
gradients. Let the surface deformation gradient at xn be F̃n

s . Let a1
n and a2

n be the tangential fibers
at xn that get transformed to a1,0

n+1 and a2,0
n+1 at x0

n+1. Then the surface deformation gradient
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F̃n+1
s,0 at the discretization points x0

n+1 is given by

F̃n+1
s,0 = �F̃sF̃n

s , (23)

where �F̃s is the relative surface deformation gradient at x0
n+1 from time t n to t n+1, given by

�F̃sai
n = ai,0

n+1,i = 1, 2. Then we use the local Taylor approximation to get F̃n+1
s at xn+1, given

by

F̃n+1
s ≈ F̃n

s,0 + ∇γ F̃n
s,0(xn+1 − x0

n+1). (24)

B. Confined flow formulation

We define the capsule characteristic radius, denoted by R0, as the radius of the sphere that has the
same area as the capsule. To model the flow of a capsule in the confined Poiseuille flow, we create
a channel with length larger than the capsule radius and a circular cross section. The length of the
channel is eight times the capsule radius R0. The axis of the channel is parallel to the x axis [refer
to Fig. 2(b)]. To account for the confinement, we follow the scheme in [18] and add a capsule-wall
interaction term to Eq. (11). We append one more equation (27) for the calculation of the unknown
double layer density η on the fixed rigid boundary �. The formulation becomes

αu(x) = Sγ [fb + fσ + fs](x) + Dγ [u](x) + D�[η](x), (25)

divγ (u(X)) = 0∀x ∈ γ , (26)

U(x) = − 1
2η(x) + Sγ [fb + fσ + fs](x) + Dγ [u](x) + D�[η](x) + N0[η](x)∀x ∈ �, (27)

∂x
∂t

= u(x)∀x ∈ γ , (28)

where N0[η](x) = n(x)
∫
�

[n(y) · η(y)]ds(y) and U(x) is the given velocity of rigid enclosing
boundary at x ∈ �. We solve the system of equations (25) and (26) for u and σ as in the unconfined
case. We then use the obtained u and σ in (27) to solve for double layer density η on �. Finally,
Eq. (28) is discretized as xnew = u�t + xold to solve for a new vesicle position xnew. To avoid the
effect of finite length of the channel, after each time step we translate the vesicle so that the x
coordinate of the center of the vesicle coincides with the x coordinate of the center of the channel.

III. PARAMETERS AND VALIDATION

A. Nondimensional parameters

To study the shape dynamics of capsules, the following nondimensional parameters are of key
importance.

(i) Viscosity contrast. The viscosity contrast, denoted by λ, is the ratio of dynamic viscosity of
fluid inside the capsule to the viscosity of the suspending fluid, i.e., λ := μi

μe
.

(ii) Reduced volume. The reduced volume of the capsule, denoted by ν, is defined as the ratio of
the volume of capsule to the sphere with the same area as the capsule. It is given by

ν := 6π
1
2 VA

−3
2 , (29)

where V is the volume of the capsule and A is the surface area of the capsule. In most of our
simulations, ν = 0.65. In the validation results, we compare with the literature and use other values
of ν.
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(iii) Capillary number. The bending-force capillary number, denoted by Ca, is defined as the ratio
of the shear rate over the bending energy of the membrane. For shear flow given by u∞ = (γ̇ y, 0, 0),

Ca := γ̇ μeR3
0

κb
, (30)

where R0 is the characteristic radius of the capsule (i.e., radius of the sphere that has the same area
as the capsule) and γ̇ is the shear rate. The shear-force capillary number, denoted by Ck , is defined
as the ratio of the shear rate over the shear energy of the membrane. For shear flow,

Ck := γ̇ μeR0

Es
. (31)

For Poiseuille flow with cross section diameter D given by u∞(x, y, z) = α0( D2

4 − y2 − z2), we
define the shear-force capillary number as

Ck := α0μeR2
0

Es
. (32)

(iv) Bending stiffness ratio. The dimensionless bending stiffness ratio, denoted by χ , is a measure
of the ratio of bending energy to shear elastic energy of the membrane. It is given by

χ := κb

EsR2
0

. (33)

(v) Confinement ratio (relevant only for confined flow). The confinement ratio, denoted by Cn, is
the ratio of the capsule diameter to the diameter of the enclosing rigid confinement. It is given by

Cn := 2R0

D
, (34)

where D is the diameter of the rigid wall.

