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Closures for multicomponent reacting flows based on dispersion analysis
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This work presents algebraic closure models associated with advective transport and
nonlinear reactions in a Reynolds-averaged Navier-Stokes context for a system of species
subject to binary reactions and transport by advection and diffusion. Expanding upon
analysis originally developed for non-reactive transport in the context of Taylor dispersion
of scalars, this work extends the modified gradient diffusion model explicated by Peters
[N. Peters, Turbulent Combustion, Cambridge Monographs on Mechanics (Cambridge
University Press, Cambridge, 2000)] and based on work by Corrsin [S. Corrsin, The
reactant concentration spectrum in turbulent mixing with a first-order reaction, J. Fluid
Mech. 11, 407 (1961)] beyond single-component transport phenomena and involving
nonlinear reactions. The presented model forms, from this weakly nonlinear extension of
the original dispersion theory, lead to an analytic expression for the eddy diffusivity matrix
that explicitly captures the influence of the reaction kinetics on the closure operators.
Furthermore, we demonstrate that the derived model form directly translates between flow
topologies through a priori and a posteriori testing of a binary species system subject
to homogeneous isotropic turbulence. Using two- and three-dimensional direct numerical
simulations involving laminar and turbulent flows, it is shown that this framework improves
prediction of mean quantities compared to previous results. Lastly, the presented model
form, collapses to the earlier gradient diffusion and its modified version derived by Corrsin
in the limits of nonreactive species and linear reactions, respectively.

DOI: 10.1103/PhysRevFluids.7.093201

I. INTRODUCTION

Building reduced-order models for turbulent reacting flows is theoretically and computationally
challenging as the underlying chemical and transport processes are individually complex and a
thorough understanding of the coupled effects of these phenomena remains elusive. However,
deeper insight into the mechanisms by which turbulent transport and reaction dynamics influence
each other is essential for the future design of efficient systems. In particular, finding models
that capture the influence of microscale fluctuations on macroscale quantities is a key problem
in computational predictive science and has applications involving atmospheric [1] and marine
pollution, combustion [2], electrolyte solutions in electrochemical applications [3], and related
fields.

When considering a system of reactive scalars, the simplest possible multicomponent setup
would involve a single-step chemistry with two reacting species. The reaction rate is physically
temperature dependent and the heat release from the reaction and the changing concentration of
scalars both couple the scalar fields to the velocity field. Direct simulations of these fields are
prohibitively expensive due to the excessive temporal and spatial resolution requirements. As a rem-
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edy, computational models often seek reduced-order representations in terms of ensemble-averaged
fields [1], homogenized fields [4], or spatially filtered fields. [5] In each of these methods, there
exist microscale features whose effects are not explicitly simulated but which affect the macroscale
quantities and must be accounted for via closure models.

To account for microscale effects on transport terms, a gradient transport assumption is often in-
voked, but models using this assumption often contain parameters that are agnostic to reaction [2,5].
As these system often involve reaction nonlinearity, reaction terms themselves involve closure
problems which should be additionally captured via closure models that must also be informed
by both chemical kinetics and turbulence.

The goal of this study is to demonstrate how even a highly-simplified reaction coupling leads to a
model form for transport closures that explicitly incorporates chemical effects. Said more explicitly,
we would like to demonstrate that, in the presence of even the simplest of chemistry mechanisms,
the effective diffusivity intended for capturing transport closure for one scalar should depend on
other scalar fields and their gradients. A model so developed might not be immediately suitable for
application to a realistic setup with energetic reactions, such as highly turbulent deflagrations, but
offers qualitative insights into the requirements for expected model forms that would apply to even
those cases.

With this in mind, let us consider the most fundamental chemical system with constant reaction
coefficients and no thermal expansion effects as a simplification to other flows in which the reaction
coefficient is variable (i.e., temperature dependent) and dilatation effects are not negligible. In
considering the evolution of the concentration of passive scalars in such an incompressible flow,
a one-way coupling between the fluid momentum and the scalars is typically assumed in writing
the transport equations. In particular, if considering the concentrations of two scalars involved in
a binary reaction system, the concentrations being denoted C1 and C2, in an imposed solenoidal
velocity field, U , the governing equations can be formulated as

∂Ci

∂t
+ ∇ · (UCi ) = Dm∇2Ci − ACiCj �=i, (1)

where A is a reaction coefficient and Dm is a scalar diffusivity which is assumed to be the same for
both indexed scalars in this work. This equation is valid in the dilute limit, where the heat release
from the reaction is so small as to affect neither the density nor the reaction kinetics [6].

While this form of the equation incorporates all effects in the system, in practice, the Reynolds-
averaged version of Eq. (1), written as

∂Ci

∂t
+ ∇ · (U Ci ) + ∇ · (U ′C′

i ) = Dm∇2Ci − ACiC j �=i − AC′
iC

′
j �=i, (2)

has more utility due to its lower computational cost to solve when compared to the full degree-
of-freedom system. In Eq. (2), the primed terms denote fluctuations about the mean quantities,
which are denoted by over-bars. In general, for a stochastic system, this averaging is done over
multiple ensembles of flow realizations, and the corresponding set of partial differential equa-
tions for the velocity field are the Reynolds-averaged Navier-Stokes (RANS) equations. Finding
models for the two types of unclosed terms in Equation 2, U ′C′

i and C′
iC

′
j �=i, allows for the entire

problem to be solved. In this work, such a model will be derived using a weakly-nonlinear extension
of dispersion analysis.

