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The motion of a free rising skirt bubble is studied using direct numerical simulation
covering the range of Eötvös (Bond) and Morton numbers where they can be observed.
We investigate the skirt bubble motion (terminal velocity and drag), the flow field structure
(inside the skirt film, around the bubble, and inside the gas film that forms the skirt) as well
as the geometrical characteristics of the skirt (both length and thickness). A unified relation
for the terminal velocity (and drag force) is provided for all bubble shapes (dimple, skirt,
and spherical cap bubbles) when considering Eötvös numbers (based on bubble diameter)
larger than 100. The velocity field around and inside the bubble is investigated resulting in
the clarification of the wake structure with a major difference with the flow deduced from
experimental observations during the 1970s. The numerical simulations reveal that only
one recirculation is observed inside the bubble while two vortices are highlighted in the
wake. We confirm that a parallel Poiseuille flow develops inside the skirt film resulting in
an intense vorticity field. Original modeling is improved with a Reynolds correction that
makes possible the prediction of the film thickness in very good agreement with the only
experimental value available in the literature. Our simulations combined with experimental
observations suggest the existence of a maximum value for the skirt length.
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I. INTRODUCTION

For large bubbles rising in a viscous fluid, a thin layer of gas, commonly referred to as a “skirt,”
can be observed issuing from the rim of bubbles. It seems that the skirt phenomenon was first
reported for drops by Thomson and Newall [1] who observed a “thin cylindrical part at the edge”
of drop made of a solution of oleate of soda falling into paraffin oil. According to experimental
observations, the appearance of skirts requires a sufficiently viscous continuous phase. A criterion
for the skirt formation has been proposed considering that the balance between the surface tension
and the normal viscous stress becomes impossible [2]. After its formation a skirt can grow to a
stable length or can become unstable and shed small fragments or large volumes. Guthrie [3] and
then Guthrie and Bradshaw [4] proposed a simplified approach for calculating the skirt thickness δ

considering a parallel vertical and fully developed flow inside the skirt. Wairegi [5] and then Bhaga
[2] extended the theory proposed by Guthrie and Bradshaw [4] to the case of drops and conducted
additional experiments. More recently, Ray and Prosperetti [6] considered the effect of the viscous
boundary layer that develops along the surface. However, a significant discrepancy between the
proposed models and the experiments still needs to be clarified. Most of the experimental studies
have focused on skirt drop. As a consequence, few information, in particular for skirt thickness
and length, are available for skirt bubble, i.e., when both the bubble density ρB and viscosity
μB are much smaller than the density ρL and viscosity μL of the external fluid. In such system,
a typical thickness for the skirt film is around 50 μm making experimentation difficult. In such
conditions, numerical simulation is very useful for conducting bubble skirt investigations because
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of the total control of both the parameters and the condition of bubble generation with a nonintrusive
measurement of the flow inside the skirt. Surprisingly, few numerical works have focused on skirt
bubble dynamics. Most of them report only bubble or drop skirt shapes and corresponding terminal
velocity [7]. Ohta and Sussman [8] discussed the effect of the density and viscosity ratio on the
skirt and outlined the importance of the internal skirt density on the development of the skirt.
Most of the numerical studies are using the skirt bubbles shape as a reference benchmark case for
code performance comparison and validation [9–13] (see Ohta and Sussman [8] for a review of the
numerical methods used). Thus, a systematic numerical investigation has not yet been proposed to
conduct a deep investigation of skirt bubble dynamics, with a detailed inspection of rising velocity
(and drag force) as well bubble skirt characteristics. In particular the parameters that control bubble
skirt thickness and length still need to be clarified. This is the motivation of this work, which focuses
on the “bubble” skirt case.

The paper is organized as follows. First, we present the numerical method, the numerical setup
designed for the study, and the specific tests made for the bubble skirt configuration. Then we discuss
the shape of bubble when varying both the Eötvös (Bond) and Morton number in the region of the
phase diagram where skirt bubbles are expected to be observed according to Clift et al. [15] and
Tripathi et al. [14]. The terminal velocity and drag force of a skirt bubble but also a spherical cap
and dimple bubble are discussed. We finally investigate the specific characteristic of a skirt bubble,
with a particular attention to the skirt film.

II. PROBLEM STATEMENT AND NUMERICAL SOLVER

We consider a spherical bubble of diameter d , density ρB, and dynamic viscosity μB released
from rest in a Newtonian liquid of density ρL and dynamic viscosity μL. Due to the gravity g, the
bubble rises in the liquid and deforms if the surface tension effects are weaker than hydrostatic, iner-
tia, and viscous effects at the bubble surface. The aim of this work is to focus on stable skirt bubbles.
Considering that both ρB � ρL and μB � μL (the “bubble” case), such a problem is controlled by
two nondimensional numbers. The identification of the range of parameter for the observation of
a stable skirt bubble can be achieved by varying the Eötvös (Bond) number Eo = ρLgd2/σ and
the Morton number Mo = gμ4

L/ρLσ 3, where σ is the surface tension. We also introduce the bubble
Reynolds number Re = ρLUBd/μL, the bubble capillary number Ca = μLUB/σ , and the Galileo
number Ga = ρLg1/2d3/2/μL.

The numerical simulations reported in this work are performed with the Level Set solver [16–18]
developed in the JADIM code [9,19]. The two fluids are considered as Newtonian and incompress-
ible with no phase change. Under isothermal conditions and in the absence of any surfactant, the
surface tension is constant and uniform at the interface between the two fluids. In such a case, the
velocity field U and the pressure P satisfy the classical one-fluid formulation of the Navier-Stokes
equations:

∇ · U = 0, (1)

ρ

(
∂U

∂t
+ U · ∇U

)
= −∇P + ∇ · � + ρg + Fσ , (2)

where � = μ[∇U + (∇U )T ] is the viscous stress tensor, g is the gravity, and Fσ is the capillary
contribution:

Fσ = σ∇ · n nδI , (3)

where n denotes by arbitrary choice the unit normal of the interface going out from the drop and δI

is the Dirac distribution associated with the interface. The Level Set function satisfies the advection
equation

∂φ

∂t
+ ∇ · (φU ) = 0. (4)
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FIG. 1. Variables used for the skirt bubble description in a referential frame moving with the bubble. a
is the front curvature, θ the polar angle taken from the vertical axis of symmetry, r the radial distance to the
symmetry axis, δ the skirt thickness, 	 the skirt length, ξ the interfacial curvilinear coordinate, and RS and RW

the mean radius of curvature of the skirt internal and external surface, respectively.

