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Motivated by astrophysical and geophysical applications, the classical problem of ro-
tating Rayleigh-Bénard convection has been widely studied. Assuming a classical Fourier
heat law, in which the heat flux is directly proportional to the temperature gradient, the
evolution of temperature is governed by a parabolic advection-diffusion equation; this,
in turn, implies an infinite speed of propagation of information. In reality, the system is
rendered hyperbolic by extending the Fourier law to include an advective derivative of
the flux—the Maxwell-Cattaneo (M-C) effect. Although the correction (measured by the
parameter �, a nondimensional representation of the relaxation time) is nominally small, it
represents a singular perturbation and hence can lead to significant effects when the rotation
rate (measured by the Taylor number T ) is sufficiently high. In this paper, we investigate
the linear stability of rotating convection, incorporating the M-C effect, concentrating on
the regime of T � 1, � � 1. On increasing � for a fixed T � 1, the M-C effect first
comes into play when � = O(T −1/3). Here, as in the classical problem, the preferred
mode can be either steady or oscillatory, depending on the value of the Prandtl number
σ . For � > O(T −1/3), the influence of the M-C effect is sufficiently strong that the onset
of instability is always oscillatory, regardless of the value of σ . Within this regime, the
dependence on σ of the critical Rayleigh number and of the scale of the preferred mode
are explored through the analysis of specific distinguished limits.

DOI: 10.1103/PhysRevFluids.7.093502

I. INTRODUCTION

It has been noted by a number of authors that the classical Fourier law connecting heat flux and
the gradient of temperature—leading to a parabolic equation for the spatiotemporal evolution of the
temperature field—should be corrected to allow both for relativistic effects and to accommodate the
processes in real materials that are responsible for heat transfer. Maxwell [1] proposed a modified
equation for gases incorporating a finite relaxation time. Cattaneo [2] proposed a similar relation
for solids. This was developed further by Oldroyd [3], and later contributions were made by Fox [4]
and Carrassi and Morro [5]. These extensions are collectively referred to as the Maxwell-Cattaneo
(M-C) effect. The M-C heat transport effect has been studied in a wide variety of different physical
contexts: for example, in solids [6], in fluids [7–14], in porous media [15,16], in nanofluids and
nanomaterials [17–20], in liquid helium [21,22], and in the physics of phase changes [23,24]. The
M-C effect has been shown to be of particular importance in a variety of biological systems [25–32].
It has also been modeled theoretically in various astrophysical contexts [33–35], as well as in the
dynamics of traffic flow [36].
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While the Fourier law can be written as q = −K∇T , where q is the heat flux, T is the tempera-
ture, and K is the thermal conductivity, the M-C effect introduces a relaxation time τ , leading to the
equation

τ
Dq
Dt

+ q = −K∇T, (1)

where D represents a generalized material derivative, chosen to give expressions that do not
depend on the frame of observation. In the present paper, which discusses only linear stability
considerations, almost all such choices give the same result. Further discussion of the choice of
derivative can be found in Refs. [37,38].

The importance of the additional time derivative term can be assessed by considering the
dimensionless M-C coefficient C, defined as

C ≡ τK

2ρcpd2
≡ τκ

2d2
= �

2
, say, (2)

where ρ is the density, cp is the specific heat at constant pressure, and d is a typical length scale.
The factor of two in the definition of C, although standard, leads to redundant powers of two in the
subsequent analysis, but with no off-setting benefits; we therefore, instead, choose to work in terms
of �. It is hard to determine the magnitude of � in general, but it is typically very small in many
astrophysical situations. Does this mean that the effect on, for example, the stability of a convective
layer is similarly small? Several remarks are in order here. There is plainly no effect on the threshold
for the onset of direct instability, as this occurs when the time derivatives are zero. For ordinary
thermal convection, where growth rates are real near onset, the additional term has negligible
effect for � � 1, although oscillatory instability is favored once � becomes O(10−2) [9,10,13].
Nonetheless, the additional term increases the order of the equations describing the linear stability,
and so the limit of small � is singular; high-frequency oscillatory instabilities can then bring the
additional term into play at very small � in certain circumstances, for example, in magnetocon-
vection and double-diffusive convection. These problems have been treated in Refs. [34,35,38]. In
the magnetoconvection problem, in which convection occurs in the presence of an imposed vertical
magnetic field, new effects appear when the Chandrasekhar number Q, measuring the square of the
imposed field strength, satisfies Q�2 � 1 for small �. Similarly, in the double diffusive case, M-C
effects become significant, leading to enhanced instability or oscillations, when the gradients of
salinity and temperature are both large; specifically, when the salt Rayleigh number Rs is sufficiently
large that Rs� � 1 for small �.

Motivated by these results, in the present paper we consider the other well-known convective
instability in the presence of a constraint, namely rotating Rayleigh-Bénard convection. The sta-
bility problems for magnetoconvection and rotating convection have a number of similarities but
differ in some important details. The classical version of the problem of rotating convection, with
applications to planetary and stellar interiors, has a long history, beginning with Chandrasekhar
[39,40] and Veronis [41]. The problem is described by three dimensionless parameters: the Rayleigh
number R, a measure of the thermal driving; the Taylor number T , proportional to the square of the
rotation rate � of the layer; and the Prandtl number σ , the ratio of kinematic viscosity to thermal
diffusivity. Precise definitions of the parameters are given in the following section. In astrophysical
and planetary settings, T is typically very large (T ∼ 1030 in the Earth’s outer core, for example),
and so here we concentrate on this case of rapid rotation (T � 1). As we shall show below, M-C
effects are significant when T �3 � 1; thus, for T � 1, M-C effects come into play even for very
small values of �. We shall also describe how the onset of instability depends in quite a complex
manner on σ . A general point of particular note is that, while in the absence of M-C effects (� = 0),
oscillatory convection is possible only when the Prandtl number σ < 1, in the case � > 0 oscillatory
instability can be found for a wide range of σ , with a significant reduction in the critical Rayleigh
number for the onset of instability.
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The mathematical formulation for the linear stability problem is set out in Sec. II. The stability
boundary is then investigated separately for the cases T �3 = O(1) (Sec. III) and T �3 � 1 (Sec. IV);
in each case the scalings for the critical wave number, the associated frequency, and the critical
Rayleigh number depend strongly on σ when σ � 1, leading to several different scaling regimes.
If σ > 1, on the other hand, the M-C effect permits oscillations that would otherwise not occur. The
significance of the results is discussed in the concluding Sec. V.

