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Acceleration scaling and stochastic dynamics of a fluid particle in turbulence
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It is well known that the fluid-particle acceleration is intimately related to the dissipation
rate of turbulence, in line with the Kolmogorov assumptions. However, various experi-
mental and numerical works have reported as well its dependence on the kinetic energy,
which is generally attributed to intermittency and nonindependence of the small-scale
dynamics from large-scale ones. The analyses given in this paper focus on statistics
of the fluid-particle acceleration conditioned on both the local dissipation rate and the
kinetic energy. It is shown that this quantity presents an exponential dependence on the
kinetic energy with a growth rate independent of the Reynolds number, in addition to the
expected power-law behavior with the dissipation rate. The exponential growth, which
clearly departs from the previous propositions, reflects additional kinematic effects of the
flow structures on the acceleration. Regarding intermittency, to account for the persistence
of the effect of the large scales on the dissipation rate, it is further proposed scaling laws for
the Reynolds number dependence of the conditional and unconditional acceleration vari-
ance using Barenblatt’s incomplete similarity framework. It is then shown that both these
intermittency and kinematic effects can be combined in a multiplicative cascade process for
the acceleration depending on the kinetic energy and the dissipation rate. On the basis of
these observations, we introduce a vectorial stochastic model for the dynamics of a tracer in
turbulent flows. This model incorporates a fractional log-normal process for the dissipation
rate recently proposed, as well as an additional hypothesis regarding nondiagonal terms in
the diffusion tensor which naturally leads to the decomposition between tangential and
centripetal acceleration. This model is shown to be in good agreement with direct nu-
merical simulations and presents the essential characteristics of the Lagrangian turbulence
highlighted in recent years, namely (i) non-Gaussian acceleration, (ii) scale separation
between the norm of the acceleration and its components, (iii) anomalous scaling law
for the Lagrangian velocity spectra, and (iv) negative skewness of the increments of the
mechanical power, reflecting the temporal irreversibility of the dynamics.

DOI: 10.1103/PhysRevFluids.7.084608

I. INTRODUCTION

With the advances of experimental techniques and the increase in computing power of the
last decades, remarkable features of the dynamics of fluid particles in turbulent flows have been
discovered. Among other things, the measurement of the probability distribution of the acceleration
of these tracers has been shown to be very clearly non-Gaussian with a high frequency of observing
very intense events [1–4]. Even for moderate Reynolds numbers, it is relatively common to observe
accelerations more than 100 times greater than its standard deviation. In addition, the components
of acceleration and its norm present very different correlation times, the ratio of these characteristic
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times increasing with the Reynolds number [5–7], showing that the dynamics of the tracers is
influenced by the full spectrum of turbulence scales. On the one hand, the short-time correlation
of the acceleration component is connected to the centripetal forces in intense vorticity filaments
[6,8]. On the other hand, the acceleration norm has been shown to be directly correlated with
the local dissipation rate of turbulence [9–12], in accordance with Kolmogorov’s hypotheses.
Nevertheless, various experimental and numerical works have also reported its dependence on local
kinetic energy [2,11,13–17], which is generally attributed to nonindependence of the small-scale
dynamics from large-scale ones. In this view, the Lagrangian acceleration is essentially given by the
local gradients of the velocity, but the latter present correlation with the kinetic energy caused by
direct energy transfers between large and small scales in the energy cascade [18]. The absence of
proper scale separation explains that the Lagrangian correlation functions present power laws with
anomalous exponents which can be described by the multifractal formalism [19–23] as the signature
of intermittency and persistence of viscous effects. To end this list, we mention the asymmetry of the
fluctuations of the mechanical power received or given up by a fluid particle reflecting the temporal
irreversibility of its dynamics [24–28].

Such complex phenomenology must be attributed to the collective and dissipative effects. Indeed,
according to the Navier-Stokes equation, the acceleration of a fluid particle is essentially given by
the pressure field which is determined by the motion of all the other particles [29,30]. Moreover,
although the Laplacian term in the Navier-Stokes equation is of order Re−1 smaller than the
pressure gradient term, the viscosity cannot be neglected. Indeed, as a small force integrated
over a long period could be significant, the viscosity insidiously affects the fluid tracer velocity.
Which in turn influences the particle acceleration through modification of the pressure gradient
and local interactions are intrinsically inseparable from the nonlocal ones. This is manifested by
the persistence of the Reynolds number effect on the acceleration statistics, even for very large
Reynolds numbers. Such a scenario is supported by Refs. [31–33] who showed that adding noise to
an inviscid Lagrangian flow leads to irreversibility of the dynamics.

Following the Kolmogorov first hypothesis [34,35] stating that locally homogenous turbulent
flows are universal, it should be possible, in principle, to propose a stochastic model that reproduces
the dynamics of a single fluid particle by effectively accounting for the interactions with all the other
fluid particles. Let us note that the Kolmogorov first hypothesis received some support from recent
studies [36–38]. To propose such a stochastic model, our main assumption in this paper is to write
the increments of the acceleration vector of a fluid particle as dai = Midt + Di jdWj . Both M and
D depend on the particle acceleration a and velocity u. The latter is simply given by the kinematic
relation of a fluid particle ui = ∫ aidt . It is indeed a necessary condition that a depends on u to
present a restoring effect that can counteract the diffusion in velocity space and have statistically
stationary dynamics of the fluid particle. We will propose closed expressions for M and D from
basic consideration using as a starting point the acceleration statistics conditioned on both the local
values of the dissipation rate and the kinetic energy observed from direct numerical simulations
(DNS) and presented as well in this paper. It will be shown that introducing a “maximal winding
hypothesis” associated to a nondiagonal diffusion tensor, this simple stochastic model reproduces all
the statistical feature of the Lagrangian dynamics presented above without any adjustable parameter.

Let us first review some previous works on the stochastic modeling for the Lagrangian dynamics
(see also Ref. [13]). Among the pioneering works, Sawford [39] proposed a scalar Gaussian model
for the acceleration presenting a feedback term proportional to the velocity. Pope and Chen [40] de-
vised a Langevin like equation for the velocity coupled with a log-normal model for the dissipation
through the introduction of conditional statistics. Similarly, Refs. [41–43] proposed an extension
of the Sawford model leading to a non-Gaussian scalar model for the acceleration. This work was
further refined by Ref. [44] who also advanced a non-Gaussian scalar model for the dynamics by
prescribing an ad hoc shape of the conditional acceleration statistics with the dissipation along with
a linear dependence on the velocity. The model introduced in Ref. [45] describes increments of
the derivative of acceleration in a so-called third-order model to better account for the Reynolds
number dependence on the acceleration statistics. Recently, Ref. [46] proposed generalization to an
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infinite number of layers leading to smooth 1D trajectory along with a multifractal correction to
account for intermittency, as introduced in Refs. [47–49]. An acceleration vector model has been
proposed in Ref. [50] by imposing an empirical correlation between velocity and acceleration, with
additive noise leading to Gaussian statistics for the acceleration. Likewise, Ref. [51] presented a 3D
Gaussian model, with linear dependence on the velocity as well as an extension to nonhomogenous
flows. To account for intermittency effect, in Refs. [52–57] the 3D acceleration vector is given by
the product of two independent stochastic processes, one for the acceleration norm the other for its
orientation. In these models the velocity feedback on the dynamics is realized by a coupling with
a large eddy simulation framework. To summarize, to our knowledge, a 3D vectorial model for the
tracer dynamics that is autonomous and reproducing the essential features of Lagrangian turbulence
(irreversibility, non-Gausianty, multifractality) has not yet been proposed.

The essential building block of previously cited models is the conditional acceleration statistics.
Previous studies have focused on conditional statistics with either the velocity or the dissipation rate
separately. From the extensive analysis of Ref. [12], one can conclude that the acceleration variance
conditioned on the dissipation rate ε presents a power-law behavior for large values of ε with a
Reynolds number dependent exponent reflecting that the small-scale dynamics are not independent
of large scales.

