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Bounds for the poloidal and toroidal kinetic energies and the heat transport are computed
numerically for rotating convection at infinite Prandtl number with both no-slip and stress-
free boundaries. The constraints invoked in this computation are linear or quadratic in
the problem variables and lead to the formulation of a semidefinite program. The bounds
behave as a function of Rayleigh number at fixed Taylor number qualitatively in the same
way as the quantities being bounded. The bounds are zero for Rayleigh numbers smaller
than the critical Rayleigh number for the onset of convection, they increase rapidly with
Rayleigh number for Rayleigh numbers just above onset, and increase more slowly at
large Rayleigh numbers. If the dependencies on Rayleigh number are approximated by
power laws, one obtains larger exponents from bounds on the Nusselt number for Rayleigh
numbers just above onset than from the actual Nusselt number dependence known for
large but finite Prandtl number. The wavelength of the linearly unstable mode at the onset
of convection appears as a relevant length scale in the bounds.
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I. INTRODUCTION

The optimum theory of turbulence attempts to replace the exact computation of time-averaged
global quantities, such as the heat transfer across a convecting layer, by a simpler calculation at
the price of obtaining only upper bounds to the quantities of interest. The method most frequently
used for this purpose is the background field method [1–4], which is more convenient to use but
which ultimately produces the same results as another method based on Refs. [5–7], at least for
the convection problem [8]. Both classes of methods do not make use of the full Navier-Stokes
equation but use relations derived from integrals of this equation, such as the energy budget. As
a consequence, a major disadvantage of these methods applied to convection flows is that they are
insensitive to the presence of the Coriolis term in the momentum equation. Rotational effects appear
in the bounds derived from straightforward optimum theory of convection only for reduced sets of
equations [9,10], the simplest representative of which is the model of the infinite Prandtl number.

Rotating convection is a problem with many applications in geophysics and astrophysics. In this
context, convection at large Prandtl numbers in particular also plays a role. Solutal convection in
the oceans or in planetary cores [11] is characterized by Prandtl numbers around 103 or 104. It
is not obvious if, or under which conditions, rotating convection with Prandtl numbers this large
behaves the same as convection in a fluid of infinite Prandtl number. However, these applications
motivate the study of convection at infinite Prandtl number as a simple limiting case. In addition, it
was recently shown [12] how bounds derived for infinite Prandtl number convection can be used as
a starting point for the computation of bounds for arbitrary Prandtl number. This calculation can be
summarized as a background field method with a background field for velocity, which is not fixed
in advance and time independent, but which instead is the solution of the momentum equation for
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infinite Prandtl number. The bounds derived in this manner for general Prandtl number cannot be
lower than the bounds for infinite Prandtl number. It is therefore interesting to explore numerically
which are the best possible bounds derivable at infinite Prandtl number from the constraints used in
optimum theory of turbulence as we presently know it.

The known bounds derived by analytical means [12–14] for the heat transfer in rotating infinite
Prandtl number convection are too loose to be satisfactory. While these bounds qualitatively
reproduce a reduction of the heat transport by rotation, they do not restrict the advective heat transfer
to zero for Rayleigh numbers below the critical Rayleigh number computed from linear stability
analysis.

A numerical computation of upper bounds for heat transfer in rotating convection at infinite
Prandtl number with stress-free boundaries previously appeared in Ref. [15]. The parameter range
covered in that study is too small to allow us to really judge the performance of the bounds by
comparing them with experimental data. We also know from the nonrotating problem that the
optimum theory for infinite Prandtl number behaves very differently for stress-free and no-slip
boundaries [16,17], and the boundary conditions relevant for experiments are no-slip rather than
stress-free boundaries. Finally, Ref. [15] did not compute bounds on energies.