II. MATHEMATICAL FORMULATION

A. Governing equations

We consider a horizontal layer of an incompressible (Boussinesq) Maxwell-Cattaneo fluid,
contained between two planes at z = 0 (bottom) and z = dπ (top) and rotating about the vertical
(z) axis with angular velocity �. The scaling here with π is helpful in that all factors of π are
eliminated from the equations governing the linear stability of the system. The fluid has constant
kinematic viscosity ν and thermal diffusivity κ . In the basic state, which is static, the temperature
profile is linear in z, with the lower boundary at temperature T0 + 
T and the upper boundary at
temperature T0. The crucial difference in the governing equations for the M-C system, in comparison
with those of classical rotating Boussinesq convection (with no M-C effects) is the replacement of
the classical Fourier law by a modified equation for the heat flux; here we adopt the frame-invariant
formulation of Christov [37] (see Ref. [38] for further details). On adopting the standard scalings
of length with d , time with d2/κ , temperature with 
T , and pressure with ρ0νκ/d2, where ρ0 is a
representative density, the nondimensional equations governing perturbations from the basic state
may be written as

1

σ

Du
Dt

+ T 1/2ẑ × u = −∇p + Rθ ẑ + ∇2u, (3)

∇ · u = 0, (4)

Dθ

Dt
= w − Q, (5)

�
DQ

Dt
= −Q − ∇2θ. (6)

Here u = (u, v,w) denotes the fluid velocity, θ the perturbation of the temperature from the basic
state, Q the divergence of the heat flux, and p the pressure. The parameter � is as defined in Eq. (2).
The Rayleigh number R, Taylor number T , and Prandtl number σ are defined by

R = gα
T d3

κν
, T = 4�2d4

ν2
, σ = ν

κ
, (7)

where α is the coefficient of thermal expansion.

B. Linearized equations and dispersion relation

In this paper we address the linear stability of the basic state, subject to the standard boundary
conditions in which the horizontal boundaries are impermeable and stress-free, and on which the
temperature is fixed. Thus

∂u

∂z
= ∂v

∂z
= w = θ = 0 on z = 0, π, (8)

noting that z is now dimensionless. We assume periodicity in the horizontal directions. In general,
we may assume a poloidal-toroidal decomposition for the solenoidal velocity in the form

u = ∇ × (∇ × P ẑ) + ∇ × T ẑ. (9)
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After linearization, the z component of the curl of the momentum equation (3) (the vorticity
equation) gives

1

σ

∂T
∂t

− T 1/2 ∂P
∂z

= ∇2T . (10)

The z component of a further curl of (3) gives

1

σ

∂ (∇2P )

∂t
+ T 1/2 ∂T

∂z
= −Rθ + ∇4P . (11)

The linearized forms of (5) and (6) become, respectively,

∂θ

∂t
= −∇2

HP − Q, (12)

�
∂Q

∂t
= −Q − ∇2θ, (13)

where ∇2
H is the horizontal Laplacian.

Following the usual approach to the classical rotating convection problem, we seek solutions to
the linearized equations of the form

P ∝ θ ∝ Q ∝ f (x, y) sin mz est , T ∝ f (x, y) cos mz est , (14)

where the planform function f (x, y) satisfies

∇2
H f = −k2 f . (15)

The boundary conditions (8) are thus automatically satisfied. For the classical problem, with no M-C
effects, it is easily shown that the fundamental mode (i.e., m = 1) is the most readily destabilized.
Here we shall also restrict attention to the m = 1 mode, but will discuss this assumption in Sec. V,
in light of the results.

Combining Eqs. (10)–(13) gives the following quartic dispersion relation for the growth rate s:

a4s4 + a3s3 + a2s2 + a1s + a0 = 0, (16)

where

a4 = �β2, (17a)

a3 = (1 + 2�σβ2)β2, (17b)

a2 = (1 + 2σ )β4 + �σ 2(β6 + T ) − �σRk2, (17c)

a1 = (2σ + σ 2)β6 + σ 2T − σRk2 − �σ 2Rk2β2, (17d)

a0 = σ 2(β6 + T − Rk2)β2, (17e)

with β2 = k2 + 1. If � = 0, we recover the usual third-order system of rotating convection [40].

C. Stability boundaries

The onset of instability may occur either via a steady bifurcation, in which the eigenvalue s
passes through zero, or an oscillatory (Hopf) bifurcation, in which s = ±iω (ω ∈ R+). At the onset
of steady convection (s = 0), the coefficient a0, given by (17e), must be zero; thus the value of R is
given by

R = R(s) = β6

k2
+ T

k2
. (18)

We shall denote the minimum value of R(s)—the critical value for the onset of steady convection—
by R(s)

c , and the value of k2 that gives this minimum—the preferred or favored mode—by k2
sc. The
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criterion for the onset of direct instability (18) is unaffected by any M-C considerations, as is to be
expected from the form of the flux equation (6). Thus, any new (i.e., M-C-induced) instability must
set in as an oscillatory mode.

At the onset of oscillatory instability, setting s = iω in (16) and taking the real and imaginary
parts leads to the expressions

a4ω
4 − a2ω

2 + a0 = 0, ω2 = a1/a3. (19)

For determining the stability boundary, it is helpful to eliminate ω2 to obtain the following quadratic
expression for R on the oscillatory boundary, which we denote by R = R(o):

c2(R(o) )2 + c1R(o) + c0 = 0, (20)

where

c2 = �2σ 2(1 + �σβ2), (21a)

c1 = −
[

2�3σ 4 β2

k2
(β6 + T ) + �2σ 2

(
2
β6

k2
+ 3

σ

k2
(β6 + T )

)
+ �σ (1 + 2σ )

β4

k2
+ (1 + σ )

β2

k2

]
,

(21b)

c0 = 2�2σ 4 (β6 + T )2

k4
+ 4�σ 2(σ − 1)T

β4

k4
+ 4�σ 2(1 + σ )

β10

k4
+ 2σ 2T

β2

k4
+ 2(1 + σ )2 β8

k4
.

(21c)

It is important to note that Eq. (20) defines the oscillatory stability boundary only if the additional
condition ω2 > 0 is satisfied; we denote solutions of (20) with ω2 > 0 as admissible solutions. We
shall denote the minimal value of R(o)—the critical value for the onset of oscillatory convection—by
R(o)

c , the value of k2 that gives this minimum by k2
oc, and the corresponding value of ω2 by ω2

c . The
overall critical Rayleigh number Rc is then the minimum of R(s)

c and R(o)
c .