A. Taylor dispersion

For nonreacting scalar contaminants, many models exist for tracking the dispersion of passive
scalars. The most common analytic model invoked for the unclosed transport term in the nonreactive
equations, which is also used for some reactive cases, follows the generalized gradient diffusion

093201-2



CLOSURES FOR MULTICOMPONENT REACTING FLOWS …

hypothesis, for which the unresolved flux of a single passive scalar is of the form

u′
iC

′
1 = −Deff

∂C1

∂xi
, (3)

where Deff is a generic effective eddy diffusivity that aggregates turbulent transport effects. When
there is strong scale separation between the mean fields and the underlying fluctuating velocity
fields, this local model is exact, with the caveat that Deff may be a nonisotropic tensor when the
underlying fluctuating flow is not statistically isotropic. [7,8]

In the framework of this model form, there is a rich body of literature on analytic models that
find this effective diffusivity in canonical flows. In this study we denote the effective diffusivity in
the absence of reaction as D0, and refer to it as the “standard” eddy diffusivity. Correspondingly,
we denote Deff = D0 as referring to the standard gradient diffusion model, which is agnostic to the
reactivity of scalars.

There are many ways to measure this defining parameter. In particular, for the case of parallel
flow in a pipe, [9] shows that a passive scalar experiences enhanced diffusive transport in the
longitudinal direction. We can define an axial Péclet number as Pe ∼ uL/Dm such that, at high
values of the Péclet number, D0 dominates the standard molecular diffusivity, Dm. In parallel flows,
it is generally shown that this quantity scales as

D0

Dm
∼ u2L2

D2
m

, (4)

where u is the characteristic convective speed, and L is some characteristic spanwise length scale
for the flow. This idea can be expanded to applications outside of pipe flow, and other studies
have expanded the range of problems and fields to ones that Taylor’s original analysis does not
address. [10–13]

B. Other scalar transport models

Thus far, we have only looked at nonreactive models. However, many tracers of interest are
not passive; to reach a multicomponent framework, the first step is the simplest possible reaction
involving two species, where the concentration of the second species is orders of magnitude larger
than the first everywhere in the domain. In some applications, this allows an assumption that the
second species is maintained in the domain at a constant concentration and unaffected by the
reaction dynamics, leading to a first-order linear reaction term for the first species. In the presence
of such a first-order linear reaction, [2] used work by Ref. [14] to propose a model that incorporates
the chemistry effects for the unclosed scalar flux term. It can be written as

u′
iC

′
1 = − D0

1 + AC2τmix

∂C1

∂xi
. (5)

In this model, τmix is a characteristic time scale for mixing by the flow. In the denominator, one
can form a Damköhler number, relating the timescale of the reaction to the turbulence time scale,
and can therefore write the flux as the gradient times an effective diffusivity that scales as

Deff ∼ D0

1 + Da
, (6)

where D0 is the aforementioned “standard” turbulent diffusivity. When the reaction rate is suffi-
ciently slow or when examining the nonreacting limit where Da vanishes, this recovers the gradient
diffusion model exactly. While D0 still needs to be determined from other means, the advantage of
Equation 6 is that it analytically captures the impact of reaction on Deff .

Equation 6 contributes critical understanding by explicitly revealing the dependence of effective
diffusivity (or eddy diffusivity) on the reaction kinetics and, specifically, the reaction coefficient.
Although transport and kinetics are controlled by independent terms at the microscopic continuum
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level, when behavior at a macroscopic level, governed by ensemble-averaged equations, is sought,
kinetics influence transport.

In this study, we develop a model in the Reynolds-averaged context that can provide algebraic
closures to the scalar evolution equations for a binary reactant setup. We do this using the spirit of
Taylor’s dispersion analysis. By considering the case of a parallel flow as an analytical prototype,
we extend Taylor’s analysis to discover model forms for dispersion of scalars undergoing binary
reactions. Given the nonlinearity of this system, the closure operators are expected to be depen-
dent on the transported quantity itself. We derive these dependencies through a weakly nonlinear
extension of Taylor’s original analysis. We then hypothesize that reactive mixing by turbulent flows
should involve model forms with similar nonlinearities, but with different model coefficients. This
is analogous to the situation of nonreactive scalars, where mixing by both classes of flows can be
reasonably captured by gradient diffusion models. However, the diffusivity coefficients differ based
on the underlying flow topology, with D0/DM scaling as Pe2 in parallel flows and as Pe1 in turbulent
flows.

Our weakly nonlinear model offers improvements to perturbation expansions based on directly
linearizing the equations performed by works like Ref. [4]. It also recovers the scaling relationship
between diffusivity and Damköhler number derived in Refs. [15] and [16], although those works
use nonlinear first-order reactions. It also indicates that the effective eddy diffusivity is linked to
reaction, as has been shown in experiments. [17] This relationship shows that the impacts of reaction
chemistry and turbulent mixing are fundamentally linked and even with simple flows, we will see
complex features arising in the RANS model, such as cross diffusion coefficients with a dependence
on reaction rates and local concentrations. As such, we can expect complex cases are unlikely to be
simpler than this scenario, and even more complex model forms will need to be discovered.

