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This paper examines the theoretical modeling of a steady horizontal gravity current
involving miscible fluids. The main objective is to determine the longitudinal evolution of
the current characteristic quantities: its mean velocity U , its height h, its mean density ρ,
and the local Richardson number Ri = g�ρh/ρU 2, which characterizes the flow regime.
The theory developed by Ellison and Turner [J. Fluid Mech. 6, 423 (1959)] for Boussinesq
gravity currents is first extended to the general non-Boussinesq case. In this theoretical
approach, the differential equations derived from the conservation equations reveal a
mathematical singularity which no longer allows them to be solved when the current passes
from a supercritical to a subcritical regime, i.e., when the Richardson number reaches unity.
To circumvent this problem, we propose to introduce a jump condition into the model
which leads to a sudden transition from a supercritical to a subcritical regime when needed.
The jump location is set to satisfy the boundary condition at the exit. Numerical simulations
are carried out using a large-eddy simulation code in order to obtain reference results.
These results are first used to select a suitable entrainment model among those proposed
in the literature. The simulations are then compared with the theoretical model. In the case
of a supercritical current without regime change, the agreement between simulation and
theory is good. In the case of a supercritical current turning subcritical before the exit, the
discontinuity imposed in the model by the jump is clearly abrupt in comparison with the
physical reality, but it allows us to reproduce the nonmonotonic evolution of the velocity,
height, and Richardson number of the current and to obtain an acceptable estimation of
these quantities.

DOI: 10.1103/PhysRevFluids.7.084802

I. INTRODUCTION

A gravity (or density) current forms when a fluid flows predominantly longitudinally into an
ambient fluid of different density. It can develop naturally due to a difference in salinity, temperature,
or concentration between the moving fluid and the ambient fluid. In the case of miscible fluids,
the current develops by engulfing the surrounding ambient fluid. This mixing process is called
entrainment.

Gravity currents occur in many environmental situations such as katabatic winds [1], pyroclastic
flows [2], snow avalanches [3], or turbidity currents [4], to name but a few. Gravity currents are also
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TABLE I. Entrainment laws from the literature.

Reference Entrainment law Range of validity

Ellison and Turner [17]
0.08 − 0.1 RiB

1 + 5 RiB
RiB < 0.8

Lofquist [19]
0.001

RiB
10<RiB <110

Alpert [23] 0.12 e[3.9(RiB inj−RiB )] No limit

Jirka [24]
k (1− RiB√

Ri2B+0.252
)

(1+Ri−1
B )−1

RiB < 1

Parker et al. [20] 0.0028 Ri−1.2
B RiB > 0.2

van Kessel and Kranenburg [21] 5.5×10−3

3.6RiB−1+
√

(3.6RiB−1)2+0.15
No limit

Dallimore et al. [22] CkC3/2
d +C∗

s

RiB+10(CkC3/2
d +C∗

s )
No limit

Princevac et al. [25] 0.05 Ri−0.75
B 0.15>RiB >1.5

flows of interest in safety issues (accidental releases of hazardous materials, fire-induced smoke
propagation, etc.). In the particular case of a stratified environment (such as the oceans and the
atmosphere), a current can also develop between two layers of different densities. It is then called
an intrusion (see, for instance, Refs. [5,6]).

From the pioneering work of von Kármán [7], many authors have investigated this flow by
developing theoretical and experimental research [8–14]. Most of these contributions dealt with
the transient phase and focused on the advance and shape of the current. An extensive literature can
be found in the book by Ungarish [15] and in the recent review of Chowdhury and Testik [16].

In the case of a continuous injection, when the current reaches the exit of the propagation domain,
the flow tends to a steady state. It is this configuration that was addressed by Ellison and Turner [17]
in their seminal work. These authors developed a theoretical model for a Boussinesq (small density
differences involved), weakly turbulent, steady density current on a horizontal or inclined wall. Their
equations, based on the conservation of mass, momentum, and buoyancy fluxes, allow the variations
of the height, density, and velocity of the current to be calculated along the flow main direction. One
of the key parameters of their model is the entrainment coefficient, E , which is introduced into
the mass conservation equation. This coefficient represents the proportionality between the velocity
of the inflow of ambient fluid (into the density current) and the mean velocity of the current. In
contrast to plume-type flows [18], in the case of a density current, the entrainment coefficient is
not a universal constant but depends on the local stability of the flow, which can be quantified
by the Boussinesq Richardson number defined by RiB = �ρgh/ρaU 2, with �ρ =| ρa − ρ |, ρa

the density of the ambient fluid, ρ the density of the current, g the acceleration due to gravity,
h the height of the current, and U the velocity of the current. Note that when the inertial forces
are predominant in the current (RiB < 1) the flow is supercritical, when the buoyancy forces
dominate the flow is subcritical (RiB > 1), and when these forces are balanced (RiB = 1) the flow
is considered to be critical. From experiments involving salt water injected into fresh water, Ellison
and Turner [17] found that E ∝ Ri−1

B up to the value RiB = 0.8, beyond which the entrainment
vanishes. This supposes that only a supercritical current is expected to entrain ambient fluid.