There are thus several motivations to revisit the problem of determining numerically the optimal
bounds for rotating convection at infinite Prandtl number. The computation presented here makes
use of the same constraints as previous work. These constraints only include linear and quadratic
terms. This problem can be cast in the form of a semidefinite program (SDP). Numerical techniques
of SDP have already been applied to convection problems [18,19] and they promise to be more gen-
erally applicable to bounding hydrodynamic quantities [4,20]. The SDP implemented for rotating
convection at infinite Prandtl number is explained in the next section, and the results are presented
in Sec. III.

II. SEMIDEFINITE PROGRAM

We consider a plane layer infinitely extended in the x and y directions and of thickness h with
bounding planes perpendicular to the z axis in a frame of reference rotating with angular velocity
� about the z axis. The gravitational acceleration acts in the direction of negative z. The layer is
filled with fluid of density ρ, kinematic viscosity ν, thermal diffusivity κ , and thermal expansion
coefficient α. Top and bottom boundaries are held at the fixed temperatures Ttop and Ttop + �T ,
respectively. Within the Boussinesq approximation, there are in general three control parameters:
the Prandtl, Rayleigh, and Taylor numbers Pr, Ra, and Ta defined as

Pr = ν

κ
Ra = gα�T h3

κν
Ta = 4�2h4

ν2
. (1)

Here, we immediately specialize to the limit of infinite Pr in which case the equations of evolution
may be written as follows in terms of the nondimensional fields of velocity v(r, t ), pressure p(r, t ),
and temperature deviation from the conductive temperature profile θ (r, t ) where θ (r, t ) = T (r, t ) −
1 + z with T (r, t ) being the temperature:

√
Taẑ × v = −∇p + Raθ ẑ + ∇2v (2)

∂tθ + v · ∇θ − vz = ∇2θ (3)

∇ · v = 0. (4)

ẑ denotes the unit vector in z direction. The conditions at the boundaries z = 0 and z = 1 on the
temperature imply that θ = 0 there. Both stress-free and no-slip conditions will be investigated.
At stress-free boundaries, ∂zvx = ∂zvy = vz = 0, whereas v = 0 on no-slip boundaries. Periodic
boundary conditions are assumed in the horizontal directions with arbitrary periodicity lengths.
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We now decompose v into poloidal and toroidal scalars φ and ψ such that v = ∇ × ∇ × (φẑ) +
∇ × (ψ ẑ), which automatically fulfills ∇ · v = 0. An additional term with a mean flow is not
necessary at infinite Prandtl number [12]. The z component of the curl and the z component of
the curl of the curl of Eq. (2) yield the equations of evolution for φ and ψ ,

√
Ta∂z�2ψ = ∇2∇2�2φ − Ra�2θ (5)

−
√

Ta∂z�2φ = ∇2�2ψ (6)

with �2 = ∂2
x + ∂2

y . The boundary conditions become φ = ∂2
z φ = ∂zψ = 0 for stress-free bound-

aries and φ = ∂zφ = ψ = 0 for no-slip boundaries.
The Eqs. (5) and (6) determine φ and ψ , and hence v, in dependence of θ . The equations of

evolution (2)–(4) therefore reduce to the single equation (3) in which v ultimately is some function
of θ . Since there is no closed expression for this function, we keep the variables φ, ψ and v in
subsequent formulas bearing in mind that they are nothing but functions of θ .

We next define averages over space of a function f (r) and over time of a function g(t ) with the
symbols

f (t ) = lim
τ→∞

1

τ

∫ τ

0
f (t )dt 〈g(r)〉 = 1

V

∫
g(r)dV, (7)

where V is the volume of a periodicity volume. The product of Eq. (3) with θ followed by a volume
average leads in this notation to

∂t
〈

1
2θ2

〉 = 〈vzθ〉 − 〈|∇θ |2〉. (8)

The quantities for which we will seek bounds in this paper are the time- and volume-averaged
heat transport 〈vzθ〉, the poloidal energy

Epol =
〈

1
2

∣∣∇ × ∇ × (φẑ)
∣∣2

〉
(9)

and the toroidal energy

Etor =
〈

1
2

∣∣∇ × (ψ ẑ)
∣∣2

〉
. (10)

It only makes sense to ask for bounds on energy in convection with stress-free boundaries if one
specifies a certain frame of reference because any solution to the equations of evolution may be
transformed to another solution with stress-free boundary conditions simply by changing to another
frame of reference moving at an arbitrarily large horizontal translation velocity. We adopt the same
convention as in Ref. [12] and select the frame of reference in which total momentum is zero.

