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Dynamics and energetics underlying mixing efficiency in homogeneous
stably stratified turbulence
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We studied homogeneous stably stratified turbulence in a triply periodic domain over
a wide range of stratification strengths. We evaluated the statistically stationary, volume-
averaged budgets of Reynolds stresses, turbulent potential energy, and turbulent vertical
density flux. By separately studying the three components of the turbulent kinetic energy
(TKE), we examined the role of pressure-strain correlations and observed connections
between changes in the energetics to regime shifts of the mixing coefficient (�) as a
function of the turbulent Froude number (Frk). As we increase stratification, we find that
pressure-strain correlations become more important in producing the vertical component
of TKE (kw). At the stratification strength where direct production and pressure-strain cor-
relations equally generate kw , we observe the maximum value of �, and it remains constant
as stratification is increased further. However, when we greatly increase stratification from
this point, the pressure-strain correlations become the dominant source of kw with direct
production becoming negligible, and this change is accompanied by the mixing coefficient
decreasing from its maximum value. Finally, we find that this final transition for the mixing
coefficient coincides with a sign change of the pressure scrambling term in the vertical
density flux budget.
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I. INTRODUCTION

The fluid motions of oceanic flows involve a wide range of scales with the winds and tides
driving large-scale motions of O(105–107 m) [1] that eventually get dissipated at viscous scales
of O(1 mm) (estimated based on surface ocean measurements from Ref. [2]). Current global
climate simulations typically have horizontal and vertical grid scales of O(10 km) and O(10 m),
respectively [3], and therefore these simulations rely on subgrid-scale models to represent the effects
of unresolved scales that lie between the dissipative (physical) and grid (numerical) scales. For
example, down-gradient models are commonly used in global climate simulations to estimate the
eddy viscosity of momentum and eddy diffusivity of scalars (see Sec. 2 of Ref. [3]).

Regarding the modeled quantities, significant effort has been expended to accurately represent
the subgrid-scale vertical buoyancy flux since it strongly modifies the background density field,
therefore affecting the global overturning circulation [4–6]. In particular, ocean models have often
used the down-gradient vertical buoyancy flux model by Ref. [7]. Here we provide the nondimen-
sional form of this model from Ref. [8]:
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where DT and D are the eddy and molecular diffusivities of the stratifying scalar field; Ri f is
the mixing efficiency or flux Richardson number, broadly representing the fraction of the energy
input that is used to irreversibly mix the stratifying scalar field; � = Ri f /(1 − Ri f ) is the mixing
coefficient; εk is the dissipation rate of turbulent kinetic energy; ν is the kinematic viscosity of the
fluid; N2 = −(g/ρ0)dzρ is the vertical background stratification; Reb = εk/(νN2) is the buoyancy
Reynolds number, often interpreted as a measure of the intensity of a stratified turbulent flow;
and Pr = ν/D is the molecular Prandtl number. Reference [9] provides further discussion and
quantitative comparisons of various definitions of the flux Richardson number, and Ref. [10]
presents necessary modifications for defining a mixing efficiency for unsteady, inhomogeneous
stably stratified flows.

A major strength of Eq. (1) is its ease of application. The molecular Prandtl number is well
known, and εk and N2 can be measured in the field using microstructure and CTD (e.g., Ref. [11]),
giving an estimate of the buoyancy Reynolds number. The final piece, then, involves estimating
either the flux Richardson number or the mixing coefficient in terms of known or easily mea-
surable quantities. This issue is well summarized by Refs. [12–15]. In this vein, [16] studied the
relationship between Ri f and Reb using a synthesis of laboratory experiments, field measurements,
and numerical simulations of different types of stably stratified turbulent flows. Most datasets
exhibited a constant value of Ri f for Reb < 100 and Ri f ∼ Re−1/2

b for Reb > 100, but there were
some datasets that exhibited this transition at much larger values of Reb than 100. Reference [17]
theoretically formulated and tested a different parametrization of the mixing coefficient in terms
of the turbulent Froude number Frk = εk/(Nk), where k is the turbulent kinetic energy. While
obtaining field estimates of Frk is more challenging than measuring Reb due to the need to measure
k, the Garanaik and Venayagamoorthy (GV) formulation ostensibly collapsed data from decaying
and forced, stably stratified, homogeneous turbulence as well as from sheared, stably stratified,
homogeneous turbulence. In a related study, using a set of forced stably stratified homogeneous
turbulence simulations at a fixed value of Reb, [18] showed that � depends primarily on Frk and
hypothesized that revisiting existing datasets of � and plotting them in terms of Frk rather than
Reb would result in better collapse. We suspect that their hypothesis is helpful in explaining the
nonunique relationships between Ri f and Reb reported by Ref. [16], and is also most helpful in
explaining the apparent disagreement between the findings of Refs. [19,20] on how � is related to
Reb for sheared, stably stratified, homogeneous turbulence.

As a result of these recent studies, the expected shapes of Ri f or � as a function of Frk appear to
be well established, although what happens exactly as Frk → 0 is still disputed [14]. Missing in all of
this, however, is a clear physical understanding of what quantifiable differences exist among stably
stratified turbulent flows occupying the different Frk-scaling regimes identified by Refs. [17,18].
To address this need, we conducted a set of direct numerical simulations (DNS) of linearly forced,
stably stratified, homogeneous turbulence with the goal of clearly connecting the relationship of
� and Frk to the extant physics of this flow. Specifically, we seek to identify links between � and
notable changes in the vertical Reynolds stress and density flux budgets in terms of Frk .

Our paper is organized as follows: governing equations, related second-moment equations, and
solution methodology are discussed in Sec. II; simulation results as a function of Frk and an
alternative formulation of Ri f with some remarks on Reynolds number effects are presented in
Sec. III; and concluding remarks are provided in Sec. IV.

II. PROBLEM SETUP AND METHODOLOGY

A. Equations of motion and second-moment budgets

In this study, we use the incompressible, Navier-Stokes equations under the Boussinesq approx-
imation with linear velocity forcing [21,22]:

∂u j

∂x j
= 0, (2)
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where u j , p, and ρ represent velocity, pressure, and density fluctuations, respectively, ρ(z) is the
stable, linearly varying, background density field (dzρ < 0), g is the gravitational acceleration, ρ0

is the reference density, ν is the kinematic viscosity of the fluid, D is the molecular diffusivity of
density, and A is the momentum forcing rate. Tensor indices (1, 2, 3) correspond to spatial directions
(x, y, z) and velocity fields (u, v, w) with gravity acting along the z-axis. Repeated indices imply
summation.