Subsequently, many of the experimental studies carried out have aimed at refining this entrain-
ment submodel. We can quote among others Refs. [19–22] in hydraulics, [23,24] for fire safety
issues, and [25] for atmospheric flows. The corresponding entrainment laws and their range of
validity are summarized in Table I. We refer the reader to the papers of Christodoulou [26] and
Fernando [27] for a more extensive review.
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FIG. 1. Schematic diagram of the density current.

While research into the measuring and modeling of the entrainment is extensive, we note that the
resolution of the governing equations proposed by Ellison and Turner [17] has received much less
attention. Indeed, as we shall see in the next section, depending on the length of the studied domain,
these governing equations may reveal a mathematical singularity which no longer allows them to
be solved when the flow reaches the critical state. Recently, Guo et al. [28] tackled the problem
in the case of an initially supercritical gravity current. They solved the equations of Ellison and
Turner [17] up to the singular value (RiB = 1) and then considered that the flow remains critical
up to the exit of the domain. Their hypothesis requires the artificial modification of one variable of
the current (i.e., one of either the height, velocity, or density) and unfortunately fails to conserve
simultaneously buoyancy, mass, and momentum fluxes.

In this paper, we propose a resolution of the equations of Ellison and Turner [17] for an
initially supercritical gravity current by introducing a discontinuity similar to a jump as done in
Refs. [29–31] for free-surface hydraulic flows. This approach allows the fluxes to be conserved
and the nonmonotonic behavior of the velocity and height of the current to be reproduced. In
order to tackle problems involving large density contrasts, calculations will be done in the general
non-Boussinessq case.

The paper is organized as follows: Sec. II deals with non-Boussinesq theoretical equations for the
steady gravity current. Section III focuses on the large-eddy simulation setup. Section IV presents
observations from the numerical simulations and comparisons between theoretical and numerical
results. Conclusions are drawn in Sec. V.

II. THEORY

A. Governing equations

We consider a steady two-dimensional gravity current developing along a rigid horizontal wall
of length L as represented in Fig. 1. The current is released with a horizontal velocity Ui and a
density ρi from a two-dimensional opening of height hi. The ambient fluid, of density ρa > ρi, is at
rest. Along the longitudinal x axis, the gravity current cross-section scales of velocity, height, and
density are, respectively, denoted U (x), h(x), and ρ(x) and are obtained using the following integral
formulations for the mass, volume, and momentum fluxes per unit width:

ρ(x) U (x) h(x) =
∫ ∞

0
�(x, z) u(x, z) dz, (1)

U (x) h(x) =
∫ ∞

0
u(x, z) dz, (2)

ρ(x) U (x)2 h(x) =
∫ ∞

0
�(x, z) u(x, z)2 dz, (3)

where u(x, z) is the local velocity of the layer and �(x, z) its local density. For the sake of clarity, in
the following, ρ(x), U (x), and h(x) will be denoted ρ, U , and h, respectively. Note that a momentum
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correction factor should multiply the left-hand side of Eq. (3) [32,33]. Nevertheless, as mentioned
by Gu and Lawrence [34], for the type of flow we are dealing with, the correction is small and can
be neglected. Consequently, for the sake of simplicity this correction factor will be set to unity.

The governing equations are established in the general non-Boussinesq case, by considering the
mass, momentum, and buoyancy conservation over a horizontal infinitesimal element of length dx
of the gravity current. These equations are as follows:

d (ρ U h)

dx
= E U ρa, (4)

d (ρ U 2 h)

dx
= −CD U 2 ρ − 1

2

d (�ρ g h2)

dx
, (5)

d

dx

(
�ρ

ρa
gU h

)
= 0, (6)

where E is the entrainment coefficient and CD is the drag coefficient. The terms on the right-hand
side of Eq. (5) represent, respectively, the turbulent frictional drag on the wall and the pressure
force associated with the change of height and density of the layer. Equation (6) supposes a constant
buoyancy flux. This is no longer accurate when heat transfers occur between the wall and the current
(a heat sink term would appear in the right-hand side). We will consider only the case of an adiabatic
flow in the following.