As we shall see later, to understand whether the steady or oscillatory mode is preferred at
the onset of instability, it is helpful to consider the Takens-Bogdanov (T-B) points, defined as
those points where the coefficients a0 and a1 in (16) are both equal to zero, and which mark the
coincidence of the steady and oscillatory stability boundaries. We may regard a0 = 0 and a1 = 0 as
two simultaneous equations for Rk2, leading to the following quartic equation for β2:

�σβ8 − (1 + σ )β6 + �σT β2 + (1 − σ )T = 0. (22)

D. The classical problem

For comparison with later results, it is helpful to recall the conditions for the onset of instability
in the classical problem (i.e., no M-C effects). As already noted, R(s), the value of R at the onset
of steady convection, is given by expression (18). Here, as discussed in the introduction, we are
concerned only with the case of rapid rotation; thus, for T � 1,

R(s)
c ∼ 3

(
T

2

)2/3

, with k2
sc ∼

(
T

2

)1/3

. (23)

The oscillatory stability boundary is given by

R(o) = 2σ 2

(1 + σ )

T

k2
+ 2(1 + σ )

β6

k2
, (24)
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FIG. 1. σt , determined by expression (28), as a function of T . Steady (oscillatory) convection is favored
for σ > σt (σ < σt ). The lines T = Tc = 27(

√
2 − 1)/2 and σ = σc (the positive root of 8σ 4 = σ + 1) are

marked.

provided that

ω2 = σ 2

[(
1 − σ

1 + σ

)
T

β2
− β4

]
> 0. (25)

Hence, the onset of instability in the classical problem can never be oscillatory if σ > 1; from (22),
there is one T-B point if σ < 1 and none otherwise.

For T � 1 (or, more precisely, σ 2T � 1), the critical value of R for the onset of oscillatory
convection is given by

R(o)
c ∼ 3

(
2σ 4T 2

1 + σ

)1/3

, with k2
oc ∼

(
σ 2T

2(1 + σ )2

)1/3

, ω2
c =

(
σ 2T

2(1 + σ )2

)2/3

(2 − 3σ 2), (26)

provided σ <
√

2/3 
 0.8164. From (23) and (26), it can be seen that for σ 2T � 1, oscillatory
convection is preferred for σ < σc, where σc = 0.6766 is the (T -independent) positive root of 8σ 4 =
σ + 1 [40].

For σ 2T = O(1) (with T � 1, σ � 1), k2
oc becomes O(1), given by the positive root of the

equation (cubic in k2
oc) (

2k2
oc − 1

)(
1 + 2k2

oc + k4
oc

) = σ 2T . (27)

For σ 2T � 1, k2
oc ≈ 1/2, with R(o)

c ≈ 27/2. In this limit, the critical Rayleigh number becomes
independent of T , though we must have T > 27/8 to ensure that ω2 > 0.

For completeness, we note that, even without the assumption of T � 1, it is possible to find
the relationship between T and σ at which there is a transition in the preference for steady or
oscillatory modes. Following Refs. [42] and [43], one can determine implicit expressions for R(s)

c
and R(o)

c ; equating R(s)
c and R(o)

c then leads to the following expression for T , in terms of σ , denoting
when steady and oscillatory modes are equally preferred:

T = 27

2

(1 + σ )1/2[
√

2(1 + σ )1/2 − 1](1 − σ )2(1 + 2σ )2

[(1 + σ )1/2 − 2
√

2σ 2]3
. (28)

We may instead regard (28) as an implicit expression for the transitional value of σ , σt (T ); Fig. 1
plots σt as a function of T . For T < Tc = 27(

√
2 − 1)/2, steady convection is always preferred,

no matter how small σ . The denominator of expression (28) vanishes when σ = σc, where, as
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introduced above, σc is the positive root of 8σ 4 = σ + 1; for σ > σc, steady convection is always
preferred, no matter how large T .

E. When are M-C effects first felt?

The regimes of interest are those in which T � 1 and � � 1. The first point to address therefore
is to determine, for a fixed value of T � 1, how large � must be in order that M-C effects are felt.
From inspection of the coefficients (21) in the quadratic equation (20) for R(o), it can be seen that
with k2

oc = O(T 1/3), and assuming that σ is O(1), all of the terms involving � in each coefficient are
of the same order of magnitude as the �-independent terms for � = O(T −1/3). For � < O(T −1/3),
the problem is, to leading order, unchanged from the purely hydrodynamic problem. In terms of
describing the competition between the influences of rapid rotation and small M-C effect, it is
helpful to consider the distinguished limit of T � 1, � = O(T −λ), where λ > 0 is a dimensionless
parameter that allows us to analyze different asymptotic regimes; furthermore, it turns out to be
most instructive to consider separately the cases of λ = 1/3 and λ < 1/3.

III. THE CASE OF � = O(T −1/3)

A. General considerations

For � = O(T −1/3), with T � 1, the preferred mode for both steady and oscillatory instability
has k2 = O(T 1/3) (as when � = 0); thus, β2 ≈ k2. It is helpful to adopt the scalings

T = �−3T̃ , k2 = �−1k̃2, R = �−2R̃, ω2 = �−2ω̃2. (29)

To leading order, the onset of steady convection is therefore given simply by the T � 1 limit of the
classical problem, described by expressions (23). In scaled variables,

R̃(s)
c = 3

(
T̃

2

)2/3

, with k̃2
sc =

(
T̃

2

)1/3

. (30)

On substituting the scaled variables (29) into the quadratic equation (20) determining the onset
of oscillatory instability, the scaled coefficients of the resulting equation

c̃2(R̃(o) )2 + c̃1R̃(o) + c̃0 = 0, (31)

become, at leading order,

c̃2 = σ 2(1 + σ k̃2), (32a)

c̃1 = −
[

2σ 4(k̃6 + T̃ ) + σ 2

(
(2 + 3σ )k̃4 + 3σ

T̃

k̃2

)
+ σ (1 + 2σ )k̃2 + (1 + σ )

]
, (32b)

c̃0 = 2σ 4 (k̃6 + T̃ )2

k̃4
+ 4σ 2(σ − 1)T̃ + 4σ 2(1 + σ )k̃6 + 2σ 2T̃

k̃2
+ 2(1 + σ )2k̃4. (32c)

The absence of � in the coefficients thus shows the consistency of the scalings (29). In the
� = O(T −1/3) regime, both R(s)

c and R(o)
c are thus of the same order, O(�−2); i.e. R̃(s)

c and R̃(o)
c are

O(1). Determining whether steady or oscillatory modes are favored therefore depends on the values
of T̃ and σ . Insight into this question can be obtained through consideration of the T-B points.
For � = O(T −1/3), with k2 ≈ β2 = O(T 1/3) = O(�−1), Eq. (22), which governs the T-B points,
becomes, at leading order,

σ k̃8 − (1 + σ )k̃6 + σ T̃ k̃2 + (1 − σ )T̃ = 0. (33)