The turbulent kinetic energy (TKE, k = 1
2 u ju j), turbulent potential energy (TPE, kp = 1

2α2ρρ),
Reynolds stress (uiu j), and density flux (u jρ) equations associated with Eqs. (2)–(4) are

dk

dt
= 2Ak − g

ρ0
wρ − ν

∂u j

∂xm

∂u j

∂xm
= Pk − B − εk, (5)

dkp

dt
= g

ρ0
wρ − Dα2 ∂ρ

∂xm

∂ρ

∂xm
= B − εp, (6)

duiu j

dt
= 2Auiu j + 2

ρ0
psi j − g

ρ0
(uiρδ j3 + u jρδi3) − 2ν

∂ui

∂xm

∂u j

∂xm
= Pi j + Ri j − Bi j − εi j, (7)

du jρ

dt
= Aujρ + 1

ρ0
p

∂ρ

∂x j
− u jw

dρ

dz
− g

ρ0
ρρδ j3 − (ν + D)

∂u j

∂xm

∂ρ

∂xm
, (8)

where si j = 1
2 (∂ jui + ∂iu j ) is the rate-of-strain tensor associated with the velocity fluctuations, and

α = g/(ρ0N ) is a constant and uniform dimensional factor needed to convert the dimensions of
density to those of velocity. In Eqs. (5) and (6), Pk is the rate of production of TKE from linear
forcing, B is the buoyancy flux, and εk and εp are the dissipation rates of TKE and TPE, respectively.
We note that the subscripts k and p indicate quantities associated with TKE and TPE, respectively,
and do not indicate tensor indices. In Eq. (7), Pi j is the rate of production of the Reynolds stresses
from linear forcing, Ri j represents the pressure-strain correlations, Bi j is a term associated with the
buoyancy flux, and εi j represents the dissipation rates of the Reynolds stresses. We use overbars
to denote volume averaging, and because our flow is statistically homogeneous in all three spatial
directions, the transport terms are exactly zero, leaving only the volume-averaged source and sink
terms in Eqs. (5)–(8).

We can further simplify Eqs. (7) and (8) because of the following considerations. First, the linear
forcing term in Eq. (3) does not couple the velocity components in different directions (i.e., it does
not generate off-diagonal/shear Reynolds stresses). This allows us to only consider the diagonal
components of Eq. (7). Second, due to the statistical axisymmetry of our flow about the vertical
axis, we further average the two horizontal Reynolds stresses (uu, vv) together to consider just one
budget for the horizontal Reynolds stresses. Finally, because only a mean vertical density gradient is
imposed, we only need to consider the j = 3 component of Eq. (8). With these simplifications, we
rewrite Eqs. (7) and (8) as follows with the TKE (5) and TPE (6) equations repeated for convenience:
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= 2Ak − g

ρ0
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∂u j

∂xm
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d 1
2 uH uH

dt
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∂uH
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= PH + RH − εH , (9)
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TABLE I. Global input parameters for the numerical simulations.

Lx, Ly, Lz (m) Nx, Ny, Nz 	 t (s)a ν ( m2/s) κ ( m2/s) g (m/ s2) ρ0 (kg/ m3)

2π 64 2.5×10−3 5×10−2 5×10−2 9.8 1

aSimulation V1 used 	 t = 1.25 × 10−3 s for numerical stability.

d 1
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dt
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Equations (9) and (10) are the budgets of the horizontal and vertical components of TKE (kH =
1
2 uH uH = 1

4 (uu + vv), kw = 1
2ww), respectively, where the sum of two times Eqs. (9) and (10)

is equivalent to Eq. (5) (i.e., k = 2kH + kw). Moreover, due to the incompressibility condition
(2), the diagonal components of the pressure-strain correlations sum to zero (i.e., 2RH = −Rw).
Therefore, the pressure-strain correlations do not add or remove TKE but exchange it among its
three components in an attempt to bring the normal Reynolds stresses closer in magnitude [23].
For axisymmetric, stably stratified turbulence, we expect the root-mean-square horizontal velocity
fluctuations to be larger than their vertical counterpart because the buoyancy flux directly couples
only kw and kp. Therefore, we expect RH < 0 and Rw > 0, indicating a transformation of kH into
kw. In Sec. III, we evaluate the right-hand side (RHS) terms of Eqs. (5), (6), (9)–(11) as a function
of the turbulent Froude number and establish connections to how the mixing coefficient varies with
the turbulent Froude number.

B. Numerical solution procedure and nondimensional parameters

We solved Eqs. (2)–(4) for a triply periodic, cubic domain of length L = 2π using our own
Fourier pseudospectral solver with an RK4 time-stepping scheme. We verified the fourth-order
temporal accuracy and nonlinear advection terms by comparing our numerical solutions to the
analytical solutions of a decaying Taylor-Green vortex in two dimensions [24]. The density coupling
was implicitly verified by observing the correct behavior of the time-varying forcing strategies
(further discussed in Sec. III A and Appendix B), which required accurate solutions of Eqs. (2)–(4).
Nonlinear terms were dealiased exactly by zero-padding [25]. Additional information about the
simulations are provided in Tables I and II.

The nondimensional input parameters of our system are A/N , ReA = AL2/ν, and Pr = ν/D,
where N is the buoyancy frequency. For our simulations, we prescribed a molecular Prandtl number
of unity, and we varied A/N to study the effects of increasing stable stratification relative to
momentum forcing. Because the value of A varied across our simulations, our input Reynolds
number ReA also varied. Additionally, for the simulations with time-varying A, we note that A/N
was not prescribed but was an output parameter. This is because for simulations with a time-varying
controller, the user does not specify A, but it is rather an outcome of the simulations.

The nondimensional output parameters of interest of our system are Reb = εk/(νN2) =
(lO/ηk )4/3, ReL = k2/(νεk ) = (lL/ηk )4/3, Frk = εk/(Nk) = (lL/lO)−2/3, and � = εp/εk , where lL =
k3/2/εk , lO = (εk/N3)1/2, and ηk = (ν3/εk )1/4 are the large-eddy, Ozmidov, and Kolmogorov scales,
respectively. The first three nondimensional parameters are the buoyancy Reynolds number, the
large-eddy Reynolds number, and the turbulent Froude number, and they can be interpreted as ratios
of turbulence length scales. For A/N > 1, ReL broadly represents the range of isotropic scales (ηk

to lL) given that the Ozmidov length scale is larger than the large-eddy length scale. Therefore,
there is a range of scales between lL and lO (estimated by Frk) that is inactive/physically irrelevant
[18], and Reb overestimates the range of active turbulent length scales. For A/N < 1, however,
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TABLE II. Nondimensional and control parameters for the set of DNS.