Regarding the links between the fluid particle acceleration and their velocity, Biferale et al.
[14] argue that according to the Heisenberg-Yaglom scaling for the acceleration 〈a2〉 ∼ a2

η =
〈ε〉3/2ν−1/2 = 〈K〉9/4L−3/2ν−1/2, with ν the kinematic viscosity, K = 1/2uiui the kinetic energy
and L the characteristic size of large structures, one should expect that the variance of the
velocity-conditioned acceleration behaves like: 〈a2|K〉 ∝ K9/4. Then on the basis of the multifractal
formalism, they proposed a very close scaling law, 〈a2|K〉 ∼ K2.3. The proposed relation was
observed to be in agreement with DNS for large velocity, typically |u| > 3σu with σu = √

2/3〈K〉.
These events remain very rare since the PDF of the fluid velocity is Gaussian so the range of validity
of the power law is, at best, very limited. However, Sawford et al. [17] propose that 〈a2

x |ux〉 ∼ u6
x

based on a mechanism involving vorticity tubes. This scaling law which seems compatible with
the first measurements of the acceleration conditioned on velocity in Ref. [2], is confirmed neither
by the DNS of Ref. [14] nor in a second experimental paper by Crawford et al. [16] which gave
more credit to the K9/4 law. As mentioned above, it has been proposed that the dependence of the
acceleration on the velocity arises through the dependence of the dissipation rate on the kinetic
energy due to intermittency effect [14]. Additionally, Ref. [18] proposed that the dependence on
velocity is a consequence of direct and bidirectional coupling of large and small scales caused by
kinematic relations related to nonlocal interactions.

In this paper we study the acceleration statistics conditional on both the kinetic energy and the
dissipation rate. To our knowledge such doubly conditional statistics of the acceleration have never
been presented. It will be shown that the variance can be expressed as 〈a2|ε, K〉 ∼ exp(αK/〈K〉 +
γ ln ε/〈ε〉). This result is clearly in contrast with the previously proposed power-law dependence
on velocity. It shows that the influence of the large scales through the intermittent distribution of
the dissipation rate, which manifests through the Reynolds number dependence of the coefficient
γ , is supplemented by an explicit dependence on the local kinetic energy. This direct dependence
on the large-scale characteristics is of a kinematic nature as it appears independent of the Reynolds
number. The behavior of the doubly conditional acceleration can be interpreted as a consequence
of scaling symmetry for the fluid-particle acceleration incorporating both the intermittency and
the kinematic effects of the flow structure. We also propose to apply the incomplete similarity
framework introduced by Barenblatt to explain the dependence of the statistics of the acceleration
conditional to the dissipation rate on the Reynolds number and to account for the intermittency
effect. That enables us to provide as well new scaling relations for the unconditional variance in
good agreement with the DNS. Eventually the doubly conditional statistic of the acceleration which
gives a relation between the force, the energy, and the power will serve as a corner stone to build the
stochastic model for the dynamics of a fluid particle mentioned above. Although such a model could
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be of interest for practical applications, its construction is relevant to study the specificities of the
Lagrangian description of turbulence by linking the cascade picture to the fluid particles dynamics
on the basis of the behavior of the conditional statistics obtained by the DNS of the Navier-Stokes
equations.

In Sec. II we present the statistic of the acceleration conditioned on the local values of the
dissipation rate and kinetic energy obtained from DNS. Then we show that the Reynolds number
dependence on the acceleration conditioned on the dissipation rate can be described using the
Barenblatt incomplete similarity. We deduce a new relation for the unconditional acceleration
variances. To end this section, we show that these new results can be interpreted as a multiplicative
cascade for the acceleration with scale dependent kinematic effects. Then in Sec. III we give the
derivation of the stochastic model for the single fluid particle dynamics taking as an initial step the
doubly conditional acceleration variance, and present the outcome of the model for the Reynolds
number up to Reλ = 9000 along with comparison with DNS results when available.

II. SCALING LAWS OF THE ACCELERATION

A. Methodology

We present in this section results concerning the statistics of the acceleration of a fluid particle.
These results have been obtained from five direct numerical simulations (DNS) of isotropic turbu-
lence in a periodic box with Taylor-scale Reynolds numbers of Reλ = 50, 90, 150, 230, and 380.
We used pseudospectral code as detailed in Refs. [57–59]. The DNS was carried with resolutions
of 1283, 2563, 5123, 10243, and 20483 with the large-scale forcing proposed by Ref. [60]. For each
simulation we have η/	x = 1 with η = 〈ε〉−1/4ν3/4 the Kolmogorov length scale and 	x the grid
size. The statistics are computed from 40 3D fields sampled at roughly each large-eddy-turnover
time.

We will show statistics of the acceleration conditioned by the dissipation rate and the kinetic
energy. Note that in this paper we consider the pseudodissipation ε̃ = ν(∂ jui )2, which is the second
invariant of the velocity gradient tensor multiply by the viscosity rather than the dissipation ε =
1
2ν(∂ jui + ∂iu j )2. We prefer to show here the statistics of the pseudodissipation to be consistent with
the next section of the paper, in which we will use the log-normal distribution hypothesis for the
dissipation. Indeed, this property is very well verified for the pseudodissipation whereas it is only
approximate for the dissipation [12]. Nevertheless, the statistics presented below have also been
computed considering the dissipation, ε, and no significant differences were observed. To lighten
the paper, in the sequel, we will drop the tilde in the notation of the pseudodissipation, as well, in
the text, we will write dissipation instead of pseudodissipation.

B. Conditional statistics given the dissipation and the kinetic energy

To illustrate the relationships between acceleration, energy dissipation and kinetic energy, we
show in Fig. 1 visualizations of these quantities at the same instant obtained from our DNS.
We notice that ln a2/〈a2〉 and ln ε/〈ε〉 show a fairly marked correlation although the acceleration
appears more diffuse than dissipation. We also notice that to some extent the kinetic energy and
the dissipation rate appears correlated. In addition, it seems that some areas of the flow where the
kinetic energy is high also correspond to regions of high acceleration magnitude.

Figure 2 presents the variance of the acceleration of a fluid particle conditioned to the local values
of the kinetic energy and the dissipation rate: 〈a2|ε, K〉. In Fig. 2 (top), the levels of the logarithm
of the conditional variance are shown as a function of K and of ε. We see that the conditional
variance of the acceleration depends on these two quantities and that the dependence on K seems
somewhat similar to that of ln ε. In a more quantitative way, we show in Fig. 2 (left) the variance
of the acceleration as a function of ε for different values of K . We can see that the shape of the
curves remains globally unchanged when K varies and also presents the same shape as the variance
conditioned by ε only as also presented in this figure. Essentially, it is observed that the conditional
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FIG. 1. Visualization of the instantaneous fields of the square of the acceleration, of the dissipation and of
the kinetic energy in a cut y-z of the flow by DNS at Reλ = 380. Left: ln(a2/〈a2〉); middle: ln(ε/〈ε〉); right:
K/〈K〉.

FIG. 2. Variance of acceleration conditioned on the local dissipation rate and kinetic energy obtained from
DNS at Reλ = 380. (Top) Map of ln〈a2|ε, K〉/a2

η versus ln ε/〈ε〉 and K/〈K〉. (Left) Plot, in logarithmic scales,
of 〈a2|ε, K〉/a2

η against ε/〈ε〉 for K/〈K〉 = 0.025, 0.1, 0.5, 1, 2, 3, 5, 6.5 ± 30% from orange to black. Compar-
ison with 〈a2|ε〉/a2

η in gray dashed line and with the power law (ε/〈ε〉)3/2 in gray dotted line. (Right) Plot, in
semilogarithmic scales, of 〈a2|ε, K〉/a2

η against K/〈K〉 for ε/〈ε〉 = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ±
30% from orange to black. Comparison with 〈a2|K〉/a2

η in gray dashed line and with exp(αK/〈K〉) with
α = 1/3 in gray dotted line.
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variance presents power-law behavior for ε � 〈ε〉 with an exponent close to 3/2 and a prefactor
depending on K . As discussed in more details below, we observe a slight deviation of the scaling
law compared to the acceleration conditioned only by the dissipation.