Equations (4), (5), and (6) can be combined so that the first derivatives dh/dx, dU/dx, and
dρ/dx can be expressed as

dh

dx
=

(
1 + ρa

ρ
− 1

2 Ri
)
E + CD

(1 − Ri)
, (7)

dU

dx
= −U

h

(
ρa

ρ
+ 1

2 Ri
)
E + CD

(1 − Ri)
, (8)

dρ

dx
= �ρE

h
, (9)

where Ri is the non-Boussinesq Richardson number defined as

Ri = �ρgh

ρU 2
. (10)

By combining (7), (8), (9), and (10), we obtain the expression for the first derivative of Ri:

dRi

dx
= Ri

h

(
1 + 2 ρa

ρ

)(
1 + Ri

2

)
E + 3CD

(1 − Ri)
. (11)

Note that Eqs. (7), (8), (9), and (11) are an extension of those of Ellison and Turner [17] in the
general non-Boussinesq case.

This model requires the knowledge of two parameters: the entrainment coefficient E and the drag
coefficient CD. The choice of the law for the entrainment coefficient will be discussed in Sec. IV B.
Concerning the drag coefficient, since there is no consensus in the literature, we have decided to
choose the value used by Kunsch [35] for a model of smoke backflow in a tunnel: CD = 0.0065 (as
in Refs. [36–38]). In order to estimate the influence of this parameter, a sensitivity study has been
performed in the case of a supercritical current. It appears that doubling the value of CD leads to
relative variations less than 5% for the longitudinal evolution of the primary variables (U , h, and ρ).

Through Eqs. (7), (8), and (11), the theoretical model exhibits a mathematical singularity when
Ri = 1. For an initially supercritical gravity current (Ri(x = 0) < 1), the right-hand side in Eq. (11)
is always positive, which implies that Ri(x) is a monotonic increasing function. From there, two
cases are to be considered: (i) the flow remains supercritical (Ri < 1) over the whole domain and
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FIG. 2. Schematic diagram of a density jump.

Eqs. (7), (8), (9), and (11) can be solved directly and (ii) the gravity current transitions from a
supercritical flow (Ri < 1) to a subcritical flow (Ri > 1) through the critical state (Ri = 1), which
is theoretically problematic. In order to circumvent this problem, we then introduce a mathematical
discontinuity similar to a jump.

B. Density jump

A hydraulic jump is a well-known phenomenon in free-surface flows in hydraulics. It is charac-
terized by a sudden drop in velocity and an abrupt increase in the thickness of the fluid layer flowing
along a wall. In the case of miscible fluids, this phenomenon is referred to as a density jump [39].

As shown in Fig. 2, using respectively the subscripts 1 and 2 for the quantities upstream and
downstream of the density jump, we write the conservation equations for the mass, momentum, and
buoyancy, similarly to Yih and Guha [40]:

ρ1U1h1 + ρaεU1h1 = ρ2U2h2, (12)

ρ1U
2
1 h1 + �ρ1gh1

2
= ρ2U

2
2 h2 + �ρ2gh2

2
, (13)

�ρ1U1h1 = �ρ2U2h2, (14)

with ε being the ratio of entraining mass flux to the upstream mass flux [41–43]), �ρ1 = ρa − ρ1

and �ρ2 = ρa − ρ2.
Combining (12), (13), and (14), we obtain an equation for the ratio h2/h1 allowing the down-

stream height h2 to be expressed as a function of the upstream conditions:(
h2

h1

)3

−
(

h2

h1

)
(2 + Ri1)

γ Ri1
+ 2(1 + ε)

γ 2 Ri1
= 0, (15)

with γ = ρa

ρa+ερ1
. Solutions of (15) are given in Regev et al. [42]. In the particular case where ε = 0

(no entrainment into the jump), the resolution of (15) gives the well-known equation of Bélanger:

h2

h1
=

√
1 + 8

Ri1
− 1

2
. (16)

Given that ε = 0, �ρ1 = �ρ2 and Eq. (12) or (14) gives trivially U2/U1 = h1/h2. Note that the
jump being a complex phenomenon, it is unlikely that no entrainment occurs in it, and considering
ε = 0 is a strong assumption. Unfortunately, this issue is poorly documented in the literature.
Consequently, in the absence of reliable laws or correlations, and to provide an uncluttered model,
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we have chosen to consider no entrainment within the jump in the theoretical model. If this had
not been the case, it would have been physically meaningful to also consider a finite length for the
jump, rather than a simple discontinuity. Theses issues will be discussed in Sec. V.