The interface corresponds to the isovalue φ = 0, the gas phase to φ > 0, and the liquid phase to
φ < 0. In order to keep the Level Set function as close as possible to a signed distance function, a
redistancing procedure is applied [20]:

∂φ

∂τ
+ sgn(φ)(|∇φ| − 1) = 0. (5)

The density and viscosity are deduced by linear interpolation from the Level Set function φ in
each computational cell:

ρ = H (φ)ρB + [1 − H (φ)] ρL, (6)

μ = H (φ)μB + [1 − H (φ)] μL, (7)

where the approximation H (φ) of the Heaviside function is given by

H (φ) =
⎧⎨
⎩

0 if φ < −ε,

0.5
[
1 + φ

ε
+ 1

π
sin

(
πφ

ε

)]
if |φ| � ε,

1 if φ > ε,

(8)

where ε = √
2�x is half the numerical thickness of the interface.

The system of equations (1)–(4) is discretized using the finite volume method. Time advancement
is achieved through a third-order Runge-Kutta method. Equations (4)–(5) for φ are solved using a
WENO5 scheme, and the Hamiltonian fluxes are calculated with a Godunov operator. Incompress-
ibility is satisfied at the end of each time step though a projection method.

The parameters used in this paper to describe the skirt shape and velocity field are presented in
Fig. 1.

A. Computational domain and grid tests

We consider an axisymmetric bubble shape allowing the simulation to be performed using
axisymmetric conditions with the symmetry axis parallel to gravity. The computational domain
D is shown in Fig. 2. The simulations are performed in the frame of reference moving with the
bubble. As a consequence the following boundary conditions are considered at each time step n:
the inlet velocity U n

∞ = −U n
B on the north face, axisymmetric conditions on the west boundary, a

no sliding condition on the east boundary, and an exit condition on the south boundary. The bubble
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FIG. 2. (Left) Computational domain D and grid parameters in the frame of reference moving with the
bubble. (Right) Effect of the grid refinement for the case (Eo = 330, Mo = 100) on the bubble velocity and
shape for d/�= 125 (green), 250 (red), and 500 (blue). The bubble velocity is normalized with the terminal
velocity obtained with the thinner grid GRID3.

rising velocity evolution with time is calculated as

U n+1
B = U n

B + 1

ϑB

∫
D

H (φ)U n dϑ, (9)

where U n is the velocity field calculated at time n and ϑB is the bubble volume.
The vertical length of the computational domain is noted Lx and its radial expansion is Lr . The

specific challenge of simulating skirt bubble as addressed in this work resides in the ability to capture
with a good accuracy the motion of the gas inside the skirt film. In order to save CPU resources,
only a region (	x = 2.5d × 	r = 1.25d) close to the bubble is refined, and the grid is progressively
increased from this region following a geometrical series in both the radial and vertical directions.
Typically the ratio between two successive cells is less than 1.1 for all the grids considered. In the
refined zone the same grid spacing is used along the vertical and radial direction, � = 	x/nx = 	r/nr

where nx and nr are the corresponding number of nodes. Different grids have been tested in order
to ensure that results are grid independent and to avoid domain confinement. The grid parameters
are shown in Table I for the grids GRID1, GRID2, and GRID3 corresponding to d/�= 125, 250,
and 500, respectively. The corresponding evolution of the velocity is reported in Fig. 2, and two
typical shapes obtained for the three grids are compared. As shown the difference between the three
grids can not be distinguished in the figure, in particular when considering the bubble skirt. The film

TABLE I. Grid characteristics and number of cells per diameter and inside the skirt. The number of cells
inside the skirt is given for the case (Eo = 330, Mo = 100).

Name Lx/d × Lr/d Nx × Nr 	x/d × 	r/d nx × ny d/� δ/�

GRID1 35 × 5 400 × 200 2.5 × 1.25 300 × 150 125 6.4
GRID2 35 × 5 700 × 350 2.5 × 1.25 600 × 300 250 13.8
GRID3 35 × 5 1300 × 650 2.5 × 1.25 1200 × 600 500 25.6
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FIG. 3. Bubble shape evolution with time for Eo = 330 and Mo = 100. At t = 0 the initial shape is a
sphere. The normalized times tUB/dB are from left to right: first row (initial bubble deformation) 0, 0.43, 0.86,
1.28, 1.71; second row (onset of the skirt) 2.14, 2.56, 2.99, 3.42, 3.85; last row (skirt elongation) 4.27, 8.55,
12.8, 17.1, 21.4.

is described by 6.5, 13, and 26 cells when increasing the refinement from GRID1 to GRID3. The
simulations reported in the following were conducted with GRID2 corresponding to d/� = 250.

III. SKIRT AND DIMPLED/CAP BUBBLES

The phase diagram (Eo, Mo) inspection for skirt bubble identification is conducted by varying
the Morton number Mo for a fixed Eötvös Eo number and by varying the Eötvös number for
a fixed Morton number. The viscosity ratio and density ratio between the bubble and the liquid
are maintained constant and close to the air/water system: μB/μL = 0.018 and μB/μL = 0.0014.
Eo and Mo numbers are varying in the range 100 to 750 and 0.01 to 10 000, respectively. From
the bubble release at zero velocity, the time evolution of the rising velocity is similar for all the
considered cases to the one reported in Fig. 2 for Eo = 330 and Mo = 100. Corresponding bubble
shapes at different times are reported in Fig. 3 revealing three typical stages in the skirt bubble
formation. Starting from a spherical shape, we first observe that the bubble rear is deformed and
the curvature is inverted (first row). Then a toroidal small appendix appears at the bubble surface
(second row), and it progressively develops to form a skirt (last row). For the first image of the
second row in Fig. 3 the bubble has already reached 96% of its terminal velocity, indicating that
the bubble reaches first its terminal velocity with a shape close to a dimple bubble. Then the skirt
develops and the length of the skirt increases and stabilizes around tUB/dB = 30 for the case shown
in Fig. 3. Similar orders of magnitude for these characteristic times are observed for all the skirt
bubbles considered here. Clearly the bubble relaxation time to reach the terminal velocity is much
smaller than the characteristic time for the skirt formation process.

Some stabilized bubble shapes observed when varying both Eo and Mo are reported in Fig. 4. A
minimum Eötvös number (between 100 and 200) is required to observe skirt bubbles. When
decreasing the Morton number, dimple bubble deformation is increased and skirt bubbles are
observed. Below a threshold Morton number, skirt bubbles are becoming unstable and are indicated
using an asterisk. In Fig. 4 we recognize three of the four typical shapes reported by Bhaga [2]: the
spherical shape, oblate shape, and straight skirt shape. The prolate shape has not been observed here
for the conditions corresponding to μG/μL � 1 and ρG/ρL � 1.