B. Validation

In this section, we reproduce existing benchmark results to validate our model and the code.
For this purpose, we simulate an initially spherical extensible capsule (without inextensibility
constraint) in unconfined shear flow with viscosity contrast λ = 1 and bending modulus κb = 0.
The characteristic radius R0 = 1 μm in these simulations. We calculate terminal inclination angles,
ψ (defined as the angle between the major axis of the capsule and the direction of the shear flow),
for different capillary numbers. We summarize these results in Fig. 3(a) and compare them with the
results reported in [31,32]. The maximum relative error in the stationary inclination angle between
our observations and the reference observations in [31,32] is 4%. Thus we observe good quantitative
agreement.

In a second validation computation, we reproduce tank treading with swinging dynamics of
inextensible capsule in unconfined shear flow at Ca = 1 and plot the time evolution of the inclination
angle in Fig. 3(b). We compare with the results reported in [31] for the same parameters. The
maximum relative error in the inclination angle between our observations and the observations
in [31] is 12%. We attribute this slightly higher relative error to the oscillatory noise in the
observations in [31].

C. Shear flow

In this section, we reproduce the existing experimental and numerical results on the shape
dynamics of a red blood cell in shear flow regime. The parameter regime for which different shape
dynamics are observed in our simulations is in good agreement with the existing experiments. This
agreement demonstrates the physical relevance of our simulations (see Fig. 5). We also view this as
an additional validation of our code.

093602-7



DHWANIT AGARWAL AND GEORGE BIROS

FIG. 3. Comparison with known results from literature. (a) Stationary inclination angle of initially spher-
ical extensible capsule simulated with Skalak model for shear elasticity. λ = 1; κb = 0. The solid lines are
results from [31], while the triangle and square symbols are our results. (b) Time evolution of inclination angle
of inextensible capsule in unconfined shear flow for Ca = 1, λ = 1, ν = 0.65, and χ = 0.18. Blue curve is our
simulations, while the red crosses are data points extracted from Fig. 15 right of [31] using WEBPLOTDIGITIZER

software. We observe swinging-tank treading dynamics. We take the initial shape to be stress-free oblate and
use the finite extensibility nonlinear elasticity model for shear elastic energy proposed in [31].

Early experimental studies [2,3,33] demonstrated that a RBC in linear shear flow shows a
transition from tumbling (TB) dynamics (similar to that observed in rigid bodies) to tank treading
(TT) dynamics as the shear-force capillary number is increased. The tank treading motion is
also accompanied by oscillations in the inclination angle, which is called swinging (SW) [34].
Numerical simulations with initially oblate capsules [31,35,36] have also demonstrated the tran-
sition from TB to TT-SW dynamics as the shear-force capillary number is increased. Recent
experiments [22,24,25,37,38] have shown the existence of rolling dynamics at intermediate capillary
numbers between the TB and TT regime. In particular, the experiments in [22,25] showed that higher
viscosity contrasts (λ > 3) lead to stomatocytes and multilobe shapes instead of the TT dynamics
observed for λ � 3 as the shear-force capillary number is increased. Initial numerical studies could
not reproduce the TB-TT transition as a function of the flow shear rate; for this reason researchers
introduced residual stresses [21,23,39,40] by considering that the stress-free configuration of the
capsule corresponds to a near sphere. Following these works, we assume that the reference config-
uration is an oblate spherical capsule of reduced volume 0.96. We deflate it to an oblate capsule
of reduced volume 0.65 with R0 = 3.25 μm and let it relax to a biconcave shape (in dimensional
terms it corresponds to area A = 134 μm2 and volume V = 94 μm2, which are consistent with
experimentally obtained values [21,22]; see Fig. 4). The bending stiffness ratio is chosen to be
χ = 0.025. Our dimensionless parameters correspond to shear modulus Es = 1.25 × 10−6 kg s−2

