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Hysteresis in viscoelastic flow instability of confined cylinders
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Viscoelastic flow through porous media is relevant in many industrial and biological
applications including enhanced oil recovery and biofluids’ transport inside the body,
where the presence of large polymeric stresses in the porous media leads to viscoelastic
instability. In the present study, we numerically investigate viscoelastic instability-induced
flow states in the channels consisting of (i) a single cylinder and (ii) two streamwise located
cylinders. We unravel the presence of a hysteresis for pulsatile viscoelastic flows. For both
geometries, the quantitative value of flow asymmetry around the cylinder resulting from
the viscoelastic instability forms a closed hysteresis loop. We investigate the effects of
fluid rheological properties and periodic inlet flow rates on the hysteresis loop.

DOI: 10.1103/PhysRevFluids.7.093302

I. INTRODUCTION

The flow of viscoelastic fluids through confined geometries is common in several biological,
geophysical, and industrial processes such as targeted drug delivery, biofilm transport, and enhanced
oil recovery [1–3]. The flow of mucus through ciliary epithelial surfaces and the transport of
interstitial fluid through tissues are some of the examples of the flow of viscoelastic biological
fluids through confined geometries [4]. The biopolymers secreted by the bacteria impart viscoelastic
properties to biofilms, which flow through confined pores of rock and soil [5]. The transport of
biofilm also occurs through the poroelastic tissues inside the body in the case of bacterial infection
[2]. During enhanced oil recovery and groundwater remediation, polymeric solutions are injected
into the porous rocks to mobilize capillary trapped nonaqueous liquids [3,6]. The microstructure of
porous media contains curved surfaces [7,8]. The stretching of polymeric chains along the curvature
as the viscoelastic solution passes through porous media creates large elastic stresses [9], which
induces viscoelastic instability when the Weissenberg number is greater than a critical value [10,11].
The Weissenberg number (Wi) is a dimensionless parameter representing the ratio of elastic to
viscous forces in viscoelastic flows [12]. Viscoelastic instabilities manifest into symmetry breaking
[13,14], time-dependent flows [15], enhanced transport [16], elevated mixing [17], and abnormal
rise of pressure drop [18] in viscoelastic flows depending on the geometry, elastic stress, and fluid
rheology.

Simple isolated geometries such as cross-slot, isolated constriction, and confined cylinder have
been used to infer some information about viscoelastic instabilities in the different portions of a
porous geometry [1]. Elastic instability induces symmetry-breaking transition at a small Wi and
time-dependent flow at a large Wi for viscoelastic flow through a cross-slot geometry [13,14,19].
The formation of unstable eddies takes place upstream of a sudden constriction [20,21] to mitigate
the elastic stress induced due to the alignment of polymeric chains [22–25]. For viscoelastic flows
around a confined cylinder, viscoelastic instability leads to the formation of eddies upstream of the
cylinder at a large blockage ratio (>0.5) [26–28], whereas the flow becomes asymmetric around the
cylinder for the geometries with a small blockage (<0.5). The manifestation of instability occurs
downstream of the cylinder for the geometry with a small blockage [29,30]. The channels having
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FIG. 1. Schematic of the geometries used for simulations: (a) a single cylinder located inside a channel
and (b) a pair of streamwise located cylinders inside a channel. Uin (t ) represents time-dependent inlet flow
velocity. Channel length, channel width, and cylinder diameter have been denoted by l , w, and d , respectively.
The separation between cylinders for the channel consisting of a pair of cylinders is ls = 2d . The values of
different geometrical parameters are l = 4 mm, w = 0.4 mm, and d = 160 μm, respectively. The channel
length is much larger than the width (l = 10w) and cylinder diameter (l = 25d) to avoid any entrance or exit
effect (Appendix A 1). Black solid lines represent solid boundaries, whereas green and red lines indicate inlet
and outlet, respectively.

an array of contractions and cylinders have been widely used as a one-dimensional (1D) model
of porous geometry to investigate the viscoelastic interaction between the successive pores and
obstacles [31–34]. Viscoelastic flows through channels consisting of multiple pores and cylinders
lead to the formation of distinct steady and transient flow states due to viscoelastic instabilities
[34–38]. The pore-scale viscoelastic instability ultimately regulates the sample-scale transport in
2D porous geometries [16,39,40]. Viscoelastic instability in a 3D porous geometry induces a chaotic
flow due to complex connectivity and enhanced disorder, which leads to an abnormal rise of flow
resistance [18].

The topology of the polymeric stress field regulates the formation of distinct pore-scale flow
states in viscoelastic flows [36,38,41]. The magnitude of polymeric stress depends on the stretching
of the polymeric chains and the stretching or relaxation of these chains occurs in finite time [9].
Therefore, viscoelastic instability-induced flow states exhibit hysteresis when the flow rate (or Wi)
is time dependent. In the natural and industrial processes, the mass flow rate of viscoelastic fluids
through confined geometries is often transient due to either time-dependent injection or viscoelastic
instabilities. The time-dependent injection rate of displacing fluid suppresses viscous fingering in-
stability [42–44]. Hence, it is desirable to inject displacing fluids into the reservoirs with a transient
flow rate to enhance the oil recovery [45]. In natural processes such as ciliary motion-induced flow of
mucus through cilia-covered epithelial surfaces, the flow rate is transient due to periodic beating of
cilia [46,47]. Furthermore, even for a constant sample-scale flow rate of polymeric solution through
porous media, the velocity fluctuations induced by viscoelastic instability lead to a locally transient
flow rate of viscoelastic fluid in the microstructures of the porous media [18,40]. Therefore, it is
essential to understand viscoelastic instability for transient flow rates through confined geometries.
In the present work, we study pulsatile viscoelastic flows through channels consisting of cylinders
and investigate hysteresis in the viscoelastic instability-induced flow states. Further, we investigate
the effect of fluid’s rheological parameters and the different parameters of transient flow on the
hysteresis.

