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In the logarithmic layer of boundary-layer turbulence, velocity structure functions scale
as power and logarithmic functions of displacement at small and large scales, respectively.
The small-scale scaling can be explained as a near-isotropy behavior, while the mechanism
behind the logarithmic behavior is debatable. By rescaling the horizontal displacement by
the distance to the wall, using the attached eddy hypothesis to the Kármán-Howarth-Monin
(KHM) equation results in the logarithmic behavior. Also, from the picture of energy
cascade, i.e., introducing a characteristic scale u3

τ /ε with uτ and ε the friction velocity
and energy dissipation rate, respectively, the logarithmic profile of the third-order structure
function can also be obtained. These two explanations suggest a dependence of the third-
order structure function on the difference between local production and dissipation. By
analyzing data measured from the Qingtu Lake Observation Array built on a dry flatbed of
Qingtu Lake in Minqin (China) with Reτ = O(106), we provide evidence for the scaling
behaviors and justify the underlying balances in the range with large displacements. And
we study the robustness of the structure function theory using clear-air and sand-containing
data: sands modify key statistical quantities of the boundary-layer turbulence, such as the
height dependence of the Reynolds stress, but the behavior of the third-order structure
function remains unchanged. Considering that the shear production captures the strength
of anisotropic perturbation-mean interaction in the KHM equation, the ratio of production
and dissipation controls the relative extensions of the power and logarithmic ranges, and
a stronger production leads to a relatively wider logarithmic range, which is justified by
measured data.

DOI: 10.1103/PhysRevFluids.7.084609

I. INTRODUCTION

In the logarithmic region of boundary-layer turbulence, the velocity statistics always show
logarithmic dependence on spatial variables, a celebrated example of which is the mean flow log
law:

U + = 1

κ
ln z+ + B, (1)
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where U + is streamwise mean velocity U normalized by the friction velocity uτ = √
τw/ρ with τw

the shear stress at the wall and ρ the flow density [1], z is the distance to the boundary and z+ =
zuτ /ν with ν the kinematic viscosity, κ is the von Kármán constant, and B is a constant depending
on flow conditions. Proven in many approaches [2–4] and confirmed by experiments and numerical
simulations [5–7], the logarithmic form of streamwise mean velocity is important for engineering
applications, as it appears in many numerical models [8].

Besides, higher-order statistical properties of velocity also show logarithmic forms, such as the
moments of fluctuating velocity [4,9–11]. This paper focuses on the two-point structure functions.
Defined as the moments of velocity increment, the structure functions are successfully used to
understand the statistics of turbulence and to detect energy transfer across scales [12–15]. In the
logarithmic layer of boundary-layer turbulent flows, the logarithmic scalings of structure functions
have been explored for decades. Under the assumption of Townsend’s attached eddy hypothesis
(AEH) [4], in the logarithmic region, the characteristic eddies are self-similar and scale with the
distance to the wall z [16]. Davidson et al. [17] proposed that, for the eddy whose scale characterized
by the streamwise distance of two measured points r is greater than the distance z from the wall,
the kinetic energy density can be estimated as d〈�u2〉/dr, where �u is the streamwise velocity
increment and the angular brackets denote the ensemble average. And for eddies of size r, their
total kinetic energy is approximately on the order of u2

τ , i.e., rd〈�u2〉/dr ∼ u2
τ . Therefore, using the

length scale z to normalize r, the second-order longitudinal structure function shows logarithmic
dependence of r/z:

〈�u+2〉 = C2 + B2 ln
( r

z

)
, (2)

where �u+ is the streamwise velocity increment normalized by uτ , and C2 and B2 are constants.
This logarithmic behavior in r space corresponds to the k−1 spectrum of streamwise velocity, where
k is the streamwise wave number. Unlike the k−1 law, which is difficult to see in spectra, the ln r law
is more conspicuous in the second-order structure function, which was supported by experimental
evidence [18–21]. Later, Davidson et al. [18] discovered that the constant B2 should be a universal
constant, while C2 shows logarithmic dependence on the ratio of the local energy production rate
P and dissipation rate ε, which indicates the importance of energy flux in the turbulence structure
of the logarithmic layer. Davidson and Krogstad [19] further argued that the ln(r/z) law could be
achieved without the aid of the AEH.

Since P/ε is z dependent in most turbulent shear layers, Davidson and Krogstad [10] proposed
that the combination r/z may not be appropriate. They put forward that, differing from the char-
acteristic scale z based on AEH, the characteristic length scale should be u3

τ /ε and therefore the
second-order structure-function relation becomes

〈�u+2〉 = A2 − B2 ln
(κP

ε

)
+ B2 ln

( r

z

)
= A2 + B2 ln

(
εr

u3
τ

)
, (3)

where A2 and B2 are universal constants for smooth-wall boundary layers. By analyzing experimen-
tal data this scaling is justified to be universal with different distances to the wall for both smooth-
and rough-wall boundary-layer turbulence. They argued that z is an important scale only to the extent
that z sets the value of the dissipation rate ε and the turbulence structure is actually controlled by
ε. Moreover, analogous to the derivation of the mean velocity log law, they asymptotically matched
the expressions of rd〈�u2〉/dr close to the wall and at the bulk to obtain the logarithmic expression
of 〈�u+2〉. Though the structure functions are more convergent using εr/u3

τ scaling compared with
r/z, the constants in the expression for the logarithmic regime of second-order structure function
are not determined, which is nonuniversal for smooth- and rough-wall boundary layers.

de Silva et al. [20] studied the scaling of streamwise even-order structure functions up to
10th order and justified the logarithmic behavior of 〈�u2〉 with respect to r/z using experimental
data from the University of Melbourne. Using a different derivation procedure from Davidson
et al. [17], the logarithmic behavior of structure functions is obtained and further explored by
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Yang et al. [22] based on AEH. Xie et al. [21] checked the consistency between AEH and the
Kármán-Howarth-Monin (KHM) equation in the logarithmic regime of the third-order structure
function. Under the assumption of small-scale isotropy and local production-dissipation balance,
by matching the inertial and logarithmic regimes of the third-order structure function, their theory
provides an expression for the third-order structure function that involves the von Kármán constant
κ as the only parameter.