The method to find these bounds is exactly the same as in Ref. [18]. The only difference in
the numerical implementation is that in the nonrotating problem of Ref. [18], the toroidal scalar
ψ was always zero, whereas here, both φ and ψ have to be computed in terms of θ taking into
account a Ta different from zero. The principle of the method is summarized here to make the paper
self-contained.

We select test functions ϕn(z), n = 1...N , which depend on z only and project onto them the
temperature equation (3):

∂t 〈ϕnθ〉 = 〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉. (11)

We now build a functional G(λ1 . . . λN , λR, θ ) as a linear combination of the right-hand sides of
Eqs. (11) and (8):

G(λ1...λN , λR, θ ) =
N∑

n=1

λn[〈ϕn∂z(θ�2φ)〉 + 〈ϕn∇2θ〉] + λR[〈θ�2φ〉 + 〈|∇θ |2〉]. (12)

Let us call Z the function for whose time average we want to find a bound. For example, Z = 〈vzθ〉 if
we want to compute a bound for the heat transport. Z is a quadratic functional of θ for the problems
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of bounding heat transport, Epol and Etor. Let us suppose we know a number λ0 and Lagrange
multipliers λ1...λN , λR such that all fields θ (r) obeying the boundary conditions for θ satisfy the
following inequality:

−Z + λ0 + G(λ1...λN , λR, θ ) � 0. (13)

If we take the time average of this inequality keeping in mind that G is a linear combination of
expressions equal to a time derivative, we find Z � λ0.

The argument may equally well be recast in the form of a background method or in terms of an
auxiliary function [4]. If we call ϕ(z) = ∑N

n=1 λnϕn(z), we may write G as

G(λ1 . . . λN , λR, θ ) = 〈ϕ∂tθ〉 − λR∂t

〈
1

2
θ2

〉
= −λR

2

d

dt

〈(
θ − ϕ(z)

λR

)2〉
(14)

so that the background field τ (z) used within the background field method applied to convection [3]
is identical with [18] 1 − z + ϕ(z)/λR = τ (z).

The best possible bound on Z is obtained by minimizing λ0 over the λ1...λN , λR subject to
the constraint (13). This optimization problem turns into an SDP after discretization of θ . The
computations presented here discretized θ with N Chebyshev polynomials in z and a Fourier
decomposition in x and y. Resolutions with N up to 512 were used. The package cvxopt provided
the numerical solutions of the SDP. The details of the numerical code will not be described here as
they are exactly the same as in Ref. [18]. The technical points explained in this reference are the
symmetry of the problem about z = 1/2, an automated search for an active set of wave numbers in
the Fourier decomposition in the horizontal plane, the exact formulation of the boundary conditions
on θ , a partial integration of Eq. (12) and a rescaling of λ0 with powers of Ra.

The result is an SDP, which yields the desired optimal bound, but it is not completely straight-
forward to compare the optimal coefficients λn to the optimal ϕ(z) or τ (z) one might obtain from
an analytical calculation. The reason for this is that the optimization problem includes constraints
containing the integral of two functions f (z) and g(z), one of which (for example f ) is replaced
in the course of the discretization by a sum of Dirac δ functions as

∑N
n=1 fnδ(z − zn) where the

collocation points zn are given by

zn = 1

2

[
1 + cos

(
π

n − 1

N − 1

)]
n = 1 . . . N. (15)

The integral
∫

f (z)g(z)dz then becomes the sum
∑N

n=1 fng(zn). There is no immediate relationship
between f (z) and the fn if the fn are chosen such that the sum

∑N
n=1 fng(zn) approximates as closely

as possible the integral
∫

f (z)g(z)dz. For instance, these fn depend on the resolution N and the
collocation points zn. The SDP as implemented returns a set of coefficients an, which appear in a
representation of the first derivative of ϕ(z) as ϕ′(z) = ∑N

n=1 anδ(z − zn). The magnitude of these
an is not directly connected to optimal background fields obtained from analytical calculations, but
the general dependence on space must be comparable.