According to Fig. 4 bubbles can be classified into the following groups for the range of param-
eter investigated: stable skirt bubbles, dimpled bubbles, spherical cap bubbles, and unstable skirt
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FIG. 4. Bubble shapes at steady state when varying both Eo and Mo. Asterisk indicates unstable skirt cases.

bubbles. The corresponding families are shown in Fig. 5 using the diagram Eo-Re deduced from
experiments by Clift et al. [15] and the diagram Ga-Eo proposed by Tripathi et al. [14] based on 3D
numerical simulations. The map corresponding to dimple cap and skirt bubble are consistent with
both references. However, the transition between stable and unstable skirt bubble does not clearly
match the transition reported by Tripathi et al. [14]. The difference maybe explained because we
are conducting axisymmetric simulations while 3D simulations were reported in Tripathi et al. [14].
Note that, concerning the transition between skirt and dimpled bubbles, Tripathi et al. [14] do not
report the dimpled shape, but the transition reported here from dimpled bubble to ellipsoidal bubble
is in agreement with their transition from skirt bubble to ellipsoidal bubble.

The onset of the skirt has been discussed in Wairegi [5]. Considering the creeping flow solution
on both sides, the bubble corner and balancing normal stress and surface tension, Wairegi [5]
proposed a relation between the capillary number (also called the “skirt number”) and the corner
shape characterized by the angle α (see Fig. 5.1 in Wairegi [5]). The transition between dimple
bubble and skirt bubble was reported in a Ca-Re diagram, and experimental observations of Wairegi
[5] indicate that a skirt is observed for Re � 4 and Ca � 1. Based on additional experimental data,
Clift et al. [15] proposed the following relation for this transition:

Ca = 2.32 + 11

(Re − 9)0.7
. (10)

Our simulations are compared to relation (10) in the Ca-Re diagram reported in Fig. 6. The condition
to observe a skirt bubble in our simulations is consistent with the experimental observations of
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FIG. 5. Bubble shapes reported in the diagrams (left) (Ga = ρL
√

gRR/μL , Eo = ρLgR2/σ ) from Tripathi
et al. [14] and (right) (Eo = ρLgd2/σ , Re = ρLUBd/μL) from Clift et al. [15]. This study: ◦ skirt bubble, �
dimpled bubble, ♦ unstable skirt bubble, and � spherical cap bubble.

Wairegi [5]. As shown, an agreement is observed around Re = 10, while in experiments skirt
bubbles have been observed in a smaller domain for both larger and smaller Reynolds numbers.
This may be due to both the experimental difficulty of identifying the skirt formation and the use
of 2D axisymmetric conditions in our simulations that may force the skirt stability, extending in an
artificial way the domain for their observation. Based on our simulations, the transition from dimple
bubble to skirt bubble is described by a simple power law of the form

Ca ≈ 70Re−1 (11)

corresponding to a constant value for the Weber number We = 70 as shown in the insert of Fig. 6.
The transition from stable to unstable skirt deduced from the numerical results is reported in

FIG. 6. Bubble shape in the diagram Ca-Re. Insert diagram We-Re. ◦ Skirt bubble, � dimpled bubble, ♦
unstable skirt bubble, � spherical cap bubble. — We = CaRe = 70, − − − Ca = 2800Re−2, − · − relation
(10).
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FIG. 7. Shape evolution of an unstable skirt bubble (Eo = 500, Mo = 100, and Re = 20.0). (Left) Bubble
shape showing the skirt development up to the instability onset at time tUB/dB = 8.08, 10.8, 13.5, 16.2
(in red) on the left side, and first skirt oscillations due to the stability development at time tUB/dB =
18.9, 24.2, 26.9, 29.6, 32.2 on the right side. (Right) Evolution of the skirt tip position. The normalized radial
position of the tip zS/dB is reported as a function of the normalized vertical position zS/dB. The vertical red
dash line corresponds to the beginning of the skirt instability.

Fig. 6. It can be simply described by Ca ≈ 2800Re−2 corresponding to the equivalent relation
We ≈ 2800Re−1.

The bubble shape before and after the stability development is shown in Fig. 7 for the case Eo =
500, Mo = 100 corresponding to Re = 20.0. The terminal velocity and thus the bubble Reynolds
number stabilizes before the development of the instability that seems to happen when the skirt
has reached a critical length. Figure 7 reports the skirt shape evolution up to the instability as well
as right after the instability development. As shown the instability starts at the skirt tip and then
the instability develops. Figure 7 also reports the corresponding skirt tip position evolution. The
vertical position zS of the skirt tip is reported as a function of its radial position rS . The observed
instability frequency f normalized using the bubble diameter and rising velocity gives a Strouhal
number value St = f d/U ≈ 0.33. The evolution of the normalized frequency St is reported in Fig. 8
as a function of the Reynolds number for different unstable skirts. Both the Morton number and the

FIG. 8. (Left) Normalized frequency St as a function of the bubble Reynolds number. (Right) Normalized
skirt length when the instability develops as a function of the bubble Reynolds number. − − 	 = 1.37d .
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Bond number are varied. As shown, the Strouhal number is almost constant in the range 0.3–0.4.
The skirt length when the instability starts to develop at the skirt tip is reported in Fig. 8. This plot
outlines that the skirt instability seems to appear when the skirt has reached a critical skirt length
	 = 1.37d reported using a dashed line. This value is remarkable and does not seem to depend on
the physical properties as well as on the bubble Reynolds number. The skirt length is discussed in
more detail at the end of the paper. Note that the transition between stable and unstable bubble skirt
has to be considered carefully since the flow is forced to be axisymmetric in our simulations and
3D effects are expected to have an important influence on both the apparition and the development
of skirt instabilities. A detailed characterization of the transition between stable and unstable skirt
would require 3D simulations. This is out of the scope of the present work, which aims to focus on
the dynamics of stable skirt bubbles.

IV. TERMINAL VELOCITY AND DRAG FORCE

In this section we consider the rising speed for all the simulated bubbles, i.e., for skirt bubbles,
dimpled bubbles, and spherical cap bubbles. As will be shown, a unified relation for the terminal
velocity (and drag force) is proposed to describe the motion of any bubble having an Eötvös number
larger than 100.