Since the above theories for boundary-layer turbulence are developed for situations with large
Reynolds numbers, data from measurements in the atmospheric surface layer (ASL) is invaluable for
its high Reynolds number that cannot be achieved in either numerical simulations or experiments.
Defined as the lower part of the atmospheric boundary layer, ASL flow can achieve high friction
Reynolds number up to the order of O(106). Also, multipoint three-dimensional velocity data can
be measured from ASL, e.g., the Surface Layer Turbulence and Environmental Science Test [23,24]
and the Qingtu Lake Observation Array (QLOA) [25], and one can study spatial structure functions
based on Taylor’s frozen hypothesis [26].

In some extreme weather conditions, ASL flows contain sand and dust particles that rise from the
ground or are carried along from afar to form sandstorms. As complicated gas-sand two-phase flows
associated with extremely high Reynolds numbers, sandstorm lacks a theoretical description of its
turbulent structures and mechanical process due to the complicated interaction between the two
phases and the difficulty of observation. In particle-laden turbulent flows, the effect of particles
induces turbulence modulation [27–30], such as the enhancement or suppression of turbulence
intensity and the distribution of mean velocity affected by particles with different diameters [31,32],
the interaction between sand particles and very-large-scale motions in-field measurements and
numerical simulation of ASL [33–36], etc. As for the logarithmic region in sediment-laden flow,
the validity of the log law for mean flow has been examined, while the von Kármán constant
κ is disputed for decreasing with sediment suspension [37–41] or maintaining a universal value
of approximately 0.41 [42–46]. Besides, the study of structure-function scalings is lacking in
particle-laden flow, especially in ASL sandstorms.

Very large scale structures exist in ASL turbulence, and they may be controlled by external factors
[24,25,47]. Thus, to explore the universal behavior of boundary layers, we focus on the third-order
structure function with scales much smaller than the boundary thickness δ. Using high-quality ASL
data measured at QLOA, we check some basic assumptions in the theory of third-order structure
function in boundary-layer turbulence, such as the small-scale Kolmogorov four-fifths law and the
balances of the KHM equation at the logarithmic region. Inspired by Davidson and Krogstad [10]’s
introduction of the combination of ε and uτ as a length scale, this paper proposes that we may use
the combination of ε and z, instead of uτ , to scale the velocity to obtain the expression of third-order
structure function [cf. Eq. (17)], which is one of our main results. And we derive extensions to
the theory of Xie et al. [21] to achieve our two main aims: (i) justifying the theory of third-order
structure function with data at Reτ = O(106) and (ii) exploring the universal behavior of matching
the power and logarithmic regimes of third-order structure function at a specific transition scale.

The rest of this paper is organized as follows. We provide the theoretical expressions for the third-
order structure function in boundary-layer turbulence in Sec. II. The detail of data measurements is
demonstrated in Sec. III. In Sec. IV we justify the theoretical results using measured data and explore
the dependence of the third-order structure function on the difference between local production and
dissipation. We summarize and discuss our results in Sec. V. The differences between our expression
and other alternative choices are discussed in the Appendix.

II. THEORY FOR THE THIRD-ORDER STRUCTURE FUNCTION IN THE
LOGARITHMIC REGION

Enlightened by AEH, Davidson et al. [17], de Silva et al. [20], and Xie et al. [21] chose z as the
characteristic spatial scale for the second- and third-order structure function, while Davidson and
Krogstad [10] argued that, different from AEH, turbulent structures are controlled by the energy
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flux; therefore, the characteristic spatial scale should be u3
τ /ε. Thus we have two characteristic

length scales, z and u3
τ /ε, and therefore, based on dimensional analysis, we obtain the expression

for the third-order structure function

〈�u+3〉 = φ̃

(
r

z
,

u3
τ

zε

)
= φ

( r

z
,

P

ε

)
, (4)

where φ̃ and φ are functions to be determined. Here, P = −〈uw〉Uz ≈ u3
τ /(κz) is the local produc-

tion with Uz the derivative of U with respect to z, and the logarithmic behavior of the mean flow
is used in the second equality. In canonical boundary layer turbulence, de Silva et al. [20] and Xie
et al. [21] claimed that

〈�u+3〉 = φ̃1

( r

z

)
, (5)

where the local equality of energy production and dissipation is assumed, while Davidson and
Krogstad [10] proposed that

〈�u+3〉 = φ̃2

(
εr

u3
τ

)
. (6)

The difference between Eqs. (5) and (6) is that the former considers situations with local production-
dissipation balance [48], i.e., P/ε ≈ 1, while the latter applies to situations with z-dependent P/ε.

Considering the underlying energy-flux picture, we can choose a characteristic velocity different
from uτ to nondimensionalize the third-order structure function, i.e., a combination of ε and z; thus
we obtain two other expressions:

〈�u3〉
εz

= φ̃3

( r

z

)
(7)

and

〈�u3〉
εz

= φ̃4

(
εr

u3
τ

)
. (8)

Noting that Eq. (7) is independent of uτ , whose value is not easily measured directly [25,49], it may
be a better candidate for analyzing ASL data. Also, Eqs. (7) and (8) are special cases of Eq. (4).

Before we propose the third-order structure function expressions used in analyzing measured
data, we briefly review the derivation of logarithmic function from the KHM equation in Xie et al.
[21], where the key steps were not possible to be justified using low Reynolds number data. Now
we justify them in Sec. IV B using ASL data with high friction Reynolds number.