II. GEOMETRIES AND GOVERNING EQUATIONS

In the present work, we have numerically studied hysteresis in the viscoelastic instability-induced
flow states in a channel having one or two cylinders (Fig. 1). The flow of incompressible viscoelastic
fluid is described by the conservation of mass and momentum:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ, (2)
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where ρ is the fluid density, while u and p are the velocity and pressure fields, respectively.
The variable τ represents the stress tensor, which has two components coming from the solvent
(τs) and the presence of polymeric chains (τp). For Newtonian solvents, τs can be calculated as
τs = ηs(∇u + ∇uT ), where ηs is the viscosity of the solvent. There are many mathematical models
available to calculate the polymeric contribution of the stress tensor (τp) [48,49]. We choose the
FENE-P constitutive model to calculate τp. The FENE-P model includes fluid elasticity and shear-
thinning effects which are primary characteristics of most polymeric solutions and also considers
the finite stretching of the polymeric chains [49,50]. The governing equation for τp considering the
FENE-P constitutive model can be written as:

τ p + λ

f

∇
τ p = aηp

f
(∇u + ∇uT ) − D

Dt

(
1

f

)
[λτ p + aηpδ], (3)

where λ is the relaxation time of polymeric chains and δ is the identity tensor. The material derivative
is shown as D

Dt = ∂
∂t + u · ∇. The polymer viscosity is ηp = η0 − ηs, where η0 is the total viscosity

of the polymeric solution in the limit of zero-shear rate. The function f has the following form:

f (τp) =
L2 + λ

aηp
tr(τp)

L2 − 3
, (4)

where L2 represents the maximum stretching of the polymeric chains and a = L2/(L2 − 3). The
value of L2 used in the literature lies in the range of L2 = 10−1000 [50–52] and it is worth noting
that the FENE-P model reduces into the Oldroyd-B constitutive model [53] at a large value of L2

(i.e., L2 → ∞), which is an excellent model for constant viscosity highly elastic fluids (i.e., Boger

fluid [54]). The term
∇
τ p used in the FENE-P model [Eq. (3)] represents the upper convective time

derivative of τp which is given by:

∇
τ p = Dτ p

Dt
− τ p · ∇u − ∇uT · τ p. (5)

The numerical simulation using the form of the FENE-P model described in Eq. (3) is challenging
at high Weissenberg numbers due to the exponential profile of stress tensor in the regions of high
deformation rate [55]. The log-conformation approach is an alternative method to perform numerical
simulation at a large Wi, where the equations are solved for the logarithm of conformation tensor
(�) rather than τp [56,57]. This method by default ensures the positive definiteness of the stress
tensor, which is essential for numerical stability at high Weissenberg numbers. The following
relation has been then used to calculate the polymeric stress tensor (τp) from the log-conformation
tensor (�):

τ p = ηp

λ
( f e� − aδ). (6)

We perform 2D numerical simulations for viscoelastic flows through the geometries shown in
Figs. 1(a) and 1(b). The numerical simulations have been performed using OpenFOAM, which is
an open-source CFD framework based on the finite-volume method [58]. We integrate viscoelastic
solver RheoTool [59] with OpenFOAM and use the log-conformation approach to calculate the
polymeric stress tensor [59,60]. Gauss’s theorem has been used to calculate the cell gradient
(Gauss linear) and divergence [59]. The convective terms in the governing equations have been
discretized using the Gaussian deferred correction component-wise schemes (GaussDefCmpw),
where specifically the “CUBISTA” scheme has been used for the convective terms in the polymeric
stress equation. The scheme based on the Gauss theorem has been also used to discretize the
Laplacian terms since the Laplacian operator can be considered as a combination of the divergence
and gradient operators. For the temporal evolution of the solution, we have used the Crank-Nicolson
scheme.

We have used nx × ny = 2560 × 256 static grid points to discretize the computation domain,
where the five layers in the vicinity of the cylinders have been further refined (Appendix A 2). nx
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TABLE I. The value of fluid and flow parameters used in the present study.