FIG. 4. (a) Initial biconcave shape of the capsule. (b) Cross sectional view of the initial shape.
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FIG. 5. Phase diagram for unconfined shear flow dynamics of RBC in the parameter space of capillary
number Ck and viscosity contrast λ. Regions corresponding to different shapes are separated by a dashed line.
Red denotes tumbling discocyte state, green denotes tank treading, blue denotes rolling discocyte, cyan denotes
rolling stomatocytes, brown denotes tumbling stomatocytes, and magenta denotes tumbling multilobes. Circles
are our simulations, × are the experimental results in [24], + are the experimental results from [37], diamonds
are the experimental results from [25], and squares are the experimental results from [22]. The gray shaded
block represents the range of tumbling to rolling transition observed in [38]. Experimental capillary numbers
are obtained using R0 = 3.25 × 10−6 m and Es = 4.8 × 10−6 kg s−2. Experimental data points are the most
frequent states observed at those parameters. Rolling behavior in simulations is observed when capsule’s axis
is out of the shear plane initially.

and bending modulus κb = 2.5 × 10−19 J. In this section, we reproduce the experimental shear flow
results using our code. We observed good quantitative agreement with the experimental results.
We summarize the results in the phase diagram in Fig. 5. We confirm previous observations in
which, at low viscosity contrast (λ � 3), tumbling (see Fig. 6) to tank treading (see Fig. 7) transition
takes place as the shear-force capillary number is increased. We also observe the rolling dynamics
(see Fig. 8) at intermediate capillary numbers between the TB and TT regime. At higher viscosity
contrasts (λ > 3), no tank treading is observed; rather we observe stomatocyte shape (see Fig. 9)
which then transitions to tumbling lobar shapes (see Fig. 10) as Ck is increased further.

IV. RESULTS

In this section, we discuss the shape dynamics of a capsule in unconfined and confined Poiseuille
flow (0.25 � Cn � 0.65) for both λ = 1 and λ = 5. The capsule membrane parameters, the initial
shape, and the residual stress is the same as used in the shear flow simulations.

FIG. 6. Tumbling discocyte for λ = 0.5 and Ck = 0.001. (a) Side view (line of sight along −Z direction;
flow is towards +X ). (b) Top view (line of sight along −Y ).
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FIG. 7. Tank treading discocyte for λ = 0.5 and Ck = 0.13. (a) Side view. (b) Top view.

A. Unconfined Poiseuille flow λ = 1

We study the shape dynamics of a capsule for varying capillary numbers and initial positions (Y0)
from the center line of the flow for λ = 1. We observe three different dynamics, namely, outward
migration, tank treading slipper, and croissant shape. The slipper and croissant shapes are similar to
the ones shown in Fig. 11 and Fig. 12, respectively. For low capillary numbers 0.04 � Ck � 0.07,
we observe an outward migration with a slipperlike shape at all initial positions in our simula-
tions (Y0/R0 � 0.015). For Ck = 0.21, we observe a coexistence of slipper and outward migration
dynamics, i.e., TT slippers for 0.015 � Y0/R0 � 0.61 and outward migration for Y0/R0 > 0.61.
As the capillary number is increased higher to Ck � 0.42, we observe croissants for lower initial
positions and outward migration for higher initial positions. We combine all these results to plot a
phase diagram in the parameter space of capillary number Ck and the capsule’s scaled initial position
Y0/R0 shown in Fig. 13(a).