A. Derivation of the logarithmic behavior of structure functions from the KHM equation

In this section, we review the third-order structure-function theory proposed by Xie et al. [21].
The key idea of their theory is matching the small-scale Kolmogorov’s expression and the large-
scale logarithmic expression based on AEH. At small scale, Kolmogorov’s theory [12] leads to

〈�u3〉 = − 4
5εr, rν � r < rm, (9)

where rν and rm denote Kolmogorov’s microscale and the transition scale between the inertial
subrange and the logarithmic range.

Based on AEH and considering that the two measured points have the same distance to the wall,
the logarithmic expression of 〈�u3〉 is obtained as

〈�u3〉 = D∗
3 ln(r/z) + B∗

3, rm < r � δ, (10)

where D∗
3 and B∗

3 are constants and δ is the boundary layer thickness. Equation (10) is also
obtained from the KHM equation. Starting from the Navier-Stokes equation for the fully developed
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statistically steady state, the transport equation for the second-order structure function is reduced to

∂〈|�u|2�u〉
∂r′ − r′ ∂〈|�u|2wc〉

∂r′ = 2〈u1w2 + w1u2〉uτ

κ
, (11)

where u = (u, v,w) is the instantaneous fluctuating velocity vector with u, v, and w the streamwise,
spanwise, and vertical velocity fluctuations, respectively, the subscripts 1 and 2 represent point 1 at
x1 = x and point 2 at x2 = x + r, wc = (w1 + w2)/2, and r′ = r/z for simplicity. For intermediate
scale, i.e., rm/z < r′ � δ/z,

〈u1w2 + w1u2〉 ∼ 1

r′ , 〈|�u|2wc〉 ∼ 1

r′ . (12)

Thus integrating Eq. (11) yields the logarithmic expression Eq. (10).
To explore a universal behavior, we can normalize velocities using the friction velocity uτ . Since

the surface stress is not directly obtained in the ASL measurement, practically, when z is located at
the logarithmic layer, one can introduce the estimation u2

τ = ν(dU/dz)|z=0 ≈ −〈uw〉, where u and
w are streamwise and vertical fluctuating velocity, respectively, and 〈uw〉 is the Reynolds stress and
is also the vertical momentum flux. Under the assumption of local balance between shear production
and dissipation [1,50], i.e., ε ≈ P = −〈uw〉dU/dz ≈ u3

τ /(κz), Eqs. (9) and (10) become

〈�u+3〉 = − 4

5κ

r

z
, rν � r < rm, (13a)

〈�u+3〉 = D3 ln
( r

z

)
+ B3, rm < r � δ, (13b)

where D3 is a universal constant and B3 is a flow-dependent constant [20].
The common form of dependent variables, r/z, implies a possible direct matching between

Eqs. (13a) and (13b). Under the assumption that there is no distinguished regime between the
Kolmogorov and logarithmic regimes, by matching at r/z = 1 (rm = z; cf. [19]), Xie et al. [21]
obtained D3 = B3 = −4/(5κ ). Therefore, with the von Kármán constant κ ≈ 0.4, the constants in
Eq. (13b) are determined as D3 = B3 = −2, which is close to the fitted values from data. In our data
analysis, we find that this expression does not well capture the statistics of ASL data, so in the next
section we propose new expressions and use them to explore the properties of ASL turbulence.

B. Alternative expressions for the third-order structure function

Under the assumption of Kolmogorov’s phenomenology Eq. (9) at small scales, the four expres-
sions for third-order structure function with different normalizations, Eqs. (5)–(8), become

〈�u3〉 = u3
τ φ̃1

( r

z

)
= −4

5
εr

(
C̃1

u3
τ

εz

)
= −4

5
εr

(
C̃1

κP

ε

)
, (14a)

〈�u3〉 = u3
τ φ̃2

(
εr

u3
τ

)
= −4

5
εrC̃2, (14b)

〈�u3〉 = εzφ̃3

( r

z

)
= −4

5
εrC̃3, (14c)

〈�u3〉 = εzφ̃4

(
εr

u3
τ

)
= −4

5
εr

(
C̃4

εz

u3
τ

)
= −4

5
εr

(
C̃4

ε

κP

)
, (14d)

where C̃2 = C̃3 = 1, C̃1 and C̃4 are constants to make the quantity in parentheses of the last
equality equal to 1, and the derivation above uses P ≈ u3

τ /(κz). Thus, to be consistent with small
Kolmogorov scale, the dimensionless functions φ̃1 and φ̃4 can be applied only in the case of ε ∼ 1/z
and, if the mean velocity profile is logarithmic, a z-invariant P/ε; otherwise, C̃1 or C̃4 would be
a z-dependent constant. Also each expression in Eq. (14) captures a combination of power and
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logarithmic regimes and the two regimes match at a transition scale. Thus we expect that, if P/ε does
not change remarkably with z, P/ε only modifies the expressions through changing the transition
scale, and that Eqs. (14b) and (14c), i.e., Eqs. (6) and (7), have wider ranges of applicability than
Eqs. (14a) and (14d), i.e., Eqs. (5) and (8), which we justify below using measured data.

Based on the above discussion, if P/ε is approximately a constant which is not equal to unity, we
can extend the result of Xie et al. [21] [cf. Eq. (13)] to a general form:

〈�u+3〉 = φ̃1

( r

z

)
=

{− 4
5κ

r
z ,

rν

z � r
z � ξm,

− 4
5κ

ξm
[
1 + ln

(
r

zξm

)]
, ξm < r

z � δ
z ,

(15)

where the two regimes match at rm/z = ξm, where ξm can be not equal to 1. Moreover, Davidson
and Krogstad [10] stated that, in most shear-dominated boundary layer flows, the ratio of energy
production rate and dissipation rate P/ε is not always unity, but has a weak dependence on z.
They proposed that ε actually controls the structure of turbulence rather than z and u3

τ /ε is a more
appropriate length scale than z for the structure functions. But using u3

τ /ε instead of z to normalize
r does not change the matching procedure to obtain the coefficients in the expressions of structure
function. The only difference is that the matching location rm/z = ξm is replaced by εrm/u3

τ = ξ ′
m.