Sim.a A/Nb Frk
b ReL

b Reb
b lO / Lb κmax ηb k∞b,c εk,∞b,c kw,∞b,c ts/tB

d t f /tB
d uj

e ρe

C1 0.38 0.66 181.91 75.81 0.27 2.03 7.61 6.74 1.37 3.58 9.95 S 0.1
C2 0.50 0.86 97.09 71.32 0.30 2.39 4.13 3.57 0.93 2.52 9.95 S 0.1
C3 0.93 1.72 103.36 302.71 0.76 2.04 5.85 6.73 1.66 1.35 9.95 S 0.1
C4 1.36 2.59 100.96 669.90 1.33 1.97 6.20 7.68 1.88 0.75 5.00 C8 C8
C5 1.49 2.89 107.47 887.94 1.61 1.92 6.71 8.45 1.99 0.38 4.99 C8 C8
C6 1.95 3.82 106.57 1544.02 2.42 1.92 6.73 8.58 2.12 0.59 4.97 S 0.1
C7 2.28 4.48 109.85 2181.21 3.11 1.90 6.95 8.89 2.22 0.26 5.00 C8 C8
C8 2.60 5.13 106.55 2775.85 3.75 1.91 6.77 8.67 2.25 0.45 4.97 S 0.1

K1 0.42 0.70 135.63 63.28 0.25 2.13 6.00 5.63 1.17 0.52 9.95 S 0.1
K2 0.52 0.90 116.79 91.90 0.31 2.06 6.00 6.36 1.32 0.42 9.95 S 0.1
K3 0.64 1.13 82.21 101.40 0.44 2.68 3.00 2.25 0.71 0.42 9.95 S 0.1
K4 0.67 1.19 102.50 143.23 0.43 2.00 6.00 7.16 1.48 0.36 9.95 S 0.1
K5 0.82 1.48 103.29 222.36 0.59 2.01 6.00 7.12 1.59 0.35 9.95 S 0.1
K6 1.25 2.35 77.17 423.73 1.27 2.65 3.00 2.35 0.87 0.34 4.97 S 0.2
K7 1.28 2.44 99.75 585.89 1.22 1.99 6.00 7.32 1.81 0.28 4.97 S 0.1
K8 1.66 3.22 75.43 772.73 1.98 2.63 3.00 2.41 0.91 0.19 4.97 S 0.1

D1 0.15 0.24 463.70 22.50 0.15 2.76 6.61 2.00 0.57 1.26 35.15 S 0.1
D2 0.25 0.41 234.90 33.75 0.18 2.49 5.80 3.00 0.78 1.13 19.89 S 0.1
D3 0.31 0.51 190.88 45.00 0.21 2.32 6.10 4.00 0.93 0.78 15.25 S 0.1
D4 0.30 0.51 245.21 60.00 0.22 1.98 9.50 7.50 1.46 1.26 15.10 D8 D8
D5 0.39 0.65 131.32 50.63 0.22 2.25 5.36 4.50 1.07 0.68 15.25 S 0.1
D6 0.43 0.73 122.34 60.00 0.25 2.25 5.17 4.50 1.04 0.10 9.99 D8 D8
D7 0.45 0.75 126.11 67.50 0.25 2.09 6.11 6.00 1.30 0.68 20.03 S 0.1
D8 0.47 0.81 135.69 84.38 0.28 1.98 7.08 7.50 1.48 0.74 9.95 S 0.1
D9 0.52 0.89 129.84 100.00 0.32 1.98 6.94 7.50 1.53 0.22 9.99 C8 C8
D10 0.53 0.92 74.90 60.00 0.33 2.96 2.35 1.50 0.52 0.34 9.99 D8 D8
D11 0.57 0.99 104.78 100.00 0.37 2.25 4.84 4.50 1.12 0.22 10.00 C8 C8
D12 0.68 1.20 66.32 91.88 0.45 2.96 2.22 1.50 0.56 0.43 9.95 S 0.1
D13 0.68 1.21 69.93 100.00 0.48 2.96 2.28 1.50 0.54 0.19 10.02 C8 C8
D14 0.84 1.52 81.29 183.75 0.64 2.49 3.48 3.00 0.96 0.43 9.95 S 0.1
D15 0.96 1.78 88.65 275.63 0.78 2.25 4.45 4.50 1.24 0.38 9.95 S 0.1
D16 1.07 2.00 94.36 367.50 0.90 2.09 5.30 6.00 1.53 0.28 9.95 S 0.1
D17 1.12 2.12 104.64 459.38 1.01 1.98 6.24 7.50 1.77 0.28 9.95 S 0.1
D18 1.59 3.09 107.12 1000.02 1.81 1.98 6.31 7.50 1.93 0.027 5.01 C8 C8
D19 1.75 3.42 87.71 1000.00 2.05 2.25 4.42 4.50 1.36 0.045 5.07 C8 C8
D20 1.81 3.53 81.79 1000.00 2.27 2.49 3.49 3.00 1.08 0.078 4.99 C8 C8

V1 0.010 0.016 34673.91 9.34 0.034 1.25 283.52 46.69 1.30 17.51 60.68 S 0.1
V2 0.019 0.032 11771.82 12.13 0.048 1.44 124.81 26.95 1.30 8.75 50.40 S 0.1
V3 0.031 0.051 5620.83 14.07 0.060 1.60 69.37 17.58 1.30 8.75 40.29 S 0.1
V4 0.060 0.10 2044.58 18.65 0.084 1.83 31.75 10.36 1.30 5.01 30.17 S 0.1
V5 0.10 0.17 989.35 25.60 0.11 1.95 19.53 8.00 1.30 5.02 25.12 S 0.1
V6 0.15 0.25 609.54 36.11 0.15 2.00 14.65 7.22 1.30 2.51 15.12 S 0.1

aconstant A (C series), constant k (K series), constant εk (D series), constant kw (V series).
bBolded quantities are prescribed. Otherwise, values are volume and time averaged.
cTargets for time-varying forcing strategies. See Sec. III A and Appendix B for more information.
dNormalized start and end times of temporal averaging windows with tB = 2π/N .
eChoice of velocity and density initial conditions. More information is provided in Appendix A.
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FIG. 1. (a) Temporal trajectories of volume-averaged values of ReL and Frk for four simulations with
different temporal forcing strategies: constant A (red squares), constant k (orange diamonds), constant εk

(blue stars), constant kw (black triangles). The four simulations only correspond to the C2, K3, D12, and
V6 simulations in Table II. (b) Volume- and time-averaged values of ReL and Frk for all simulations in Table II.

Reb now represents the range of isotropic scales (ηk to lO) because the Ozmidov length scale is
smaller than the large-eddy length scale, and Frk represents the range of anisotropic scales (lO
to lL). For this regime, ReL now represents information about both the isotropic and anisotropic
range of scales. Therefore, one needs to carefully interpret the physical significance of Reb and ReL

depending on whether A/N < 1 or A/N > 1. For simulations with time-varying A with εk = εk,∞,
which represents some desired/target constant value of the TKE dissipation rate, we note that
Reb = Reb,∞ = εk,∞/(νN2) becomes an input parameter. The final nondimensional parameter is
the mixing coefficient � = εp/εk , which is the ratio of the dissipation rates of TPE and TKE, and
notably, it appears as an unknown in the Osborn eddy diffusivity model in Eq. (1). In the following
section, we study how � varies with Frk and connect its different Frk scalings to notable shifts in the
budgets described by Eqs. (9)–(11).