In what follows, we will first develop a model problem based on laminar flows that can capture
the relevant multi-physics at play for a linear reaction setup and work to find a solution for the
single-scale and the multi-scale problems. This insight will guide generalization to a binary reaction
problem, which we can fully expand to general turbulent flows. The outcome of our analysis is a
unifying reduced-order model (ROM) in the RANS context that captures the analytic impact of
chemical kinetics on transport and reaction closures while leveraging existing literature on non-
reactive scalar transport modeling.

II. MODEL PROBLEM

In order to develop insights into a model form that captures closure terms in a binary mixture, we
propose the following illustrative setup that can be treated semianalytically. Consider a flow field
that is parallel, steady, and two-dimensional (2D), contained in a domain that is an elongated box.
We place periodic boundary conditions on the two opposing elongated sides, as seen in Figure 1.
By elongated, we mean that L1 � L2.

In such a two-dimensional domain, we define an averaging operator as

f (x) = 1

L2

∫ L2

0
f (x, y)dy, (7)

which differs from the ensemble averaged used earlier. In this context, let us use a periodic
structure for the flow-field which imposes no mean velocity. Namely, u(x, y) = u + u′ = U0sin(ky)
and v(x, y) = 0, where k = 2π/L2. At x = −L1/2 and x = L1/2, the two domain boundaries, we
prescribe Dirichlet conditions for the scalar concentrations.

In addition, we consider a reaction of the form C1 + C2 → C3, which is considered irreversible
and fully activated, but follows a finite rate law of mass action. While simpler than a fully
three-dimensional turbulent flow with reacting scalars, this model problem captures the essential
competing physics of mixing, transport, and reactions that are present in the more realistic case.
However, we can now formulate solutions in this sandbox context and propose closures for each
subproblem that each highlight different aspects of the overall ROM.
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FIG. 1. A schematic of the model problem, illustrating dimensions and boundary conditions. The flow is
depicted in black as u′(y), with a representation of a reaction front given at the mid-plane. Axial will refer to
the x direction, while spanwise will refer to the y direction

A. Linear reaction, single-scale flow

Let us first examine this problem in the context of a linear reaction. In this setup, the concen-
tration of one of the scalars, C2, is held constant in the entire domain at unity and does not evolve,
while the maximum value of C1, at the left side of the domain, is held to be at least an order of
magnitude less than that of C2. As C2 is a constant, we will denote the reaction rate as AL = AC2,
denoting the product of a standard binary species reaction coefficient times the concentration of the
constant species. The fluctuations for C1 are governed by a transport equation as

∂C′
1

∂t
+ ∂ (u′C′

1)′

∂x1
+ u′(y)

∂C1

∂x1
= Dm

∂2C′
1

∂xi∂xi
− ALC′

1, (8)

where C1 = C1 + C′
1 and so on. This equation can be derived by finding the classical transport

equation for C1 and subtracting from it the evolution equation for C1. Note that we have implicitly
assumed here that the molecular diffusivity, Dm, is the same for all species, is constant, and is
isotropic. In addition, the flow has only a single nonzero component, so all advection terms involve
only the axial velocity field.

This equation is similar to the equation governing evolution of fluctuating fields in the work of
Ref. [9], with the primary distinction being the reaction term on the right-hand side. While Taylor
was not explicitly considering this type of periodic parallel flow in his work, the steps he follows
allow us to also simplify this equation to arrive at a more analytically approachable differential
equation.

First, we note that we are considering a domain where L1 � L2, from which we can conclude
that diffusion in the axial direction, x, can be neglected when compared to diffusion in the spanwise
direction y. This can be shown by performing a scaling analysis and seeing the associated term tends
to zero as the relevant axial Péclet number tends to infinity. This allows us to neglect axial diffusion
in Equation 8.

In addition, when L1 � L2, the time scale of mixing in the axial direction is much larger than
the time scale of mixing in the spanwise direction. Therefore, one can decompose the concentration
field as C1(x, y) = C1(x) + C′

1(x, y), allowing for evolution of the mean field in the axial direction
but considering the underlying field to be “well mixed” in the spanwise direction. In particular, the
presence of fast mixing in the spanwise direction implies that |C′

1| << |�C1|, where |�C1| is a
characteristic change in the averaged concentration in the axial direction.

This final conclusion allows us to see that the second term on the left-hand side of Equation 8
must be much less significant than the advection of the mean scalar concentration, represented by
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the third term on the left-hand side. Therefore, for a leading-order approximation, we can neglect
the former, double primed term.

All of these physical assumptions imply that the flow is in an advection-driven limit. The
strong mixing in the spanwise direction that such a flow implies also allows us to invoke a
quasisteady approximation for the evolution of the fluctuating concentration. In particular, since
we are most interested in the long-time response, not the initial transient one, this assumption does
not unreasonably limit our analysis.