A. Terminal velocity

According to the (Eo-Re) diagram [15], the skirt bubble regime is bounded by the spherical cap
bubble regime when increasing the bubble Reynolds number. Davies and Taylor [21] determined
the terminal rising velocity of a spherical cap bubble by balancing the dynamic pressure given
by the potential flow around a sphere 9ρLU 2

B sin2 θ with the liquid hydrostatic pressure variation
ρLga(1 − cos θ ) at the bubble nose, where a is the radius of the spherical cap and θ is here the angle
made from the stagnation point (see Fig. 1). The limit for θ → 0 gives the rising velocity:

UB = 2

3
√

ga. (12)

This relation is expected to be valid for Re 	 1, We 	 1, and Eo 	 1 since the flow is assumed to
be potential at the bubble front, and surface tension is considered to be negligible compared to both
inertia and gravity. For a spherical cap, the front curvature a can be related to the bubble diameter
as a = c(Re)d . In fact, c(Re) depends on the angle θc made by the cap that itself depends on the
Reynolds number. In the limit of large Reynolds number the cap angle reaches a constant value of
θc ≈ 50◦ corresponding to c(Re) = 1.14, so that the velocity can be simply linked to the bubble
diameter as

UB = 0.707
√

gd . (13)

From the simulated shapes the bubble front curvature a has been determined by fitting the surface
by a spherical cap. Figure 9 shows that the normalized curvature a/d follows a unique evolution
with Re for all the shapes considered here. a/d has a monotonic evolution from the spherical shape
where a = d/2 to the spherical cap regime discussed above where a = 1.14d . As shown in Fig. 9,
the relation between the cap radius a and the bubble diameter d can be fitted to

a = 12 + 1.14 Re1.25

24 + Re1.25 d. (14)

The evolution of the normalized rising velocity UB/(gd )1/2 is reported as a function of Re
in Fig. 10. The evolution of UB/(gd )1/2 tends at large Re to relation (13) valid for a spherical
cap bubble. For lower Reynolds numbers a different trend is observed. At zero Reynolds number
the shape of any fluid particle rising in an other fluid is a sphere [22], so in the limit Re → 0
the Hadamard-Ribzinsky drag force of a spherical bubble [23,24] 2πμLdUB is expected. When
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FIG. 9. Evolution of the normalized front curvature a/d as a function of the bubble Reynolds number. �
dimple bubble, ◦ skirt bubbles, � spherical cap. — relation (14), − − a = 1.14d (spherical cap), − · − a = d/2
(sphere).

balanced with buoyancy we obtain the terminal rising velocity UB = ρLd2g/12μL, which can also
be expressed under the form

UB =
(

Re

12

)1/2√
gd . (15)

FIG. 10. Bubble terminal velocity UB normalized by (gd )1/2 as a function of Re. � Dimple bubble, ◦ skirt
bubbles, � spherical cap. — relation (16), − − relation (13), − · − relation (15). Insert: Bubble Reynolds
number as a function of Galileo number. — relation (17), − − Re = 0.707 Ga, − · − Re = Ga2/12.
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FIG. 11. Drag coefficient CD as a function of Re. � dimple bubble, ◦ skirt bubbles, � spherical cap. Insert:
Evolution of CD − 8/3. − · − CD = 16/Re [23,24], — relation (19), · · ·CD = [(2.67)0.9 + (16/Re)0.9]1/0.9

[26], −− CD = 8/3 [21].

As shown in Fig. 10 this relation is indeed the correct trend in the limit of vanishing Reynolds
numbers. Finally, from relations (13) and (15) the following expression for the rising velocity is
formed:

UB =
(

2 + 12

Re

)−1/2√
gd. (16)

This relation is able to describe the evolution of the velocity of any bubble (dimple, skirt, and
spherical cap) for the range of Eötvös number considered here (Eo � 100). Relations (13) and (15)
can be used to express the bubble Reynolds number Re as a function of the Galileo number Ga [25],
Re = 0.707 Ga, and Re = Ga2/12, respectively. From Eq. (16), the normalized bubble velocity
expressed using the Reynolds number can be expressed as a function of the a priori known Galileo
number as

Re

(
2 + 12

Re

)1/2

= Ga. (17)

The Reynolds number is reported as a function of the Galileo number in the insert of Fig. 10. As
observed relation (17) provides a very good description of the numerical results with a quadratic
dependence of Re with Ga at low Re and a linear dependence of Re with Ga at high Re.

B. Drag force

We now consider the drag force experienced by a skirt bubble. Balancing the drag force FD =
CDπd2ρLU 2

B/8 with buoyancy ρLgπd3/6, we obtain the classical relation used to determine the drag
coefficient from the rising velocity

CD = 4

3

gd

U 2
B

. (18)

The evolution of the drag coefficient CD is reported in Fig. 11. For comparison all the simulated
cases are again shown. Considering the above results observed for the velocity evolution, the drag
coefficient tends at large Reynolds number to the drag for spherical cap CD = 8/3 [21]. A detailed
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inspection of the evolution of CD (see insert of Fig. 11), reveals that CD − 8/3 is found to follow
in a very satisfactory way the evolution 16/Re corresponding to the Hadamard-Ribzinsky drag
coefficient for a spherical bubble. Finally, the evolution of the drag coefficient for all the bubble
shapes (dimpled/spherical cap and skirt) is satisfactorily described using

CD = 8

3
+ 16

Re
. (19)

Relation (19) is in very good agreement with the relation CD = [(2.67)0.9 + (16/Re)0.9]1/0.9 pro-
posed by Bhaga and Weber [26] to fit their experimental data of rising bubble for Morton number
Mo > 10−3. Obviously, relations (19) and (16) provide the same information since they are con-
nected by relation (18). Note that this relation was proposed in Clift et al. [15] for the evolution of
the drag force from spherical bubbles to spherical cap bubbles. We show that it can also be applied
to skirt bubbles, i.e., for Eötvös number larger than 100.

A remarkable unique behavior for the bubble rising velocity (and drag force) is observed for all
the bubble shapes considered, dimple, skirt, and spherical cap. As outlined by Ohta and Sussman
[8] for drops, the presence of a skirt does not change the rising motion behavior. A similar result is
found here for bubbles. As observed for a spherical cap bubble, the rising velocity of a skirt bubble
is mainly controlled by the flow on the front part of the bubble. The skirt is developing encapsulating
the vortex that develops in the bubble wake.