III. RESULTS

A. Different temporal forcing strategies

We choose the momentum forcing coefficient, A, to either be constant or vary in time. For the
constant forcing simulations, all turbulence statistics vary in time, whereas for the time-varying
forcing simulations, one turbulence measure is chosen to remain fixed in time. Varying the forcing
coefficient in time allows us to maintain desired values for the TKE (k), the TKE dissipation rate
(εk ), or the vertical component of TKE (kw). This approach builds on Ref. [26] which has been
modified to incorporate buoyancy effects and derive a separate strategy for controlling kw; further
details are provided in Appendix B. We find that the simulations with k or εk fixed in time traverse
the solution space of ReL and Frk differently from the simulations with constant forcing rate or fixed
kw. We illustrate this point in Fig. 1(a), where temporal trajectories of four simulations (C2, K3,
D12, V6 in Table II) are plotted in the ReL-Frk space. ReL is on the x axis, and Frk is on the y axis.
The diagonal dashed lines represent lines of constant Reb, increasing in order of magnitude from 1
to 104, plotted using Reb = ReLFr2

k . The constant-k simulation’s trajectory (orange diamonds) falls
on a line with a −1 slope. In contrast the constant-εk simulation’s trajectory (blue stars) exhibits a
−1/2 slope and maintains a constant value of Reb at every instant in time. Finally, the remaining
two types of simulations (constant forcing rate A and constant kw; red squares and black triangles)
have trajectories without distinct slopes. In Fig. 1(b), which has the same axes as Fig. 1(a), we
now plot the volume- and time-averaged values of ReL and Frk for all simulations in Table II. For
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FIG. 2. Forcing input parameter (A/N) plotted versus the right-hand side of Eq. (12) for the steady-state,
volume- and time-averaged energy balance for our simplified system. Given that the points for all four forcing
strategies lie on the “one-to-one” line, it appears that all four strategies are well-described by the steady-state
balance described in Eq. (12).

simulations with Frk > 1, ReL ≈ 100, and for simulations with Frk < 1, we note that Reb decreases
from about 100 to 10 with increasing stratification, indicating that a wider range of anisotropic
scales are simulated at the expense of isotropic scales.

In the remainder of our paper, we discuss the flow dynamics under statistically stationary
conditions. Therefore, we need to establish that our collective statistically stationary results are
insensitive to which of the four temporal forcing strategies was used. We combine Eqs. (5) and (6)
under statistically stationary conditions and divide by N to arrive at

A

N
= 1

2
Frk (1 + �). (12)

Equation (12) is one particular manifestation of the nondimensional total energy budget, and it also
relates the input parameter A/N to two output parameters Frk and �. For � � 1, Eq. (12) can be
simplified to A/N ≈ 1

2 Frk , which provides a way to estimate the expected value of Frk for a given
value of A/N . We plot the two sides of (12) as the x and y axes, respectively, in Fig. 2. Each symbol
represents the two sides of Eq. (12) after volume and time averaging, and each color and symbol
combination corresponds to one of the four temporal forcing strategies. Given that the points for
all four forcing strategies lie on the “one-to-one” line, it appears that all four strategies are well-
described by the steady-state balance described in Eq. (12). Based on this empirical observation,
we do not indicate the forcing strategy in our subsequent figures (this also allows for greater visual
simplicity).

B. Characterization of turbulence anisotropy

As the degree of stable stratification increases relative to the momentum forcing (larger N
relative to A), the turbulence becomes increasingly anisotropic due to the enhanced damping of
vertical velocity fluctuations. We quantify this effect in Fig. 3(a) by plotting the mean-squared
horizontal and vertical velocity fluctuations versus the turbulent Froude number. The overbars
denote volume and time averaging, and both squared velocity components have been normalized

084801-7



YOUNG R. YI AND JEFFREY R. KOSEFF

FIG. 3. (a) Normalized mean-squared horizontal velocity fluctuations (circles) and mean-squared vertical
velocity fluctuations (triangles) versus turbulent Froude number. (b) Lumley triangle visualization of simula-
tions colored by turbulent Froude number. In panel (a), the horizontal dashed line corresponds to the value of
1/3, which is expected of isotropic turbulence, and the horizontal dotted line corresponds to the value of 1/2,
which is expected of two-component, disklike turbulence. In panel (b), stronger stratification (smaller turbulent
Froude number) corresponds to increasingly anisotropic turbulence, corresponding to the movement from the
isotropic corner of the Lumley triangle (ξ = 0, η = 0) to the two-component, disklike turbulence limit in the
upper left.

by twice the TKE. Also, the horizontal velocity fluctuations have been calculated by averaging the
x- and y-velocity components together, leveraging the axisymmetry of our simulations about the
z axis. At large turbulent Froude numbers (weaker stratification relative to momentum forcing),
the normalized squared velocities approach a value of 1/3 (marked by the horizontal dashed line),
which is the limiting behavior for isotropic turbulence. As the turbulent Froude number decreases
(stronger stratification relative to momentum forcing), the normalized squared vertical velocities
(triangles) monotonically decrease to 0, while the normalized squared horizontal velocities (circles)
monotonically increase to a value of 1/2 (marked by the horizontal dotted line), which is the limiting
behavior for two-dimensional, axisymmetric turbulence.

We further characterize the flow anisotropy through the Lumley triangle visualization in Fig. 3(b).
The x- and y-coordinate variables ξ and η are related to the second and third invariants of the
Reynolds stress tensor, which can also be expressed in terms of the eigenvalues of the Reynolds
stress tensor [23,27]. Following Ref. [28], we briefly discuss some notable aspects of the Lumley
triangle. The bottom-most corner represents the isotropic limit, where all three diagonal Reynolds
stress components are equally important. The left corner represents the two-component, disklike
turbulence limit, where two diagonal components of the Reynolds stress tensor are equally im-
portant. The right corner represents the one-component, rodlike turbulence limit where only a
single diagonal component of the Reynolds stress tensor is important. The top curve connects
the two-component, disklike and one-component, rodlike limits, and the area within the Lumley
triangle represents all possible turbulent states. When calculating ξ and η, we have used the volume-
and time-averaged Reynolds stress tensor, but unlike for Fig. 3(a), we have not averaged the two
horizontal Reynolds stress components. From Fig. 3(b), we can see that our simulations lie close
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to the disklike turbulence leg, indicating that axisymmetric conditions are well satisfied for the
majority of our simulations. With decreasing turbulent Froude number (indicated by color), our sim-
ulations move from the isotropic limit at the origin (ξ = 0, η = 0) to the two-component, disklike
turbulence limit at the left corner. This suggests that our set of simulations span the entire physical or
realizable range of axisymmetric, stably stratified turbulence described by our governing equations.