Thus, repeating the same procedure of getting Eq. (15), we obtain

〈�u+3〉 = φ̃2

(
εr

u3
τ

)
=

{− 4
5

εr
u3

τ
, εrν

u3
τ

� εr
u3

τ
� ξ ′

m,

− 4
5ξ ′

m

[
1 + ln

(
εr

u3
τ ξ

′
m

)]
, ξ ′

m < εr
u3

τ
� εδ

u3
τ
.

(16)

Based on the proposal of Davidson and Krogstad [10] and Kolmogorov’s theory [cf. Eq. (9)], we
imply that the energy flux controls the dynamics; therefore, we propose to use ε and z to normalize
the third-order structure function:

〈�u3〉
εz

= φ̃3

( r

z

)
=

{
− 4

5
r
z ,

rν

z � r
z � ξm,

− 4
5ξm

[
1 + ln

(
r

zξm

)]
, ξm < r

z � δ
z .

(17)

It is worth mentioning that Eq. (16) or Eq. (17) are independent of κ and leave no undetermined
constant; therefore, they are perfect expressions to justify the validity of the third-order structure-
function theory. As discussed before, Eqs. (16) and (17) are more suitable to analyze ASL data,
where the measured quantities such as P/ε are sensitive to z. Compared with Eq. (16), in Eq. (17) uτ

is removed from the expression since its value can be set by the combination of ε and z. Furthermore,
uτ is a quantity that is difficult to determine in ASL flow, because the measured Reynolds stress
〈uw〉 always varies with z [25]. Let alone in sand-laden flows uτ is troublesome to define since the
sand and dust particles are not uniform in height z, so the absence of uτ in Eq. (17) is practically
helpful. Based on the above considerations we choose Eq. (7) as the normalization method for
〈�u3〉. Comparisons with other normalization methods in Eqs. (5), (6), and (8) are discussed in the
Appendix.

Under the assumption of the combined form of Kolmogorov and logarithmic scalings and without
an intermediate regime, we can propose a global expression for the third-order structure function
with a matching point ξm or ξ ′

m [cf. Eqs. (15), (16), and (17)]. The change of ξm reflects the
modification of the range of inertial and logarithmic regimes, which is influenced by the ratio of
energy production and dissipation rate P/ε. Also for the case of a z-dependent P/ε, expression
Eq. (17) is capable of normalizing the structure functions with different heights with the same ξm,
which results in

〈�u3〉
εzξm

=
{− 4

5
r

zξm
, rν

zξm
� r

zξm
� 1,

− 4
5

[
1 + ln

(
r

zξm

)]
, 1 < r

zξm
� δ

zξm
.

(18)

This expression contains no other undetermined parameters and is suitable to contradistinguish
different flows. Throughout the remainder of the article, we justify the theory of third-order structure
function and use Eqs. (17) and (18) to analyze ASL data with and without sand.
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III. DETAILS OF ASL DATA

A. Experimental facility

The ASL data used in this work come from the QLOA site, which is located on the flat dry lake
bed of Qingtu Lake between the Badain Jaran Desert and the Tenger Desert in western China (E:
103◦40′03′′, N: 39◦12′27′′). The observation array consists of 21 towers, with the main tower 32 m
high and the other 20 lower towers 5 m high, which can synchronously measure three components
of wind velocities and dust concentrations. The panorama and schematic diagram of QLOA can be
found in Wang and Zheng [25] and Wang et al. [36]. Eleven three-component sonic anemometers
(Campbell scientific, CSAT-3B) with a sampling frequency of 50 Hz were installed on the main
tower at heights from 0.9 to 30 m to measure wind velocity and temperature. And 20 anemometers
of the same type were installed on lower towers at 5 m. The anemometer’s wind speed measurement
range is 0 to 45 m s−1, with a minimum resolution of 0.01 m s−1 and less than 1% relative error
(root mean squared). The wind direction records range from 0 to 359◦, with a minimum resolution
of 1◦ and less than 1◦ absolute error. The temperature measurement range is from −40 to 60 ◦C,
with a minimum resolution of 1 ◦C and less than 1 ◦C absolute error. At the same height as the sonic
anemometers on the main tower, 11 aerosol monitors (TSI, DUSTTRAK II-8530-EP) were installed
to measure PM10 (particulate matter with size below 10 μm) concentrations. In field measurements
the measuring range of aerosol monitors was set as 0–40 mg m−3. Two sand particle counters
measuring the sand saltation fluxes near the surface were installed at 0.2 m and 0.3 m on the main
tower, but we analyze higher altitudes and only the influence of dust concentration is considered.
The sonic anemometers and aerosol monitors were all connected to data acquisition instruments that
were time synchronized with the global positioning system.

B. Data pretreatment

The long-time variability of atmospheric turbulence makes it necessary to select and preprocess
the raw data. The same data selection and pretreatment methods as previous studies on ASL
measurements [24,25] are implemented to obtain statistically stationary and near-neutral data.
The raw velocity data are divided into hourly time series, and then the pretreatments including
stratification stability judgment, wind direction adjustment, detrending manipulation, and steady
wind selection are carried out.

In field measurements, the temperature of ASL varies throughout the day, due to sunrise and
sunset and other weather events, and the temperature variation affects the budget of turbulent kinetic
energy in atmospheric turbulence [51]. To characterize the ratio of the buoyancy and shear effects,
we consider the Monin-Obukhov stratification parameter [52]

z

L
= −κzg〈wθ〉

〈θ〉u3
τ

, (19)

where z is the distance to the bottom boundary, L is the Obukhov length [53], g is the acceleration of
gravity, and 〈wθ〉 is the mean vertical heat flux calculated by averaging the covariance of the vertical
wind velocity w and the temperature θ . When |z/L| � 1, the impact of density stratification can be
neglected and the shear-dominated ASL flow is near neutral. In our analysis, the Monin-Obukhov
stability parameter z/L is obtained at z = 1.71 m and it satisfies |z/L| < 0.06, which is consistent
with near neutrality.