ρ λ Uin β L2

1000 kg/m3 1 s 0.05–0.5 mm/s 0.02–0.2 400–1000

and ny are the grid points along the length and the width of the channel. The time-step size in the
simulation has been controlled by the maximum Courant number (Comax) and Comax = 0.025 has
been used throughout the study. The values of grid points and the maximum Courant number used
for simulations are sufficient for the mesh and time-step-independent results (Appendix A 2). The
inlet velocity in the channel is described by a uniform periodic triangular waveform [Fig. 3(a)].
The boundary conditions used at the inlet for polymeric stress tensor and pressure field are τp = 0
and n · ∇p = 0, respectively. n is the unit vector normal to the surface. At the outlet, the boundary
conditions used for velocity, polymeric stress tensor, and pressure are n · ∇ui = 0, n · ∇τp,i j = 0,
and p = 0, respectively. ui and τp,i j are the components of the velocity vector and polymeric stress
tensor, respectively. No-slip and no-penetration boundary conditions have been used for the velocity
field at the channel’s walls and the cylinder’s surface. Further, we use a linear extrapolation for
polymeric stress tensor and zero gradient for the pressure field as the boundary conditions at the
solid surfaces [59].

The Reynolds number (Re) is a relevant dimensionless number in any fluid flow, which represents
the ratio of inertial to viscous forces and can be defined as Re = ρUind/η0. The effect of inertia is
negligible as the Re is small (Re = 0.0004−0.004) due to the small length scale of the system.
The Weissenberg number is defined as Wi = λUin/d and its value lies in the range Wi = 0−4
in the present study. We vary Uin to change the Wi keeping other variables constant [Fig. 3(a)].
Therefore the elasticity number (El = Wi/Re = λη0/ρd2), which represents the ratio of elastic
to inertial forces, has a constant value (El = 781.25) as it only depends on the fluid rheology
and geometrical length scale. The elastic effects dominate the inertial effects since El � 1. We
define viscosity-ratio β = ηs/η0 to investigate the effect of shear-thinning behavior for the FENE-P
constitutive model. The viscosity ratio and the relaxation time of the polymeric solutions generally
used in the experiments are in the range of β = 0.05−0.25 [16,30] and λ = 0.1−10 s [13,16,30,40],
respectively. The values of fluid properties and dimensional parameters used in the present study
have been summarized in Table I. Throughout the study, we use λ to normalize time (t) and
oscillation time period (T ) and Uin to normalize velocity. The Deborah number, De, which measures
the unsteadiness in viscoelastic flows [61], is directly related to the normalized oscillation time
period as De = 1/T . The characteristic shear stress, η0Uin/d , has been used to the normalize the
stress and pressure fields.

III. RESULTS AND DISCUSSION

A. A single cylinder located inside a channel

Viscoelastic flows through channels consisting of a single cylinder have been widely explored in
the literature assuming constant mass flow rate [28–30]. However, despite the practical relevance,
viscoelastic instability in the confined geometry having a transient mass flow rate has not been
explored. For steady mass flow rate, viscoelastic instability induces flow asymmetry around the
confined cylinder for the Wi greater than a critical value (Wicr) [30]. To identify the critical Wi
required for the flow asymmetry in the present study, we first perform simulations considering
constant flow rates [Fig. 2(a)]. To quantify the flow asymmetry around the cylinder, an asymmetry
parameter (I) has been defined as:

I = |Qupper − Qlower|
Qupper + Qlower

, (7)
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FIG. 2. (a) Velocity field for the viscoelastic flow around a confined cylinder at (i) Wi = 1.25 and
(ii) Wi = 2.5. (b) Flow asymmetry, I , for the viscoelastic flow around a confined cylinder at different Wi.
The symbol and the error bars represent the mean value and the standard deviation, respectively. The standard
deviation is very small as the flow remains almost steady (Appendix A 3). The fluid rheological parameters are
β = 0.05 and L2 = 1000.

where Qupper represents the mass flow rate through the gap between the cylinder and upper wall
and Qlower represents the mass flow rate through the gap between the cylinder and lower wall. The
value of I varies from I = 0 for symmetric flow to I = 1 when the entire fluid passes through
one of the gaps. Wicr has been defined as the onset of the increase of I and its value for a fluid
with β = 0.05 and L2 = 1000 lies between Wi = 1.48 and Wi = 1.56 [Fig. 2(b)]. Therefore, we
consider Wicr = 1.52 ± 0.04 .

To investigate the effect of transient flow rate on the viscoelastic instability-induced flow, we
consider a time-dependent inlet velocity, corresponding to a transient Wi as shown in Fig. 3(a).
In this study, we change minimum Wi (Wimin), maximum Wi (Wimax), and time period (T) of the
oscillatory Wi. Figure 3(b) depicts the value of flow asymmetry (I) for the multiple oscillations of
Wi at a fixed oscillation’s time period (T = 10). The value of I converges to a closed loop after a
few initial oscillations of Wi. The closed loop of the flow asymmetry leads to two possible values
of I at a given Wi, depending on the route that has been followed to get the specific value of Wi
[Fig. 3(b)]. Thus, the flow asymmetry exhibits hysteresis for oscillatory flow rates. At large Wi,
the flow asymmetry saturates as the entire fluid passes through either of the gaps. Therefore, two
different branches of the hysteresis loop coincide with each other [Fig. 3(b)]. However, we do not
see the saturation of flow asymmetry at the lower limit of Wi. The value of Wi linearly varies forth
and back from Wimin < Wicr to Wimax > Wicr [Fig. 3(a)]. However, the flow around the cylinder
always remains asymmetric (i.e., I > 0) after achieving the hysteresis loop [Fig. 3(b)] and we do
not see the transition from asymmetric to symmetric flow state as Wi becomes less than Wicr. The
size and shape of the hysteresis loop significantly depend on the rate of change of Wi [Figs. 3(c) and
3(d)]. The area of the loop increases as the time period increases and the hysteresis loop changes
from a triangular shape at T = 10 to an elliptical shape at T = 20 to a squarelike shape at T = 40.