Before proceeding to the presentation of the volume-averaged budgets, we wish to broadly
compare the physical-space, linear forcing used in this study and the spectral-space, vortical forcing
which has been commonly used in previous studies of homogeneous stably stratified turbulence
(e.g., Refs. [18,29–33]). We see these two forcing strategies as differing in three key ways: (i)
whether energy is directly injected into the vertical component of TKE; (ii) whether forcing is
restricted to a narrow band of large wave numbers; and (iii) whether forcing is restricted to vertically
homogeneous modes (kz = 0).

First, vortical forcing introduces additional large-scale anisotropy compared to linear forcing
since it is only active in the horizontal momentum equations. Therefore, even for weak stratification
(Frk � 1), vortical forcing requires nonzero pressure-strain correlations to drive vertical velocity
fluctuations for 3D turbulence. For vortical forcing, this implies anisotropic, diagonal Reynolds
stresses even in the limit of no stratification. As stratification is increased, we observe that linear
forcing naturally becomes anisotropic due to the competing effects of forcing and buoyancy (kH >

kw), and for very strong stratification strengths (Frk � 1), kw (and therefore the direct injection of
kw by linear forcing, 2Akw) becomes negligible. As a result, like in vortical forcing simulations, we
expect the vertical flow dynamics from our linear forcing simulations to become more emergent
(i.e., less dictated by the details of the forcing) for Frk � 1. With regards to Figs. 3(a) and 3(b),
we expect vortically forced stratified turbulence to have normalized squared horizontal and vertical
velocity fluctuations that are larger and smaller, respectively, compared to the HIT limit of 1/3
(horizontal dashed line), and we expect it to not reach the isotropic limit at the origin but rather
occupy η > 0 along the disklike turbulence leg of the Lumley triangle.

Second, vortical forcing injects energy in a narrow band of wave numbers, whereas physical-
space linear forcing injects energy at all wave numbers. For isotropic turbulence simulations, using
band-limited forcing leads to large-eddy scales that are twice as large compared to physical-space
forcing (see Fig. 9 of Ref. [22] and also Ref. [34]). Therefore, for Frk � 1 where buoyancy effects
are negligible, we speculate that vortical forcing could lead to larger Reynolds numbers compared
to physical-space linear forcing. For Frk � 1, however, we are less certain about how the forcing
bandwidth will interact with the anisotropic large scales. Third, vortical forcing restricts energy
injection to vertically homogeneous modes (kz = 0), whereas physical-space linear forcing does
not. We suspect that this distinction will also lead to notable differences for all values of Frk between
vortical and linear forcing. We believe that a quantitative comparison of vortical and linear forcing
across a wide range of stratification strengths would be instructive in a future study.

C. TKE and TPE budgets

We now turn to the steady-state, volume- and time-averaged TKE and TPE budgets [Eqs. (5) and
(6)] as a function of the turbulent Froude number [Figs. 4(a) and 4(b)]. In both figures, each of the
terms in the budget have been normalized by their respective production terms such that all terms
are bounded between ±1, and to match Eqs. (5) and (6), the normalized TKE and TPE dissipation
rates and buoyancy flux are plotted with minus signs. In Fig. 4(a) [related to Eq. (5)], the normalized
production accounts for all TKE generation (black triangles) regardless of Frk , while the sum of the
normalized buoyancy flux (orange stars) and TKE dissipation rate (red triangles) account for the
total loss of TKE. In Fig. 4(b) [related to Eq. (6)], the normalized buoyancy flux accounts for all
TPE generation (orange triangles), and the normalized TPE dissipation rate accounts for the total
loss of TPE (red triangles). The normalized residuals (gray squares) for each budget are close to
zero, indicating that our simulations have reached statistically steady-state conditions.
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FIG. 4. Steady-state, volume- and time-averaged budgets of (a) TKE and (b) TPE as a function of the
turbulent Froude number. The two panels correspond to Eqs. (5) and (6), respectively.

D. Horizontal and vertical TKE budgets

Previous works have characterized the anisotropy of stably stratified turbulence by separately
considering the horizontal and vertical spectra of TKE and TPE, which exhibit different wave
number scaling laws for scales larger than the Ozmidov scale (e.g., Refs. [30,31,33,35]). Here,
we have separated TKE into its horizontal and vertical components to further illustrate the effects of
turbulence anisotropy on the energetics. This decomposition retains the pressure-strain correlations,
which sum to zero for incompressible flow. By studying their respective steady-state, volume-
and time-averaged budgets [Eqs. (9) and (10)] in Figs. 5(a) and 5(b), we demonstrate that the
pressure-strain correlations along with the buoyancy flux significantly affects the energy exchange
of scales larger than the Ozmidov scale for stably stratified turbulence. As before, we normalize all
terms in each budget by the sum of their respective production terms to keep all terms normalized
between ±1, and to match Eqs. (9) and (10), the normalized dissipation rates of kH and kw and the
buoyancy flux are plotted with minus signs.

We first consider the budget of the horizontal component of TKE [Fig. 5(a)]. At high Froude
numbers, the pressure-strain correlation is negligible (blue x’s), and direct production (black trian-
gles) and dissipation (red triangles) are in balance. As the stratification increases, the pressure-strain
correlation acts as a sink of horizontal TKE as seen by the reduction in the dissipation term. There
is a region between Frk ≈ 0.7 and Frk ≈ 0.2 where the balance is fairly constant, but for Frk < 0.2,
the pressure-strain correlation weakens as a sink of horizontal TKE and the dissipation rate grows
in relative importance as a sink of horizontal TKE.

We next consider the budget of the vertical component of TKE [Fig. 5(b)]. At high Froude num-
bers, both the pressure-strain correlation (blue x’s) and buoyancy flux (orange stars) are negligible,
and production (black triangles) and dissipation (red triangles) are in balance. As the stratification
increases in magnitude, the vertical pressure-strain correlation term also increases in relative
importance as a source of kw to the point where at Frk ≈ 0.7, direct production and pressure-strain
correlation contribute equally to the generation of kw. For Frk < 0.7 direct production diminishes,
eventually becoming negligible at small Frk , so that kw depends entirely on the pressure-strain
correlation to “stay alive.” The buoyancy flux monotonically decreases with decreasing turbulent
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FIG. 5. Steady-state, volume- and time-averaged budgets of (a) kH , (b) kw , and (c) wρ as a function of the
turbulent Froude number. The three panels correspond to Eqs. (9), (10), and (11), respectively.