Analytical treatment of infinite Prandtl number convection with the background field method
[13,14,16,21] used functions τ (z) or ϕ(z) whose first derivative is either constant or piecewise
constant, with a certain value for this derivative in the central region of the layer and another value
in two boundary layers adjacent to the top and bottom boundaries. More sophisticated background
fields were also used in the nonrotating problem [22,23]. The thickness of the boundary layers is
imposed by the Rayleigh number. Figure 1 shows for a few examples the an, each an plotted at
the location zn. The an are approximately constant for the zn near the center of the layer, but there
is a rapid variation of the an within apparent boundary layers. More than one extremum appears
for no-slip boundaries at large Ta. The thickness of the boundary layer for no-slip boundaries,
defined from the location of the minimal an, is compatible with the scaling in Ta−1/4 known from
Ekman layers, whereas the layers remain thicker for free-slip boundary conditions. The demand on
resolution is therefore higher for no-slip boundaries.
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FIG. 1. Coefficients an, plotted at locations zn, for Ta = 104 (circles), 106 (diamonds), and 108 (squares)
and a resolution N = 64. The boundary conditions are no slip (left panel) and stress free (right panel). The
Rayleigh number is in all cases approximately 4 times critical: Ra = 34.92Ta2/3.

III. RESULTS

The bound H on the advective heat transport is obtained from the selection Z = 〈vzθ〉. The
results of experiments or numerical simulations are usually reported in terms of the Nusselt number,
which is identical to 〈vzθ〉 + 1. For easier comparison, Fig. 2 shows H + 1 as a function of Ra
for various Ta. The graphs have the general appearance familiar from experiments or numerical
simulations: the bound H is exactly zero for Ra less than the critical Rayleigh number Racrit

computed from linear stability analysis and the heat transport is reduced by rotation compared
with the nonrotating flows at Rayleigh numbers just above onset with a rapid increase of H + 1
as a function of Ra, whereas at sufficiently large Ra, H + 1 increases more slowly as a function
of Ra at a rate asymptotically identical with the nonrotating case. For no-slip boundaries, there
is an overshoot in the sense that the bound for rotating convection is actually larger than that
for the nonrotating case in an intermediate interval of Ra. This echoes the behavior known from
experiments and simulations in which the Nusselt number of rotating convection may exceed the
Nusselt number of nonrotating convection [25–27], a behavior that is not observed for stress-free
boundaries [28].

There does not seem to be any numerical data available for strictly infinite Pr, but the results in
Ref. [29] suggest that there is no significant difference in the Nusselt number in going from Pr = 7
to Pr = 100 so that it is meaningful to compare data obtained for Pr equal to 7 or larger to the bounds
for infinite Pr. The bounds for no-slip boundaries in Fig. 2 may then directly be compared to the
data compiled in Fig. 1 of Ref. [30]. It is frequently attempted to fit power laws to experimentally
or numerically determined values of the Nusselt number. Power laws are not a terribly good fit to
either H or the bounds H + 1 in Fig. 2 in the rotation dominated regime, but if one insists on fitting
power laws to the dependence of H + 1 on Ra, one finds for no-slip boundaries exponents of 2, 3.5,
and 4.5 at approximately the Taylor numbers at which the exponents for the actual Nusselt number
at Pr = 7 are 1.2, 3, and 3.6 according to Ref. [30]. The bounds parallel the behavior of the Nusselt
number in that larger exponents are necessary at larger Ta, but the exponents obtained from fits to
the bounds are systematically larger than those obtained from the experiments.