To understand the origin of hysteresis and the flow state at the different branches of the hysteresis
loop, we plot the flow field and stress field at a fixed Wi(<Wicr ) but for the different branches of
the hysteresis loop at T = 20 [Fig. 3(c)] in Fig. 4. Streaks of large polymer stress induce flow
separation and lead to the formation of distinct flow states [36,38]. The viscoelastic flow around
a cylinder creates a long elastic wake [30,62]. At Wi > Wicr, the elastic wake downstream of the
cylinder becomes asymmetric, leading to an asymmetric flow state [30]. The flow states shown in
Fig. 4 correspond to different branches of the hysteresis loop. Therefore, despite having the same
Wi, they have different stress field depending on the route [Figs. 4(d), 4(e), and 4(f)]. The location
shown by (•) in Fig. 3(c) belongs to the branch corresponding to the first oscillation of Wi and

093302-5



MANISH KUMAR AND AREZOO M. ARDEKANI

FIG. 3. (a) The profile of time-dependent oscillatory Wi used in the simulation. Wimin, Wimax, and T are
the minimum value, maximum value and time period of Wi. The value of flow asymmetry at different Wi
for (b) T = 10, (c) T = 20, and (d) T = 40. Black dashed lines show the startup regime for the hysteresis,
whereas solid lines represent different hysteresis loops. The values of other parameters are β = 0.05, L2 =
1000, Wimin = 0.62, and Wimax = 3.12.

Wi < Wicr. Therefore, the stress topology is symmetric [Fig. 4(d)], leading to a symmetric flow
state at this location [Fig. 4(a)]. The location indicated by (�) in Fig. 3(c) is on the branch of the
hysteresis loop corresponding to the decreasing value of Wi after attaining Wimax and it has an
asymmetric flow state despite Wi < Wicr [Fig. 4(b)]. The topology of stress field as well as the
flow state at Wimax is asymmetric as Wimax > Wicr and the location denoted by (�) is in the route
decreasing from Wimax to Wimin. The topology of the stress field has a memory and it requires a finite
time to transform itself. Therefore, the polymeric stress topology at the location denoted by (�)
remains asymmetric despite Wi < Wicr [Fig. 4(e)] and induces an asymmetric flow state [Fig. 4(b)].
In fact, the topology of stress field is not able to completely transform from an asymmetric profile
at Wimax to a perfectly symmetric profile at Wimin. Therefore it has I > 0 even at Wimin in the
hysteresis loop. However, the value of I at Wimin is smaller than that at Wimax indicating that
the flow state is less asymmetric at Wimin than Wimax [Fig. 3(c)]. The point indicated by (�) on
the hysteresis loop [Fig. 3(c)] is on the branch where Wi increases from Wimin to Wimax. Along this
branch, first, the stress topology continues to transform toward a symmetric topology [Fig. 4(f)],
which leads to the decrease in I as Wi increases. Therefore, at the location denoted by (�) on
the hysteresis loop, the flow state is less asymmetric [Fig. 4(c)] than the flow state at the location
indicated by (�) on the loop (Fig. 4(b)]. After achieving a minimum value of I (> 0), the stress
topology again starts to transform toward a more asymmetric topology as Wi further increases,
which leads to the increase in I with Wi [Fig. 3(c)]. Thus, the stress topology and flow state do not
become symmetric after attaining the hysteresis loop. For the quasistatic variation of flow rate (or
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FIG. 4. [(a)–(c)] Flow field and [(d)–(f)] the trace of polymeric stress field at Wi = 1.25(< Wicr ) for the
different branches of the hysteresis loop shown in Fig. 3(c). The flow states shown in [(a) and (d)], [(b) and
(e)], and [(c) and (f)] correspond to the locations indicated by filled circle (•), filled diamond (�), and filled
star (�) in Fig. 3(c), respectively. Other parameters are β = 0.05, L2 = 1000, T = 20, Wimin = 0.62, and
Wimax = 3.12.

Wi) considered in the previous experiments [29,63], the polymeric stress had sufficient time to relax
after each stepwise increment/decrement of Wi (Appendix A 4). Therefore, the hysteresis was not
reported in the previous experiments performed using a quasistatic variation of the flow rate [29,63].