Froude number, but there is a change in slope around Frk ≈ 0.7, at which point the dissipation rate
becomes a weaker sink of kw with decreasing Frk .

E. Vertical density flux budget

Now, we consider the steady-state, volume- and time-averaged budget of the vertical density flux
as a function of the turbulent Froude number [Fig. 5(c)]. As before, for each turbulent Froude num-
ber, every term has been normalized by the sum of all source terms to keep all normalized terms be-
tween ±1. At high turbulent Froude numbers, the sink due to kp (orange stars) is negligible, and there
is a balance among the remaining four terms. As the stratification magnitude increases (until Frk ≈
0.1), the source due to forcing (black circles), pressure scrambling (blue x’s), and dissipation (red
triangles) all approach 0, while the source due to kw (black triangles) and sink due to kp grow in rel-
ative importance until they are balancing each other. As stratification increases further (Frk < 0.1),
the source due to kw decreases in relative importance, and the pressure scrambling term switches
signs and becomes an equally important source of the vertical density flux for our smallest turbulent
Froude number simulation. The sink due to kp remains the single dominant loss term for Frk < 0.1.
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FIG. 6. (b) Volume- and time-averaged values of � versus Frk . Figures 5(b) and 5(c) are reproduced in
panels (a) and (c) for convenience. The simulations exhibit four mixing regimes with the power-law slopes
of � changing at Frk ≈ 0.1, 0.7, and 2.1. The low Froude number slope of � ∼ Fr0.4

k is an empirical fit and
remains an open question in the literature.

F. Mixing coefficient versus turbulent Froude number

Finally, we consider the behavior of the mixing coefficient � as a function of the turbulent Froude
number [Fig. 6(b)]. For the highest turbulent Froude numbers, the mixing coefficient exhibits a −2
slope dependence. This changes to a −1 slope dependence at Frk ≈ 2.1, and then to no dependence
at Frk ≈ 0.7. These slopes all agree with the predictions from the analysis of Ref. [17]. Furthermore,
for Frk < 0.2, our simulations have mixing coefficient values that decrease (an Fr0.4

k dependence),
which qualitatively agrees with the findings of Ref. [18], which also reported decreasing values of �

for small values of Frk . Intriguingly, while the exact values of Frk at which these transitions occur are
most likely not universal across all types of stably stratified turbulent flows (e.g., Ref. [36]), we wish
to emphasize here that these transition points coincide with specific transitions in the normalized
budgets of kw and wρ described in Figs. 5(b) and 5(c). For easier visualization, we have reproduced
these two budgets as Figs. 6(a) and 6(c), respectively. There are three notable observations we
make in this regard. First, the transition from � ∼ Fr−1

k to � ∼ Fr0
k at Frk ≈ 0.7 coincides with the

point at which the pressure-strain and production terms equally generate kw. Second, the extent of
the � ∼ Fr0

k region (0.2 < Frk < 0.7) also matches the plateau in the normalized pressure-strain
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correlation in the horizontal TKE budget [Fig. 5(a)]. Finally, the transition from � ∼ Fr0
k to � ∼

Fr0.4
k at Frk ≈ 0.1 coincides with when the pressure scrambling term switches sign to become a

source of vertical density flux, and where the sink due to TPE reaches a maximum.

G. An alternative expression for the mixing efficiency and comments on Reynolds number effects

Up to this point, we have presented our results solely in terms of Frk , but our simulations also
exhibit variations in ReL (and Reb). While the primary variations of our quantities of interest have
been captured by Frk , we expect our results to be modified by increasing Reynolds number. For
weak stratification (Frk ≈ 3), Ref. [18] showed that � decreases as the Taylor-microscale Reynolds
number (Reλ ∼ Re1/2

L ) is increased. Here, we attempt to extend their finding to all stratification
strengths by considering an alternative definition of the mixing efficiency.

Following Ref. [37], we manipulate the steady-state, time- and volume-averaged kw budget to
arrive at an alternative expression for the mixing efficiency

Ri f = 1

1 − c3

[
Rw

Pk
+ b33 − c3 + 1

3

]
, (13)

where c3 = εw/εk is the fraction of the TKE dissipation rate that is accounted for by the dissipation
rate of kw; Rw is the pressure-strain correlation term in the kw budget; Pk = 2Ak is the TKE
production rate; and b33 is the third diagonal entry of the normalized Reynolds anisotropy tensor
bi j = uiu j/(2k) − (1/3)δi j . To arrive at Eq. (13), we have used Eq. (6) to replace B with εp in
Eq. (10) and divided by the total production of TKE, Pk . Then, using Pk = εk + εp, which comes
from combining Eqs. (5) and (6), and letting εw = c3εk , we have rewritten the term involving εw

and solved for the mixing efficiency Ri f .
For large Reynolds numbers (either ReL � 1 for A/N � 1 or Reb � 1 for A/N � 1), we expect

c3 → 1/3 based on arguments about the local isotropy of dissipative scales (e.g., Refs. [20,38]).
Under this limit, Eq. (13) becomes

lim
Re�1

Ri f = 3

2

[
Rw

Pk
+ b33

]
. (14)

Then, Eq. (14) establishes a direct link between how efficiently the density field is irreversibly mixed
to the degree of large-scale anisotropy as quantified by Rw/Pk and b33. For negligible stratification,
b33 → 0 corresponding to the isotropic turbulence limit, and empirically from Fig. 5(b), we expect
Rw/Pk → 0. This leads to Ri f → 0, which agrees with the physical picture where there is no
background density gradient to mix. For very strong stratification, b33 → −1/3 corresponding to the
two-component, disklike turbulence limit (see Fig. 3). Since Ri f is a positive semidefinite quantity,
this requires Rw/Pk � −b33 = 1/3. Due to lack of further constraints on Rw/Pk at large Reynolds
numbers, we are unable to determine whether Ri f remains finite using Eq. (14) in the limit of
very strong stratification. In this limit, Ref. [18] finds � ≈ 0.33 (Ri f ≈ 0.25), yet this simulation is
characterized by Reb ≈ 17, indicating that Ri f would likely still be dependent on Reb.