Although the streamwise direction of the observation array is in accord with the prevailing wind
direction, the wind direction always changes during field measurements, so the raw data need to be
adjusted according to the angle α between the actual wind direction and the streamwise direction of
the observation array, i.e.,

u = um cos α + vm sin α, v = vm cos α − um sin α, (20)
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TABLE I. Main information of the selected clear-air ASL measurement data.

No. Time and date State uτ (m s−1) Reτ (×106) ν (×10−5 m2s−1) z/L (×10−3) γ (%)

1 04:00–05:00, May 10, 2015 Clear air 0.46 4.94 1.41 3.40 6.12
2 05:00–06:00, May 10, 2015 Clear air 0.51 5.49 1.40 2.36 7.50
3 07:00–08:00, May 10, 2015 Clear air 0.51 5.46 1.41 8.75 11.06
4 15:00–16:00, May 14, 2015 Clear air 0.46 4.45 1.55 -44.33 17.48
5 17:00–18:00, May 14, 2015 Clear air 0.46 4.44 1.55 -28.84 25.28
6 16:00–17:00, May 27, 2015 Clear air 0.39 3.82 1.55 -14.33 7.87
7 19:00–20:00, May 27, 2015 Clear air 0.52 5.20 1.50 -1.29 5.31
8 02:00–03:00, May 29, 2015 Clear air 0.37 3.78 1.49 9.96 2.47
9 04:00–05:00, May 29, 2015 Clear air 0.39 3.98 1.48 6.70 16.05
10 08:00–09:00, May 29, 2015 Clear air 0.30 3.08 1.48 -18.50 26.41

where um and vm are the streamwise and spanwise velocities measured by the anemometers and u
and v are the adjusted actual streamwise and spanwise velocities.

In addition, long-term synoptic waves are filtered out through a low-pass filter with a cutoff
wavelength of 20δ to extract turbulence fluctuations. From the turbulent velocity data obtained
through the above processing, the statistically stationary data should be selected for subsequent
analysis. The nonstationary index γ is calculated as

γ = |(σm − σI )/σI| × 100%, (21)

where σm = ∑12
i=1 σi/12, σ1, σ2, . . . , σ12 are the streamwise velocity variances of one-twelfth part

of the entire time interval and σI is the overall variance of the time interval. High-quality data with
γ < 30% are selected, and the above judgment method of near-neutral and steady wind conditions
is the same as the previous analysis of QLOA data, as detailed in Wang and Zheng [25] and Wang
et al. [36].

In this work, we select 20 time intervals of clear-air and sand-containing data described with
key features in Tables I and II, respectively. Due to the deviation of the odd-order moments of
velocity data, in order to obtain a more convergent third-order structure function, the data used in
the calculation is half an hour of the time intervals. These data sets are statistically steady and near
neutral with Reynolds numbers Reτ = O(106). To study the law of wall, we need the value of uτ ,
which, however, is not directly measured in ASL experiments. An alternative is to use the relation
uτ ≈ (−〈uw〉)1/2 [5,24,54,55], but in ASL measurements 〈uw〉 are usually height dependent even
in the range with logarithmic mean-velocity profile [25]. So, when estimating uτ , some researchers

TABLE II. Main information of the selected sand-laden ASL measurement data.

No. Time and date State uτ (m s−1) Reτ (×106) ν (×10−5 m2s−1) z/L (×10−3) γ (%)

1 19:00–20:00, Apr 17, 2015 Sand laden 0.61 6.22 1.47 1.41 7.73
2 09:00–10:00, Mar 18, 2016 Sand laden 0.39 4.12 1.41 -11.84 20.78
3 16:00–17:00, Mar 18, 2016 Sand laden 0.46 4.55 1.51 -22.03 10.69
4 08:00–09:00, Apr 11, 2016 Sand laden 0.45 4.68 1.46 2.94 10.39
5 09:00–10:00, Apr 11, 2016 Sand laden 0.50 5.13 1.47 -8.25 7.95
6 10:00–11:00, Apr 11, 2016 Sand laden 0.56 5.67 1.47 -10.09 20.30
7 08:00–09:00, May 14, 2016 Sand laden 0.55 5.76 1.45 -12.78 7.12
8 14:00–15:00, Mar 27, 2017 Sand laden 0.50 5.13 1.46 -29.66 23.30
9 08:00–09:00, Apr 17, 2017 Sand laden 0.44 4.54 1.46 -6.99 6.39
10 19:00–20:00, Apr 17, 2017 Sand laden 0.31 3.12 1.47 24.82 18.04
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FIG. 1. Some basic flow information of the selected intervals at Reτ = O(106). (a) The streamwise mean
velocity profile. The solid symbol is the ASL measurement from QLOA and the dashed line corresponds to
the slope of κ = 0.41. (b) The second moments for fluctuating velocity. The open down-pointed triangular is
the ASL result of Hutchins et al. [24] at Reτ = O(106). (c) The shear Reynolds stress. The open up-pointed
triangular is the wind tunnel result of de Graaff and Eaton [56] at Reτ = 1350 and the dashed line is the
similarity formulation from Chauhan [55]. (d) The concentration of PM10 in the sand-laden ASL flow.

use the height averaged −〈uw〉 [5,54], while others use the peak value of −〈uw〉 [24]. de Graaff and
Eaton [56] suggested that estimating uτ from the peak −〈uw〉 is inaccurate and will result in a 10%
error in uτ . Considering the possible sand concentration in ASL, estimating uτ from measured data is
more difficult [36]. In Tables I and II the friction velocities are approximated by the maximum value
of (−〈uw〉)1/2 in the range of measured data. Air kinematic viscosity ν is obtained at a standard
atmospheric pressure corresponding to the measured mean temperature. The ASL thickness δ is
estimated as 150 m in this study to evaluate the friction Reynolds number Reτ , which is consistent
with previous studies at the QLOA site under the near-neutral stratification conditions [25,36,57].