Discussion of results. The transition from slipper to croissant with increase in capillary number is
similar to the 3D vesicle behavior as observed in previous numerical studies [18]. The stable slipper
position with respect to the center line of the flow decreases as the capillary number increases like
observed with 3D vesicles in [18]. However, the outward migration results observed for capsules are
strikingly different from the results on 3D vesicles. The numerical studies on 3D vesicles [15,18]
have shown that for λ = 1 (no viscosity contrast) no outward migration is observed. For capsules,
we observe outward migration for high initial positions even when no viscosity contrast is present.
The observation of outward migration regime at high initial positions extends the conclusion of
our study on 3D vesicles [18] that the outward migration tendency, when it exists, increases with
increase in initial position. Another surprising result of this study is that the outward migration
seems to be the only dynamics present at low capillary numbers (Ck � 0.08), while both slipper
and outward migration are observed at intermediate Ck . This could possibly be explained due to our
observation that stable slipper positions rise with decrease in capillary number Ck . As the capillary
number Ck decreases, the increase in slipper position at stable configuration leads to increase in
outward migration tendency. At some critical capillary number (critical Ck value about 0.08 here),
the outward migration could dominate causing the slipper to become unstable and keep migrating
outwards away from the center line of the flow.

FIG. 8. Rolling discocyte for λ = 0.5 and Ck = 0.02. (a) Side view. (b) Top view.
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FIG. 9. Rolling stomatocyte for λ = 8 and Ck = 0.045. (a) Side view. (b) Top view.

B. Unconfined Poiseuille flow λ = 5

For a capsule in unconfined Poiseuille flow with λ = 5, we observe two regimes, namely,
tumbling and outward migration. For low capillary numbers Ck < 0.21, we observe tumbling
dynamics at all initial capsule positions. As the capillary number is increased to Ck = 0.21, we
observe tumbling for initial positions Y0/R0 � 1.8 and outward migration for Y0/R0 > 1.8. For
even higher capillary numbers Ck > 0.35, at all initial positions we see simultaneous migration
and tumbling. The tumbling shapes vary from slipper to trilobes and multilobes depending on the
local shear rate. We plot these results in a phase diagram of capillary number Ck vs scaled initial
position Y0/R0 in Fig. 13(b).

The tumbling dynamics (instead of the tank treading slipper as in λ = 1) is consistent with the
dynamics of capsules in shear flow (see Fig. 5). The shear flow dynamics show that for λ = 5 there
exists a tumbling multilobe/stomatocyte regime instead of the tank treading regime seen for λ � 3.
However, no outward migration takes place for low capillary numbers (unlike for λ = 1) and this
is surprising. This could be due to the tumbling dynamics observed for λ = 5 instead of the tank
treading slipperlike shapes for λ = 1. This difference in dynamics seems to change the migration
behavior significantly.

C. Confined Poiseuille flow λ = 1

In this section, we discuss the dynamics of capsule in confined Poiseuille flow with λ = 1.
Here, the outward migration observed in unconfined flow is opposed by wall effects that push
the capsule towards the center. The interplay between inward and outward migration can lead to
different dynamics compared to the unconfined flow. We observe that, for low confinement ratio
with low capillary numbers, the wall push towards the center seems to cancel the outward migration
and we observe tank treading slipper shapes. As the capillary number is increased (while keeping
the confinement ratio fixed), a transition from slipper to croissant shape takes place as observed
in unconfined flow. At high confinements, for example, at Cn = 0.65, only croissant shapes are
observed indicating the strong dominance of the wall push as confinement is increased. We observe
no bistability in this case even though outward migration was observed in unconfined flow with
λ = 1. This indicates that the outward migration tendency is rather weak at λ = 1 and gets canceled