Further, we investigate the effect of time period, minimum Wi, and maximum Wi on the
hysteresis, and quantify the area of the hysteresis loop (Aloop) and the minimum value of
the asymmetry parameter (Imin) in the hysteresis loop. Aloop physically represents the strength of the
hysteresis and Imin determines the deviation of the hysteresis loop from the symmetric flow state.
Aloop increases as the time period (T ) of the oscillation of Wi increases, whereas Imin decreases with
the increasing value of T [Fig. 5(a) ]. The flow rate (i.e., Wi) changes slowly as the time period of
the oscillation increases, providing a longer time for the stress field to transform from asymmetric
to the symmetric topology. Therefore, the value of Imin decreases as T increases [Fig. 3(d)]. The size
of the hysteresis loop increases as the value of Imin decreases. Hence, the area of the hysteresis loop
increases with T [Fig. 5(a)]. The range of Wi increases as the lower limit of Wi decreases and the
value of I does not saturate at Wimin [Fig. 3(c)]. Therefore, Imin decreases as the lower limit of Wi
decreases (Fig. 5(b)], which also delays the saturation of I to a larger value of Wi. The combined
effect of the increase of Wi range, decrease of Imin, and delaying the saturation of flow asymmetry
leads to the increase of Aloop as Wimin decreases [Fig. 5(b)]. The range of Wi also increases with the
increasing value of upper limit of Wi. However, the value of Imin increases [Fig. 5(c)] and the flow
asymmetry saturates at a smaller Wi as Wimax increases. Therefore, despite the increase of the range
of Wi, the area of the hysteresis loop decreases as the value of Wimax increases [Fig. 5(c)].

FIG. 5. The area of hysteresis loop (Aloop) and the minimum value of flow asymmetry in the hysteresis loop
(Imin) for different values of (a) oscillation time period (T), (b) minimum Wi (Wimin), and (c) maximum Wi
(Wimax). The values of other parameters are Wimin = 0.62 and Wimax = 3.12 for (a), T = 20 and Wimax = 3.12
for (b), and Wimin = 0.62 and T = 20 for (c). The rheological parameters are β = 0.05 and L2 = 1000.
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FIG. 6. The area of hysteresis loop (Aloop) and the minimum value of flow asymmetry in the hysteresis loop
(Imin) for different values of (a) viscosity ratio (β) at L2 = 1000 and (b) polymeric chains’ extensibility (L2) at
β = 0.05. Other parameters are T = 20, Wimin = 0.62, and Wimax = 3.12.

We also explore the effect of fluid rheological parameters on the hysteresis. The value of Wicr

required for the flow asymmetry decreases with the increasing strength of shear-thinning [29,30].
Therefore, the value of I in the hysteresis loop saturates at a lower Wi and the range of Wi wherein
I has two distinct values decreases as β decreases. This leads to the enhancement of Imin and the
decline of Aloop as the value β decreases [Fig. 6(a)]. For a weakly shear-thinning fluid (i.e., 1/β =
10), the flow around the cylinder remains symmetric for the range of Wi considered in the present
study, and hence the formation of the hysteresis loop does not take place. The elastic property of
fluid increases as the extensibility of the polymeric chains (L2) increases and a stronger elastic fluid
has a smaller Wicr for the instability [30]. Therefore, the flow asymmetry saturates at a smaller Wi
as L2 increases and leads to the increase of Imin and the decrease of Aloop as the elasticity of fluid
increases [Fig. 6(b)].

B. Two cylinders located inside a channel

In the channel consisting of two streamwise located cylinders [Fig. 1(b)], viscoelastic instability
induces three distinct flow states in the region between the cylinders [36]. The transitions between
these distinct flow states are characterized by two critical Wi (Wicr1 and Wicr2). The flow is sym-
metric and eddy free for Wi < Wicr1 (flow type-1). After the first transition (Wicr1 < Wi < Wicr2),
a pair of recirculating eddies appear in the region between the cylinders (type-2). Whereas, the
eddies disappear and the flow around cylinders becomes asymmetric for Wi > Wicr1 (type-3). To
investigate the hysteresis in viscoelastic instability-induced flow states between two cylinders, we
consider the range of time-dependent Wi such that Wimin < Wicr1 < Wicr2 < Wimax. Figure 7(a)
depicts the flow asymmetry (I) around the front cylinder for the multiple oscillations of Wi at
T = 40. The route of I during the increase of Wi from Wimin to Wimax is different than the route
observed when Wi decreases from Wimax to Wimin [Fig. 7(a)]. However, the value of I makes a closed
loop during the complete oscillation of Wi, indicating the hysteresis in the flow states. The flow
around the cylinder remains symmetric (I = 0) even after the first transition (Wicr1 < Wi < Wicr2),
wherein the eddies appear in the region between the cylinders (type-2) [36]. Therefore, we quantify
the area occupied by the eddies (Aeddy) in the region between the cylinders to differentiate the flow
state consisting of eddies (type-2) from the eddy-free symmetric (type-1) flow state [Fig. 7(b)]. Aeddy

increases continuously due to a continuous change in Wi. We set Aeddy = 0.04 as a critical value of
Aeddy to identify the eddy-free symmetric (type-1) flow state, because Aeddy increases rapidly after
Aeddy = 0.04 [Fig. 7(b)]. The value of Aeddy also makes a closed loop and exhibits hysteresis. The
portions of the hysteresis loop corresponding to the eddy free symmetric (type-1) and asymmetric
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FIG. 7. (a) Flow asymmetry (I) around the front cylinder in the geometry having two streamwise located
cylinders in a channel at T = 40. (b) The area occupied by eddies (Aeddy) in the region between the cylinders
at T = 40. Aeddy has been normalized with lsd . The portions of the hysteresis loop corresponding to the eddy
free symmetric (type-1) and asymmetric (type-3) flow states have been indicated by magenta and blue colors,
respectively. The green and red portions of the loop represent symmetric and asymmetric flow states with eddies
between the cylinders, respectively. The values of other parameters are β = 0.05, L2 = 1000, Wimin = 0.62,
and Wimax = 3.12.