V. SKIRT DESCRIPTION

Different models have been proposed to describe the skirt thickness, and they mostly differ from
the assumption made concerning the velocities on both sides of the skirt interface. Model validation
with experiments is very challenging because of the experimental difficulty in characterizing the
skirt. In particular, because of the skirt curvature and thickness, optical reflections induce a strong
perturbation of the measurement. However, skirt model development and their validation require a
clear understanding of the velocity field structure, around and inside the skirt. This is the objective
of the first part of this section. Then we propose a detailed description of the skirt film characteristics
such as its thickness and length.

The parameters used to describe the skirt are reported in Fig. 1. The interfacial curvilinear
coordinate ξ is defined along the bubble surface and is varying from the front stagnation point
where ξ = 0 up to its maximum ξ = ξmax located at the rear of the bubble inside the skirt. The value
of ξmax depends on how much the bubble deforms and in particular on how long the skirt is. As a
reference, ξmax/d = π/2 ≈ 1.57 for a sphere.

A. Interfacial velocity

We report in Fig. 12 the interfacial bubble velocity Uξ as a function of the curvilinear coordinate
ξ . Uξ is shown from the front stagnation point (ξ = 0) to the rear of the bubble (ξ = ξmax). Four
cases are reported in Fig. 12 in order to cover the range of parameters considered and in particular the
different observed skirt shapes: bubble with a small skirt [Fig. 12(a)], a circular skirt [Fig. 12(b)], a
long skirt [Fig. 12(c)], and an opened skirt [Fig. 12(d)]. These four cases are representative of all the
cases considered, and all show a very similar interface velocity distribution. To guide the description,
symbols for specific positions are located at the bubble surface and reported on the velocity plot.
As observed, Uξ is found to be positive all along the interface with a minimum value Uξ = 0 at the
skirt front and rear but also at the skirt tip. From ξ = 0, Uξ increases linearly with ξ and reaches
a maximum velocity (symbol ◦) very close to the beginning of the skirt on the external surface.
Then Uξ decreases on the external side of the gas film. Uξ cancels at the tip (�) and then increases
again to reach a maximum inside the skirt (∗) almost before the inside start of the skirt, and finally
Uξ reaches zero on the symmetry axis. The evolution of Uξ at both the top and rear of the bubble is
varying linearly with ξ corresponding respectively to evolutions of the form Uξ ≈ UBξ/d ≈ UB sin θ
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FIG. 12. Tangential velocity Uξ at the bubble surface as a function of the interface curvilinear length ξ

as defined in Fig. 1. Uξ is defined positive in the direction of ξ . The external (resp. internal) interfacial
skirt velocity UW (resp. US) is plotted in red (resp. green). − − − relation (20) with adjusted values for
Cf , · · · ,Uξ ≈ UBr. (a) Eo = 500 and Mo = 5000 (Re = 6.2 and Cf = 0.915); (b) Eo = 330 and Mo = 100
(Re = 14.4 and Cf = 1.13); (c) Eo = 400 and Mo = 100 (Re = 16.6 and Cf = 1.145); and (d) Eo = 200 and
Mo = 1 (Re = 33.8 and Cf = 1.30). Insert: Bubble shape and location of the maximum interface velocity (◦),
maximum bubble width (♦), tip of the skirt �, maximum radius inside the skirt (�), and maximum interface
velocity inside the skirt (∗).

for ξ → 0 and Uξ ≈ UBr for ξ → ξmax where θ is the polar angle taken from the vertical axis of
symmetry and r is the radial distance to the symmetry axis. The bubble shape being close to a
spherical cap of radius a on the bubble front, the interface velocity Uξ on the external bubble is
described by

Uξ = Cf
3

2
sin

ξ

a
UB, (20)

where the coefficient Cf is used to account for the departure from the potential flow around a sphere
[2]. By adjusting Cf , relation (20) is able to describe the evolution of the interface velocity on a
significant part of the bubble front, almost up to the skirt beginning, as shown in Fig. 12. Note that
Cf is increasing with Re due to the streamlines tightening when increasing Re.

Information provided by these simulations concerns the clarification of the velocity field struc-
ture, inside the skirt and in the gas film. The positive value for Uξ on the internal surface of the skirt
indicates that the fluids (on both the liquid and gas sides) are moving in a direction opposite to that
of the external flow. This is the signature of the presence of a toroidal recirculation (see Fig. 13)
that develops inside the bubble skirt with an upward vertical motion along the skirt surface and a
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FIG. 13. Velocity field structure for the case (Eo = 330, Mo = 100): (Left) Stream lines from the nu-
merical simulation with the identification of two toroidal vortices. (Right) Vorticity field ω ranging from the
maximum value +34.2UB/R (in red) to the minimum value −16.7UB/R (in blue), both located inside the skirt
film.

downward motion on the symmetry axis. Our simulations reveal that a second toroidal recirculation
of opposite rotation develops below the first one and is attached at the tip of the skirt film, making
the connection with the external flow. Such a velocity field structure is consistent with the numerical
simulation of a skirt bubble reported by Yu and Fan [7] but clearly differs from the picture proposed
by Wairegi [5] and Bhaga [2] (see also Clift et al. [15]) from experimental observations. Indeed, their
description based on tracer trajectory proposes an single recirculation with opposite rotation inside
the skirt wake, which can be consistent only with a double inflexion of the velocity field inside
the skirt film corresponding to the presence of two vortices inside the skirt film. Our numerical
simulations reveal a clear different velocity field organization with a single recirculation inside the
bubble, but with two recirculation of opposite direction in the skirt wake. Possible explanations of
this major difference can be proposed. First, only the second recirculation has been visualized in the
experiment. A second reason may be due to the use in the experiments of tracer particles having size
of the same order of magnitude as the skirt width as well as the suspected presence of surfactants
explaining the observation of stagnation regions inside the skirt by Wairegi [5]. Note that these
experiments were conducted many years ago, without access to modern PIV technics.

Figure 13 also reports the vorticity field that develops around and inside the bubble. As shown the
vorticity inside the skirt film ωfilm = O[UB/(δ/2)] is of much larger magnitude than the vorticity that
develops on the bubble surface of magnitude ωext = O(UB/R), a direct consequence of the thin film
thickness δ much smaller than the bubble size. Indeed for the case reported in Fig. 13, δ/R ≈ 0.08
resulting in ωfilm ≈ 25UB/R in agreement with the values reported in the figure.