If the previous simplifications are applied to Equation 8, the dominant remaining terms give us
an approximate evolution equation that can be written as

u′(y)
∂C1

∂x
= Dm

∂2C′
1

∂y2
− ALC′

1. (9)

This gives us the dispersion of the fluctuating quantity as driven by the flow. A further ansatz
we make here is that the form of the fluctuating components follows the velocity, as C1(x, y) =
C1(x) + f1(x)sin(ky). That is, the fluctuating field has some magnitude determined purely by axial
position. This is motivated by examining solely the leading-order term in the harmonic expansion of
the concentration fluctuations in the y direction. Substituting this into the fluctuation equation yields

Dmk2 f1(x) + AL f1(x) = −U0
∂C1

∂x
. (10)

Solving this equation for our unknown axial concentration magnitude yields

f1(x) = − U0

k2Dm + AL

∂C1

∂x
. (11)

The only unclosed term in Equation 8 is the scalar flux, and it can now be solved as

u′C′
1 = U0 f1(x)sin2(ky) = −Deff

∂C1

∂x
. (12)

Here, Deff is given by

Deff = D0

1 + ALτmix
, (13)

where the standard eddy diffusivity, D0, is determined from nonreactive Taylor-type analysis. For
this flow, it is given by

D0 = U 2
0

2Dmk2
. (14)

In addition, τmix is a characteristic time scale for mixing given by

τmix = 1

Dmk2
= D0

u2
rms

, (15)

where urms is the root-mean-squared velocity of the underlying flow, equal to U0/
√

2 in this
derivation.

For this section, we will refer to Equation 5 as the linear reaction model and Equation 13 as a
special case of our reduced-order model (ROM) for this first-order reaction context.

Interestingly, for this problem, the ROM is identical to Equation 5, even though it is derived in
a laminar context, while the latter was created in the framework of turbulent flows. It again has an
effective Damköhler number in the denominator, and shows that effective diffusivity decreases as
the reaction rate increases relative to the flow time scale. This lends confidence that the choice of
model problem should not hinder the relevance of the conclusions here in application to turbulence.
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FIG. 2. Predictions of closures for the linear reaction problem subject to a turbulent flow, X = x/L1. The
linear reaction model of Equation 5 is identical to the ROM represented by Equation 12, and the former is
overlaid by the latter in the plot.

In particular, the model form is an explicit function of AL, with the other two quantities, D0 and
urms, defined purely in terms of flow parameters. This means that they can be derived independent
of the reaction kinetics, in nonreacting flow, and applied directly to this model for reacting flows.

To test this model, we next examine its predictions against 2D Direct numerical simulation (DNS)
data as well as the gradient diffusion model that ignores impact of reactions on the advective closure.
For this purpose, we consider a setting with axial Pe ≡ (U0L2)/(2πDm) = 100, and Da ≡ ALτmix =
1. For the axial boundary conditions, we used Dirichlet conditions x = −L1/2 and x = L1/2 by,
respectively, enforcing C1 to be equal to 0.1 and 0.

Figure 2 presents quantitatively a comparison between different results. For this specific setting,
the mean concentration assumes an exponential profile, as seen in the figure. It can be seen that
ROM produces results much closer to the DNS than the gradient diffusion model. The gap between
DNS and gradient diffusion model is solely due to over prediction of Deff by the model. For settings
at higher Da values, the correction offered by ROM becomes even more crucial as this gap will be
even larger. In this setting, there is no unresolved flux of C2.

B. Linear reaction, multiscale flow

The previous section only considered a velocity field with a single relevant length scale. However,
a realistic flow has a spectrum of relevant scales and the model problem setup allows us to consider a
straightforward superposition of multiple velocity fields. The total velocity now can be represented
by u(x, y) = ∑

Unsin(nky), where k = 2π/L2 and n refers to each scale as corresponding to an
integer multiple of the fundamental scale set by k. Following the same procedure as the previous
section, the unresolved scalar flux can be expressed as

u′C′
1 = −Deff

∂C1

∂x
, (16)

where Deff is written as

Deff =
∞∑

n=1

U 2
n /2

n2k2Dm + AL
. (17)
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FIG. 3. Effective diffusivity calculated as a function of Da = ALτmix. Deff is calculated using Equation (17)
and D0 is calculated using Equation (19). Each marker refers to a different velocity field specified in the
figure legend, with the “multiscale” field given by Equation 21. The solid line represents Equation 18.

In this context, the dependence of Deff on AL is more complex. Nevertheless, we still seek to
express the dependence of Deff on A in terms of a simple expression that involves low order statistics,
specifically D0 and urms. In order to do so, we first examine the expression above in the asymptotic
limits of large and small AL. In the limit of AL equaling zero, the above expression results in Deff

equal to the D0 of the multiscale flow field, recovering the nonreactive solution from pure Taylor-
type analysis. In the limit of large AL, however, we obtain that Deff = u2

rms/AL.
Interestingly, examining Equation 13 and updating values for D0 and τmix satisfies both limits

exactly:

Deff = D0

1 + ALτmix
, (18)

where now

D0 =
∞∑

n=1

U 2
n /2

n2k2Dm
(19)

and τmix, the mixing time, is D0/u2
rms, with

u2
rms =

∞∑
n=1

U 2
n /2. (20)

We reiterate that both D0 and urms, and therefore τmix, are fundamental measures of the flow that
are independent of the presence of the reaction, and there is no AL dependence in these quantities.

One can examine this model by comparing the Deff it provides against those from Equation 16,
as shown in Fig. 3. Among the various velocity profiles tested, we considered the following velocity
profile, denoted as ‘multiscale” in Fig. 3, expressed as

u′(y) =
10∑

n=1

n−5/6sin(nky), (21)
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to mimic the multiscale effects found in turbulence. The specific power, −5/6, is chosen such that
the eddy diffusivity at each wave number matches that of Kolmogorov turbulence.