Figure 2 shows the number of T-B points that are possible as T̃ and σ range over O(1) values.
The (T̃ , σ ) plane is divided into regions of zero, one, two, or three T-B points. The four regions are
coincident at T̃ = 32/27, σ = 1; the cusp on the boundary separating the “one” and “three” regions
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FIG. 2. The number of T-B points, governed by the real positive roots for k̃2 of (33) in (T̃ , σ ) space.

is located at T̃ = 128/125, σ = 5/3. Examples of the stability boundaries for the four regions are
illustrated in Fig. 3, which plots the marginal values of R̃ versus k̃2 for both steady and oscillatory
instability. In Fig. 3(a) there are two T-B points; oscillatory instability is preferred, with k̃2

oc = 0.334.
Figure 3(b) has the same value of σ as in Fig. 3(a), but with an increased value of T̃ ; the two disjoint
oscillatory branches in Fig. 3(a) have merged; there are now no T-B points and oscillatory instability
is preferred for all wave numbers. Figure 3(c) illustrates an example with three T-B points. For the
case shown, oscillatory instability is preferred, with k̃2

oc = 0.476; within the zone of three T-B points
it is though also possible for the steady mode to be favored. Figure 3(d) has the same value of T̃
as in Fig. 3(c), but with an increased value of σ . The branch of oscillatory solutions for small k̃2 in
Fig. 3(c) has collapsed, and there is now one T-B point. For the example shown, steady convection is
preferred, with k̃2

sc = 0.630. However, in the large σ regime—with one T-B point—it is also possible
for oscillatory convection to be preferred; this is discussed further in Sec. III B.

Although the oscillatory stability boundary is given simply by the quadratic equation (31), for
O(1) values of σ , determining the associated critical values of R̃ and k̃2 has to be performed
numerically. Analytical progress can, however, be made for the limits of large and small σ .

B. Large σ

The system in Sec. III A, which results from the scaling (29), describes the regime of T =
O(�−3), � � 1. Here, still within this regime, we consider the case of σ � 1. At leading order
in σ , Eq. (31) becomes

k̃2(R̃(o) )2 − 2σ (k̃6 + T̃ )R̃(o) + 2σ
(k̃6 + T̃ )2

k̃4
= 0. (34)

The smaller root of (34), which also turns out to be the only admissible solution, is given to leading
order by

R̃(o) =
(

k̃2 + T̃

k̃4

)
. (35)

The frequency corresponding to this solution is given, to leading order, by ω̃2 = k̃2 − 1 and so
the solution (35) is admissible provided that k̃2 > 1. Minimizing R̃(o) over k̃2 gives the critical

093502-8



RAPIDLY ROTATING MAXWELL-CATTANEO CONVECTION

FIG. 3. Examples of marginal stability curves, for R̃ as a function of k̃2, corresponding to the four different
regions in Fig. 2; the red lines denote where the steady mode is marginal (s = 0), the blue lines where the
oscillatory mode is marginal (s = ±iω). (a) (Two T-B points), T̃ = 1, σ = 0.3; (b) (no T-B points), T̃ = 10,
σ = 0.3; (c) (three T-B points), T̃ = 0.5, σ = 1.05; (d) (one T-B point), T̃ = 0.5, σ = 10.

value as

R̃(o)
c = 3

2 (2T̃ )1/3, with k̃2
oc ≈ (2T̃ )1/3 and ω2

c ≈ (2T̃ )1/3 − 1. (36)

The fact that k̃2
oc is O(1) underlines the consistency of the approach. Comparison of expressions

(30) and (36) shows that steady convection is favored for T̃ < 1, oscillatory convection for T̃ > 1.
The transition of the preferred mode as T̃ is changed is illustrated in Fig. 4, which shows the plots
of the stability boundaries for R̃ as a function of k̃2 for σ = 102. In Fig. 4(a), T̃ = 0.5 and steady
convection is preferred [this is also the regime shown in Fig. 3(d)]; in Fig. 4(b), T̃ = 1 and the
minima of R̃ for the steady and oscillatory modes are the same, with different associated values of
k̃2; in Fig. 4(c), T̃ = 1.5 and oscillatory convection is preferred. The difference between the case
of � = O(T −1/3) and the classical case of � = 0 is noteworthy: with the M-C effect, oscillatory
convection can be preferred even for σ � 1 [as in Fig. 4(c)], whereas for the classical problem, the
oscillatory branch does not even exist for σ > 1.

C. Small σ

A naive small σ limit of (31), keeping k̃2 to be O(1), gives R̃(o) ≈ 2k̃4. Since, from this
approximation, R̃(o) is minimized at k̃2 = 0, it follows that we must consider asymptotically smaller
values of k̃2 in order to capture the true minimum. Hence, as σ is decreased from O(1) values,
k̃2 must also be reduced; the reduction must be such that, for the coefficients (32), terms with k̃2

in the denominator are brought into play. This first occurs when the penultimate term in (32c)
becomes large enough to balance the ultimate term, implying that k̃2 = O(σ 2/3), with both these
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FIG. 4. Marginal stability curves, for R̃ as a function of k̃2 with σ = 102; the red and blue lines denote,
respectively, where the steady and oscillatory modes are marginal. (a) T̃ = 0.5; (b) T̃ = 1; (c) T̃ = 1.5.

terms O(σ 4/3). We thus adopt the further rescalings of k̃2 = σ 2/3k̂2, ω̃2 = σ 4/3ω̂2, which give, at
leading order in σ ,

R̃(o) = 2σ 4/3

(
k̂4 + T̃

k̂2

)
. (37)

Expression (37) results from terms in the coefficients (32) [or, more explicitly, (21)] that do not
involve �; thus, at this level of approximation, we simply recover the expression for the onset of
oscillatory convection in the classical problem for large T , small σ . As anticipated, the minimum of
R̃(o) is thus captured for O(1) values of k̂2; it is given by

R̃(o)
c = 6

(
σ 2T̃

2

)2/3

, with k̂2
oc =

(
T̃

2

)1/3

and ω̂2
c = (2T̃ 2)1/3. (38)

Equivalently, on reverting to the unscaled variables, this becomes

R(o)
c = 6

(
σ 2T

2

)2/3

, with k2
oc =

(
σ 2T

2

)1/3

and ω2
c = (2σ 4T 2)1/3. (39)

We note that since R̃(o)
c scales with σ 4/3, where σ is assumed small, then it is formally smaller

than R̃(s)
c , which is O(1) and independent of σ ; thus, for small σ , oscillatory convection is always

preferred. Numerical solution shows that expression (38) provides a better approximation for k̃2
oc

than it does for R̃(o)
c (although they are both correct to leading order). It turns out, however, that

the next-order correction to R̃(o)
c is independent of k̂2, and so we can improve our estimate for R̃(o)

c

without having to calculate the next-order correction to k̂2
oc; this gives

R̃(o)
c = 6

(
σ 2T̃

2

)2/3

− 4σ 2T̃ , (40)

or, in terms of the unscaled variables,

R(o)
c = 6

(
σ 2T

2

)2/3

− 4σ 2�T . (41)

The correction term in (41), which depends on �, is asymptotically large compared with the
next-order correction to the classical problem, which is O(σ 7/3T 2/3). Table I contains the values of
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TABLE I. Values of k2
oc, ω2

c , and R(o)
c calculated from the full system and from the asymptotic expressions

(39) and (41), for three values of σ , with � = 10−6 and T = 1018, together with R(o)
c from the classical (� = 0)

problem with T = 1018.