Finally, by using the ratios of height, velocity, and density, the ratio of Richardson numbers
between the upstream and downstream positions is given by

Ri2
Ri1

= 1

8

(√
1 + 8

Ri1
− 1

)3

. (17)

This relation shows that for a supercritical upstream flow (Ri1 < 1), the flow downstream of the
jump is subcritical (Ri2 > 1), and the evolution of the Richardson number is then monotonically
decreasing [see Eq. (11)]. In addition, at the exit of domain (similar to a step of infinite height), as
explained by Henderson [33], the flow must be close to the critical condition, i.e., Ri(x = L) ≈ 1.
This condition is justified in the Appendix. In our theoretical approach, this boundary condition (at
the exit of the domain) allows the mathematical discontinuity (i.e., the jump) to be located on the x
axis.

In summary, the theoretical model developed above allows us to calculate the characteristics
(velocity, height, and density) of a non-Boussinesq density current flowing along a horizontal wall
of length L. In the event of a transition from supercritical to subcritical flow, this model includes a
mathematical discontinuity (jump) in order to respect not only the boundary condition at the exit,
but also the conservation of all the fluxes.

C. Theoretical resolution

To solve the set of coupled ordinary differential Eqs. (7), (8), and (9) for initially supercritical
gravity currents, we use the method of Dormand and Prince [44].

As previously mentioned, two situations can occur. In the first, the Richardson number remains
less than one until the exit of the domain, and Eqs. (7), (8), and (9) are numerically solved without
any difficulty. In this case, the flow remains supercritical.

In the second situation, the Richardson number reaches the critical value (Ri = 1) before x = L
(point 1 in Fig. 3). The equations can no longer be solved because of the singularity. Practically,
from here we stop the resolution of (7), (8), and (9) before this singularity and then apply a jump
according to Eqs. (15) and (17). Downstream of the jump, we obtain values which are the initial
conditions to be used in (7), (8), and (9) for the subcritical flow. If the jump is located too far
upstream (point 2 in Fig. 3), the Richardson number at the exit is higher than unity, which is not in
agreement with the boundary condition. Conversely, if the jump is not located sufficiently upstream
(point 3 in Fig. 3), the Richardson number reaches unity before the exit of the domain, which is
unacceptable physically. In practice, we proceed by successive iterations until we find the abscissa
(point 4 in Fig. 3), which allows us to catch the critical regime (Ri = 1) at the exit of the domain.

III. NUMERICAL SETUP

We consider horizontal, isothermal, and continuous releases of light gases to simulate non-
Boussinesq turbulent miscible gravity currents. Simulations have been carried out for a density
ratio ρi/ρa ranging from 0.5 to 0.83. A total of four simulations were carried out over the
range 0.003 � Ri � 0.112 corresponding originally to the supercritical non-Boussinesq regime.
In all simulations, the Reynolds number based on the source height is set to Re > 20 000, where
Re = Uihi/ν (see Table II for the injection parameters of the continuous gravity current simulations)
and ν is the kinematic viscosity.

In order to perform the numerical simulation of an inertial gravity current, large-eddy simulations
(LES) are used to solve the Favre-filtered Navier-Stokes equations (mass and momentum balance)
along with species transport equations. We use the numerical computational code CALIF3S-ISIS [soft-
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FIG. 3. Graphical representation of the calculation method in the case of a density jump. The solid line
represents the first calculation until Ri reaches the unity (point 1). The two black dashed lines represent two
calculations (points 2 and 3) not in agreement with the hypothesis of a critical flow at the exit of the domain.
The red dashed line (point 4) represents the final solution giving Ri = 1 at the exit of the domain.

ware developed at the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN)], dedicated
to three-dimensional simulations of turbulent and slightly compressible flows (low-Mach-number
approach). In Cartesian coordinates, the three-dimensional filtered Navier-Stokes equations are as
follows:

∂ρ

∂t
+ ∂ (ρũi )

∂xi
= 0, (18)

∂ (ρũi )

∂t
+ ∂ (ρũiũ j )

∂x j
= − ∂ p

∂xi
+ ∂Si j

∂x j
+ (ρa − ρ )gi − ∂τi j

∂x j
, (19)

where ũi is the Favre-filtered velocity and p is the dynamic pressure. The density ρ is the filtered
density of the fluid and is determined by the ideal gas law in combination with the mass frac-
tion of the different species of the gas mixture. In Eq. (19), gi is the gravitational acceleration,
τi j = ρuiu j − ρũiũ j denotes the subgrid-scale Reynolds stress, and Si j = −(2/3)μ(∂ ũk/∂xk )δi j +
μ(∂ ũi/∂x j + ∂ ũ j/∂xi ) represents the filtered strain rate tensor, where μ is the dynamic molecular
viscosity calculated as a function of the individual viscosities and molar masses as well as the
corresponding mass fractions.