For free-slip boundaries, the dependence of H + 1 on Ra for Ra just above Racrit is reasonably
fitted by H + 1 = (Ra/Racrit )2 at all Ta. From simulations [27] at 102 � Ta � 108 one finds for
Pr = 7 that the Nusselt number just above onset behaves approximately as (Ra/Racrit )6/5, so that
the exponents fitting the bounds again appear to be larger than what they should be if the bounds
were sharp.

It is also seen in Figs. 1 and 2 that for stress-free boundaries, the nonrotating behavior is attained
only at very large Rayleigh numbers, if at all. For infinite Pr, it is not obvious why the behavior of
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FIG. 2. The bound on the Nusselt number H + 1 as a function of Ra for Ta = 104 (circles), 106 (hexagons),
108 (pentagons), 1010 (diamonds), 1012 (squares), 1014 (stars), and 1016 (crosses). The top panel is for no
slip boundaries and the bottom panel for stress free boundaries. The dashed lines are fits to bounds obtained
for Ta = 0 (see Refs. [17,18]) given by H + 1 = 0.101 × Ra0.4 + 0.70965 × Ra0.2 − 7.166 for stress-free
boundaries and H + 1 = 0.139 × Ra1/3 for no-slip boundaries. The continuous lines show functions of the
form (Ra/Racrit )β with Racrit computed from the asymptotically valid expression [24] Racrit = 8.73 × Ta2/3 for
stress-free boundary conditions (top panel) and obtained as part of the fitting procedure for no-slip boundary
conditions (bottom panel). The exponent β in the case of no-slip boundaries is 3 (Ta = 106), 3.5 (Ta = 1010),
and 4.5 (Ta = 1014), whereas β = 2 for all lines drawn for stress-free boundaries.

rotating and nonrotating convection should approach each other at any Ra. We currently do not have
a solid understanding of the mechanism that determines the transition from convection dominated
by Coriolis force to convection nearly independent of rotation as Ra is increased. King et al. [29]
suggested that the transition occurs when the Ekman layer and thermal boundary layer are equally
thick. However, this criterion cannot be generally applicable because the same transition is observed
for stress-free and for no-slip boundary conditions [27,28] and there are no Ekman layers near the
stress-free boundaries. The most intuitive criterion is based on the Rossby number. If this number
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FIG. 3. The bound Ep on the poloidal energy shown in the combination EpTa−0.6 for no-slip boundaries
(left panel) and EpTa−0.8 for stress-free boundaries (right panel) with the same symbols as in Fig. 2. The
continuous lines indicate the functions (Ra/Racrit )[(Ra/Racrit )β − 1]Ta1/3 for β = 2, 3.5, and 4.5 in the left
panel and β = 2 in the right panel. The dashed horizontal lines are located at EpTa−0.6 = 0.1 (left panel) and
EpTa−0.8 = 5 × 10−3 (right panel).

is large, the Coriolis term is small compared with the advection term in the momentum equation.
Horn and Shishkina [31] classified states of rotating convection with the help of the Rossby number
based on the free-fall velocity, (gα�T h)1/2/(�h) ∝ (Ra/(PrTa))1/2. This number is always zero
in the model of convection at infinite Prandtl number, which is not surprising because there is no
advection term left in the momentum equation compared to which the Coriolis term could be small.
It is also known [27,28] that if the Rossby number is based on the actual flow velocity rather than
the free-fall velocity, the Rossby number does not allow one to distinguish at Pr = 0.7 or Pr = 7
between convection dominated by rotation from convection nearly independent of rotation. The
balance between Coriolis and rotation terms does not seem to be essential for the transition.

Another reasoning, put forward by Schmitz and Tilgner [28], combines the asymptotic behavior
of the Nusselt number at small and large Ra for fixed Ta to predict that the transition should occur
if

(Epol + Etor )Ta−1 = const. (16)

This criterion, which is valid for both types of boundary conditions [27], is independent of Pr and
can be immediately extended to infinite Pr. This criterion also motivates the form in which the
bounds are presented in the following two figures.