In Fig. 3, the simple model presented in Equation 18 is plotted across values of the reaction
rate. These results come from plotting the relevant equations and not from full flow simulations. We
see that the model captures the precise behavior of Deff in the limits of small and large AL across
a variety of imposed velocity fields. Additionally, the model still fits the data reasonably in the
intermediate regimes where ALτmix ∼ O(1).

C. Binary reaction

Having some confidence with the linear problem, we now turn back to examining Equation 2 in
its entirety, and note that the complete problem involves a full binary system, where both C1 and C2

are free to evolve.
Before proceeding with derivation of a closure model, let us first test whether we can naively

modify Equation 5 to perform reasonably in the case of binary reactions. Specifically, one may
interpret that for evolution of each species, Ci, the other species might be assumed “locally
constant.” This allows interpreting an effective AL for each species as AL = AC j �=i. With this simple
modification, the previous model form can be extended to a multiscale model as

u′C′
i = − D

1 + AτCj

∂Ci

∂x
, (22)

where AL is now replaced with the AC2 and AC1 for mean advective fluxes associated with C1 and
C2, respectively.

We next examine the performance of this model form by comparing its prediction against
direct numerical simulation. In this case we consider a single-scale velocity profile where u(y) =
U0sin(ky), but where both reactants are now free to vary. We choose axial Pe ≡ (U0L2)/(2πDm) =
100 and Da ≡ AτmixCref = 100, where Cref is concentration imposed by Dirichlet boundary con-
ditions on each scalar. More specifically, the boundary condition on C1 = Cref is imposed at
x = −L1/2 and C2 = Cref is imposed at x = L1/2. The other boundary condition for each scalar
is a homogeneous Dirichlet condition.

In Fig. 4, we see that the linear reaction model given by Equation 22 incurs great errors near
the middle of the domain, where C1 and C2 exist in near-stoichiometric ratios. Surprisingly, the
standard gradient diffusion model, which carries no chemistry information, now outperforms this
more physics-based model.

Clearly, the linear reaction model is not sufficient to describe this system, so let us return to
Equation 2 and examine the full system of equations again. In this framework, the governing
equations for the fluctuations control the evolution of the unclosed terms of interest. For C1, this
looks like

∂C′
1

∂t
+ ∂ (u′C′

1)′

∂x1
+ u′(y)

∂C1

∂x1
= Dm

∂2C′
1

∂xi∂xi
− AC1C

′
2 − AC2C

′
1 + A(C′

1C
′
2)′. (23)

Again following the work of Ref. [9], we can add one more assumption for the binary system
that was not relevant for the linear case, which is that the fluctuations of the product of fluctuating
quantities will be negligible when compared to the mean-field quantities.

If those simplifications are applied to Equation 23 for C1, it can be reformulated as

u′(y)
∂C1

∂x
= Dm

∂2C′
1

∂y2
− AC1C

′
2 − AC2C

′
1, (24)

and an equivalent equation can be derived for C2.
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FIG. 4. Predictions of closures for the binary reaction problem subject to a laminar flow, X = x/L1.

We again make the ansatz that Ci(x, y) = Ci(x) + fi(x)sin(ky), following the velocity. Substitut-
ing this into the fluctuation equations yields the following system of two equations:

Dmk2 f1(x) + AC1 f2(x) + AC2 f1(x) = −U0
∂C1

∂x
(25)

and

Dmk2 f2(x) + AC2 f1(x) + AC1 f2(x) = −U0
∂C2

∂x
. (26)

This is a coupled, but linear, set of equations for f1 and f2 that can be solved to find that

f1(x) = −U0(k2Dm + AC1)

k2Dm(k2Dm + AC1 + AC2)

∂C1

∂x
+ U0(AC1)

k2Dm(k2Dm + AC1 + AC2)

∂C2

∂x
(27)

and

f2(x) = −U0(k2Dm + AC2)

k2Dm(k2Dm + AC1 + AC2)

∂C2

∂x
+ U0(AC2)

k2Dm(k2Dm + AC1 + AC2)

∂C1

∂x
. (28)
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We can also write these terms, the result of using a weakly nonlinear extension of dispersion
analysis, as the superposition of two gradients multiplied by a prefactor representing an effective
diffusivity. The equations for the scalar flux now look like[

u′C′
1

u′C′
2

]
= −

[
D11 D12

D21 D22

]
∂

∂x

[
C1

C2

]
, (29)

where Dkl represents a diffusivity associated with the flux of the kth species due to gradient in the
lth species. The square matrix formed by these coefficients also has positive eigenvalues so long as
the mean scalar fields maintain their positivity. The coefficients are written as

D11 = D0(1 + AC1τmix)

1 + AτmixC1 + AτmixC2
, D12 = − D0AτmixC1

1 + AτmixC1 + AτmixC2
,

D21 = − D0AτmixC2

1 + AτmixC1 + AτmixC2
, D22 = D0(1 + AC2τmix)

1 + AτmixC1 + AτmixC2
, (30)

using the notation from Sec. II A.
Perhaps most novel, however, is that determining the actual local form of the fluctuations means

it is now possible to close not only the scalar transport term, but also the unclosed reaction terms in
the standard RANS equations. This closure equation looks like

AC′
1C

′
2 = A

u2
rms

(
D11

∂C1

∂x
+ D12

∂C2

∂x

)(
D21

∂C1

∂x
+ D22

∂C2

∂x

)
. (31)

This provides our ROM in its most complete form. It solves a reduced-degree-of-freedom system
resulting from the RANS equations. The three algebraic components describe an entire model form,
and require only prescriptions of parameters of the underlying flow, specifically D0 and urms. It is
important to note that this model, under the appropriate limits, captures the gradient diffusion model
and the linear reaction as its special cases. The gradient diffusion model is realized in the limit of
A → 0. The linear reaction model, for finite AL, can be realized in the limit of C2 → ∞ and A → 0.