σ k2
oc (full) ω2

c (full) R(o)
c (full) k2

oc [Eq. (39)] ω2
c [Eq. (39)] R(o)

c [Eq. (39)] R(o)
c [Eq. (40)] R(o)

c (classical)

10−1 1.6656 × 105 5.0014 × 1010 1.3952 × 1011 1.7100 × 105 5.8480 × 1010 1.7544 × 1011 1.3544 × 1011 1.6996 × 1011

10−2 3.6668 × 104 2.6748 × 109 7.7357 × 109 3.6840 × 104 2.7144 × 109 8.1433 × 109 7.7433 × 109 8.1165 × 109

10−3 7.9319 × 103 1.2581 × 108 3.7393 × 108 7.9370 × 103 1.2599 × 108 3.7798 × 108 3.7398 × 108 3.7790 × 108

k2
oc, ω2

c , and R(o)
c calculated from the full system, for three values of σ , with � = 10−6 and T = 1018,

together with the small σ asymptotic results (39) and (41). It can be seen that the approximation (39)
for k2

oc is indeed much more accurate than the corresponding expression for R̃(o)
c ; the improvement

in the estimate (40) for R(o)
c is also evident.

The scaling of k̃2
oc with σ 2/3 persists with decreasing σ until k̃2

oc becomes sufficiently small that
the approximation β2 = k2 fails; i.e., when k2

oc = O(1) or, equivalently, when k̃2
oc = O(�). Thus

expression (39), and its improvement (41), holds for the entire range O(1) > σ > O(�3/2).
For σ = O(�3/2) [i.e., σ 2T = O(1)], we must revert to the full system, where β2 is no longer

approximated by k2. From (20), with coefficients (21), we then obtain, at leading order,

R(o) = 2

(
β6

k2
+ σ 2T

k2

)
. (42)

We have thus just recovered (24), the expression for oscillatory onset in the classical problem for
σ 2T = O(1). For yet smaller σ , with σ 2T � 1, we are left with only the first term in (42); as
discussed earlier, this gives k2

oc = 1/2, ω2
c = (8T − 27)σ 2/12, R(o)

c = 27/2.

IV. THE CASE OF � > O(T −1/3)

We now consider the case of � = O(T −λ), with λ < 1/3. As we shall describe below, the wave
number of the mode of maximum growth rate, the associated frequency, and the critical Rayleigh
number depend crucially on the Prandtl number σ . A number of distinct asymptotic regimes can
be identified, covering the entire range of σ ; we investigate these separately in the following
subsections, tying the results together, for the entire range of σ , in Sec. IV C.

A. σ � O(1)

For σ � O(1), the preferred mode for oscillatory instability has k2 = O(�−1/3λ); thus, again,
β2 ≈ k2. Under this scaling, the coefficients of the quadratic equation (20) determining R(o) are, to
leading order in �,

c2 = �3σ 3k2 = O(�3−1/3λ), (43a)

c1 = −2�3σ 4(k6 + T ) = O(�3−1/λ), (43b)

c0 = 2�2σ 4 (k6 + T )2

k4
= O(�2−4/3λ). (43c)

The relative sizes of the coefficients imply that the two roots for R(o) are O(�−1−1/3λ) and
O(�−2/3λ). It is straightforward to show that only the former (smaller) root is admissible. On
adopting the scalings

T = �−1/λT̃ , k2 = �−1/3λk̃2, ω2 = �−1−1/3λω̃2, R = �−1−1/3λR̃, (44)
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TABLE II. Values of k2
oc, ω2

c , and R(o)
c for the full system for five values of σ , with � = 10−4 and T = 1016

(λ = 1/4), together with the σ -independent asymptotic expressions (47).

σ k2
oc (full) ω2

c (full) R(o)
c (full) k2

oc [Eq. (47)] ω2
c [Eq. (47)] R(o)

c [Eq. (47)]

100 2.7139 × 105 2.6136 × 109 4.0721 × 109 2.7144 × 105 2.7144 × 109 4.0716 × 109

10 2.7085 × 105 2.6052 × 109 4.0763 × 109 2.7144 × 105 2.7144 × 109 4.0716 × 109

1 2.5778 × 105 2.4498 × 109 4.0851 × 109 2.7144 × 105 2.7144 × 109 4.0716 × 109

0.5 2.3004 × 105 2.1659 × 109 4.0034 × 109 2.7144 × 105 2.7144 × 109 4.0716 × 109

0.1 0.9094 × 105 0.8772 × 109 1.9043 × 109 2.7144 × 105 2.7144 × 109 4.0716 × 109

we obtain

R̃(o) = k̃2 + T̃

k̃4
; (45)

the minimum value of R̃(o) is given by

R̃(o)
c = 3

(
T̃

4

)1/3

, with k̃2
oc = (2T̃ )1/3 and ω̃2

c = (2T̃ )1/3. (46)

In unscaled variables, these expressions become

R(o)
c = 3�−1

(
T

4

)1/3

, with k2
oc = (2T )1/3 and ω2

c = �−1(2T )1/3. (47)

Recalling that the onset of steady convection for T � 1 is always given by (23) gives R(s)
c =

O(T 2/3) = O(�−2/3λ). Since R(o)
c = O(�−1−1/3λ), R(s)

c is formally asymptotically larger than R(o)
c for

λ < 1/3. Hence, in this regime, we need restrict attention only to the onset of oscillatory convection,
since this is always preferred.

Table II contains the values of k2
oc, ω2

c and R(o)
c calculated numerically from the full system,

for five values of σ , with � = 10−4 and T = 1016 (λ = 1/4), together with the σ -independent
asymptotic results (47); the asymptotic expression for ω2

c , given by (47), is not in such good
agreement as those for k2

oc and R(o)
c , since the next order correction is formally larger. It can be

seen that the agreement between the full and approximate results is very good for σ � 1, but that
for σ < 1, expressions (47) cease to be accurate. Indeed, by σ = 0.1, which is not a particularly
small value of σ , there is no resemblance between the two sets of results. It is clear, therefore, that
for σ < 1, the dominant balance in Eq. (20) will no longer be provided by the coefficients (43). As
described in the following subsection, the picture for small σ is quite intricate.