FIG. 10. Tumbling multilobes for λ = 5 and Ck = 5.2. (a) Side view. (b) Top view.
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FIG. 11. Slipper shape observed in simulations and experiments. (a) Side view of slipper (aspect ratio
≈1.28) in our simulations of confined flow with λ = 5, Cn = 0.55, and Ck = 0.4. (b) Side view of slipper
(aspect ratio ≈1.4) in experiments in [20] for λ = 5, Cn ≈ 0.54, and Ck = 0.35. (c) Cross sectional view of
slipper in our simulations for the same parameters as in (a).

by the wall push completely. The results are presented in the form of a phase diagram in the
parameter space of confinement ratio Cn vs capillary number Ck in Fig. 14(a).

D. Confined Poiseuille flow λ = 5

For confined Poiseuille flow with λ = 5, we get a different picture. For low confinements,
for example, at Cn = 0.35, we observe tumbling dynamics at low capillary numbers (Ck < 0.15)
and slippers at high capillary numbers (0.15 � Ck � 0.5). As the capillary number is increased
(Ck > 0.5), we observe a croissant and slipper bistability, i.e., croissants are observed for low initial
positions (Y0/R0 � 0.09) and slippers at higher initial positions (Y0/R0 > 0.09). This is in line with
our conjecture that outward migration is counterbalanced by the wall effects resulting in slipper
shapes, especially when the initial position of the capsule is further away from the center line
(Y0/R0 is large). At high confinements Cn > 0.5, we observe the croissant-slipper bistability for
high capillary numbers (Ck � 0.23) and croissants/asymmetric shapes (like tumbling discocyte)
for low Ck . We combine these results in the form of a phase diagram in the parameter space of
confinement ratio Cn vs capillary number Ck as shown in Fig. 14(b).

Our shapes and results for confined flow are in good agreement with the experimental results.
The shapes obtained are similar to the ones observed in [20] (see Figs. 11 and 12). The transi-
tion to the croissant-slipper bistability regime has been observed to be around Ck ≈ 0.15 in the
experiments [10,20]. In our simulations, we observe this transition to be around Ck ≈ 0.18 [see the
transition from the gray region to blue region in Fig. 14(b)], which is close to the experimental value.
Our simulations explain the existence of slippers at high capillary numbers that have been observed
in the experiments. In Fig. 15, we compare our observations of the offset distance from the center
of the channel at which the slipper exists in the equilibrium state to the experimental observations
in [20].

FIG. 12. Croissant shape observed in simulations and experiments. (a) Side view of croissant (aspect ratio
≈1.06) in our simulations of confined flow with λ = 5, Cn = 0.55, and Ck = 0.1. (b) Side view of croissant
(aspect ratio ≈1.1) in experiments in [20] for λ = 5, Cn ≈ 0.54, and Ck ≈ 0.07. (c) Cross sectional view of
croissant in our simulations for the same parameters as in (a).
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FIG. 13. (a) Phase diagram for unconfined Poiseuille flow dynamics of RBC in the parameter space of
capillary number Ck vs vesicle scaled initial position Y0/R0 for λ = 1. (b) Phase diagram for unconfined
Poiseuille flow dynamics of RBC in the parameter space of capillary number Ck vs vesicle scaled initial
position Y0/R0 for λ = 5. Regions corresponding to different shapes are separated by a dashed line. Cyan
denotes outward migration, green denotes tank treading slipper, magenta denotes croissant/parachute shape,
and red denotes tumbling. Circles indicate our simulations. The dashed lines serve as a guide to the eye.