Figure 2 (right) shows the variance of the acceleration as a function of K for different values of
ε. As expected, we find that the variance of the acceleration increases with K . We clearly notice an
exponential growth of the variance over the whole range of K with a growth rate α which appears
independent of ε:

〈a2|ε, K〉 = cεa2
η exp(αK/〈K〉), (1)

with a2
η = 〈ε〉3/2ν−1/2 = 〈ε〉/τη the so-called Kolmogorov acceleration and the prefactor cε depend-

ing on ε. From our DNS it appears that α ≈ 1/3 for all the Reynolds numbers considered here. We
also find the same value of α from the database of Refs. [61,62] obtained for Reλ = 400 suggesting
that the value of α is independent of the Reynolds number.

This exponential behavior contrasts with the references mentioned in the introduction in which
power-law behavior for the variance conditioned on K solely had been proposed. Nevertheless,
we can notice that exponential growth does not seem to disagree with the data presented in these
references. Interestingly, this relationship only depends on a characteristic velocity (not a time and
a length scale separately). The absence of characteristic time is attributed to the scale separation
between large structures and small ones (the large structures of the flows appear as quasi stationary
and infinite to the smallest ones such that only their relative velocity matters). The independence
of the coefficient α on the Reynolds number tends to confirm that the velocity scale used for the
nondimensionalization of the argument of the exponential is appropriate.

In Appendix A we propose to estimate the factor cε as

cε ≈ A 〈a2|ε〉/a2
η, (2)

where A = (1 − 2
3α)3/2, which is equal to A = 7

√
7/27 ≈ 0.686, for α = 1/3, neglecting a small

logarithmic dependence on ε/〈ε〉.
Consequently, for large Reynolds numbers, the doubly conditioned variance of the fluid-particle

acceleration is expressed as

〈a2|ε, K〉 = A 〈a2|ε〉 exp(αK/〈K〉). (3)

This relation is confirmed in Fig. 3 which presents the conditional variance of the acceleration
normalized by Aa2

η exp(αK/〈K〉) as a function of ε for different values of K as well as normalized
by A〈a2|ε〉 = 〈a2|ε, K = 0〉 as a function of K for different values of ε. It can be seen that a
fairly good overlap of the various curves is obtained, confirming the self-preserving character of
the acceleration conditioned on both the kinetic energy and the dissipation rate. We see in this
relation an explicit effect of the local kinetic energy on the acceleration. Since the argument of the
exponential depends on K/〈K〉 not on a local Reynolds number, it suggests pure kinematic effects
for the acceleration which is likely associated to the divergence free constrain and the nonlocality of
the pressure gradient. There is also indirect effect through the dependence of the dissipation rate on
the large-scale structures. The later is manifested as Reynolds number dependence of the conditional
acceleration on the dissipation rate solely. This intermittency effect is analyzed further in the next
section. We postpone to Sec. II E further comments on the behavior of the doubly conditioned
variance.

C. Similarity of the conditional statistics given the dissipation

We propose now to focus with more details on the scaling law of the acceleration variance
conditioned on the dissipation rate only, 〈a2|ε〉. For that we consider the DNS data from Yeung
et al. [12], along with our DNS data. Figure 4 (left) presents the conditional acceleration variance
for Reynolds numbers in the range Reλ = 40 to 680. We first notice that for weak values of
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FIG. 3. Normalized variance of acceleration conditioned on the local dissipation rate and kinetic energy
obtained from DNS at Reλ = 380. (Left) Plot of 〈a2|ε, K〉/Aa2

η exp(αK/〈K〉) against ε/〈ε〉 for various values
of K . Comparison with 〈a2|ε〉/a2

η in gray dashed line and with the power law (ε/〈ε〉)3/2 in gray dotted line.
(Right) Plot of 〈a2|ε, K〉/〈a2|ε, K = 0〉 against K/〈K〉 for various values of ε/〈ε〉. Comparison with 〈a2|K〉/a2

η

in gray dashed line and with exp(αK/〈K〉) with α = 1/3 in gray dotted line The ranges for the fixed values of
K and ε for both plots are the same as in Fig. 2.

the dissipation rate (ε 	 〈ε〉) the value of the conditional acceleration variance tends towards
an asymptotic value, which depends on the Reynolds number. The saturation of the conditional
acceleration shows that the local acceleration is not only determined by the microstructure of the
flow, and that it presents somehow effects of the large structures of the flow which dominates in low
dissipative regions. We denote by a2

0 the asymptotic value of the conditional variance:

a2
0 = lim

ε→0
〈a2|ε〉. (4)

FIG. 4. (Left) Acceleration variance conditioned on the local dissipation rate normalized by the Kol-
mogorov acceleration 〈a2|ε〉/a2

η. The continuous line are for our DNS for Reλ = 50, 90, 150, 230 and 380
from orange to black; the dashed lines correspond to the DNS of Yeung et al. [12] for Reλ = 40, 139, 238,
385, 680, from orange to black. Comparison with the power law (ε/〈ε〉)3/2. Inset conditional acceleration
normalized by ε3/2ν−1/2. (Right) a2

η/a2
0 as a function of Reλ with a2

0 = limε→0〈a2
i |ε〉 the acceleration variance

in low dissipative regions. Gray dots for the DNS of Yeung et al., black crosses for our DNS. Comparison with
the line 0.0028Reλ + 1.16 in dashed lines.
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Assuming that the acceleration of fluid particles in low dissipative regions is mainly influenced by
large scales, we can estimate a2

0 as a2
0 ∼ 〈K〉/τ 2

L with τL the integral timescale of the flow. This leads
to the following estimate:

a2
0/a2

η ∼ τη/τL ∼ Re−1
λ . (5)

We test this scaling law for a0 in Fig. 4 (right) by presenting a2
η/a2

0 as a function of Reλ from the
different DNS datasets. We observe a linear growth rate of a2

0/a2
η with 1/Reλ.

For large values of ε, we notice in Fig. 4 (left), as already reported in Ref. [12], that the
conditional variance presents a power-law behavior with ε. The exponent of this scaling law is
seen to evolve continuously with the Reynolds number, and seems to tend asymptotically towards
ε3/2. From dimensional analysis we define f as

〈a2|ε〉
ε3/2ν−1/2

= f (ε/〈ε〉, Reλ). (6)

In the inset of Fig. 4 (left), it is seen that f seems to admit an asymptotic constant value for
ε � 〈ε〉 only in the limit of very large Reynolds number. For intermediate Reynolds numbers, f
presents power-law behavior with ε for ε � 〈ε〉 but with a Reynolds number dependent exponent.
This implies an absence of similarity of the flow when the Reynolds number is changed and the
persistence of the Reynolds number effect, even for large Reynolds numbers, which highlights an
absence of proper scale separation suggesting direct coupling between large and small scales. This
is reminiscent of the incomplete similarity framework proposed by Barenblatt [63–65]. Following
Barenblatt, we assume that f presents an incomplete similarity in ε/〈ε〉 and absence of similarity in
Reλ. Accordingly, we write

f (ε/〈ε〉, Reλ) = B(ε/〈ε〉)β, (7)

where the anomalous exponent β, and the prefactor B are both functions of Reλ. Arguing for a
vanishing viscosity principle, it can be assumed that the critical exponent becomes independent of
the Reynolds number in the limit of asymptotically large Reynolds number. Finally assuming that
the dependence of B and β on the Reynolds number is small, Barenblatt further proposed that they
presents inverse logarithmic dependence on Reλ, which is also in agreement with the log-similarity
proposed by Refs. [66,67]. Expending β and B in power of 1/ ln(Reλ) yields, keeping only the
leading-order term in Reλ:

β = β0 + β1/ ln Reλ, (8)

B = B0 + B1/ ln Reλ. (9)

To have a finite limit, consistently with the vanishing viscosity principle, we need β0 = 0. The
remaining constants B0, B1, and β1 are then determined by comparison with the DNS data. From
the inset of Fig. 4 (left) we see that both β and B are increasing functions of Reλ implying that both
B1 and β1 are negative. In Fig. 5 (left) we assess the relations (7)–(9) by plotting

χ = 1

γ
ln
(
1/B 〈a2|ε〉/a2

η

)
, (10)

with

γ = 3/2 + β, (11)

against ln(ε/〈ε〉) for various Reynolds numbers. It is observed that with B0 = 17.1, B1 = −54.7,
and β1 = −1, all the DNS data collapse on the line χ = ln(ε/〈ε〉) (the bisectrix of the graph) for
ε � 〈ε〉, validating the scaling relation.

We can go a step further by using the low dissipative limit of the conditional acceleration. For that
we introduce χ0 = limε→0 χ = 1

γ
ln(1/B a2

0/a2
η ). With this definition, χ − χ0 = ln[(〈a2|ε〉/a2

0)1/γ ]
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FIG. 5. (Left) Evolution of χ = 1
γ

ln(1/B 〈a2|ε〉/a2
η ), with γ = 3/2 + β versus ln ε/〈ε〉 with B = B0 +

B1/ ln(Reλ) and β = β1/ ln(Reλ) and B0 = 17.1, B1 = −54.7 and β1 = −1, for various Reλ: continuous line
for our DNS at Reλ = 50, 90, 150, 230 and 380 from orange to black; and dashed lines correspond to the DNS
of Yeung et al. [12] for Reλ = 40, 139, 238, 385, 680, from orange to black. Comparison with the line χ =
ln ε/〈ε〉 in gray dashed line. (Right) Evolution of (〈a2|ε〉/a2

0 )1/γ = exp(χ − χ0) against ζ = ε/〈ε〉(Ba2
η/a2

0 )1/γ

for the various Reynolds numbers. Inset: plot of (〈a2|ε〉/a2
0 )1/γ − 1 against ζ = ε/〈ε〉(Ba2

η/a2
0 )1/γ .

tends to 0 in the low dissipative regions (ε 	 〈ε〉). However, for ε � 〈ε〉, χ − χ0 should be equal
to χ − χ0 = ln(ε/〈ε〉) − χ0 = ln[ε/〈ε〉(Ba2

η/a2
0)1/γ ]. This is seen in Fig. 5 (right) that presents the

evolution of (〈a2|ε〉/a2
0)1/γ against

ζ = ε/〈ε〉(Ba2
η/a2

0

)1/γ
(12)

for the various Reynolds numbers considered here.
It is interesting to note that the curves are all overlapping even for intermediate values of ε,

suggesting that the conditional acceleration variance can be cast in a self-similar form:

〈a2|ε〉 = a2
0[φ(ζ )]γ , (13)

with φ a universal function of only one argument φ = φ(ζ ) with the asymptotics φ(ζ ) = 1 for
ζ 	 1 and φ(ζ ) = ζ for ζ � 1. Making a Taylor expansion of φ around ζ = 0 and using a matching
asymptotic argument, simply yields to

φ(ζ ) = 1 + ζ . (14)

It is seen in the inset of the Fig. 5 (right) that the proposed expression for φ gives a good
approximation of the data over the whole range of ε and Reλ. We can indeed observe more than
5 decades of quasilinear growth of (〈a2|ε〉/a2

0)1/γ − 1 = exp(χ − χ0) − 1 with ζ .
The nondimensional function f introduced in Eq. (6) can, in consequence, be expressed as

f (ε/〈ε〉, Reλ) = B(ε/〈ε〉)β
(

1 + 1

ζ

)3/2+β

, (15)

where the term within the brackets is interpreted as a correction factor for small dissipative regions.
Accordingly, we obtain the following expression for the conditional acceleration variance:

〈a2|ε〉 = Ba2
η

[(
1

B

a2
0

a2
η

)1/γ

+ ε

〈ε〉

]γ

. (16)

As γ = 3/2 + β and B evolve slowly with Reλ, their expressions remain speculative and would
require a much larger range of Reynolds numbers to be validated.
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D. Reynolds number dependence of the unconditional acceleration variance

Assuming the distribution of the dissipation, we can integrate relation (16) to obtain the uncon-
ditional variance

〈a2〉 =
∫

〈a2|ε〉P(ε)dε, (17)

and thus propose an alternative formula to the empirical relations proposed in Refs. [12,17,68].
We consider that ε/〈ε〉 presents a log-normal distribution with parameter σ 2 ≈ 3/8 ln Reλ/Rc with
Rc = 10 as shown by Ref. [12] from DNS data, consistently with the proposition of Kolmogorov
and Oboukhov [35,69]. Notice nevertheless that other expressions for σ 2 have been proposed in
the literature reflecting the vanishing viscosity limits [70]. Taking for 〈a2|ε〉 the expression (16),
we perform the integration numerically with the expressions (8) and (9) for β and B with the
values of B0, B1 and β1 and the expression of a2

0/a2
η proposed above. The resulting evolution of the

acceleration variance with the Reynolds number is presented in Fig. 9. It is seen that the predicted
acceleration variance is in very good agreement with the DNS of Ref. [12] and our DNS and is also
very close to the relation proposed by Ref. [17] for Reλ < 1000.

The first term within the brackets in Eq. (16) is the footprint of the large-scale structures whose
effects is vanishing if the local dissipation rate is larger than ε/〈ε〉 � (B a2

η/a2
0)−1/γ and therefore

can be neglected when the Reynolds number is large since a2
η/a2

0 ∼ Reλ. Hence, for large Reynolds
numbers, Eq. (16) reduces to

〈a2|ε〉/a2
η = B

(
ε

〈ε〉
)γ

. (18)

With this expression, the acceleration variance is simply estimated from the moments of the log-
normal distribution as

〈a2〉
a2

η

= B(Reλ/Rc)9/64+3β(1+β/2)/8. (19)

This expression, also presented in Fig. 9, is shown to converge to the previous estimate as the
Reynolds number increases.

In Appendix B, we show that the integral (17) can be expressed from the generalized binomial
series expansion. We further obtain the following estimation for the acceleration variance keeping
only the first two terms:

〈a2〉
a2

η

= B

(
Reλ

Rc

)3/16γ (γ−1)[
1 + γ

(
1

B

a2
0

a2
η

)1/γ(Reλ

Rc

)−3/8(γ−1)]
. (20)

In Fig. 9, it is seen that this relation almost overlaps with the direct numerical calculation of the
variance through Eq. (17). The term within the brackets enables us to measure the contribution from
small Reynolds number effects. At Reλ ≈ 100, the two estimates (19) and (20) for the variance
differ by about 20%, while there is about 8% in difference at Reλ ≈ 500. That confirms that the
term containing a2

0 is indeed vanishing at large Reynolds numbers.
The previous estimations of the acceleration variance tend asymptotically to the following power

law:

〈a2〉/a2
η = 7.62Re9/64

λ , (21)

where we have used Eq. (8) to obtain the value of the prefactor, R−9/64
c B0 exp(3β1/8) ≈ 7.62. This

expression is presented as well in Fig. 9, confirming that the convergence toward the power law is
very slow, and that Eq. (19) should be considered as an intermediate asymptotic expression for the
acceleration variance.
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E. Multiplicative cascade for the acceleration

Substituting Eq. (18) into Eq. (3), we can eventually estimate the doubly conditional acceleration
variance for large Reynolds numbers as

〈a2|ε, K〉/a2
η = C exp(αK/〈K〉)

(
ε

〈ε〉
)γ

, (22)

where C = A B, with expressions of A and B determined above.
As mentioned above and apparent in the previous formula, the acceleration depends on the local

value of the kinetic energy, along with the local dissipation rate. The acceleration, being mainly
due to the pressure gradient, presents a nonlocal behavior. The fact that the acceleration depends
on the local kinetic energy but not on a local Reynolds number reflects that its nonlocality is a
purely kinematic effect. Further, the exponential dependence on the kinetic energy suggests that the
acceleration can respond to structures of all sizes.