Comparing this model against the DNS data presented in Fig. 4, we see that the new model
recovers from the errors of the Linear Reaction model, and outperforms the Gradient Diffusion
model.

We have neglected multiple terms in this derivation of the presented ROM. In Supplemental
Material [18], we provide a higher-order correction to the ROM that adds in nonlinear effects and
demonstrate this further reduces the error in the context of this laminar problem.

III. APPLICATION TO TURBULENT FLOWS

Now that we have built up the full ROM, we can turn to realistic turbulent flows. A great strength
of the approach used in the previous section is that we can borrow the model form from the laminar
analysis directly and use it in an analogous domain of homogeneous, isotropic turbulence. For
this flow configuration, as a recapitulation, the ROM is given by Equations 29 through 31, with
the only difference that flow parameters D0 and τmix are now properties of a turbulent flow. As
the ROM captures reaction-dependent effects explicitly, D0 and τmix can remain agnostic to the
presence of a reacting system, therefore nonreactive flow measurements provide the values needed.
Specifically, [8] explicates the process of finding these values for nonreactive turbulent flows using
the macroscopic forcing method (MFM). In particular, Ref. [19] used MFM to measure the true
nonlocal form of the macroscopic eddy diffusivity, and additionally found values for D0 in the
purely local and isotropic limit applicable for this work.

In this way, the effects of changing flow topology, i.e., from laminar parallel flow to 3D turbulent
flow, is implicitly captured via changes in D0. Specifically, revisiting Equation 4, we see that in the
laminar problem, D0 ∼ u2

rmsL
2
2/Dm. In this case, the Dm in the denominator represents the effects of

molecular mixing in the spanwise direction as can be tracked in the derivation process presented in
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FIG. 5. Instantaneous visualization of a binary reaction system subject to homogeneous, isotropic turbu-
lence at the Reλ = 26 case (a) An isosurface of the instantaneous Q criterion that indicates eddy cores (b) An
isosurface of the instantaneous reaction term, AC1C2, at 10% of the maximum reaction term, colored by axial
coordinate. In both figures, axes are equally scaled.

Sec. II. In the turbulent case, the same concept holds, except that the spanwise mixing is dominated
by D0 itself. This would turn the scaling relation of Equation (4) into D0 ∼ u2

rmsL
2
2/D0, where L2

must be replaced by the large eddy size. This eddy size scales as Leddy ∼ u3
rms/ε, where ε is the

turbulent kinetic energy dissipation rate. This leads to the scaling of D0 ∼ urmsLeddy which is the
expected scaling and is already captured by the measured D0 from nonreactive cases.

A. The turbulent setup

Now we replace the steady, parallel flow examined in the previous section with 3D homogeneous
isotropic turbulence (HIT) in an elongated domain to generalize the model problem. The Navier-
Stokes solver code of Ref. [20] in an incompressible mode was adapted for this work to simulate HIT
in a 3D domain of size (2π )3. The resulting flow field was periodically extended in the x direction to
generate a computational domain for scalar transport with dimensions 20π × 2π × 2π . The scalar
transport equations are solved with boundary conditions identical to the 2D binary reaction problem.
This provides a realistic reaction zone in the middle of the domain, far from the boundaries, as seen
in Fig. 5.

The velocity fields were solved on uniformly spaced structured meshes and to sustain turbulence,
the incompressible Navier-Stokes equations are solved with a forcing of Bui added to the right-hand
side of the momentum equations. B is a turbulence forcing parameter described in Ref. [21]. The
solver was run to statistical convergence for O(500 − 2000) eddy turnover times after discarding
initial transients, as prescribed by Ref. [19] and we examine values of Reλ = 26 and Reλ = 40.
Following that work, the turbulent forcing parameter is B = 0.2792 for both Reynolds numbers.
For Reλ = 26, each box is a meshed with 643 points and the kinematic viscosity set to ν = 0.0263.
For Reλ = 40, each box is meshed with 1283 points with ν = 0.0111. Five cases, with summary pa-
rameters given in Table I, were studied. Estimates of the turbulent statistical quantities, specifically
ε and urms, in the table are adapted from [19]. The molecular diffusivity for both scalars is equal to
the kinematic viscosity, so the relevant Schmidt number is unity.

This setup allows adoption of the values for nonreactive eddy diffusivity calculated in Ref. [19].
In particular, while the kinematic viscosity, molecular diffusivity, box size, and reaction coefficient
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TABLE I. Summary parameters for the turbulent cases considered.