E. Sensitivity to the stress-free reference state

Now we discuss the significance of the stress-free reference state. The stress-free reference shape
of an RBC determines the residual stress field. As mentioned before, choosing this stress-free

FIG. 14. Phase diagram for confined Poiseuille flow dynamics of RBC in the parameter space of con-
finement ratio Cn vs capillary number Ck for (a) λ = 1 and (b) λ = 5. Regions corresponding to different
shapes are separated by a dashed line. Circles are our simulations, diamonds are the experimental results
from [20], and triangles are the experimental results in [10]. Experimental capillary numbers are obtained
using R0 = 3.25 × 10−6 m and Es = 4.8 × 10−6 kg s−2. Experimental data points are the most frequent states
observed at those parameters. Green denotes tank treading slipper, magenta denotes croissant shape, red
denotes tumbling, blue denotes croissant and slipper bistability (croissant at low Y0 and slipper at high Y0),
and gray denotes bistability of croissant (low Y0) and other asymmetric shapes (like tumbling shapes at high
Y0). No bistability depending on initial position of the capsule is observed for λ = 1. The dashed lines serve as
a guide to the eye.
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FIG. 15. Plot of offsets from the axis of the channel of slipper shapes in equilibrium state at various
capillary numbers. D is the diameter of the channel. Blue is our simulations for confined Poiseuille flow with
λ = 5 and Cn = 0.55, while red denotes the experimental results presented in [20].

reference state to be an oblate near sphere of reduced volume 0.96 leads to results that are consistent
with the experiments with RBCs suspended in shear flow [21–23]. Here, we further emphasize the
importance of choosing this particular stress-free reference state by presenting the phase diagram
of capsule shapes obtained with no initial residual stress field (i.e., with the initial biconcave shape

FIG. 16. Phase diagram for confined Poiseuille flow dynamics of RBC without residual stress field for
λ = 5. Regions corresponding to different shapes are separated by a dashed line. Circles are our simulations,
diamonds are the experimental results from [20], and triangles are the experimental results in [10]. Green
denotes tank treading slipper, magenta denotes croissant shape, red denotes tumbling, blue denotes croissant
and slipper bistability (croissant at low Y0 and slipper at high Y0), and gray denotes bistability of croissant (low
Y0) and other asymmetric shapes (like tumbling discocyte shapes at high Y0). The dashed lines serve as a guide
to the eye.
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assumed to be stress free). We provide the phase diagram with viscosity contrast λ = 5 and no
residual stress field in Fig. 16 for comparison with Fig. 14(b). In general, we observe that the
transitions in shape dynamics are shifted to higher capillary numbers compared to the case with
nonzero residual stress field [Fig. 14(b)]. In particular, we also observe that, at confinement ratio
Cn = 0.55, the transition from the croissant (gray region) to the croissant/slipper bistability region
(blue) happens at around capillary number Ck = 0.3, while it happens at around Ck = 0.15 in
the experiments (shown as diamonds). When the residual stress is taken into account as before
[see Fig. 14(b)], we saw that this transition happened around Ck = 0.18, which is closer to the
experimental observations. This further validates the importance of the stress-free reference state in
accurately determining the shape dynamics of a red blood cell.

V. CONCLUSION

In this paper, we study the dynamics and equilibrium shapes of 3D capsules in confined and
unconfined Poiseuille flow with and without viscosity contrast. We provide the phase diagrams
for both the cases. Our results for unconfined Poiseuille flow indicate the existence of outward
migration tendency at both λ = 1 and λ = 5, unlike vesicles where the outward migration was only
observed for λ = 5. The croissant-slipper bistability in confined Poiseuille flow due to this outward
migration is observed only for λ = 5. The reason for this could be that the outward migration
tendency is weak for λ = 1. As speculated in [18], the bistability for ν = 0.65 capsules carries over
to confinement ratios Cn > 0.5 as well, which was not the case with ν = 0.9 vesicles. Our results
are in good agreement with experimental observations and extend the results for bistability observed
in vesicles to capsules (a more realistic model for RBCs). Our results also provide good evidence
for the validity of the speculation about bistability being the reason for experimental observation
of slippers [20,26] at higher capillary numbers. We were able to reproduce results from several
experimental and numerical prior works and we confirmed that the observed dynamics require a
nontrivial, zero-stress, reference configuration space.
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