To illustrate this point, we discuss a multiplicative cascade model for the acceleration that incor-
porates effect of the full spectrum of the flow structure. Fluctuations of the locally space-averaged
dissipation rate can be modeled by multiplicative cascades [49,71–75]. Such model proposes to
express the local dissipation over a volume of size � = Lλn, with λ < 1 and L being the large scale
of the flow, as the product of n random numbers ξi:

ε� = 〈ε〉
n∏

i=1

ξi. (23)

Typically, for large n, this yields log-normal distribution of ε� assuming the ξi are independent and
identically distributed (and have as well finite variance).

We propose likewise to write the squared acceleration, coarse-grained at scale �, as

a2
� = a2

0

n∏
i=1

θi. (24)

The scale-to-scale factor θi is given by

θi = exp

(
α

〈K〉
1

2
v2

i

)
(ξi )

γ = exp

(
α

〈K〉
1

2
v2

i + γ ln ξi

)
, (25)

where vi is here the velocity of eddies of size �i = Lλi, which is also a fluctuating quantity. The
exponential modulation is then interpreted as an entrainment acceleration due to these structures.

With this expression we obtain

a2
� = a2

0 exp

(
α

〈K〉
n∑

i=1

1

2
v2

i + γ

n∑
i=1

ln ξi

)
. (26)

Setting n = ln(η/L)/ ln(λ) ∼ ln Reλ, η being the Kolmogorov length scale, we have K =∑n
i=1

1
2v2

i
due to the additive nature of the kinetic energy. Thereby using Eq. (23), we obtain back Eq. (22)
by taking the conditional average of Eq. (26). The order of magnitude of the eddy velocities can be
estimated from the Kolmogorov relation, (ε��)1/3, showing that the sum is a priori dominated by
the large scales but, however, because of the intermittent behavior of ε�, it may well happen that the
the inertial-scale structures can be dynamically important.

Note that in this multiplicative model, we have transposed the statistical relation (22) to an
instantaneous version. Such idealization, find support in the invariance of the conditional PDF,
which is shown in Appendix C. An other important point to mention, is that although we assume
that the local acceleration depends both on K and ε it is not assumed that those two variables are
independent.
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The dissipation presents large fluctuations leading to very important accelerations and, even if
the acceleration orientation is changing rapidly, it can cause a local increase of the velocity. When
the kinetic energy becomes significantly larger than its averaged value, then the modulation of the
acceleration by the exponential term becomes preponderant, thus offering a feedback mechanism
allowing the obtention of the normal fluctuations of the velocity. This dynamic scenario appears
consistent with the recent DNS analysis of Ref. [76] showing that the fluid-particles can undergo
energy gains in intense dissipative regions and is developed in the next section.

III. STOCHASTIC MODELING OF THE FLUID-PARTICLE DYNAMICS

A. Model formulation

The foregoing multiplicative model suggests that the acceleration norm can be determined from
the local kinetic energy and dissipation rate. The relation (22) is pointwise and so it applies equally
well to both Lagrangian and Eulerian descriptions. However, in the Lagrangian framework, the
kinematic relation between velocity and acceleration allows proposing a model for the acceleration
depending only on the local dissipation rate. The evolution of the later along the particle path is to
be obtained from a stochastic process. For the derivation of this model, we will rely on the relation
(22), in which the contribution from low dissipative events are neglected:

a2 = f (K, ε) = a2
ηC

(
ε

〈ε〉
)γ

exp

(
α

K

〈K〉
)

. (27)

We express the increments of a2 as a second order Taylor expansion in K and ε,

da2 = a2

(
α

dK

〈K〉 + γ
dε

ε
+ α2

2

dK2

〈K〉2
+ γ (γ − 1)

2

dε2

ε2
+ γα

dK

〈K〉
dε

ε

)
. (28)

We consider ε as stochastic variable reflecting the very large number of degrees of freedom that
control it. In a fairly general way, we consider that the dissipation ε follows a multiplicative
stochastic process:

dε = ε�dt + ε�dW, (29)

where dW are the increments of the Wiener process (〈dW 〉 = 0; 〈dW 2〉 = dt). We specify the terms
� and � below. Substituting Eq. (29) into Eq. (28) one obtains, following the Ito calculus, at first
order in dt :

da2 = a2

[
α

〈K〉P + γ� + γ (γ − 1)

2
�2

]
dt + γ a2�dW. (30)

We used the identity dK = uidui = uiaidt = Pdt , where P is the mechanical power per unit of mass
exchanged by the fluid particle. Even if � and � are given, Eq. (30) is not closed, as it remains to
estimate P = aiui, which requires the knowledge of ai and ui.

As mentioned in the Introduction, we introduce a vectorial stochastic model for the dynamics of
a fluid particle. We are looking for a stochastic process of the form:

dui = aidt, (31)

dai = Midt + Di jdWj, (32)

where dWj are the increments of the jth component of a tridimensional Wiener process (〈dWj〉 = 0;
〈dWidWj〉 = dtδi j). A priori, the vector M and the tensor D depend on the vectors a and u = ∫ adt .
Indeed, M must depend on u to allow the particle velocity to reach a statistically steady state.

Now, we propose expressions for Mi and Di j . For this, we want to impose, on the one hand,
that the model is isotropic (〈aia j〉 = 0 for i �= j) and, on the other hand, that its norm a2 = aiai is
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compatible with Eq. (30). We therefore write the stochastic equation for a2
i j = aia j derived from

Eq. (32), thanks to the Ito formula:

da2
i j = a jdai + aida j + daida j

= (Miaj + Mjai + DikDjk )dt + (a jDik + aiDjk )dWk. (33)

For the square of the norm a2 = aiai, we have

da2 = (2aiMi + Di jDi j )dt + 2aiDi jdWj . (34)

We then proceed by identification between Eqs. (34) and (30), in a similar way as Refs. [77,78], by
identifying first the square of the diffusion term and then the drift term.

1. Identification of the diffusion term and the maximum winding hypothesis

Quite generally, we can decompose the diffusion tensor into

Di j = c1δi j + Si j + �i j, (35)

where Si j is a zero-trace symmetric tensor and �i j is an antisymmetric tensor. The latter can be
written as �i j = εi jkωk with εi jk the Levi-Civita permutation symbol and ωk a pseudovector. Si j

must be zero to guarantee the statistical isotropy of the acceleration. But �i j can be different from
0. Indeed, the experimental results of Ref. [3] and numerical results of Ref. [7] have shown that the
acceleration presents a scale separation between the evolution of the components and its norm, and
that this separation can be modeled using processes for the acceleration norm and its orientation
vector [54,55,79]. A stochastic model for orientation can be formulated as a diffusion process with
a rotational part in the diffusion tensor [54,80]. Since the model for the dynamics (31) and (32)
involves only two vectors, a and u, we propose to form the pseudovector ω from these two vectors
to get a closed model: ωk = c2εklmalum. The model remains statistically isotropic and the chirality
of the flow is not broken either since the odd moments of dWj are zero (Gaussian with zero mean).
In other words, the sign of c2 does not matters. We then have