Figures 3 and 4 show the bounds on poloidal and toroidal energies, Ep and Et , obtained from Z =
〈 1

2 |∇ × ∇ × (φẑ)|2〉 and Z = 〈 1
2 |∇ × (ψ ẑ)|2〉, respectively. At any Ta, these bounds show again two

regions of Ra in which rotation is either suppressing convection or not. To better identify the interval
of Ra dominated by rotation, it helps to make a connection with the bounds on the heat transport.
The z component of velocity is zero at the boundaries so that the bound H implies by virtue of the
Poincaré inequality a bound on the poloidal energy [18] as

Epol �
1

2π2
RaH. (17)

However, one expects a stricter bound to be valid. Taking the dot product of the momentum
equation (2) with v and integrating over space leads to

∑
i j

〈(∂ jvi )
2〉 = Ra〈vzθ〉. (18)
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FIG. 4. The bound on the toroidal energy, Et , in the same representation as Ep in Fig. 3, with the same
symbols and the same dashed and continuous lines. The left panel is for no slip boundaries and the right panel
for stress-free boundaries.

If λc is a characteristic length scale of the flow, one expects
∑

i j〈(∂ jvi )2〉 ∼ (Epol + Etor )/λ2
c and

therefore Epol � RaH/λ2
c . At Ra just above critical, the typical length scale of rotation is the

wavelength of the most unstable mode in linear stability analysis, which leads to [24] λ2
c ∝ Ta−1/3.

Replacing H by its power-law fit deduced from Fig. 2 and using Ra/Racrit as variable, one expects
the existence of a bound Ep of the form

Epol � Ep ∝ Ra

Racrit

[(
Ra

Racrit

)β

− 1

]
Ta1/3. (19)

This functional form, with a prefactor equal to 1, fits well the dependence of Ep on Ra for rotating
convection with both types of boundary conditions and Ra close to Racrit. The bound Ep obtained
from the SDP is therefore sensitive to the variation of the characteristic length scale of convection
with Ta, in agreement with analytically computed bounds [12].

Equation (19) fails to be a good fit if Ra is large enough, which marks the upper edge of the
interval of Ra in which the bound Ep is controlled by the Coriolis force. Figure 3 shows that the
bound on Epol is indicative of rapidly rotating convection only if EpTa−0.6 � 0.1 for no slip and
EpTa−0.8 � 5 × 10−3 for stress-free boundaries. Figure 4 repeats all the previous considerations
for the toroidal energy. For no-slip boundaries, the same function as in Eq. (19) approximates also
the bounds for the toroidal energy in the rapidly rotating regime, which implies near equipartition
between the poloidal and toroidal energies in as far as bounds are concerned. In the case of
stress-free boundaries, the bound on toroidal energy Et exceeds the bound on poloidal energy. For
both boundary conditions, Et exceeds Ep in the high Rayleigh number regime even though the
toroidal energy is zero in the nonrotating case. At finite Pr, simulations [31] show that the fraction
of toroidal to total energy decreases with Ra at large Ra. This behavior is not reproduced by the
bound Et , possibly because Eq. (6) prevents the fraction of toroidal to total energy from decreasing
to zero, which would mean that in this particular respect, rotating convection at infinite and finite
Pr are fundamentally different from each other. Figure 4 also shows that for no-slip boundaries,
the condition Et Ta−0.6 � const. reasonably delimits the region in parameter space in which the
bound Et is determined by the length scale of rapidly rotating convection near onset, λc. Combined
with the bounds for poloidal energy, this leads to (Ep + Et )Ta−0.6 � const. as a criterion for the
bounds being mainly controlled by the Coriolis term, which contains a different exponent than
Eq. (16).
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IV. SUMMARY

Predictions of heat transport in turbulent convection necessarily rely on empirically motivated
assumptions. An early approach assumed that the thermal boundary layers are marginally stable
which leads in the nonrotating case to [32,33] Nu ∝ Ra1/3. It is possible to derive bounds that come
at least to within logarithmic factors of Ra1/3 for convection at infinite Prandtl number [17,21–
23,34]. Bounds for convection at arbitrary Prandtl number [3] are no better than Nu ∝ Ra1/2. It
is tempting to ascribe this difference to the different nature of the equations of evolution: the
momentum equation becomes a diagnostic equation at infinite Pr, effectively reducing the problem
to a single equation for the temperature field. It is then interesting to investigate whether similarly
tight bounds can be derived for rotating convection at infinite Pr.