Case 1 2 3 4 5

Da 104 52 26 138 276
Pe 37 37 37 72 72
Reλ 26 26 26 40 40
urms 0.97 0.97 0.97 0.905 0.905
ε 0.780 0.780 0.780 0.687 0.687

are inputs, all other measured quantities are computed by post-processing the data. For Case 1, for
example, Ref. [19] reported that D0 = 0.86u4

rms/ε = 0.976 and τmix = 0.86u2
rms/ε = 1.04, where

ε = 0.78 is the dissipation rate of turbulent kinetic energy and urms = 0.97 is the single-component
root-mean-squared velocity.

For scalar transport for Case 1, for example, we consider molecular diffusivity Dm = 0.0263,
matching ν, Cref = 1 and a reaction rate A = 100. This leads to Pe ≡ D0/Dm = 37 and Da ≡
AτmixCref = 104. The values are similarly calculated for the other cases using the values from
Table I.

Figure 5 shows imagery captured near the middle of the computational domain for Case 1 and
Fig. 5(a) shows vigorous turbulent structures that mix the flow and the scalar fields. In response,
reaction fronts are not planar; instead, one can observe highly stretched and distorted structures.
Similar to the laminar problem, however, the ensemble-averaged fields will be smooth and one-
dimensional.

B. A priori analysis

In Fig. 6, the closure terms for the ensemble-averaged binary reaction problem for Case 1 are
examined in the defined turbulent context by performing a priori analysis, wherein we plug in
DNS-derived mean quantities into the closure expressions. Similar to the laminar binary reaction
problem, the full ROM recovers from the errors in capturing the true transport closures that are
incurred by the linear reaction model of Equation 22. For these specific closure terms, the standard
gradient diffusion model appears to match the DNS data more closely than the ROM. Neither
gradient diffusion nor the linear reaction model offer closure to the reaction term, which the ROM
does.

In Sec. IV, we will discuss an explanation regarding observed accuracy of gradient diffusion
model for the transport closure despite its ignorance of reaction effects. Nevertheless, an overall
assessment that considers both reaction and transport closures reveals the advantage of the ROM, as
the gradient diffusion transport closure model offers no answers to the equally vital reaction closure
question. While there exists a significant quantitative gap in predictions of the reaction closure term
between ROM and DNS, this leading order ROM correction consistently captures the magnitude
and shape of the reaction closure, without any tuning of the coefficients. This misprediction by
roughly half in the scalar source term has implications, as it likely depresses the predicted value of
the scalar fields in the flame zone, as the positivity of the term acts as a net source.

These conclusions are the same for each of the other cases considered, but only Case 1 is
visually shown, as a priori results are just used qualitatively to build confidence in the advantages
of the proposed ROM. Quantifying this advantage can be accomplished by performing a posteriori
analysis and comparing 1D model predictions against DNS data.

C. A posteriori analysis

In this section, we solve Equation 2 directly by invoking some of the closure models heretofore
presented. We consider the two best performing models from the a priori results and omit the Linear
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FIG. 6. Predictions of closures for the binary reaction problem subject to a turbulent flow for a priori
analysis Case 1. X = x/L1 and DNS results are presented with 95% confidence intervals accounting for
statistical fluctuations.

Reaction model. The problem setup and parameters used in this section are identical to those for
the a priori analysis. The primary exception is that for the RANS equation, instead of Dirichlet
boundary conditions for the scalars, Neumann boundary conditions with slopes matching the DNS
profiles are used. This is done because the DNS develops axial boundary layers near the Dirichlet
conditions due to local outflow advection. For the DNS, we have ensured these artificial effects do
not pollute the reaction zone results by ensuring the boundaries are far from the reaction zone. These
boundary layers are absent in the RANS case as the mean velocity is zero. Appropriate matching of
RANS solutions to the DNS ones should consider concentration profiles outside of these artificial
boundary layers. We have done so by matching the slopes of the RANS concentration profiles to
those of the DNS outside of the boundary layers, but far from the reaction zones.

In Table II, the maximum error in C1 is tabulated for both models, and it shows that the ROM
incurs less error. For illustration, in Fig. 7(a), we compare the predicted mean profiles for Case 1 of
C1 and C2 to the results derived from the DNS described in the previous section. In Table II, we can
demonstrate that the ROM outperforms the standard gradient diffusion model and the error metric
is roughly halved.
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TABLE II. The maximum absolute value of error in C1 for the gradient diffusion (GD) and reduced order
model (ROM) far from the boundaries, |X | = |x/L1| < 0.3, as compared to the turbulent DNS results for all
cases.

Case 1 2 3 4 5

Da 104 52 26 138 276
Pe 37 37 37 72 72
GD Max. Error 1.097 × 10−2 9.195 × 10−3 8.007 × 10−3 1.035 × 10−2 1.221 × 10−2

ROM Max. Error 4.590 × 10−3 3.714 × 10−3 3.131 × 10−3 4.811 × 10−3 5.885 × 10−3

Next, we examine whether the additional closure terms contribute equally to the final calculated
mean quantities. To demonstrate the relative importance of each of the closure terms, Fig. 7(b) shows
the effects of toggling each of the closure terms on the overall accuracy of scalar concentration
predictions for Case 1. The main feature seen in this plot is that the effects of the two individual
closures do not linearly add to the full ROM prediction, and there is still a gap between the ROM
and the DNS results. The implications of this misprediction based on the local model form will be
addressed in the next section.