Di j = c1δi j + c2(aiu j − a jui ). (36)

It is to be noted that c1 and c2 are not constant.
By identifying the square of the diffusion term between Eqs. (30) and (34) we find

γ 2(a2)2�2 = 4aia jDikDjk . (37)

Expanding it by using expression (36), we find

γ 2(a2)2�2 = 4a2
[
c2

1 + c2
2(2a2K − P2)

]
, (38)

which gives for c1

c2
1 = γ 2

4
a2�2 − c2

2(2a2K − P2) = a2

[
γ 2

4
�2 − 2c2

2K

(
1 − a2

T

a2

)]
, (39)

where we have introduced the tangential acceleration aT , as the projection of the acceleration
vector in the direction of the velocity vector: aT = aiui/

√
u2 = P/

√
2K . Equation (39) imposes

a constraint on c2 to guarantee the positivity of c2
1:

c2
22K � γ 2

4
�2, (40)

since 0 � 1 − a2
T

a2 � 1. So, to guarantee the positivity of c2
1 whatever K , c2

2 must be proportional to

1/K . Introducing a parameter cR as c2
2 = γ 2

4 �2 c2
R

2K , with the constraint c2
R � 1, we obtain

c2
1 = γ 2

4
�2
(
a2
(
1 − c2

R

)+ c2
Ra2

T

)
. (41)

084608-13



RÉMI ZAMANSKY

Subsequently, we only consider the limit cR = 1 that corresponds to the maximum rotational part of
the diffusion tensor. We will discuss this choice in more detail below in Sec. III C, when presenting
the results.

Finally, from Eq. (36) and the expressions of c1 and c2, we write the components of the diffusion
tensor as

Di j =
√

γ 2

4
�2
[√

a2
T δi j +

√
a2

Nεi jkbk
]
, (42)

where we introduced the normal component aN of the acceleration a2
N = a2 − a2

T , and the bi-normal
unit vector1bk = εklmulam/|εhi juia j |.

Note that bk , aT , and aN are not well defined when K = 0. However, c2 must vanish when u = 0,
and we can therefore consider that cR = 0 in that case.

2. Determination of the drift term

Identifying the drift term between Eqs. (34) and (30), we get

2aiMi + Di jDi j = a2

(
α

〈K〉P + γ� + γ (γ − 1)

2
�2

)
. (43)

From Eq. (42) the term Di jDi j is computed as2

Di jDi j = γ 2

4
�2
(
2a2 + a2

T

)
. (44)

We then have

aiMi = a2

(
α

2〈K〉P + γ

2
� − γ

4
�2

)
− a2

T

γ 2

8
�2. (45)

To go further we must now specify the terms � and � used for the stochastic process for ε.
Various models for the dissipation have been proposed. Pope and Chen [40] proposed a simple
model based on the exponential of an Orstein-Uhlenbeck process (see Appendix D 2). Here, we
rely on the model proposed in Refs. [78,81]. This non-Markovian log-normal model presents a
logarithmic decrease in the correlation of ε which is consistent with the idea of a turbulent cascade
and a multiplicative process (see Appendix D 1), unlike the Pope and Chen model which gives an
exponential decrease, see also the discussion in Ref. [82]. As presented in Appendix D 2, the drift
and diffusion terms are written, respectively, as

� = 1

τε

(
− ln

ε

〈ε〉 + σ 2

2�2

(
τε

τc
− �2

)
+ σ

�
�̂τε

)
(46)

and

� =
√

σ 2

�2τc
, (47)

with σ 2 the variance of the logarithm of ε, τε the correlation time of ε, τc the regularization timescale
of the process (taken equal to the Kolmogorov dissipative time τη), �2 a normalization factor, and

1To obtain this relation we notice that aiu j − ajui = εi jkεklmal um and that the vector bk is the unit vector
collinear to εklmal um: bk = εklmal um/|εhi jaiu j |. By expanding the norm, we have (εhi jaiu j )2 = 2a2K − P2. We
therefore write εklmal um = bk

√
2a2K − P2 = bk

√
2K
√

a2 − a2
T = bk

√
2K
√

a2
N .

2Di jDi j = γ 2

4 (a2
T δi jδi j︸︷︷︸

3

+a2
N εi jkbkεi jl bl︸ ︷︷ ︸

2δkl bk bl

), δkl bkbl = 1 since b is a unit vector and with a2 = a2
T + a2

N , we obtain

the result.
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�̂ the convolution of the Wiener increments with a temporal kernel, ensuring the non-Markovian
property of the process. In the process for ε proposed by Refs. [78,81], the latter corresponds to a
fractional Gaussian noise with 0 Hurst exponent [83] regularized at scale τc. The expression of the
convolution kernel proposed by Refs. [78,81], and recalled in the Appendix D 2, applies to a scalar
noise since the dissipation rate is a scalar, whereas the acceleration model involves a vectorial noise.
Therefore, the kernel in �̂ includes a projection to apply to the vectorial Wiener increments:

�̂ = −1

2

∫ t

−∞

1

(t − s + τc)3/2
P jdWj (s). (48)

By proceeding in a similar way as Ref. [78], the projection operator is obtained by identification
between the diffusion terms of Eqs. (30) and (34):

P j = 2aiDi j

γ a2�
=
√

a2
T − aT

a2
a j + e j, (49)

where we have used the relation recall in footnote 1 and where e j is the unit vector tangent to the
trajectory, ei = ui/

√
2K . It is interesting to remark that the rotational part of the diffusion tensor in-

duces an asymmetry of the projector between positive and negative power exchange (recall that P =√
2KaT ). Indeed, for P � 0, P j = e j while for P < 0 one has P j = (1 − 2p2)e j − 2p

√
1 − p2b j

with p = P/
√

2Ka2. In both cases, as it can be readily checked, P is a unit vector.
Substituting expressions (46) and (47) for � and � in Eq. (45) we have

aiMi = a2

[
α

2〈K〉P − γ

2τε

(
ln

ε

〈ε〉 + 1

2
σ 2 − σ

�
�̂τε

)]
− a2

T

γ 2

8

σ 2

�2τc
. (50)

According to Eq. (27), we can write

ln

(
ε

〈ε〉
)

= 1

γ

(
ln

a2

a2
η

− ln C − α
K

〈K〉
)

, (51)

which gives, once substituted into Eq. (50),

aiMi = a2

⎡
⎢⎢⎣ α

2〈K〉
(

P + K

τε

)
− 1

2τε

⎛
⎜⎜⎝ln

(a2

a2
η

)− ln C + γ

2
σ 2 − γ

σ

�
�̂τε︸ ︷︷ ︸

−�̂∗

⎞
⎟⎟⎠
⎤
⎥⎥⎦− a2

T

τc

γ 2

8

σ 2

�2︸ ︷︷ ︸
σ 2∗

. (52)

To simplify the notations, we have introduced �̂∗ = γ σ
�

�̂τε + ln C − γ

2 σ 2 and σ 2
∗ = γ 2

8
σ 2

�2 . It is
interesting to notice that in Eq. (52) the terms P + K

τε
= dK

dt + K
τε

acts as a penalization leading the
correlation of the kinetic energy to decay exponentially.