(type-3) flow states have been indicated by magenta and blue colors, respectively [Figs. 7(a) and
7(b)]. The hysteresis loops corresponding to the different oscillations of Wi collapse on each other
except the portion indicated with the red color. The red portion of the loop represents an asymmetric
flow state with eddies between the cylinders. This is an intermediate state between the flow state with
eddies (type-2) and the eddy-free asymmetric flow state (type-3) [36]. Both Aeddy and I fluctuate for
this flow state. Therefore, the values of Aeddy or I corresponding to the different oscillations of Wi do
not perfectly collapse on each other [Figs. 7(a) and 7(b)]. Here onward, we refer to the symmetric
and asymmetric flow states with eddies as type-2a (green color in the hysteresis loop) and type-2b
(red color) flow state, respectively.

FIG. 8. [(a)–(d)] Flow field and [(e)–(h)] the trace of polymeric stress field corresponding to the different
portions of the hysteresis loop shown in Fig. 7(a). The flow states shown in [(a) and (e)], [(b) and (f)], [(c) and
(g)], and [(d) and (h)] correspond to the locations indicated by filled circle (•), filled diamond (�), filled
star (�), and filled triangle (�) in Fig. 7(a) and represent flow states type-1, type-2a, type-2b, and type-3,
respectively. The values of other parameters are β = 0.05, L2 = 1000, T = 40, Wimin = 0.62, and Wimax =
3.12.
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FIG. 9. (a) Flow asymmetry (I) around the front cylinder in the geometry consisting of two streamwise
located cylinders at T = 10. (b) The area occupied by eddies (Aeddy) in the region between the cylinders at
T = 10. Aeddy has been normalized with lsd . The values of other parameters are β = 0.05, L2 = 1000, Wimin =
0.62, and Wimax = 3.12.

The flow state representing each portion of the hysteresis loop has been shown in Fig. 8. These
flow states correspond to the location indicated by different symbols on the hysteresis loop in
Fig. 7(a). At the location indicated by (•) and (�) in Fig. 7(a), the stress topology is symmetric
[Figs. 8(e) and 8(f)], which induces symmetric flow states (I = 0) as shown in Figs. 8(a) and
8(b). The elastic wake in between the cylinders bifurcates in two symmetric branches after the
first transition and encircles the region between the cylinders [Fig. 8(f)], leading to the formation
of eddies between the cylinders [Fig. 8(b)]. The elastic wake has two branches even at the location
indicated by (�) in the hysteresis loop [Fig. 8(g)]. However, the top branch starts to deviate from the
rear cylinder [Fig. 8(g)] and hence the stress topology loses the symmetry. This leads to asymmetric
flow around the cylinders (I > 0) and Aeddy becomes smaller [Fig. 8(c)]. Ultimately, the top branch
of elastic wake completely disappears [Fig. 8(h)] for the location indicated by (�) in Fig. 7(a).
This topology of the stress field induces an eddy-free asymmetric flow state [Fig. 8(d)]. The stress
field transforms from asymmetric to symmetric topology as Wi decreases from Wimax to Wimin.
Therefore, the symmetric flow states (flow type-1 and type-2a) do not appear and flow around
the cylinders remains asymmetric (I > 0) in the route where Wi decreases from Wimax to Wimin

[Fig. 7(a)].
A smaller time period (T ) of the oscillation of Wi does not provide sufficient time for the

transformation of the topology of the stress field. Therefore, it exhibits a fewer number of flow
states during the complete oscillation of Wi. For a small time period (T = 10), the hysteresis
loops of flow asymmetry (I) and eddies’ area (Aeddy) have been shown in Fig. 9(a) and Fig. 9(b),
respectively. After achieving the hysteresis loop, eddies exist in the region between the cylinders
throughout the oscillation period [Fig. 9(b)]. In the portion of the hysteresis loop indicated by red
color, the area occupied by eddies fluctuates [Fig. 9(b)], and flow around the cylinder becomes
slightly asymmetric [Fig. 9(a)]. However, the eddy never disappears, and flow around the cylinder
never becomes completely asymmetric at T = 10. Thus, unlike T = 40, the hysteresis at T = 10
exhibits only the flow states which have eddies (flow states type-2a and type-2b) and the transition
happens between type-2a and type-2b flow states in the hysteresis loop [Fig. 9(b)].