In order to provide a complete picture of the velocity field in the skirt wake and the gas film,
velocity profiles are reported in Fig. 14 for both the vertical downward velocity u and the radial
velocity v as a function of the radial position r to the symmetry axis (see insert of Fig. 14 for
definitions). The profile of u clearly confirms the direction of rotation of the fluid circulation inside
the skirt wake. Inside the skirt wake, the velocity profile is compared to the Hill’s spherical vortex
velocity profile u/UW = −(1 − 2r2/R2

W ) where UW is the local interfacial velocity inside the skirt
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FIG. 14. Velocity profile for the vertical downward u (blue line) and radial v (green line) velocity compo-
nents along the dash line shown in the insert as a function of the radial distance r for Eo = 330 and Mo = 100.
External flow (r/d � 0.73): − · − potential solution for u, − − − Hadamard-Rybczynski solution for u. Flow
inside the skirt (r/d � 0.67): − − − spherical Hill vortex solution for u.

and RW the skirt internal radial distance. As shown the evolution is relatively in good agreement with
the Hill’s vortex close to the interface, but a significant deviation is observed near the symmetry axis.

Considering the liquid motion around the bubble, the velocity profile is compared both to the po-
tential profile u/UB = 1 + R3

S/(2r3) and to the Hadamard-Rybczynski profile u/UB = 1 − RS/(2r)
that develop on the equator of a sphere of radius RS where RS is here the local radius of the bubble
external surface. As expected, the interfacial velocity is overestimated by the potential flow (limit
for Re → ∞) and is underestimated by the Hadamard-Ribzinski solution (limit for Re → 0) in
agreement with the Reynolds number Re = 14.4 of the considered case. Finally, we can notice
that the velocity profile reported in Fig. 14 supports the assumption usually made for the skirt film
modeling, i.e., a parallel flow inside the skirt film where the transverse velocity v is clearly much
smaller than the longitudinal velocity u.

We define by US (resp. UW ) the external (resp. internal) tangential velocity on the skirt film
surface, both defined positive in the ξ direction (see Fig. 1). Considering the evolution of Uξ reported
in Fig. 12, US and UW significantly vary all along the skirt interface for all the cases, and both present
a maximum value close to the skirt onset. The values of the maximum interfacial velocity outside
the bubble US,max and inside the skirt UW,max are reported in Fig. 15 for all the skirt bubbles. Both
velocities are observed to increase with the bubble Reynolds number. US,max is found to be of the
same order of magnitude as the bubble rising velocity UB, ranging from 0.62UB at smaller Reynolds
numbers to 0.85UB at larger Reynolds number. The plot indicates that the maximum interfacial
velocity UW,max inside the skirt is found to be significantly less than the maximum interfacial velocity
US,max on the external interface. More precisely, UW,max is varying from 0.08US,max to 0.35US,max

when increasing Re, corresponding to 0.05UB and 0.3UB, respectively.
The shape of the skirt bubble front being close to a spherical cap, the maximum external velocity

is compared to the maximum velocity reported for a spherical bubble [27] written under the form

U sph.bubble
S,max =

(
1

2
+ f (Re)

)
UB with f (Re) = Re

16 + 3.315Re1/2 + Re
(21)

in order to show the limit 1/2 for Re → 0. As shown in the figure, the external maximum interfacial
velocity US,max follows a close evolution but is found to be less than the maximum velocity observed
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FIG. 15. Maximum interfacial velocity US,max and UW,max outside and inside the skirt, respectively. The
corresponding collocation are reported in the insert of Fig. 12 using symbols ◦ and ∗, respectively. Black �
and ◦ Eo = 200; blue � and ◦ Eo = 331; green � and ◦ Eo = 400; red � and ◦ Eo = 500; magenta � and ◦
Eo = 750. — Maximal tangential velocity at a spherical bubble interface from [27] given by Eq. (21).

for a spherical bubble. This velocity reduction maybe attributed to an additional viscous dissipation
induced by the fluid circulation inside the skirt and transmitted through the viscous shear stress
continuity on both side of the skirt interface. The evolution of the maximum interfacial velocity
inside the skirt UW,max is found to be linear with the Reynolds number. Finally, the evolution for
US,max and UW,max can be simply described by

US,max = [1/2 + 0.85 f (Re)]UB, (22)

UW,max = 0.01 Re UB, (23)

as shown in Fig. 15.

B. Skirt thickness and velocity profile

Different models have been proposed for the skirt film description, and several assumptions were
made in order to be able to propose a tractable model for the film thickness δ. First of all, δ is
considered small compared to the skirt radius RS to be able to neglect curvature effect so that the
velocity can be considered parallel inside the skirt film [5]. This is the case for the set of skirt
bubbles simulated here where δ/RS is found to be less than 0.11. As a consequence a parallel flow
develops inside the skirt as shown in Fig. 16, where the profiles for the velocity component u (resp.
v) in the x direction (resp. y direction) are reported at different locations along the skirt for the cases
(Eo = 330, Mo = 100, Re = 14.4) and (Eo = 400, Mo = 100, Re = 16.6) as a function of y the
coordinate along the direction normal to the skirt interface as defined in Fig. 1.

Under the condition of parallel flow inside the skirt film, the velocity profile results from the
momentum balance along the film direction x:

μB
d2u

dy2
= A, (24)

where A = d pG/dx − ρBg stands for the driving effects in the skirt film. We solve this equation con-
sidering that the local velocity on the outer side of the skirt is u(y = δ) = US while the velocity on
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FIG. 16. Downward velocity in gas film u(y) along the cross section indicated in the insert. (Left) Eo = 330
and Mo = 100. (Right) Eo = 400 and Mo = 100. — velocity profiles from Eq. (28) where the numerical values
for δ, UW , and US are considered.

the inner side is u(y = 0) = −UW (the minus sign is the consequence of the x direction opposite to
the interface curvilinear coordinates ξ inside the skirt as defined in Fig. 1). The resulting parabolic
velocity profile inside the skirt film can then be expressed as

u(y) = A

2μB
y(y − δ) + y

δ
(US − UW ) + UW . (25)

By requiring that there is no net mass transport inside the skirt film,∫ δ

0
u(y) dy = 0, (26)

the film thickness is

δ =
√

6μB(US − UW )

A
. (27)

Replacing A in Eq. (25) we get the velocity profile expressed with the velocities UW and US and the
skirt thickness δ:

u(y) = 3(US − UW )
y

δ

(y

δ
− 1

)
+ y

δ
(US + UW ) − UW . (28)

The velocity profile given by Eq. (28) is compared to numerical profiles in Fig. 16 in different
regions of the skirt. As shown, a parabolic profile clearly connects the interfacial velocities US and
UW that develop on both side of the skirt film.