We then propose for Mi an expression compatible with Eq. (52). Proceeding by identification,
we have the following relation:

Mi = α

2〈K〉
[
λaiP + (1 − λ)a2ui + ai

K

τε

]
− ai

[
ln

(
a2

a2
η

)
− �̂∗

]
1

2τε

− σ 2
∗

τc

a2
T

a2
ai + Bi, (53)

where we have introduced the vector Bi, such that Biai = 0 as well as the factor λ that both account
for the indeterminacy inherent to the inverse projection. By assuming again that there are only two
vectors at our disposal, we can take Bi = α

2〈K〉λ
′(Pai − a2ui ) by introducing the factor λ′. Note that

from the point of view of the projection, the factors λ and λ′ are arbitrary in the sense that the scalar
product of ai and Eq. (53) gives Eq. (52) whatever their values. We can nevertheless notice that the
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terms involving λ and λ′ can be combined, and, by noting cu = λ + λ′, we get

Mi = α

2〈K〉
[

ai

(
cuP + K

τε

)
− (cu − 1)a2ui

]
− ai

[
ln

(
a2

a2
η

)
− �̂∗

]
1

2τε

− σ 2
∗

τc

a2
T

a2
ai. (54)

We can notice that the terms of the first line correspond to the coupling with the velocity, those of
the second take into account the log-normal character of the dissipation and the last term is due
to the rotational part of the diffusion tensor. The diffusion term (42) becomes, by using expression
(47),

Di j =
√

2σ 2∗
τc

[√
a2

T δi j +
√

a2
Nεi jkbk

]
. (55)

We have thus specified our stochastic model for the dynamics of a fluid particle. It is given by
Eqs. (31), (32), (54), and (55).

B. Parameters and numerical approach

From a dimensional point of view, to determine the physical parameters of the stochastic
model, one must specify time and velocity scales as well as a Reynolds number. This amounts,
for example, to imposing the average kinetic energy 〈K〉, the average dissipation rate 〈ε〉 and the
viscosity ν. From these physical parameters, we calculate a2

η = 〈ε〉3/2ν−1/2, τη = 〈ε〉−1/2ν1/2. We

can also get the Reynolds number based on the Taylor scale Reλ = u′λ/ν = 2
√

15/3 〈K〉/√〈ε〉ν
with u′ = √

2〈K〉/3 and λ2 = 15νu′2/〈ε〉. We then deduce the Lagrangian integral times scale τL as
τL = 0.08Reλτη from the DNS results reported by Refs. [84,85].

The parameter σ 2 is estimated using the relation given by Ref. [12]: σ 2 ≈ 3/8 ln Reλ/Rc with
Rc ≈ 10 compatible with the prediction of Kolmogorov and Obhoukov [35,69]. As mentioned in
Refs. [35,74], the specific value of Rc is depending on the large scales. Since the influence of the
large scales is neglected in our modeling (see Sec. II D), we choose in the following simply σ 2 ≈
3/8 ln Reλ. We set as well α = 1/3 and γ = 3/2 + β with β = −1/ ln Reλ in accordance with the
results of the DNS presented above. The prefactor C is computed as C = c0 A B where A = (1 −
2
3α)3/2 ≈ 0.686, B = 17.1–54.7/ ln Reλ as determined by DNS. The term c0 is introduced so that
the predicted acceleration variance follows Eq. (19), as one would expect from the construction of
the stochastic model, despite the fact that we take σ 2 = 3/8 ln Reλ instead of σ 2 = 3/8 ln Reλ/Rc.
Consequently, we have c0 = (1/Rec)9/64+3β/8(1+β/2).

For simplicity we have used τc = τη and τε = τL. From τε and τc we calculate the value of the
normalizing constant � as explained in Appendix D 2. Finally, for the parameter cu, which is the
only free parameter of the model, we have determined numerically that with cu = 5.22 the ratio
K/〈K〉 is 1 on average for all values of the Reynolds number.

The sample paths of this model are obtained by numerical integration of the stochastic differential
equation. Numerical integration is made with an explicit Euler scheme by taking a time-step
dt = τη,min/100 with τη,min = √

ν/εmax, an estimation of the minimum dissipative timescale likely
to happen during the simulation. This is estimated from the log-normal distribution of the dissipa-
tion: τη,min = τη exp(−xσ/2 + σ 2/4), with x = 6 by considering that the probability that a random
number following the normal distribution reaches a value of 6 standard deviation is sufficiently low
[see Eq. (D11)].

For the calculation of the convolution term �̂ appearing in Eq. (54), we propose in Appendix D 3
an efficient algorithm.

A simple Python script presenting the algorithm used to integrate the proposed stochastic model
is available in Supplemental Material [86].
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FIG. 6. A realization of the stochastic process for Reλ = 1100. Top left: evolution of the acceleration with
time ax , red; ay, green; az, blue; |a|, black. Bottom left: evolution of the velocity with time ux , red; uy, green;
uz, blue; |u|, black. Right: 3D trajectory of a fluid particle for a duration of 100 τL .

C. Results

We show in Fig. 6 a realization of this process for Reλ = 1100. We see the temporal evolution
of the components of acceleration and velocity. There is a very intermittent acceleration with an
alternation of periods in which the acceleration of the fluid particle is almost zero with phases of
very intense activity. This results in fluid-particle trajectories, obtained by integration of the velocity
xi = ∫ ui(t )dt , in long quasiballistic periods with typical length of the order of the integral scale
(L ≈ 〈K〉3/2/〈ε〉) and short term disruptions during which the trajectory rolls up on itself.

We have simulated the stochastic model for 15 different Reynolds numbers between Reλ = 70
and 9000. In each case, we have computed 26,000 realizations. The simulations are carried out over
a period of 120τL, over which we exclude an initial transitional regime of 20τL for the calculation
of the statistics. In all cases, the initial value of the components of acceleration and velocity are
sampled from the normal distribution having a standard deviation of 10−9aη for the acceleration and
10−9√2〈K〉/3 for the velocity. We can indeed notice from Eqs. (54) and (55) that, if the acceleration
is exactly zero, the stochastic model predicts that the acceleration would remain so. However, it
should be noted that this event has a zero probability, and that for arbitrarily small, but nonzero,
accelerations, the model presents an evolution towards a nontrivial stationary state. This is illustrated
in Fig. 7, which presents the temporal evolution of the variance of the velocity and of the acceleration
for Reλ = 1100, calculated from all the realizations.

Figure 8 shows the evolution with the Reynolds number of the mean kinetic energy in the
stationary state. In this figure, we see that the average kinetic energy is equal, within the statistical
convergence, to the value prescribed to the model. We note that the value of the average kinetic
energy is directly related to the value of the parameter cu in Eq. (54) as mentioned above.

Regarding the variance of the acceleration, we expect, by construction of the stochastic model,
that the predicted value follows the log-normal relation (19). We observe in Fig. 9 that it is indeed the
case, with only slight deviations for the largest Reynolds numbers which are attributed to numerical
errors. We recall that the underestimation of the acceleration variance at small Reynolds numbers
compared to the DNS or Eq. (20) stems from the fact that the model is based on the relation (22)
in which the effect of low dissipative and large-scale structures are neglected (see the discussion in
Sec. II C). This simplification enables us to obtain the analytical formulation of the model proposed
here.

Figure 10 compares the autocorrelation of the components of the acceleration and of its norm
calculated from the stochastic model for Reλ = 400 with the calculations from the DNS of
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FIG. 7. Evolution of the acceleration and velocity variance with time for the stochastic model at Reλ =
1100 starting from an initial condition for the acceleration and velocity with very small magnitude. Comparison
in dashed gray line with the expected values: Eq. (19) for the acceleration and the prescribe value of u′ =√

2〈K〉/3 for the velocity.

Refs. [61,62]. It can be seen that the characteristic times of these two quantities are very different and
that it is in good agreement with the DNS. It should be mentioned that the scale separation between
the components and the norm results from the rotational part of the diffusion tensor. Indeed, no scale
separation is found when cR is set to zero in Eq. (41) (corresponding then to a diagonal diffusion
tensor). We see in Eq. (42) that considering this rotational part, leads to the decomposition of the
acceleration into its normal and tangential component. The former is associated with the intense
rotation that rapidly changes the acceleration direction, whereas the second is associated with the
variation of the kinetic energy of the particle.