To investigate the effect of the upper and lower limit of Wi on the hysteresis, we plot the
flow asymmetry around the front cylinder [Figs. 10(a), 10(b) and 10(c)] and the area occupied
by eddies [Figs. 10(d), 10(e) and 10(f)] at T = 20 for different values of Wimin and Wimax. Unlike
the hysteresis loop at T = 10, there is sufficient time available at T = 20 for the existence of eddy
free symmetric (type-1) flow state. However, the time is not enough for the formation of eddy free
asymmetric (type-3) flow state like the hysteresis loop at T = 40. Therefore, the hysteresis loop at
T = 20 exhibits only two flow states [Figs. 10(a) and 10(d)]: eddy free symmetric flow state (flow
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FIG. 10. [(a)–(c)] Flow asymmetry (I) around the front cylinder and [(d)–(f)] the area occupied by
eddies (Aeddy) in the region between the cylinders for [(a) and (d)] Wimin = 0.62, Wimax = 3.12; [(b) and (e)]
Wimin = 0.31, Wimax = 3.12; and [(c) and (f)] Wimin = 0.62, Wimax = 2.62. The values of other parameters are
β = 0.05, L2 = 1000, and T = 20. Aeddy has been normalized with lsd .

state type-1) and flow state with eddies (type-2a and -2b). For (Wimin = 0.62, Wimax = 3.12), the
asymmetric flow state containing eddies (type-2b) exists for a much longer time compared to the
symmetric flow state with eddies (type-2a) [Fig. 10(d)], and the fluctuation of Aeddy leads to I �= 0
[Fig. 10(a)]. As the value of Wimin decreases, the type-2a flow state exists for a longer time and the
fluctuation of Aeddy for the type-2b flow state reduces [Fig. 10(e)], leading to an almost symmetric
flow around the cylinder (I ≈ 0) throughout the oscillation period [Fig. 10(b)]. The reduction of the
value of Wimax has an effect similar to the reduction of Wimin [Figs. 10(c) and 10(f)]. The flow state
type-2a exists for a longer time and the fluctuation of Aeddy also decreases as the value of Wimax

reduces [Fig. 10(f)].
Fluid rheology also influences the hysteresis loop of I [Figs. 11(a) and 11(b)] and Aeddy

[Figs. 11(c) and 11(d)]. The stability of the symmetric flow state increases as either the strength
of shear-thinning decreases (i.e., β increases) or the elasticity of fluid decreases (i.e., L2 decreases)
[36]. Therefore, the symmetric flow state type-2a exists for a longer time at β = 0.2 [Fig. 11(c)] than
β = 0.05 [Fig. 10(d)] and at L2 = 400 [Fig. 11(d)] than L2 = 1000 [Fig. 10(d)]. There also occurs
a transition from type-2b to type-2a flow state at β = 0.2 [Fig. 11(c)], unlike the other scenarios
at T = 20 where the transition happens directly from type-2b to type-1 flow state in the hysteresis
loop. Therefore, the type-2a flow state exists in two different portions of the hysteresis loop at
β = 0.2 [Fig. 11(c)]. The fluctuation of Aeddy reduces as β increases or L2 decreases. Therefore, the
value of I is smaller at β = 0.2 [Fig. 11(a)] and L2 = 400 [Fig. 11(b)] than the value at β = 0.05
and L2 = 1000 [Fig. 10(a)].

IV. CONCLUSIONS

Viscoelastic instabilities induce distinct flow states in different geometries, where the formation
of the specific topology of the polymeric stress field regulates these flow states. Viscoelastic
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FIG. 11. [(a) and (b)] Flow asymmetry (I) around the front cylinder and [(c) and (d)] the area occupied by
eddies (Aeddy) in the region between the cylinders for [(a) and (c)] β = 0.2 and L2 = 1000 and [(b) and (d)]
β = 0.05 and L2 = 400. The values of other parameters are Wimin = 0.62, Wimax = 3.12, and T = 20. Aeddy

has been normalized with lsd .

instability-induced flow states exhibit hysteresis due to fluid memory. The volumetric flow rate
of viscoelastic fluids through confined geometries is often transient in natural and industrial
processes, like the cilia-induced flow of biological fluids and enhanced oil recovery. We in-
vestigate the hysteresis in the viscoelastic flow instability in the channels consisting of (i) a
single cylinder and (ii) two streamwise located cylinders. For constant flow rates through the
channel, the flow around the cylinder becomes asymmetric at Wi > Wicr in the geometry con-
sisting of a single cylinder. However, for a pulsatile flow, the viscoelastic flow around the
cylinder remains asymmetric even at Wi < Wicr and the flow asymmetry parameter undergoes
a closed hysteresis loop. The hysteresis loop area increases with the time period of the pul-
satile flow and decreases with the increasing value of the lower or upper limit of the flow
rate. The loop area also decreases as the strength of shear-thinning or the extensibility of the
polymeric chains increases. In the channel consisting of two streamwise located cylinders, the
viscoelastic instability induces three distinct flow states, which are characterized by the flow
asymmetry around the cylinders and the existence of eddies between the cylinders. Both the flow
asymmetry and the area occupied by eddies form hysteresis loops for periodically varying flow
rates. The number of distinct flow states obtained during the hysteresis varies from one to three
depending on the time period of the oscillation. The symmetric flow states exist for a longer
time during the periodic oscillation as the shear-thinning strength or the elasticity of the fluid
decreases.
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FIG. 12. (a) The velocity profile at different locations along the length of the channel (l = 25d) at
Wi = 0.62 for the channel having a single cylinder. (b) Flow asymmetry (I) at different locations along the
length of channel at Wi = 3.12 for the channels having length l = 25d and l = 50d . The cylinder (the front
cylinder in the channel having two cylinders) is located at x = 0. The entrance and the exit of the channel are
at x = −9.4d and x = 15.6d for l = 25d , and x = −21.9d and x = 28.1d for l = 50d .
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APPENDIX