TABLE II. Source parameters of continuous gravity current simulations and length of the domain.

Ui (m/s) hi (m) ρi (kg/m3) Rii Rei L (m)

Case 1 8 0.1 1 0.003 43 260 10
Case 2 4.2 0.2 0.6 0.112 22 401 10
Case 3 5 0.5 0.75 0.073 100 931 50
Case 4 10 0.5 0.75 0.018 201 862 50
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For each species k, the mass fraction yk is governed by a species transport equation which reads
as

∂ρỹk

∂t
+ ∂ (ρỹk ũi )

∂xi
= ∂

∂xi

(
ρD

∂ ỹk

∂xi
+ μt

Sct

∂ ỹk

∂xi

)
, (20)

where ỹk represents the Favre-filtered mass fraction of the kth component of the mixture and D
stands for the molecular diffusivity of the mixture. In Eq. (20), we employ the simple gradient
diffusion hypothesis to close the problem with a turbulent Schmidt number Sct set to 0.7.

The present large-eddy simulations implicitly apply a box filter in each direction and the wall
adapatating local eddy subgrid-scale model for the subgrid Reynolds stress [45] is adopted. We use
a staggered grid with a cell-centered piecewise constant representation of the scalar variables and a
marker-and-cell-type finite volume approximation for the velocity. For the time discretization, we
employ a fractional step algorithm decoupling balance equations for the transport of species and
Navier-Stokes equations, which are solved by a pressure correction technique. Since we consider
gravity currents in an infinite (open) environment, the computational domain must be bounded
by artificial boundary conditions which perturb as little as possible the flow in the interior of the
domain. In our simulations, the boundary conditions used are based on the usual control of the
kinetic energy and allow us to distinguish between the flow that enters the domain and the flow that
leaves. This type of boundary condition was originally established for the incompressible case in
Bruneau and Fabrie [46,47], and its extension to compressible flows was tackled in Bruneau [48].
Periodic boundary conditions are imposed in the spanwise direction.

The three-dimensional computational domain � is a rectangular box of dimensions Lx × Ly × Lz.
For each simulation, the value set to the horizontal streamwise length is Lx = L + Li (where Li

is the horizontal length from the left boundary of the domain up to the planar injection source)
and the vertical length Lz depends on the physical parameters of the flow under study. The planar
injection source is positioned vertically (of height hi) slightly downstream of the left boundary
of the domain and in contact with the top solid boundary of the computational domain �. The
injection source is taken as the origin of the longitudinal x axis. On this inflow boundary, the flow
emerges horizontally with a uniform velocity profile Ui. We use a refined Cartesian grid with a
uniform rectangular mesh (�x × �y) from the source horizontal position xi to the outlet located at
Lx. From the source horizontal position xi to the left boundary of the domain (x = −1 m), the grid is
horizontally stretched. In the vertical direction z, the grid spacing (�z) is kept uniform from z = 0
to z = hi (with �z = �z1), still uniform from z = hi up to a vertical distance L1z (with �z = �z2)
and then stretched toward the opposite boundary (i.e. the bottom of the domain). In order to initiate
the turbulence at the source, we apply an azimuthal forcing similar to Zhou, Luo, and Williams [49].

For each simulated case, a grid-convergence study was carried out to validate the domain height
Lz, extent of the vertical subregion L1z, spanwise width Ly, and grid spacing in each direction.
The choice of L1z was made to approximately demarcate the thickness of the gravity current. The
spanwise width of the domain Ly ranges from 4hi to 6hi. We tested vertical grid spacings �z1/hi

ranging from 0.067 to 0.04, �z2/hi ranging from 0.24 to 0.05, horizontal grid spacings �x/hi

varying from 0.15 to 0.075, and spanwise grid spacings �y/hi from 0.1 to 0.05. Concerning the
time discretization, a CFL (Courant-Friedrichs-Lewy) number close to unity has been imposed for
each calculation even if time step sizes for which CFL numbers greater than one are allowed when
using implicit schemes.