B. Small σ

As σ is reduced below unity, the dominant balance of the coefficients ceases to be represented by
Eqs. (43), which yield expressions for k2

oc and R(o)
c that are independent of σ . As described below,

there are two broad asymptotic regimes to consider, determined by the size of σ .

1. O(�(1−3λ)/2λ) � σ � O(�(1−3λ)/6λ)

With the scaling k2 = O(�−1/3λ), valid for σ = O(1), expressions (43) first cease to be accurate
when σ = O(�(1−3λ)/6λ). To leading order, the coefficients (21) then become

c2 = �3σ 3k2 = O(�(1+9λ)/6λ), (48a)

c1 = −2(�3σ 4(k6 + T ) + �2σ 2k4) = O(�1−1/3λ), (48b)

c0 = 2�2σ 4 (k6 + T )2

k4
− 4�σ 2T + 4�σ 2k6 + 2k4 = O(�−2/3λ). (48c)
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TABLE III. Values of k2
oc, ω2

c , and R(o)
c for the full system and from the respective asymptotic expressions

(51), (52), and (50), rescaled by (49), for T̃ = σ̃ = 1 and for three values of both λ and �.

λ � T σ k2
oc (full) ω2

c (full) R(o)
c (full) k2

oc [Eq. (51)] ω2
c [Eq. (52)] R(o)

c [Eq. (50)]

1/4 10−4 1016 10−2/3 1.5785 × 105 1.5019 × 109 3.2868 × 109 1.6974 × 105 1.6974 × 109 3.2380 × 109

1/4 10−5 1020 10−5/6 3.4765 × 106 3.388 × 1011 7.0515 × 1011 3.6570 × 106 3.6570 × 1011 6.9760 × 1011

1/4 10−6 1024 10−1 7.6078 × 107 7.5023 × 1013 1.5144 × 1014 7.8787 × 107 7.8787 × 1013 1.5029 × 1014

1/5 10−4 1020 10−4/3 3.5971 × 106 3.5805 × 1010 7.0015 × 1010 3.6570 × 106 3.6570 × 1010 6.9760 × 1010

1/5 10−5 1025 10−5/3 1.6844 × 108 1.6814 × 1013 3.2436 × 1013 1.6974 × 108 1.6974 × 1013 3.2380 × 1013

1/5 10−6 1030 10−2 7.8505 × 109 7.8447 × 1015 1.5041 × 1016 7.8787 × 109 7.8787 × 1015 1.5029 × 1016

1/6 10−4 1024 10−2 7.8505 × 107 7.8447 × 1011 1.5041 × 1012 7.8787 × 107 7.8787 × 1011 1.5029 × 1012

1/6 10−5 1030 10−5/2 7.8698 × 109 7.8681 × 1014 1.5033 × 1015 7.8787 × 109 7.8787 × 1014 1.5029 × 1015

1/6 10−6 1036 10−3 7.8759 × 1011 7.8754 × 1017 1.5031 × 1018 7.8787 × 1011 7.8787 × 1017 1.5029 × 1018

Thus, to leading order, R is determined by R = −c0/c1. On writing

T = �−1/λT̃ , σ = �(1−3λ)/6λσ̃ , k2 = �−1/3λk̃2, ω2 = �−(1+3λ)/3λω̃2, R = �−(1+3λ)/3λR̃,

(49)
we obtain

R̃ = σ̃ 4(k̃6 + T̃ )2 − 2σ̃ 2T̃ k̃4 + 2σ̃ 2k̃10 + k̃8

σ̃ 4(k̃6 + T̃ )k̃4 + σ̃ 2k̃8
. (50)

Expression (45) is recovered through the large σ̃ limit of (50). The stationary points for R̃ (i.e.,
where dR̃/dk̃2 = 0) are given by the roots of the following ninth order polynomial for k̃2:

σ̃ 4k̃18 + 2σ̃ 2k̃16 + k̃14 + 10σ̃ 2T̃ k̃10 + 6T̃ k̃8 − 3σ̃ 4T̃ 2k̃6 − 4σ̃ 2T̃ 2k̃4 − 2σ̃ 4T̃ 3 = 0. (51)

The frequency is given by the simple relation

ω̃2 = k̃2. (52)

Equation (51) has no obvious factorization; numerical solutions for O(1) values of σ̃ and T̃ suggest
that there is just one minimum of R̃ for k̃2 > 0. For the representative case of T̃ = 1 and σ̃ = 1,
the critical value of k̃2 is given, from solution of (51), by k̃2

oc = 0.7879, with ω2
c = 0.7879 and

R̃(o)
c = 1.5029, from (52) and (50), respectively. Table III contains the values of k2

oc, ω2
c , and R(o)

c
calculated from the full system, with T̃ = σ̃ = 1 and for a range of values of � and λ, and compares
them with the respective results obtained from (51), (52), and (50), together with the scaling (49).
As expected, the agreement improves as either � or λ is decreased.

As σ̃ decreases, so does k̃2. Thus, for small σ̃ , retaining the leading order terms in expression
(51) gives the simpler expression,

6T̃ k̃8 − 4σ̃ 2T̃ 2k̃4 − 2σ̃ 4T̃ 3 = 0, (53)

which factorizes to give the one admissible solution,

k̃2 = k̃2
oc = σ̃ T̃ 1/2 ⇒ k2

oc = σ
√

�T . (54)

From (52), we thus have

ω2
c = σ

√
T/�. (55)

To determine R̃(o)
c , it is helpful to rewrite expression (50) as

R̃ = (k̃4 − σ̃ 2T̃ )2 + 2σ̃ 4T̃ k̃6 + 2σ̃ 2k̃10 + σ̃ 4k̃12

σ̃ 4T̃ k̃4 + σ̃ 2k̃8 + σ̃ 4k̃10
. (56)
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TABLE IV. Values of k2
oc, ω2

c , and R(o)
c for the full system and from the asymptotic expressions (54), (55),

and (57), for T̃ = 1, σ̃ = 0.1 and for three values of both λ and �.