Because Frk and Re vary simultaneously for our simulations, we are unable to demonstrate
whether Rw/Pk , b33, and c3 depend primarily on Frk , Re, or both. Nevertheless, we plot Rw/Pk

and b33 as a function of Frk in Figs. 7(a) and 7(b) with Re shown in color, and we plot c3 as a
function of Re in Fig. 7(c) with Frk shown in color. Here, we have defined the Reynolds number as
Re = Reb for A/N < 1/2 and Re = ReL for A/N � 1/2 guided by Eq. (14). For Frk > 1, Re ≈ 100
[see also Fig. 1(b)], therefore, the variations of Rw/Pk and b33 from our simulations are primarily due
to Frk (this does not, however, rule out Re effects on Rw/Pk and b33 for Frk > 1 more broadly). For
Frk < 1, Re approximately varies from 10 to 100, indicating that Rw/Pk and b33 from our simulations
are varying due to both Frk and Re. In Fig. 7(c), we see that c3 from our simulations decreases from
approximately 1/3 towards 0 with decreasing Re, but once again due to simultaneous variations of
Re and Frk , we are unable to test whether c3 depends solely on Re from our simulations alone. We
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FIG. 7. (a) Rw/Pk and (b) b33 plotted as a function of Frk with the magnitude of Re shown in color and the
least-squares fits to the DNS values shown by thin blue lines. (c) c3 = εw/εk plotted as a function of Re with
the magnitude of Frk shown in color and the dashed horizontal line marking the value of c3 = 1/3, which is
expected under local isotropy of dissipative scales. (d) Contour plot of Ri f as a function of Frk and c3 where
(13) is evaluated for each Frk by using the least-squares fits of Rw/Pk and b33 shown in panels (a) and (b) and
varying c3. Colored circles represent the actual values of Ri f from DNS.

hope to disentangle the Frk and Re effects in a future study by systematically increasing Re over a
large range of Frk .

With these limitations in mind, we proceed to explore Eq. (13) by making two simplifying
assumptions. First, we assume that Rw/Pk and b33 depend only on Frk , and second, we assume that c3

depends solely on Re. By separately accounting for the effects of anisotropic scales (through Rw/Pk

and b33) and isotropic scales (through c3), we are assuming that the anisotropic and isotropic scales
interact negligibly with one another. This allows us to take the values of Rw/Pk and b33 at each value
of Frk from our simulations and evaluate Eq. (13) to explore how Ri f varies for c3 ∈ [0, 1/3]. We do
this with full acknowledgment that our two assumptions correspond to a physically incorrect picture
that disagrees with theoretical scalings of strongly stratified turbulence of Ref. [39] and empirical
observations of thin, layered structures, indicating the interaction of large horizontal scales with
small vertical scales (e.g., Refs. [30,31,35,36,40,41]).

With this caveat in mind, we plot the estimated values of Ri f from Eq. (13) (colored contours)
and the actual Ri f values from our simulations (colored circles) in Fig. 7(d) with Frk on the
x axis and c3 on the y axis. To create the colored contour plot from Eq. (13), we have used
least-squares fits of Rw/Pk and b33 as a function of Frk shown by thin blue lines in Figs. 7(a)
and 7(b). The least-squares fit of Rw/Pk included three parts: Rw/Pk ≈ a1Fr0.4

k for Frk � 10−1;
log(Rw/Pk ) ≈ a2log(Frk )3 + b2log(Frk )2 + c2log(Frk ) + d2 for 10−1 � Frk � 3; Rw/Pk ≈ a3Fr−2

k
for Frk � 3. The functional forms, coefficients a1 = 0.6 and a3 = 0.4, and the boundary values
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of Frk for the three parts were chosen empirically; however, the coefficients a2, b2, c2, and d2

were found through a least-squares fitting process that ensured piecewise continuity of the three
parts. The least-squares fit of b33 also included three parts: b33 ≈ a4Fr2

k + b4Frk + c4 for Frk � 1.2;
b33 ≈ a5log(Frk ) + b5 for 1.2 � Frk � 5; b33 ≈ a6 for Frk � 5. Once again, the functional forms
and the boundary values of Frk for the three parts were chosen empirically, but the values for
c4 = −1/3 and a6 = 0 were constrained theoretically based on the limiting values of b33 for small
and large Frk , respectively. As before, the remaining coefficients (a4, b4, a5, and b5) were found
through a least-squares fitting process that ensured piecewise continuity of the three parts. Positive
values of Ri f are indicated in red, and negative values are indicated in blue.

First, we note that the positive semidefinite property of Ri f is violated when we evaluate Eq. (13)
with our two simplifying assumptions as indicated by the blue regions. We interpret this as a
direct consequence of our unphysical assumptions. Second, at all values of Frk , we note that Ri f

decreases with increasing c3, which we are using as a proxy for increasing Re. This qualitatively
agrees with the findings of Ref. [18] for weakly stratified turbulence, but more broadly, this seems
to suggest that this inverse relationship between Ri f and c3 might hold true even for moderately
and strongly stratified turbulence. In the limit of strongly stratified turbulence, our analysis agrees
with the findings of Ref. [42], who explored the relationship between Ri f and Reb. As Ref. [42]
varied Reb from 1 to 10 for Frk ≈ 10−2, they observed a maximum value of Ri f at Reb ≈ 4, which
then decreased monotonically for increasing Reb. In summary, we note that all RHS parameters
in Eq. (13) depend both on Frk and Re, and this warrants a more thorough exploration of the
relationship between Ri f and Re, especially for the moderately and strongly stratified regimes.

IV. CONCLUSIONS

We have studied statistically stationary, axisymmetric, stably stratified turbulence under linear
forcing. Our simulations spanned the complete range of axisymmetric turbulent states (that is
realizable) from a combination of linear forcing and stable stratification, as demonstrated by the
Lumley triangle visualization in Fig. 3(b). We found a number of notable results. First, as we
increased stratification, the horizontal component of TKE increased monotonically, whereas the
vertical component of TKE in our simulations decreased monotonically. Second, we highlighted
the critical role that the pressure-strain correlations play in maintaining finite values of the vertical
component of TKE with increasing stratification. Third, we have taken quantitative steps towards
understanding what sets the mixing efficiency of stably stratified turbulence by connecting the
shape of the mixing coefficient curve to the underlying dynamics and energetics of our model
problem. As seen in Fig. 6, we connected the variations of the mixing coefficient with the turbulent
Froude number to notable shifts in the energy budgets. Specifically, the turbulent Froude number
where direct production and pressure-strain correlation equally contribute to the generation of the
vertical component of TKE corresponds to the point where the mixing coefficient curve flattens out.
Furthermore, the trend of the mixing coefficient decreasing from its peak value for even stronger
stratification (smaller Frk) is also connected with a sign change of the pressure scrambling term in
the vertical density flux budget. Finally, using an alternative expression for the mixing efficiency,
we hypothesized that the mixing efficiency is likely to decrease with increasing Reynolds number
for all turbulent Froude numbers. Unlike the universal scaling behaviors proposed by Ref. [17], we
expect that conducting similar analyses for sheared, stably stratified turbulence will reveal important
differences between them and the axisymmetric, stably stratified turbulence studied here, ultimately
leading to a more nuanced and physically rich understanding of turbulent mixing associated with
different types of stably stratified flows.
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APPENDIX A: REGARDING INITIALIZATION AND TEMPORAL AVERAGING