As an illustration of the flow obtained by these simulations, Fig. 4 presents an instantaneous
density field of a gravity current developing along a wall until the exit of the domain. During the
flow development, the layer thickens and engulfs surrounding fluid through large eddies.

The duration times of the simulations were set sufficiently large to ensure first that the steady
states of the currents are reached and second to guarantee the convergence of the time-averaged
values of the current variables (the variations of the mean field fall below 2% of the value of the
mean). For instance, in case 1 (see Table II), we set the duration of the numerical simulation to
t = 250 s. Given the flow initial conditions and the domain length, the transient phase lasts for a
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FIG. 4. Instantaneous density field (case 1).

short duration of a few seconds. The statistics are then calculated from this time until the end of
the simulation (i.e., for the first case, from 15 to 250 s). To illustrate the temporal convergence,
the longitudinal evolution of the time-averaged cross-sectional mass flow rate per unit width for
different durations is plotted in Fig. 5. We can see that the statistics are converged for t = 200 s and
are consequently fully converged at t = 250 s.

Furthermore, previous simulations presented in Refs. [50,51] compared the aforementioned LES
approach on turbulent miscible Boussinesq and non-Boussinesq flows with experimental data. These
papers confirm the suitability of the CALIF3S-ISIS code to properly evaluate the behaviors of turbulent
buoyant flows exhibiting large density differences.

IV. RESULTS

A. Flow observations

For the four cases presented in Table II, Fig. 6 represents the time-averaged x velocity (left
column) and the time-averaged density (right column) fields provided by the large-eddy simulations.
In the analysis of these fields, we focus only on the domain between the injection position and the
vertical dotted lines, in order to exclude the zone of the flow influenced by the weir at the exit. The
location of these dotted lines will be discussed and justified later.

From the x-velocity fields, we can see two distinct behaviors. For cases 2, 3, and 4 represented
in Figs. 6(c), 6(e), and 6(g), we observe a velocity decrease in the first meters after the release,
followed by a velocity increase until the exit of the studied domain. This nonmonotonic behavior of
the velocity suggests the existence of the two regimes (supercritical and then, subcritical) and thus of

FIG. 5. Longitudinal evolution of the mass flow rate per unit width at different times. Dashed line corre-
sponds to t = 50 s, dotted lines corresponds to t = 200 s, and solid line corresponds to t = 250 s.
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FIG. 6. Time-averaged x-velocity field for case 1 (a), case 2 (c), case 3 (e), and case 4 (g) and time averaged
density field for case 1 (b), case 2 (d), case 3 (f), and case 4 (h).

a critical transition. In contrast, for case 1 depicted in Fig. 6(a), the velocity decreases monotonically
until the exit of the studied domain, which is characteristic of a regime remaining supercritical.

We also observe two distinct behaviors from the density fields. For case 1, Fig. 6(b) indicates that
the layer thickens monotonically over the entire studied domain. In contrast, for the other cases (2,
3, and 4) represented in Figs. 6(d), 6(f), and 6(h), we see a nonmonotonic behavior with a current
thickening and then thinning after a location, which probably corresponds to a critical transition.

B. Entrainment law

Before going further with the resolution of Eqs. (7)–(9) and their comparisons with the numerical
simulations, we need to choose the entrainment law among those available in the literature. We
obtain it by using case 1 for the sake of simplicity since the behavior of the Richardson number
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FIG. 7. Comparison between different entrainment laws. Circle symbols (◦) represent the entrainment
determined using Eq. (21). The other symbols represent laws found in the literature with the law of Ellison
and Turner [17] [triangle symbols (�)], the law of van Kessel and Kranenburg [21] [dashed curve with cross
symbols (+)], the law of Jirka [24] [star symbols (∗)], and the law of Princevac et al. [25] [square symbols
(�)].

seems monotonic without regime change. The velocity and density vertical profiles obtained in the
numerical simulation are integrated according to Eqs. (1)–(3), and the entrainment coefficient is
calculated along the x axis with the following relation:

E = d (ρUh)

dx

1

ρaU
. (21)

In Fig. 7 the calculated entrainment coefficient is compared with four laws found in the literature.
In our case, three laws [17,21,24] are in good agreement with our data. The fourth one [25] gives for
its part a much higher value. This difference is caused by the range of Reynolds number used in their
work (∼107). For this range of Reynolds number, according to Princevac et al. [25], the entrainment
coefficient increases considerably. Hereafter, we use the law of van Kessel and Kranenburg [21]
since it was established from theoretical analysis and not constrained by a restricted Richardson-
number range.