σ
√

�T σ
√

T/� 2σ
√

T/�

λ � T σ k2
oc (full) ω2

c (full) R(o)
c (full) [Eq. (54)] [Eq. (55)] [Eq. (57)]

1/4 10−4 1016 10−5/3 2.2394 × 104 2.0032 × 108 4.1871 × 108 2.1544 × 104 2.1544 × 108 4.3089 × 108

1/4 10−5 1020 10−11/6 4.7114 × 105 4.4677 × 1010 9.1558 × 1010 4.6416 × 105 4.6416 × 1010 9.2832 × 1010

1/4 10−6 1024 10−2 1.0044 × 107 0.9797 × 1013 1.9866 × 1013 1 × 107 1 × 1013 2 × 1013

1/5 10−4 1020 10−7/3 4.6356 × 105 4.6107 × 109 9.2661 × 109 4.6416 × 105 4.6416 × 109 9.2832 × 109

1/5 10−5 1025 10−8/3 2.1511 × 107 2.1486 × 1012 4.3055 × 1012 2.1544 × 107 2.1544 × 1012 4.3089 × 1012

1/5 10−6 1030 10−3 9.9888 × 108 9.9863 × 1014 1.9989 × 1015 1 × 109 1 × 1015 2 × 1015

1/6 10−4 1024 10−3 9.9888 × 106 9.9863 × 1010 1.9989 × 1011 1 × 107 1 × 1011 2 × 1011

1/6 10−5 1030 10−7/2 9.9928 × 108 9.9925 × 1013 1.9990 × 1014 1 × 109 1 × 1014 2 × 1014

1/6 10−6 1036 10−4 9.9943 × 1010 9.9942 × 1016 1.9990 × 1017 1 × 1011 1 × 1017 2 × 1017

With k̃2 = T̃ 1/2σ̃ , the leading order terms in R̃ [i.e., terms of O(σ̃ 4)] cancel, giving R̃(o)
c = 0 at this

order. The perfect square in the numerator in (56) does though enable us to evaluate the leading-
order finite contribution to R̃(o)

c without needing the next-order correction to k̃2
oc. Indeed, we obtain

the surprisingly simple expression,

R̃(o)
c = 2σ̃ T̃ 1/2 ⇒ R(o)

c = 2σ

√
T

�
= 2k2

c

�
. (57)

Table IV contains the values of k2
oc, ω2

c , and R(o)
c calculated from the full system, with T̃ = 1 and

σ̃ = 0.1, for a range of values of � and λ, and compares them with the respective asymptotic results
(54), (55), and (57). The agreement is particularly good for the smaller values of � and λ.

2. σ � O(�(1−3λ)/2λ)

There is a further change in the dominant balance of the coefficients of Eq. (20) when σ =
O(�(1−3λ)/2λ), k2 = O(�−1). The coefficient c1 can then be approximated by c1 = −1, giving, to
leading order,

R(o) = 2�2σ 4T 2

k4
− 4�T σ 2 + 2σ 2T

k2
+ 2k4. (58)

On writing

T = �−1/λT̃ , σ = �(1−3λ)/2λσ̃ , k2 = �−1k̃2, ω2 = �−2ω̃2, R(o) = �−2R̃(o), (59)

we obtain

R̃(o) = 2σ̃ 4T̃ 2

k̃4
− 4T̃ σ̃ 2 + 2σ̃ 2T̃

k̃2
+ 2k̃4, (60)

with R̃(o) minimized when

2k̃8 − σ̃ 2T̃ k̃2 − 2σ̃ 4T̃ 2 = 0. (61)

The frequency is then given by

ω̃2 = σ̃ 2T̃

k̃2
. (62)

The large σ̃ limit of (61) gives k̃2 = k̃2
oc ≈ σ̃

√
T̃ ; in dimensional units, this translates to k2

oc =
σ
√

�T , thus recovering expression (54). Table V contains the values of k2
oc, ω2

c , and R(o)
c calculated
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TABLE V. Values of k2
oc, ω2

c , and R(o)
c for the full system and from the respective asymptotic expressions

(61), (62), and (60), rescaled by (59), for T̃ = 1, σ̃ = 1 and for three values of both λ and �.

λ � T σ k2
oc (full) ω2

c (full) R(o)
c (full) k2

oc [Eq. (61)] ω2
c [Eq. (62)] R(o)

c [Eq. (60)]

1/4 10−4 1016 10−2 1.1093 × 104 8.8734 × 107 1.8882 × 108 1.1173 × 104 8.9498 × 107 1.8889 × 108

1/4 10−5 1020 10−5/2 1.1148 × 105 8.9258 × 109 1.8886 × 1010 1.1173 × 105 8.9498 × 109 1.8889 × 1010

1/4 10−6 1024 10−3 1.1166 × 106 8.9422 × 1011 1.8888 × 1012 1.1173 × 106 8.9498 × 1011 1.8889 × 1012

1/5 10−4 1020 10−4 1.1172 × 104 8.9489 × 107 1.8890 × 108 1.1173 × 104 8.9498 × 107 1.8889 × 108

1/5 10−5 1025 10−5 1.1173 × 105 8.9497 × 109 1.8889 × 1010 1.1173 × 105 8.9498 × 109 1.8889 × 1010

1/5 10−6 1030 10−6 1.1173 × 106 8.9497 × 1011 1.8889 × 1012 1.1173 × 106 8.9498 × 1011 1.8889 × 1012

1/6 10−4 1024 10−6 1.1173 × 104 8.9497 × 107 1.8890 × 108 1.1173 × 104 8.9498 × 107 1.8889 × 108

1/6 10−5 1030 10−15/2 1.1173 × 105 8.9497 × 109 1.8889 × 1010 1.1173 × 105 8.9498 × 109 1.8889 × 1010

1/6 10−6 1036 10−9 1.1173 × 106 8.9498 × 1011 1.8889 × 1012 1.1173 × 106 8.9498 × 1011 1.8889 × 1012

from the full system, with T̃ = 1 and σ̃ = 1 [with σ̃ defined by (59)], for a range of values of � and
λ, and compares them with the respective asymptotic results (61), (62), and (60), rescaled via (59).
Once again, the agreement is particularly good for the smaller values of � and λ.

In the small σ̃ limit, the relevant root for k̃2 is determined, at leading order, by balancing the first
and second terms in (61), giving

k̃2 = k̃2
oc =

(
σ̃ 2T̃

2

)1/3

. (63)

The final two terms in expression (60) are then dominant, giving

R̃(o)
c = 2σ̃ 2T̃

k̃2
oc

+ 2k̃4
oc = 3(2σ̃ 4T̃ 2)1/3. (64)

The scaled frequency, using Eq. (62), is given by

ω̃2
c = (2σ̃ 4T̃ 2)1/3. (65)

Reverting to the unscaled variables, all the � dependence vanishes, and we simply obtain

k2
oc =

(
σ 2T

2

)1/3

, with ω2
c = (2σ 4T 2)1/3and R(o)

c = 3(2σ 4T 2)1/3. (66)

Thus, in this regime of very small σ , the M-C effect has no influence; the last vestiges of the M-C
effect are contained in the final term in (61). Expressions (66) are therefore the small σ limits of
the classical expressions (26), valid for σ 2T � 1. For yet smaller σ , the M-C influence, already
negligible in expressions (66), is diminished further. Thus, on descending into the regimes with
σ 2T = O(1) and then σ 2T � 1 (both with T � 1, σ � 1), the relevant criteria are those discussed
in Sec. II D for the classical problem. It is noteworthy that for σ 2T to be O(1), σ has to be incredibly
small, with σ = O(�1/λ).