IV. ANALYZING ASL DATA

In addition to the stationary and near-neutral judgment, the mean velocity profile, the variance
of fluctuating velocity, and the Reynolds stress are compared with other ASL measurement and
theoretical results of the canonical zero-pressure-gradient turbulent boundary-layer flow, as pre-
sented in Fig. 1. In Fig. 1(a), the dimensionless mean streamwise velocity profile shows logarithmic
dependence on z+ both in clean-air and sand-laden ASL flows, with the von Kármán constant
κ ≈ 0.41. The turbulent intensities of the streamwise velocity are also log-linear with z+ and
roughly have the same slope as Hutchins et al. [24] in Fig. 1(b). In Fig. 1(c) the variation of
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FIG. 2. Log-log plot of the small-scale portions (r/z � 1) of normalized third-order structure function:
(a) No. 9 interval for clean-air flow and (b) No. 7 interval for sand-laden flow.

Reynolds stress 〈uw〉 for clean-air ASL flow shows a trend consistent with the theoretical prediction
of Chauhan [55]. Figure 1(d) presents the mean concentration of PM10 in sand-laden flows. The
concentration of PM10 decreases with increasing height, which is close to an exponential-decay
law [36,58–60].

As shown in 1(c), there exist distinctive behaviors of the vertical momentum flux 〈uw〉 for clear-
air and sand-laden flows. With the presence of sand and dust particles, −〈uw〉 increases with height,
which can be used to distinguish these two different flows. Besides, other significant differences in
sand-laden ASL flow with high Reynolds number have been identified, such as the enhancement
of streamwise turbulent kinetic energy [36] and wall-normal turbulence intensity [61], the decrease
in velocity gradient, the increase in the inclination angles of the large scale structures, and the
amplitude modulation across scales [36,61].

A. Justification of small-scale Kolmogorov scaling

First, we show in Fig. 2 that in the small-scale range (r/z � 1) the third-order structure functions
follow Kolmogorov’s scaling with linear dependence on r/z. Thanks to the high Reynolds number
of ASL, this linear dependence, which is rarely observed in the experimental results or numerical
simulations, is justified. And this scaling is checked here in sand-laden ASL flow. Because of the
clear linearity of 〈�u3〉 in measured data, to normalize 〈�u3〉 we determine the energy dissipation
rate ε according to Eq. (9) in this work, which is consistent with previous results saying that
estimating ε from 〈�u3〉 is more accurate [62,63].

With obtained ε we can calculate the ratio between local production and dissipation P/ε, which
is later used in the study of Eq. (17). Here the local energy production rate is estimated as P =
−〈uw〉dU/dz. As shown in Fig. 3, in some intervals such as No. 7 for sand-laden flows, P/ε is
approximately independent of z+, corresponding to a z-independent transition location ξm between
the inertial and logarithmic regimes. But in the No. 9 interval for clear-air flows, P/ε shows a strong
vertical dependence. Data of these two intervals are used to distinguish different normalizations in
Eqs. (5)–(8), which are shown in the Appendix.

B. Budgets of KHM equation in the logarithmic region

In this section we check the approximations to the KHM equation in the derivation by Xie et al.
[21] in the range of rm < r � δ (rm/z of the order unity). Here, the existence of 〈u1w2 + w1u2〉 ∼
1/r′, 〈|�u|2wc〉 ∼ 1/r′ [cf. Eq. (12)] leads to the logarithmic dependence of 〈�u3〉 on r. The terms
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FIG. 3. Height dependence of the ratio between local energy production and dissipation rate P/ε of
different data sets.

in Eq. (11) are displayed in Fig. 4, from which we can see that, in the selected data, r′∂〈|�u|2wc〉/∂r′
is much smaller than the other two terms which form the dominant balance.

Besides, the r−1 scaling of 〈u1w2 + u2w1〉 holds in our ASL data with and without sand, as
shown in Fig. 5. 〈u1w2 + u2w1〉 of different heights are normalized by 〈uw〉 of the corresponding
heights. The r−1 scaling holds at r/z � 1, which is consistent with the empirical result rm = z. In
summary, Figs. 2, 4, and 5 justify reduction procedures to the KHM equation and the derivation of
logarithmic form of third-order structure function by Xie et al. [21].

C. Third-order structure function

Under Taylor’s frozen hypothesis [26], which is a common practice in the analysis of streamwise
ASL turbulence [24,25,36,64,65], the spatial third-order structure function can be calculated from
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FIG. 4. Energy flux in Eq. (11) (a) at z+ ≈ 7.65 × 105, Reτ ≈ 3.82 × 106 for clean-air flow and (b) at
z+ ≈ 6.36 × 105, Reτ ≈ 4.55 × 106 for sand-laden flow.
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FIG. 5. r−1 scaling of 〈u1w2 + u2w1〉 from (a) No. 2 interval for clean-air flow and (b) No. 7 interval for
sand-laden flow.

the data measured at fixed positions with different time. As mentioned in Sec. II, for the cases
with local production-dissipation balance, the inertial and the logarithmic ranges of the structure
functions match at r/z = O(1). In ASL measurement, P/ε may vary. We justify the relation Eq. (17)
for both clear-air and sand-laden flow. Both panels in Fig. 6 correspond to P/ε ≈ 1.4 and the
matching points ξm are found to be of O(1).

In addition, sand-laden data at different heights are also in good agreement with the theoretical
curve shown in Fig. 6(b). It indicates that the presence of sand has little effect on the small-scale
Kolmogorov’s scaling and the logarithmic dependence of the third-order structure function; also,
there seems to be no new intermediate regimes between those two regimes as the expressions of the
two regimes match at ξm = O(1). Though sand has been proved to affect the very large scale motions
in ASL and the distribution of kinetic energy across scales [36,61], the behavior of the third-order
structure function is still robust and is appropriately described by the expression Eq. (17).