C. Comparison between numerical results and the theoretical model

In order to compare the theoretical model predictions with the numerical simulations, the
numerical data are first integrated along the vertical z axis using relations (1)–(3). Comparisons
are carried out for the four cases presented in Table II. For each case, we compare the longitudinal
evolution of the height, velocity, density, and Richardson number of the current. As mentioned
previously in Sec. IV A, our comparisons are made on the entire domain, except the last portion of
the domain located beyond the dotted lines in Fig. 6. The choice of the location of these dotted lines
is based on the numerical data and is inherent to the regime of the flow:

(1) For cases requiring a jump, since the theoretical model needs the critical condition to be
reached at the end (see the Appendix), we set the comparison domain between the injection and the
abscissa where the simulated flow reaches Ri = 1 slightly upstream of the weir.

(2) For cases not requiring a jump, the theoretical model allows only monotonic evolution to
be reproduced. In contrast, the simulated flow shows a nonmonotonic behavior due to the weir
influence before the exit. Consequently, we have set the comparison domain between the injection
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FIG. 8. Longitudinal evolution of (a) height, (b) velocity, (c) density, and (d) Richardson number of the
current for case 1. Comparisons between theoretical model (solid line) and numerical data from the LES
simulation (circle symbols).

and the abscissa where the simulated flow changes its behavior, corresponding to the location where
dRi
dx � 0.

These features lead us to consider about 80%–90% of the domain length L to compare theoretical
and numerical data.

Case 1 corresponds to a turbulent, Boussinesq, highly inertial current that develops along a
10-m-long horizontal wall. In this case, the current remains supercritical from the source release
to the exit of the domain. All the characteristic quantities (height, velocity, and density) evolve in
a monotonic way, as well as the Richardson number, which increases while remaining much lower
than the critical value (Ri = 1). The comparison between the numerical data and the model is pre-
sented in Fig. 8. A good agreement is observed with only moderate deviations. For this simulation,
since the critical value is not reached, the theoretical model can be solved directly on the whole
domain.

Case 2 corresponds to a turbulent, non-Boussinesq, inertial current that develops along a 10-m-
long horizontal wall. Compared to case 1, the source Richardson number for case 2 is much closer
to unity in order to reach the critical regime before the exit of the domain. As can be seen in
Fig. 9, the simulation shows a nonmonotonic behavior for the velocity, the height and the Richardson
number, which reaches the critical value (Ri = 1) at about 20% of the total domain length (0.2L).

084802-12



THEORETICAL MODEL OF CONTINUOUS INERTIAL …

FIG. 9. Longitudinal evolution of (a) height, (b) velocity, (c) density, and (d) Richardson number of the
current for case 2. Comparisons between theoretical model (solid line) and numerical data from the LES
simulation (circle symbols).

The Richardson number goes through a maximum value in the subcritical regime (at about 0.3L)
and then decreases towards unity.

To account for this nonmonotonic behavior, the model triggers a jump that is found to be located
at the distance 0.16L from the source, as observed in Fig. 9. This jump is clearly abrupt, but it
allows us to match satisfactorily the upstream (supercritical) and downstream (subcritical) evolution
of the velocity, height, and the Richardson number. The monotonic behavior of the density is also
properly reflected by the model. After the jump, in the subcritical regime, the density increases
slowly, which is qualitatively well reproduced by the theoretical model. Nevertheless, we notice a
gap for the density between the model and the simulation. One possibility to reduce this gap would
be to introduce a specific entrainment into the jump [ε 	= 0 in (15)], as will be discussed in Sec. V.

For cases 3 and 4, the length of the domain is increased by a factor of 5 (i.e., 50 m). The current
is still turbulent, non-Boussinesq and inertially dominated, but the strategy to compare theory and
simulation is different from the two previous cases. Indeed, the theoretical model source conditions
are chosen to produce a jump close to the injection (case 3) and a jump much further away (case 4).
The numerical simulations are then compared with the results predicted by the model as shown in
Figs. 10 and 11. Again, the evolution of the characteristic quantities is relatively well predicted with
the theoretical model including a jump.
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FIG. 10. Longitudinal evolution of (a) height, (b) velocity, (c) density, and (d) Richardson number of the
current for case 3. Comparisons between theoretical model (solid line) and numerical data from the LES
simulation (circle symbols).