C. The effect of the Prandtl number on the stability boundary

Having explored the stability boundary for σ � 1 in Sec. IV A and for small σ in Sec. IV B,
we can now piece together the critical Rayleigh number, optimal wave number and associated
frequency across an extended range of σ . Figure 5 depicts Rc, k2

c , and ω2
c vs σ over the range

10−4 � σ � 102 for � = 10−4 and T = 1016 (λ = 1/4); thus, even the smallest value of σ shown
satisfies σ 2T � 1. The form of the plot is representative of all values of λ < 1/3. The asymptotic
expressions (46), (50)–(52), and (60)–(62) are plotted, together with the limiting expressions (57)
and (66); the smooth transition between the various regimes is exhibited clearly. Numerical solutions
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FIG. 5. (a) Rc, (b) k2
c , and (c) ω2

c as functions of σ for the case of � = 10−4, T = 1016 (i.e. λ = 1/4); the
onset of instability is oscillatory for all σ . The magenta lines denote the asymptotic expressions (46); the black
dashed lines are the expressions (50) (a), (51) (b), and (52) (c), with the respective limiting values (57), (54),
and (55) shown by the blue dotted lines with circle markers; the green lines are given by (60) (a), (61) (b), and
(62) (c), with the respective limiting expressions (66) shown as red dashed lines. Numerical results of the full
system are shown as squares with red edges. For comparison, the red dotted lines denote Rc, k2

c , and ω2
c for the

classical problem; here the onset of instability is oscillatory for σ < σc and steady for σ > σc.

from the full system are also shown; these are in excellent agreement with the asymptotic results. For
comparison, Rc, k2

c , and ω2
c for the classical (� = 0) problem at the same value of T are also shown.

As discussed in Sec. II D, when there is no M-C influence, the onset of instability is oscillatory for
σ < σc = 0.6766 and steady for σ > σc. For the parameters considered here, although M-C effects
are becoming insignificant for the smallest values of σ shown [σ = O(10−4)], the M-C effect is
clearly destabilizing for σ � O(10−3); moreover, as discussed above, it leads to an oscillatory onset
of instability for all σ and an increase in the wave number and frequency of the preferred mode.

V. CONCLUSION

In this paper, we have considered the effects of small Maxwell-Cattaneo (M-C) corrections to the
linear stability of rapidly rotating Boussinesq convection in a plane layer heated from below. The
work builds on earlier papers [35,38], which consider the M-C effect in magnetoconvection and
double-diffusive convection, respectively. The principal conclusion is that when the Taylor number
T is large, but the (small) M-C effect, represented by the parameter �, is large enough that � >

O(T −λ) for λ � 1/3, then the stability boundary differs significantly from the classical case (� = 0);
in the latter, it is known that if T is sufficiently large and the Prandtl number σ < 1, then oscillatory
convection is possible, while oscillations are preferred for σ < 0.6766 [40]. The effect of the M-C
terms is negligible for λ > 1/3. For λ = 1/3, oscillations can be preferred for values of T of order
�−3, even for large values of σ , while the critical values of the Rayleigh number and wave number
remain, at O(T 2/3) and O(T 1/6), similar to those for the classical problem. At very small values of
σ we find that the critical values of R and k2 are close to those for the classical problem: oscillations
are always preferred.

For λ < 1/3 oscillations are always preferred; indeed, the critical values of R for oscillatory
onset are now asymptotically smaller than that for steady convection, so oscillations are strongly
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preferred for small � while the critical wave numbers now increase with �. The results exhibit the
same balance of terms for values of σ � O(1), but the dominant balances change considerably as σ

becomes small and there are several distinct small-σ regimes to be analyzed. When σ is sufficiently
small, M-C effects become negligible.

The M-C effect, represented by �, is typically very small, as discussed in [35], though it is hard
to find good data on relaxation times for terrestrial fluids. How large does � have to be before
there is a discernible effect on the onset of convection? From the analysis presented here, we expect
significant effects when �T 1/3 is of order unity or greater. As noted in the introduction, T can be as
large as 1030 in the Earth’s outer core, so it seems plausible to expect M-C effects to occur there.
In the laboratory, assuming scales of order 2 meters, angular velocity of 2000 rpm, and kinematic
viscosity of 10−6 m2 s−1, T could be as large as 1014; it thus seems possible, depending on the
nature of the fluid, that in this case also we can find regimes where M-C effects should be taken into
account.

The analysis of the paper assumes that the convection is in what one might call the fundamental
vertical mode, with, for example, the vertical velocity proportional to sin z. There are in fact an
infinite number of solutions with the vertical velocity ∝ sin mz for any integer m. Because the great
majority of the modes described in the paper have large critical horizontal wave numbers, the value
of m does not appear at leading order in the results—or, to put it another way, the vertical structure
of the convection is not determined at leading order. In the few cases where the critical wave number
is of order unity, it can be verified that m = 1 gives the smallest critical Rayleigh number.

The paper addresses only the case of stress-free velocity boundary conditions. Any laboratory
experiments would involve at least one rigid boundary, so it is reasonable to ask what difference in
the results might be expected. In fact, at large Taylor number, as in the case of large Chandrasekhar
number in magnetoconvection [35], the primary balance in the interior is unaffected by the velocity
boundary conditions at leading order, the no-slip condition being passively accommodated by
narrow Ekman layers. We therefore expect the results obtained here to apply at leading order
irrespective of the velocity boundary conditions.

It is well known that there is a broad analogy between the rotating and magnetic convection
problems, in that the dispersion relations for a fixed wave number have a very similar form; however,
because of different wave number dependencies, the relations defining the optimal wave numbers in
the two problems (for both steady and oscillatory convection) are rather different. The same remains
true when M-C effects are included.

Finally, it should be noted that the analysis in this paper assumes the Boussinesq approximation:
thus Mach numbers are assumed small and the fluid is taken as incompressible. Equivalently, the
sound speed is taken as effectively infinite. In real fluids there will be high-frequency sound waves
at any given velocity scale, and while the structure of these waves (almost irrotational) and the M-C
induced oscillations (almost solenoidal) are very different, and the modes are likely to interact only
weakly, it would nonetheless be of interest to extend the analysis of the present paper to include
the effects of weak compressibility to see if there is any material change in the general conclusions
reached here.
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