According to the evolutions of US and UW reported in Fig. 12 [the red and green lines of
U (ξ ), respectively], US − UW is decreasing along the skirt interface so that from Eq. (27), the skirt
thickness is also decreasing along the skirt. This is confirmed in Fig. 17 where the evolution of the
skirt thickness δ(ξ ) measured in the simulations is reported as a function of ξ taken on the external
surface of the skirt. The skirt continuously thins downstream: δ(ξ ) first decreases, then a plateau
characterized by a nearly constant skirt is observed, and finally the skirt thickness rapidly tends to
zero at the skirt tip. Note that the skirt has to be long enough to observe a plateau, and for short skirt
[see Fig. 17(a)] the plateau is not developped.

According to relation (27), the skirt thickness evolution is also dependent on the evolution of
A = d pG/dx − ρGg. The pressure gradient evolution inside the skirt film d pG/dx is linked by the
normal momentum balance at the interface to the pressure and viscous stress evolutions in the
external fluid on both sides of the skirt film. In the skirt models proposed in the literature, the
dominant contribution from the external fluid is usually assumed to be the hydrostatic pressure
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FIG. 17. Evolution of the skirt thickness δ as a function of the curvilinear coordinate ξ for (a) Eo = 500,
Mo = 5000; (b) Eo = 330, Mo = 100; (c) Eo = 400, Mo = 100; and (d) Eo = 200, Mo = 1. −− relation (29)
(A∗ = 1, U ∗

S = 1, U ∗
W = 0); − · − relation (31) (A∗ = 1, U ∗

S = US,max/UB, U ∗
W = UW,max/UB); and − relation

(30) (A∗ = 1, U ∗
S = US (ξ )/UB, U ∗

W = UW (ξ )/UB). An error bar corresponding to the grid size is shown because
the fluid properties (and in particular the viscosity) are spread at the interface other one grid cell on both side
of the interface reducing the effective gap available for the gas flow.

around the bubble [2–5] so that d pG/dx ≈ d pL/dx ≈ ρLg and A ≈ ρLg. In addition, considering
at first order that the external velocity can be assumed to be close to the bubble rising velocity
US ≈ UB and that the velocity inside the skirt is much smaller than the velocity on the external
surface UW ≈ 0, we recover the first model for the skirt thickness attributed to Guthrie [3,4] and
then revisited by Wairegi [5] and Bhaga [2]:

δG =
√

6μBUB

ρLg
. (29)

Note that a film thickness description in the case of a recirculating wake is also proposed considering
UW ≈ −UB, but in contradiction with the effective direction of rotation of the wake inside the skirt as
discussed previously (see Fig. 13). Relation (29) is reported in Fig. 17. A correct order of magnitude
is found, but relation (29) overestimates the film thickness measured in the simulations. Bhaga
[2] proposed to improve this modeling by considering the departure of sphericity of the bubble
(prolate and oblate) and the development of the flow around the bubble. In addition to the parameter
Cf introduced to correct for the deviation from potential flow around a sphere [see Eq. (20)], an
additional parameter F is introduced to reproduce the thinning of the skirt along the skirt film. Ray
and Prosperetti [6] accounted for the viscous boundary layer on the outer side of the bubble. As
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TABLE II. Overview of the skirt thickness expressions from the literature.

Reference A∗ U ∗
S U ∗

W Approximations

Guthrie et al. [3,4] 1 1 0 Stagnant wake relation (29)
Wairegi [5] 1 1 −1 Recirculating wake
Bhaga [2] 1/F 2 Cf 0 Stagnant wake

1/F 2 Cf −Cf Recirculating wake
Rai and Prosperetti [6] 1 US (ξ )/UB 0 Boundary-layer-type correction

Expressions deduced from
This study 1 US,max/UB UW,max/UB simulation and given by

relations (22) and (23)

shown by the authors, this consideration causes the skirt to thin downstream. To help comparison of
the proposed modeling, relation (27) is rewritten under the form

δ = δG

√
1

A∗
√

U ∗
S − U ∗

W , (30)

where A∗ = A/ρLg, U ∗
S = US/UB, and U ∗

W = UW /UB. Table II summarizes the expressions consid-
ered for A∗, U ∗

S , and U ∗
W in the skirt thickness expressions found in the literature when considering

a gas bubble.
Depending on the relative effect of inertia and viscosity in the external liquid and how they

compare to the hydrostatic pressure effect at the bubble scale, a Re correction can be expected. For
the skirt bubbles considered here, inertia to hydrostatic pressure ratio U 2

B/gd ranges between 0.1
and 0.4, while viscous stress to hydrostatic pressure ratio μLUB/ρLgd2 ranges between 0.01 and
0.045. Thus, hydrostatic pressure dominates, and in a first attempt to describe the film thickness,
we can consider A∗ ≈ 1 (A ≈ ρLg). Then the local values of both US (ξ ) and UW (ξ ) obtained from
the simulation are considered in relation (30). The corresponding evolution is shown in Fig. 17. The
agreement with the numerical results is clearly improved, and the film thickness decrease is correctly
reproduced except close to the tip. In order to provide an estimate of the skirt plateau value δP, we
propose US,max (resp. UW,max) as the characteristic velocity for the external (resp. internal) interfacial
skirt velocity:

δP =
√

6μB(US,max − UW,max)

ρLg
. (31)

The corresponding value is reported in Fig. 17 and a very good agreement is observed with the
plateau value when observed. Only one experimental skirt film thickness measurement is available
in the literature when considering a skirt bubble, i.e., a fluid particle satisfying the conditions
μB/μL � 1 and ρB/ρL � 1. Experimental measurement using an optical system is challenging due
to the very small thickness of the film and induced reflections. Indeed, considering typical values
for skirt bubble d = O(1) cm, UB = O(50) cm/s, ρL = O(103) kg/m3, and μB = O(2 × 10−5) Pa s,
the expected order of magnitude of the film thickness from relations (29) and (31) is δ = O(50) μm.
Guthrie and Bradshaw [4] developed an original experimental method to determine the skirt
thickness by cutting the bubble with a thin steel plate across the upper section of the column.
A series of ten experiments is reported for a d = 4.66 cm nitrogen bubble rising in glycerol,
and a value of 41 ± 8 μm is obtained for δ. It is compared in Table III with relation (29) [3,4]
and relation (31) based on our numerical simulations. As shown both relations give the same
order of magnitude. While relation (29) overestimates the experimental value, it is remarkable that
relation (31) gives a very good estimate of the experimental value and clearly improves the original
expression. The use of the effective velocities US,max and UW,max on both sides of the interface
as characteristic velocities clearly improves the prediction and satisfactorily accounts for both the
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TABLE III. Comparison of the skirt thickness from relations (29) and (31) with experiment from Guthrie
and Bradshaw [4] for a nitrogen bubble in glycerol.