As discussed in Sec. II, there are three other characteristic scale choices besides Eq. (7) for the
third-order structure function. The results of applying other normalization methods are shown in
the Appendix. Compared with Fig. 6, Figs. 9–11 illustrate that when P/ε is z invariant all four
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FIG. 6. Normalized third-order structure functions: (a) No. 9 interval for clean-air flow and (b) No. 7
interval for sand-laden flow.
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FIG. 7. Comparison between third-order structure functions of all intervals in Tables I and II and the
theoretical expression Eq. (18) (blue curve). The same symbol corresponds to the same interval number for
clean-air and sand-laden flows and the z+ range from 1.85 × 104 to 1.04 × 106 for all data sets.

normalizations in Eqs. (5)–(8) work well, while when P/ε varies with z Eqs. (5) and (8) are no
longer suitable, which is exactly as we expected based on the discussion in Sec. II B.

D. Dependence of matching point ξm on P/ε

If a universal behavior of 〈�u3〉 exists, the normalized results of different data sets should
converge to Eq. (18). After taking height average, the results of twenty intervals are demonstrated
in Fig. 7. P/ε may vary with z in some data sets, but the curves of 〈�u3〉 at different heights can be
characterized by one matching point ξm. Here the results are the average of different heights over the
same interval. We find that the structure functions obtained from 20 data sets collapse well, which
implies the robustness of our expression Eq. (17) whether ASL flow contains sands or not.

Our theory contains the matching point ξm as a important parameter. The variation of ξm with
P/ε is depicted in Fig. 8. Qualitatively, the matching point ξm decreases as P/ε increases and there
is no significant difference between clean-air and sand-laden flows. Though P and ε are of the
same magnitude, there exists a production-dissipation imbalance. The turbulent transport of kinetic
energy makes up for this imbalance, i.e.,

P + T = ε, (22)

where T is the kinetic energy transferred from other heights to the present height. In the picture
of Richardson-Kolmogorov cascade, the energy-containing eddies acquire turbulent kinetic energy
from energy production and transfer energy to eddies with smaller sizes. There exists an inertial
region in which the energy transfers to the dissipative scale at the rate of ε, and the sizes of
the vortices in it are much larger than that of the Kolmogorov microscale rν and much smaller
than that of the energy-containing eddies. The boundary-layer turbulent flow at the large scale
is anisotropic but near-isotropic at small scales. The energy production term in the KHM equa-
tion 〈u1w2 + u2w1〉dU/dz is calculated from the anisotropic Reynolds stress and the anisotropic
gradient of mean streamwise velocity; then we can estimate the strength of the anisotropy by the
value of 〈u1w2 + u2w1〉dU/dz with zero displacement, which is the shear production P, while
Kolmogorov’s derivation of the third-order structure function’s linear dependence on the dissipation
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FIG. 8. Matching point ξm averaged across heights varies with the ratio of energy production and dissi-
pation rate P/ε and the same symbol corresponds to the same interval number for clean-air and sand-laden
flows.

rate ε bases on the local-isotropic assumption. Thus P/ε can be regarded as a parameter measuring
the relative strength between anisotropic and isotropic effects and, therefore, we conjecture that,
in near-neutral ASL flows, the decrease of P/ε results in a wider range for the near-Kolmogorov
region and the enlargement of transition scale ξm. The above argument is similar to that in the
stratified turbulence, where the Kolmogorov turbulence is strengthened by a larger conversion from
potential to kinetic energy [66].

V. SUMMARY AND DISCUSSION

By further developing the third-order structure-function theory in boundary-layer turbulence,
we analyze the measured data in ASL with and without sand. Our main results are summarized as
follows. (i) Using field-measurement data, we check the small-scale Kolmogorov scaling. This result
compensates those of de Silva et al. [20] for even-order structure functions. (ii) Thanks to the high
Reynolds number of ASL data, the dominant balance of the reduced KHM equation derived by Xie
et al. [21] in ASL turbulence is justified. Thus the logarithmic behavior of the third-order structure
function is a result of the balance between energy advection in the streamwise direction and the shear
production. (iii) The behavior of a combination of linear and logarithmic dependence on r/z of the
third-order structure function is found to be robust by the high-quality clean-air and sand-laden
ASL data. Due to the difficulty of determining uτ in the measured data, expression Eq. (17) where
uτ is absent is the best to show this universal behavior (cf. Fig. 7) and shows less error compared
to Eq. (16) when applied on ASL flows, as discussed in the Appendix. (iv) Associated with this
universal behavior, we define a parameter ξm, which is the transition and matching scale between
the power and logarithmic regimes of the third-order structure function. In the ASL flows where the
ratio of energy production and dissipation rate P/ε does not change dramatically with z, ξm decreases
as P/ε increases, according to the available data. In the perspective of energy transfer across scales,
in both the inertial and logarithmic ranges energy transfers to small scales and their major difference
is the existence of anisotropic attached eddies in the latter range. Since the shear production is
an anisotropic effect, P/ε is a natural measure for the relative strength between anisotropic and
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isotropic effects. So, as the value of P/ε increases, the linear Kolmogorov range shrinks and the
logarithmic range extends.

The universal behavior of the third-order structure function we obtained shows spatial depen-
dence on r/z. From the perspective of energy flux, we choose the combination of energy dissipation
ε and the distance to the wall z to normalize third-order structure functions. This scaling is
justified by ASL measurements at Reτ = O(106). An alternative dependence, u3

τ /ε, was proposed by
Davidson and Krogstad [10]. But in our data sets, there is no significant difference between results
obtained from these two methods. One advantage of our scaling choice is that it avoids defining
friction velocity uτ in the sand-laden flow where the concentration of PM10 varies with height z.
Besides, Davidson and Krogstad [10] proposed new scaling since P/ε varies with z. de Silva et al.
[20] attributed this variation to the finite range of Reynolds number, but here, for Reτ = O(106), the
variation of P/ε with z still appears in field measurements. Our proposals Eqs. (7) and (17), where
the velocity is rescaled by characteristic velocity determined by energy dissipation rate, are more
suitable for the analysis of ASL measurement data.