Attempts at analytically deriving bounds on heat transport in rotating convection at infinite Pr
have been based on the background field method [13,14], which enforces constraints derived from
the surface average over horizontal planes of the temperature equation and the volume average of
the temperature equation multiplied by θ . The numerical search of an optimal bound satisfying
constraints of this form leads to an SDP. For Ta = 0 and no-slip boundaries, the SDP technique
finds an upper bound for the heat transport, which varies as a function of Ra as Ra1/3, at least to
within logarithmic factors [35]. Heat transport is reduced by rotation. This reduction is reproduced
in the bound computation, but not by as much as is observed in numerical computations at finite but
large Pr. The SDP finds the correct Ra for the onset of convection, but at larger Ra, the bound
on Nu increases more rapidly with Ra than the Nu obtained from simulations. The mere fact
that momentum equation is reduced to a diagnostic equation is therefore no guarantee that the
background method will provide us with satisfactory bounds.

The bounds obtained from the SDP are nonetheless stricter than the bounds obtained from
analytical work in as far as the dependence on rotation is concerned. Both types of calculations
enforce the same constraints, but the SDP optimizes the background field profile and does not
rely on simplifying estimates to ensure the validity of inequalities analogous to (13) usually called
spectral constraint in the context of the background method. Linear stability theory computes a
critical Rayleigh number Racrit , which asymptotically scales with Ta as Racrit ∝ Ta2/3 at large
Ta. For stress-free boundaries, the result from the SDP may be presented as Nu � (Ra/Racrit )2

ignoring numerical prefactors. The rotation-dependent bounds obtained analytically are either
Nu − 1 � Ra1/2(Ra/Racrit )1/2 from Ref. [12] or Nu − 1 � Ra1/2(Ra/Racrit )3/2 from Ref. [14] in
the rotation-dominated regime. Both of these bounds impose a weaker reduction of Nu with
Ta than the bound from the SDP. The expressions for no-slip boundaries are more complicated
since the analytical result [14] for the bound on Nu − 1 is a sum of two terms, one varying
as Ra1/2(Ra/Racrit )3/2, the other as Ra5/4(Ra/Racrit )3/4. Both terms decrease more slowly with
increasing Ta as the (Ra/Racrit )β with β > 2 in Fig. 2.

The SDP bounds the advective heat flux to zero for Ra < Racrit. The SDP bounds also reflect sev-
eral qualitative effects known from experiments and numerical simulations, such as a characteristic
length scale varying as Ta−1/6 in the rotation-dominated regime. In the case of no-slip boundaries,
the heat transport in rapidly rotating convection and in some interval of Rayleigh numbers exceeds
the heat transport of nonrotating convection at the same Rayleigh numbers. The exponent β in
Nu � (Ra/Racrit )β in the bounds for no-slip boundary conditions increases with Ta (see Fig. 2), just
as it does in fits to experimentally and numerically determined Nu.

Rotating convection at infinite Prandtl number thus is a system in which significant improvement
over existing analytical results is possible within the background method. It is also a system that is
a promising testing ground for bounding methods involving additional constraints. It is possible to
formulate an SDP, which takes into account more constraints [20], but at the cost of a significantly
larger computational burden. A method of this type was recently demonstrated in the context of
nonlinear stability analysis [36]. Rotating convection at infinite Prandtl number is a nontrivial fluid
dynamic system, which is relatively simple in the sense that it is governed by an equation for a
single scalar field, and for which the known bounds do not scale with the control parameters in the

093501-9



A. TILGNER

same way as the results of numerical computations, so that this system promises to be particularly
rewarding for any improved bounding method.
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