δ δ δ

UB d μL ρL μB experiment relation (29) relation (31)
(cm/s) (cm) (Pa s) (kg/m3) (Pa s) (μm) (μm) (μm)

34 4.66 1.23 1260 1.76 × 10−5 41 ± 8 54 43

Reynolds and shape correction. Thus, considering relations (22) and (23) proposed for US,max and
UW,max, respectively, the following description of the skirt thickness is proposed:

δP = δG sk(Re), (32)

where the Guthrie expression for the skirt thickness is corrected with the Re function sk(Re) =
1/2 + f (Re) − 0.01Re with f (Re) given in Eq. (21). This relation is compared in Fig. 18 to the
numerical results and the experimental value of Guthrie and Bradshaw [4]. As shown the agreement
is very good. In particular, a maximum observed around Re = 15 is described with this relation.
The difference is larger when considering a curved skirt compared to a vertical skirt, suggesting an
additional correction due to the skirt curvature. This plot also indicates that the relation proposed by
Guthrie gives a good order of magnitude for all the reported simulations. Indeed, the skirt thickness
plateau normalized by δG is observed to be nearly constant,

δP ≈ 0.75 δG, (33)

providing a good estimation of the thickness of a bubble skirt.

C. Skirt length

The skirt length 	 normalized by the bubble diameter d is reported in Fig. 19. The numerical
simulations are compared with the experiments reported for bubbles by Bhaga [2]. The reported
experimental skirt lengths are deduced from the tracing of skirt bubbles deduced from their

FIG. 18. Evolution of the skirt thickness plateau δP normalized by δG as a function of Re. ◦ numerical
simulation, ∗ mean value from the ten experiments of Guthrie and Bradshaw [4], − − − sk(Re) = 1/2 +
f (Re) − 0.01Re from relation (32).
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FIG. 19. Evolution of the normalized skirt length 	/d as a function of Re − Rec. For numerical simulation
Rec is given by Rec = 70/Ca, while for experiments it is deduced from Fig. 6.9 in [2]. Numerical results:
black ◦ Eo = 200; blue ◦ Eo = 331; green ◦ Eo = 400; red ◦ Eo = 500; magenta ◦ Eo = 750. ∗ Skirt length
at the instability development for unstable cases (from Fig. 8); � experiments from [2]; — relation (34);
− − 	 = 1.37d .

experimental observations [from their Fig. 3.4(b)]. Note that Wairegi [5] also reports a series of
measurement of bubble skirt length, but, unfortunately, the provided information does not make
possible the use of these data. The evolution of the normalized skirt length 	/d has been plotted
as a function of the Weber number We, capillary number Ca, or Reynolds number Re (not shown
here). The best representation is obtained with a plot first suggested by Wairegi [5] that consists
in reporting the normalized skirt length 	/d as a function of Re − Rec where Rec is the Reynolds
number corresponding to the onset of the skirt, the capillary number being fixed. According to Fig. 6,
Rec = 70/Ca for the simulated skirt bubbles. The skirt threshold for the experiments is determined
in the same way (deduced from Fig. 6.9 in Bhaga [2]). As shown in Fig. 19, both experiments
and simulations are collapsing on a very consistent evolution revealing two regimes. For values of
Re − Rec smaller than 10, the skirt length evolves roughly linearly with the deviation from threshold
Rec and can be described by

	

d
= 0.15(Re − 70/Ca). (34)

For larger deviation from the threshold, i.e., for Re − Rec � 10, a plateau seems to be observed
corresponding to a constant value

	 ≈ 1.37d (35)

when increasing the Reynolds number. This suggests that a skirt length larger than the limit
corresponding to relation (35) cannot be observed. If the skirt becomes longer during its formation
due to the entrainment by the surrounding flow, the skirt starts to be unstable, and then its size is
reduced by fragmentation. This proposition is confirmed by reporting in the figure the value of the
skirt length when the skirt instability starts to develop for the unstable cases (see Fig. 8). These
values are in very good agreement with the plateau 	 = 1.37d . The skirt instability is certainly
observed when the skirt length reaches the wave length of the first unstable mode. Additional
experiments as well as an appropriate stability analysis of the gas skirt film should be conducted
in order to discuss if the more unstable wave length is consistent with condition (35).
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VI. CONCLUSIONS

The aim of this work was to conduct an investigation of skirt bubble when rising in a viscous
liquid. Covering the range of Eötvös number where they can be observed, direct numerical sim-
ulations were conducted to provide a detailed description of the skirt bubble dynamics (terminal
velocity and drag), the flow field organization (inside the skirt film, around the bubble, and inside
the gas film that forms the skirt) as well as their geometrical characteristics (both skirt length and
thickness). First, a unified relation for the terminal velocity (and drag force) has been provided for
bubbles (dimple, skirt, and spherical cap bubbles) when considering Eötvös numbers larger than
100. Then we have described the parallel Poiseuille flow that develops inside the skirt film and
characterized the interfacial velocities on both sides of the skirt film. The simulations outline that
the liquid velocity on the outer side of the skirt differs from the bubble rising velocity and that
the velocity inside the skirt has a much smaller magnitude. As a major result obtained from the
simulation, we show that only one recirculation is observed inside the bubble while two toroidal
vortices develop in the skirt wake, a clear difference with the picture deduced from experimental
observations. Another significant contribution of this work concerns the skirt thickness and length.
First, we show that the original relation δG = √

6μBUB/ρLg proposed by Guthrie [3] and Guthrie
and Bradshaw [4] can be used to provide a good estimate of the skirt thickness plateau δP ∼ 0.75 δG.
Based on our numerical simulations we propose a Reynolds correction considering the maximum
velocities observed on both sides of the skirt film interface. This provides a prediction in very
good agreement with the only one experimental value reported by Guthrie and Bradshaw [4] for
a d = 4.66 cm nitrogen bubble rising in glycerol. Considering the skirt length, our simulations
combined with experimental observations suggest the existence of a maximum value for the skirt
length 	 ≈ 1.37d . Three-dimensional simulations can now be conducted to investigate the transition
from stable to unstable skirt and the resulting skirt length limit suggested by both our simulation
and experiments. Conducting accurate experiments is also needed to validate our results in particular
concerning the recirculation inside the skirt and the skirt shape characteristics.
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