Even though we find a universal behavior for ASL with and without sand, this universality may
be limited to the sand density in our current data sets. As shown in the last panel of Fig. 1, the
concentration of PM10 is at most 2.5 mg m−3 and the particles are close to the bottom. It is interest-
ing to further study the situations with more contained sand and different sand containing profiles.
Besides the assumptions of our theory including Kolmogorov’s small-scale isotropic hypothesis, we
invoke the expression of third-order structure function in the inertial subrange. Despite that ASL is
not isotropic we still assume the validity of the four-fifths law for the longitudinal structure function,
which requires further study.

We close this paper by mentioning some aspects of data measurement that may lead to errors.
First, in the ASL measurement, it is hard to find steady boundary-layer turbulence as the environ-
ment is always changing. So our data is only restricted to time intervals of half an hour, where the
steadiness can be well accepted. Second, the QLOA observation obtains data at different times with
the same locations; therefore, we have to use Taylor’s frozen hypothesis to obtain spatial structure
functions. But the Taylor’s frozen hypothesis may not be accurate when dealing with correlation
with a long time difference [67] and may impact amplitude modulation [68]. Combined with the
limited time interval, the structure functions with large displacement are more inaccurate than those
with small displacements, which is hinted at in Figs. 6 and 7. Finally, we prefer neutral boundary
layer turbulence to avoid the impact of density stratification, which cannot be strictly guaranteed and
further limits our available data sets. In our results, a larger positive transport leads to a wider range
of Kolmogorov turbulence, which is similar to the case of stably stratified boundary layer turbulence,
where a positive conversion from potential to kinetic energy tends to sustain Kolmogorov turbulence
under stronger stable stratification [69]. To describe the effect of temperature, further development
of the third-order structure-function theory including buoyancy’s impact is required for future study.
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APPENDIX: COMPARISON BETWEEN DIFFERENT CHOICES OF CHARACTERISTIC
SCALES IN EQS. (5)–(8)

As discussed in Sec. II B, Eqs. (6) and (7) are more general expressions compared to Eqs. (5) and
(8), since the latter two expressions require a z-invariant P/ε. We select two representative intervals:
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FIG. 9. Third-order structure functions normalized by the scaling of Davidson and Krogstad [10] [cf.
Eq. (6)]: (a) No. 9 interval for clean-air flow and (b) No. 7 interval for sand-laden flow.

No. 9 for clean-air flows and No. 7 for sand-laden flows (note by No. 9 and No. 7 for simplicity).
The variations of P/ε with z in No. 9 and No. 7 are dotted in Fig. 2. In No. 9 P/ε is more discrete
with z and in No. 7 P/ε is approximately z independent.

For the case that P/ε varies with z, Davidson and Krogstad [10] proposed the spatial scale z
should be replaced by u3

τ /ε. Compared with Fig. 6, the normalization results of Davidson and
Krogstad [10] shown in Fig. 9 are similar to our proposal, except that the matching point ξ ′

m is
transformed. The maximum value of (−〈uw〉)1/2 is used in this section to approximate uτ (cf.
Tables I and II). There is no significant diversity in the collapsing of data using Eqs. (16) and
(17), which is expected in our theory. The two normalization methods Eqs. (6) and (7) have no
essential difference, since for the small-scale isotropic regime the two expressions are the same
and a matching point exists to connect with the logarithmic regime. The other two normalization
methods Eqs. (5) and (8) are in sharp contrast in the left and right panels of Figs. 10 and 11. Only
Eqs. (6) and (7) can normalize 〈�u3〉 of different heights in No. 9, since P/ε shows dependence on
z. All four normalizations in Eqs. (5)–(8) work well for No. 7, as shown in the right panel of Figs. 6,
9–11. Further, between Eqs. (6) and (7) we choose Eq. (7). Though the two expressions are the same
in the small-scale inertial regime, Eq. (6) causes errors at large-scale logarithmic regime due to the
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FIG. 10. Analysis using Eq. (5) of same intervals in Fig. 9.
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FIG. 11. Analysis using Eq. (8) of same intervals in Fig. 9.

measured data. In Eqs. (17) and (16), the slope of the logarithmic regime is determined by ξm or ξ ′
m,

which is height dependent. So we use the mean values of ξm or ξ ′
m as characteristics, and apply the

mean absolute percentage error (MAPE) to judge the accuracy in each interval. In both the clear-air
and sand-laden ASL flows, the MAPE of ξ ′

m is larger than those of ξm, implying that Eq. (17) is
better applicable to real data and we think this difference mainly comes from the estimation of uτ

in Eq. (16). As such, the logarithmic expression of Eq. (6) can be written as

〈�u+3〉 = D̃3 ln

(
εr

u3
τ

)
+ B̃3

= D̃3 ln
( r

z

)
+ D̃3 ln

(
εz

u3
τ

)
+ B̃3

= D̃3 ln
( r

z

)
+ D̃3 ln

( ε

κP

)
+ D̃3 ln

(−〈uw〉
u2

τ

)
+ B̃3, (A1)

where D̃3 and B̃3 are constants. The local energy production rate P is estimated as −〈uw〉dU/dz,
but in field measurements 〈uw〉 is sensitive to z [25]. So when applying the scaling of Davidson and
Krogstad [10] on data analysis, error arises due to the deviation between −〈uw〉 and u2

τ . In some
cases, such as sand-laden ASL flow, how to define uτ is already a dilemma, not to mention the error
caused by the calculation of uτ . Given all this, we adopt Eqs. (7) and (17) in our study.
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