We have initialized most (30 of 42) of our velocity fields using divergence-free, isotropic
fields generated based on a model spectrum from Ref. [43]. The exact form of the spectrum with
dimensional coefficients follows from Eq. (3) of Ref. [26] and is given as

E0(κ ) = 32k0

κ0

√
2

π

(
κ

κ0

)4

exp

[
−2

(
κ

κ0

)2]
, (A1)

where E0(κ ) is the three-dimensional model spectrum, k0 is the initial turbulent kinetic energy, and
κ0 is the wave number at which the energy spectrum has its maximum. We used dimensional coef-
ficient values of k0 = 2.75 m2/s2 and κ0 = 10 m−1. We chose to initialize the density fluctuations
by multiplying the vertical velocity fluctuations by a uniform factor c of either 0.1 or 0.2 [i.e.,
ρ(	x, t = 0) = cw(	x, t = 0)]. Unlike initializing with zero density fluctuations, our choice results in
nonzero buoyancy fluxes from the start of the simulations.

The rest (12 of 42) of our simulations were initialized from statistically stationary velocity and
density fields either from simulations C8 or D8 (see Table II). This choice significantly reduced
the simulation spin-up time associated with the initial transient decay and growth that occur as
the nonlinear terms become increasingly active. Because we time advance all simulations until
flow statistics become statistically stationary, we expect our initialization choices to have negligible
effects on the final flow states that are reached. We validate this assumption through our analysis
of various budgets using the entire collection of simulations (e.g., Figs. 2, 4, and 5). In the final
two columns of Table II, S denotes velocity fluctuations initialized using the model spectrum in
Eq. (A1), and C8 or D8 indicates the simulations that were initialized using 3D snapshots from the
statistically stationary portions of simulations C8 or D8.

For temporal averaging, we needed to define a window over which we could assume that the
turbulence fluctuations were statistically stationary. Using the result shown in Fig. 3(b) of Ref. [33],
we defined the start of the temporal averaging window as the first occurrence of (εk + εp)/Pk > 1
after the initial decay period. Physically, when our flow fields become statistically stationary, the
volume-averaged TKE and TPE budgets can be simplified to Pk ≈ εk + εp, where Pk is the TKE
production rate, εk is the TKE dissipation rate, and εp is the TPE dissipation rate. Although the
simulations with time-varying A did not exhibit the same marked initial decay of (εk + εp)/Pk as
the cases with constant A [see Fig. 8(a)], the same algorithm was used to determine the temporal
averaging window for all sets of simulations except for the constant-kw simulations. To illustrate
this procedure, representative time series of (εk + εp)/Pk and � from constant-A (red), constant-k
(orange), and constant-εk (blue) simulations are shown in Fig. 8, where the x axis is time normalized
by the buoyancy period tB = 2π/N . This algorithm is well-behaved for all but simulations D4 and
V1–V6, for which we manually selected t/tB ≈ 1.3, 17.5, 8.8, 8.8, 5, 5, and 2.5, respectively, as
the beginning of our temporal averaging windows. These values were chosen visually based on
the time series of �. The bounds of the temporal averaging windows are provided in the columns
labeled ts/tB and t f /tB in Table II.

APPENDIX B: DERIVATION OF TIME-VARYING CONTROLLERS AND DISCUSSION
ABOUT CONTROL PARAMETERS

The subsequent derivations closely follow those provided in Ref. [26] with minor modifications
to incorporate buoyancy effects.
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FIG. 8. Time series of volume-averaged (a) (εk + εp)/Pk and (b) � from simulations C2 (red), K3 (orange),
and D14 (blue). Temporal averaging windows are marked by horizontal lines. Note the marked decay and
growth of (εk + εp)/Pk for the constant-A simulation (red) in contrast to the behavior of the constant-k and
constant-εk simulations (orange and blue, respectively).

First, we consider the volume-averaged TKE budget (5), which is reproduced here:

dk

dt
= 2Ak − g

ρ0
wρ − ν

∂u j

∂xm

∂u j

∂xm
= 2Ak − B − εk . (B1)

Then, we choose A as

A(t ) = εk (t ) + B(t ) − G
τL

[k(t ) − k∞]

2k(t )
, (B2)

such that Eq. (B1) simplifies to

dk

dt
= − G

τL
[k(t ) − k∞], (B3)

where k∞ is the target value of k, τL is a relaxation time scale, and G is a positive, nondimensional
gain parameter. Note that τL/G now determines the typical time scale required for k(t ) → k∞.

Next, we differentiate Eq. (3) with respect to xm and multiply by 2ν∂muj . Then, we volume
average the equation, and using the fact that our flow statistics are homogeneous in all three
directions, we arrive at

dεk

dt
= −2ν

∂u j

∂xm

∂ul

∂xm

∂u j

∂xl
− 2ν2 ∂2u j

∂xm∂xl

∂2u j

∂xm∂xl
+ 2Aεk − 2νg

ρ0

∂w

∂xm

∂ρ

∂xm
. (B4)

Defining the first two terms of the right-hand side of Eq. (B4) as −Dεk and the fourth term as
−Bεk , we choose A as

A(t ) = Dεk (t ) + Bεk (t ) − G
τL

[εk (t ) − εk,∞]

2εk (t )
, (B5)

such that Eq. (B4) simplifies to

dεk

dt
= − G

τL
[εk (t ) − εk,∞], (B6)
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where εk,∞ is the target value of εk . Now, τL/G determines the typical time scale required for
εk (t ) → εk,∞.

Finally, we consider the volume-averaged budget of the vertical component of TKE (10), which
is reproduced here:

dkw

dt
= 2Akw + 1

ρ0
ps33 − g

ρ0
ρw − ν

∂w

∂xm

∂w

∂xm
= 2Akw + Rw − B − εw. (B7)

Then, we choose A as

A(t ) = εw(t ) + B(t ) − Rw(t ) − G
τL

[kw(t ) − kw,∞]

2kw(t )
, (B8)

such that Eq. (B7) simplifies to

dkw

dt
= − G

τL
[kw(t ) − kw,∞], (B9)

where kw,∞ is the target value of kw. Here, τL/G determines the typical time scale required for
kw(t ) → kw,∞.

Following Ref. [26], for all simulations with A(t ), we used a gain parameter of G = 67 and a
relaxation time scale of τL = 1, except simulations K6 and K7, for which we used τL = 0.92 and 2,
respectively. The particular choice of τL and G are unimportant as long as the effective relaxation
timescale τL/G is shorter than the physical timescales associated with the parameters of interest (k,
εk , and kw). This point is explored in greater detail for the constant-k and constant-εk controllers in
Ref. [26].
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