1. Effect of channel length on the instability

For a Newtonian flow through a channel, the hydrodynamic entrance length can be estimated as
[64]:

Lentrance = 0.05ReDD, (A1)

where D and ReD = ρUinD/μ are the hydraulic diameter of the channel and the Reynolds number
based on the hydraulic diameter, respectively. For a Newtonian fluid, the hydrodynamic entrance
length for the flow rate considered in the present study lies in the range of Lentrance = 10−4d − 5 ×
10−4d , where d is the cylinder diameter. The length of the channel in the present study is 25d and
the cylinder (the front cylinder for the channel having two cylinders) is located 9.4d downstream
from the inlet, which is much larger than the hydrodynamic entrance length. For a viscoelastic
channel flow, the hydrodynamic entrance length can be larger than a Newtonian flow. Therefore, we
have shown the velocity profile at different locations along the length of the channel in Fig. 12(a)
for a viscoelastic flow. The velocity profile inside the channel becomes fully developed sufficiently
upstream of the cylinder [Fig. 12(a)]. The exit effect is also negligible as the velocity downstream of
the cylinder becomes fully developed much before the exit [Fig. 12(a)]. Further, to check the effect
of the channel’s length on the instability, we have plotted flow asymmetry (I) at the locations close to
the cylinder at the maximum Wi considered in the present study (Wi = 3.12) for the channels having
lengths l = 25d and l = 50d [Fig. 12(b)]. There is not any significant effect of the enhancement
of the channel length on the instability even at the maximum Wi [Fig. 12(b)]. In fact, the effect
of the cylinder vanishes for x/d > 6 and the flow inside the channel again becomes symmetric
(I = 0) [Fig. 12(b)]. Thus, the flow and polymeric stress equilibrate much before the exit even at
the maximum Wi. Taken together, these results show that the entrance and exit effects are not present
in the present study.
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FIG. 13. Cartoons showing coarse numerical meshes (320 × 32) close to the cylinders for the channels
having (a) a single cylinder and (b) two cylinders. The simulations have been performed using a finer mesh
(2560 × 256).

2. Mesh and time-step dependency

Cartoons depicting coarse numerical meshes (320 × 32) close to the cylinders in the channels
having single and double cylinders have been shown in Fig. 13(a) and Fig. 13(b), respectively.
The pressure drop across the channel has been used as a simple metric to perform the mesh and
time-step dependence study [38]. The simulations become mesh independence even at the maximum
Wi explored in the present study for nx × ny > 2000 × 200 [Figs. 14(a) and 14(b)]. Therefore, we
have used nx × ny = 2560 × 256 to perform the simulations in the present study. The time step
in the simulation has been controlled using the maximum Courant number (Comax) . The Courant
number has been been defined as:

Co = �t

2V

∑
facesi

|φi|, (A2)

where �t and V are the simulation time step and cell volume, respectively. φi is the cell-face
volumetric flux and

∑
facesi

represents the summation over all the faces of a given cell. We have
fixed Comax = 0.025 in the present study as the simulation result becomes time-step independent
for Comax < 0.035 [Fig. 14(a)].

FIG. 14. Normalized pressure drop across the channel having a single cylinder at (a) Wi = 0.62 and
(b) Wi = 3.12.
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FIG. 15. Time-dependent flow asymmetry around the confined cylinder at Wi = 3.12. Other parameters
are β = 0.05 and L2 = 1000. The standard deviation of the fluctuation of I once the asymmetric flow state
becomes fully developed is ≈0.6% of the mean value.

3. Time-dependent flow asymmetry around cylinder for a fixed flow rate

The flow through the channel after the instability for the simulation at a constant flow rate (or Wi)
becomes almost steady even at the maximum Wi (Wi = 3.12). Figure 15 depicts the time-dependent
flow asymmetry (I) around the confined cylinder at Wi = 3.12. Once the asymmetric flow state
becomes fully developed, the value of I fluctuates around a well-defined mean with a very small
standard deviation (< 1% of the mean value) (Fig. 15). Hence, the flow can be considered almost
steady.

4. Quasistatic variation of flow rate

The continuous variation of the flow rate (i.e., Wi) does not allow stress to relax and hence
leads to hysteresis in the present study. For a quasistatic variation of Wi [29,63], we have plotted
the time-dependent flow asymmetry around the confined cylinder in Fig. 16. The stress field, or
the flow asymmetry, does not respond instantaneously to the change in Wi and hence there is a
time lag (Fig. 16). The lag time of the stress to respond the increment and decrement of Wi are
�tup = 7.7 and �tdown = 12.2, respectively (Fig. 16). Therefore, if the time step (�tstep) of the
quasistatic variation of Wi is �tstep > max(�tup,�tdown), the stress has sufficient time to relax and
the flow state does not exhibit hysteresis as shown in Fig. 16.

FIG. 16. Flow asymmetry around a confined cylinder for a quasistatic variation of Wi (flow rate) at β =
0.05 and L2 = 1000. �tup = 7.7 and �tdown = 12.2 are the lag time of the stress to respond to the increment
and decrement of Wi, respectively. The time step of the quasistatic variation of Wi is �tstep = 20.
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