In the Appendix, a posteriori results for the other cases show that the discrepancy between the
DNS results and the ROM does appear consistently. In particular, the role of the reaction closure
is a net source for each of the two scalars, so the underprediction of the DNS values shown in the
sample a priori results of that term continues in each of the flow setups considered.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have introduced a framework to extend the analysis of the dispersion of a single
passive tracer to analysis of system of species undergoing binary reactions. The resulting model
form derived herein introduces closures to both advective flux and reaction terms with nonlinear
interactions between the mean state of all species, even though the primary set of equations being
solved undergo a linearization procedure. The proposed framework also captures the nonreactive
and linear reaction limits as special cases of the binary reaction problem. In contrast to Ref. [4], the
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FIG. 7. Results of a posteriori analysis for Case 1, with DNS quantities indicated with overbars, X = x/L1.
(a) A comparison of the predicted mean scalar profiles in the reaction zone for the ROM and the gradient
diffusion models (b) A comparison of the predicted mean scalar profile for C1 with different aspects of the
ROM active.
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(c) Case 4
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FIG. 8. Results of a posteriori analysis for Cases 2-5, with DNS quantities indicated with overbars, X =
x/L1. A comparison of the predicted mean scalar profiles in the reaction zone is given for the ROM and the
gradient diffusion models for each case, as labeled. (a) Case 2(b), Case 3(c), Case 4(d), and Case 5.

derived model leads to a positive-eigenvalue diffusion operator across all Damköhler numbers, so
numerical applicability is maintained when the introduced ROM is used in a one-dimensional scalar
equation solver.

By considering a prototype laminar and five turbulent test cases, we showed that the standard
gradient diffusion and linear reaction model do not suitably capture the behavior of mean scalar
fields across all problems. The presently considered ROM, however, can address all these different
regimes consistently. Perhaps the most novel aspect of this work is the direct translation of the
obtained model form between the laminar prototype problem and the test problem involving
turbulent flows. Most critically, no tuning of parameters was used in this analysis, as methods like
MFM permit the measurement of D0 directly for turbulent flows. However, it is unclear whether
omitting a constant prefactor in τmix = D0/u2

rms is appropriate for turbulent settings. In the laminar
case, this definition with no need for an additional prefactor was derived analytically. In the turbulent
case, we simply adopted the laminar definition without retuning its prefactor that could otherwise
account for the change in flow topology.

An interesting feature of the developed ROM is that advective fluxes of any one reactant depend
on mean gradients of other species involved in the reaction. This leads to an effective diffusivity
matrix that shows cross-diffusion coefficients. In this sense, our results are consistent with the recent
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work of Ref. [22] in which a 2D system undergoing a slightly different reaction mechanism was
considered. However, the additional advantage of the recent ROM is that it consistently models
all multiphysics effects by offering closure expressions to both reaction terms as well as transport
terms. Furthermore, the present ROM provides analytic model forms that capture explicitly the
influence of reaction constants on each closure operator. To this end, the only other inputs needed
are the nonreactive eddy diffusivities and the mixing time scale to form the appropriate Damköhler
numbers.

It should be noted that this analysis is not identical to reacting flow formulations that consider
just a mixture fraction or related quantity, as covered canonically in Ref. [23] or in literature such
as Ref. [24], as the primary scalar. The mixture fraction maps both concentration fields in a binary
system to a single scalar that is conserved in space. This is in contrast to the partial differential
equations considered here.

While the developed ROM is not directly implementable in a complex combustion problem,
we hope this framework introduces insights into the model form one could expect for the general
class of reaction–advection–diffusion problems. In Supplemental Material given in Ref. [18], we
demonstrate that including a higher order correction that captures nonlinear effects does not make
a model created in a laminar context more able to capture turbulent effects. We therefore conclude
that the leading order model is the extent of the correspondence between the laminar and turbulent
contexts.

The remaining error between DNS results and ROM predictions in the a posteriori analysis can
be attributed to the lack of consideration of nonlocal effects in the derivation of our model form. In
the high Da = ALτmix linear reaction case, the effective reaction length scale, l as in Equation 32, is
inevitably less than the flow mixing length, L, given by the large eddy length. This can be assessed
by a series of inequalities, as show below, noting that Deff is reduced in the presence of reaction.

l ∼
√

Deff

AL
<

√
D0

AL
<

√
D0τmix ∼ L. (32)

As a result, in the turbulent case, the energy-containing eddies are far larger than the chemically
active zone. This nonlocal mixing implies that the closure terms, such as u′c′, should also be
nonlocal. Finding the kernel for this nonlocal model form will require techniques such as MFM
to analyze the range of this dependence. So, future work may be focused on capturing nonlocality,
as in Refs. [19,25], which should account for the discrepancy of the ROM values and the DNS
measurements.

Another promising avenue of further inquiry is applying the proposed ROM to a large-eddy
simulation context as a subgrid-scale model, where mean space variables are replaced with filtered
variables and quantities like urms are evaluated at the grid scale.
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APPENDIX: FURTHER A POSTERIORI RESULTS

In this section, Fig. 8 illustrates a posteriori results for Cases 2–5, as was done in Fig. 7 for Case
1. The basic trends highlighted for Case 1 in the main text continue in each of the considered cases,
regardless of the change of macroscopic parameters as captured in Table II. This implies that the
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local ROM does not capture some multiphysics correctly, which could be remedied by the use of a
nonlocal model form.
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