V. CONCLUSIONS

We have investigated the dynamics of non-Boussinesq steady-state turbulent inertial gravity
currents by numerical simulations and a theoretical approach similar to that developed in the
seminal work of Ellison and Turner [17]. In the theoretical approach, the equations obtained present
a mathematical singularity when the Richardson number is equal to 1 (critical condition). This
does not allow the transition between a supercritical and a subcritical regime to be represented.
In order to overcome this problem, and to reproduce the nonmonotonic behaviors observed in the
numerical simulations, we have introduced a mathematical discontinuity in the theoretical model
which is similar to a density jump. The amplitude of this jump is given by the Bélanger equation,
and its location is determined from the exit condition (weir), which imposes a critical condition to
be reached.

In the case where the flow remains supercritical over the entire domain, the equations can be
directly solved since the mathematical singularity never appears in this situation. No jump is then
required. A good agreement between the theoretical and numerical data is observed for the primary
variables of the current (velocity, density, and thickness).

In the case where the flow transitions from the supercritical (Ri < 1) to the subcritical (Ri > 1)
state before the end of the domain, the introduction of the jump in the theoretical model allows

084802-14



THEORETICAL MODEL OF CONTINUOUS INERTIAL …

FIG. 11. Longitudinal evolution of (a) height, (b) velocity, (c) density, and (d) Richardson number of the
current for case 4. Comparisons between theoretical model (solid line) and numerical data from the LES
simulation (circle symbols).

the nonmonotonic behaviors of the current thickness and velocity, as well as that of the Richardson
number, to be reproduced in a qualitatively satisfactory way. Obviously, close to the jump, large
deviations are observed between the theory and the numerical simulations. However, further away
from this zone, the agreement becomes acceptable.

As a possible improvement in the theoretical model, we could consider a local entrainment
into the jump region [39] as well as a finite length [52] for this region of transition between the
supercritical and subcritical regimes. As an example, in Fig. 12 we present the evolution of the
Richardson number for the numerical simulation, the initial model including an abrupt jump without
entrainment and the model modified to include an entrainment into a jump of finite length. For the
improved model, we have set the entrainment coefficient to ε = 0.1, which is a realistic order of
magnitude considering the work of Regev et al. [41], and a length of Lj = 6.1h2, proposed by
Henderson [33]. As can be seen in the figure, the modifications brought to the theoretical model
improve its relevance. Nevertheless, the introduced parameters (entrainment coefficient ε and jump
length Lj) cannot be chosen in an universal way due to a lack of reliable data and theoretical works
in the literature.

On the other hand, from an energetic point of view, the vortex dynamics developing into a density
current has an influence and should be taken into account in a theoretical approach, especially in
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FIG. 12. Longitudinal evolution of the Richardson number of the current for case 3 (see Table II). Solid line
(—) is the initial model. Dashed line (- -) is the improved model. Circle symbols (o) are the LES simulation.

the momentum equation. Among the most relevant studies that have addressed this issue, we can
mention Hornung et al. [53] and Richard and Gavrilyuk [54], who use the enstrophy as a source
term. Moreover, it would also be interesting to consider the potentialities of the circulation-based
model developed in Borden and Meiburg [55] or Khodkar et al. [56] in order to improve the
theoretical approach presented in this article.

APPENDIX: WEIR BOUNDARY CONDITION

As illustrated in Fig. 13, we consider a steady two-dimensional gravity current reaching the exit
of a horizontal wall. The two points A and B, are located just upstream of the end and separated by
a short distance dx. Given that dx is small, we assume that the friction and the mixing between A
and B can be neglected. Thus, we write the Bernoulli formula between these two points as follows:

PA + 1
2ρU 2

A + ρghA = PB + 1
2ρU 2

B + ρghB. (A1)

The relation between static pressures PA and PB is obtained by hydrostatic considerations out of the
flow:

PA = PB + ρ0g(hA − hB). (A2)

By combining Eqs. (A1) and (A2) and assuming that dx is an infinitesimal distance, we obtain

d

dx

(
�ρgh + 1

2
ρu2

)
= 0. (A3)

FIG. 13. Sketch of the flow at the exit of the domain.
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By introducing the volume flow rate q = uh, (A3) can be rewritten as

dh

dx

d

dh

(
�ρgh + ρq2

2h2

)
= 0. (A4)

After some algebraic manipulations it comes that

dh

dx
(Ri − 1) = 0. (A5)

Assuming that point B is influenced by the weir boundary condition at the exit, contrary to point
A, the flow has a smaller thickness at point B than at point A (i.e. hB < hA and so dh/dx 	= 0).
Therefore, the Richardson must be unitary at point B to comply with Eq. (A5), and consequently
Ri(x = B) = 1. This was also observed by Bauer and Graf [57] and Graf and Altinakar [58].
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