Figure 10 also presents the evolution of the autocorrelation coefficient of the velocity components
and of the power. It can be seen here also that the agreement with the DNS is relatively good. In

FIG. 8. Evolution with the Reynolds number, in the stationary regime, of the kinetic energy obtained by
the stochastic model normalized by the prescribed kinetic energy 〈K〉.
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FIG. 9. Evolution with the Reynolds number, in the stationary regime, of the kinetic energy normalized
by the prescribed kinetic energy 〈K〉 (left) and of the acceleration variance normalized by the Kolmogorov
acceleration (right). Data from the stochastic model (red plus) and comparison with our DNS data (black
crosses) and the DNS data from Ref. [12] (gray dot-dash line), with the relation 3 × 1.9Re0.135

λ (1 + 85Re−1.35
λ )

from Ref. [17] (gray dash dot line), with the numerical integration of 〈a2〉 = ∫ 〈a2|ε〉P(ε)dε with 〈a2|ε〉 given
by Eq. (16) and P(ε) log-normal (continuous red line), with its approximation of Eq. (20) (red dotted lines),
with the large-Reynolds number limit relation (19) (red dashed line) and with the asymptotic power law (21)
(gray dotted lines).

Fig. 10, we also show the evolution of the characteristic correlation times for these four quantities
with Reynolds numbers in the range Reλ = 70–9000 as predicted by the stochastic model. The
characteristic correlation time for the velocity, the acceleration norm, the acceleration components
and the power are τu = ∫ ρui (τ )dτ , τ|a| = ∫ ρ|a|(τ )dτ , τai = ∫ |ρai |(τ )dτ and τP = ∫ |ρP|(τ )dτ . It
can be seen in Fig. 10 that the scales for the norm of the acceleration and for the velocity normalized
by τL remains quasiconstant with the Reynolds number and that the ratio between the correlation
scale for the velocity and τL is of order 1. Note that the characteristic time entering the model
formulation is τε (the correlation time of the dissipation rate following the path of a fluid particle).
For the calculation of the model, we simply set τε = τL arguing that the two quantities should be
closed. It is therefore interesting to remark that the integral time of the velocity is very close to the
prescribe one τu ≈ τL. Regarding the correlation scales for a component of acceleration and for the
power normalized by τL, they both present a variation close to 1/Reλ, as expected.

We also show in Fig. 10 autocorrelation coefficient of ai, (a2)1/2, P = aiui and ui for Reynolds
numbers in the range Reλ = 70–9000 obtained from the model. It is seen that, when the time shift
is normalized by the corresponding integral timescale, the correlation coefficients of the power and
of the acceleration component remains nearly unchanged with the Reynolds number. We observe
as well that the shape of the autocorrelation obtained from DNS is well reproduced, although the
decay predicted by the model is too fast at very short time lag. This is attributed to the fact that the
dissipative region is only taken into account in the model via the cutoff τc = τη of the kernel �̂.
We observe that the correlation for the acceleration norm presents a logarithmic decrease, reflecting
the absence of characteristic time for its evolution. As expected, the correlation norm exhibits a
lower slope as the Reynolds number increases. This is directly attributed to the use of the non-
Markovian process of Ref. [81] for the dissipation rate, which proposes a logarithmic evolution
of the autocorrelation in agreement with the underlying model of the turbulent energy cascade as
discussed in Appendix D.
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(a) (b)

(c) (d)

(e)
(f)

FIG. 10. (a) Evolution of the autocorrelation of ai (black), (a2)1/2 (red), ui (blue), and P = aiui (green)
from the stochastic model for Reλ = 400 and comparison with the DNS data from Ref. [61] in dashed lines.
(b) Evolution of the integral timescale of ai (black), (a2)1/2 (red), ui (blue) and P = aiui (green) normalized
by τL with the Reynolds number. (c, d, e, f) Evolution of the autocorrelation of ai, (a2)1/2, P = aiui and ui,
respectively, for Reλ = 400, 567, 800, 1130, 1600, 2263, 3200, 4526, 6400, and 9051 from orange to black
and comparison with the DNS data from Ref. [61] in dashed lines. In these plots the time lag is normalized by
the corresponding integral timescale. For panel (f), inset: logarithmic scaling of the y axis and comparison with
exp(−τ/τu) in dotted line.

The shape of the velocity correlation from the model is overall close to the DNS. At small τ , it
presents some dependence on the Reynolds number, while at large time shift (i.e., τ of the order of
τL) the correlation decreases exponentially, as it can be seen in the inset of Fig. 10(f), in agreement
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FIG. 11. Velocity spectra from the stochastic model for Reλ = 400 to Reλ = 9000 from orange to black
and comparison with the DNS data from Ref. [61] at Reλ = 400 (gray dashed line), with the Hinze spectra ω−2

(gray dot-dashed line), and with the power law with anomalous exponent ω−2+9/64 (gray dotted lines).

with DNS and experiments. The exponential relaxation results from the terms P + K/τε = dK/dt +
K/τε appearing in the drift part of the stochastic model (53). It is interesting to remark that the
presence of this term in the model is a direct consequence of the exponential dependence of the
conditional acceleration variance on the kinetic energy (22). This term leads to the Reynolds number
dependence on the velocity correlation observed at small τ , which is connected to the logarithmic
decorrelation of the acceleration norm, to vanish at large τ at which it relaxes exponentially. This
suggests therefore anomalous scaling at intermediate time lag.

We show in Fig. 11 the velocity spectrum for Reλ between 400 and 9000, which we compare
with the DNS of Ref. [61] for Reλ = 400. We see a good agreement between the DNS and the
stochastic model. For higher Reynolds numbers, we clearly see that a power-law behavior develops
at intermediate scales. We see that the slope of the power law deviates from the Hinze spectra [87]
predicted by dimensional arguments similar to those presented by Kolmogorov, with spectra less
stiff than ω−2. This shows that the proposed stochastic model leads to an anomalous scaling that
reflects the persistent influence of the Reynolds number in the inertial-scales. We further notice that
the slope that develops at intermediate scales are close to −2 + 0.14, where 0.14 is the exponent
of the asymptotic power law of the acceleration variance with the Reynolds number determined in
Eq. (21) (see also Fig. 9). We see here a confirmation of the relation between the acceleration scaling
and the anomalous scaling of the velocity spectra proposed by Ref. [26].

We present in Fig. 12 the PDFs of the velocity and of the acceleration for Reλ = 400 ∼ 9000,
as well as the comparison with the DNS of Ref. [61]. First, we find that the velocity distribution
is very close to a Gaussian distribution for all Reynolds numbers, while the acceleration presents a
much more stretched distribution. For Reλ = 400 the acceleration PDF is in very good agreement
with the DNS, and, the model predicts an increase of the stretching of the tails with increasing the
Reynolds number. We also show in this figure the PDF of the velocity increments for different time
shifts δτ ui = ui(t + τ ) − ui(t ) at Reλ = 400. We observe that the distribution gradually returns to
a Gaussian distribution as the time shift increases, and that at each time shift the agreement with
the DNS of Ref. [61] is very good. This is confirmed by the presentation of the flatness of the
velocity increments for Reλ = 400 ∼ 9000, which reflects the strongly non-Gaussian behavior on
small scales which decreases to 3 for the larger scales. Here also we notice a good agreement with
the DNS of Ref. [61] for Reλ = 400. We also show in the inset, a quasilinear increase of the flatness
of the acceleration with the Reynolds number.
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FIG. 12. PDF of ai (top left) and comparison with the DNS data from Ref. [61], and PDF of ui (top right)
and comparison with the normal distribution, for Reλ = 400 to 9000 from orange to black. (Bottom left) PDF
of the velocity increments for various times shift: τ/τη = 610, 200, 70, 22, 7.3, 2.4, 0.8, and 0.25 each time
lag is shifted upward by one decade for Reλ = 400 comparison with the PDF of the acceleration from the
model (red) and from the DNS of Ref. [61] (gray) and the PDF velocity (blue). (Bottom right) Evolution of
the Flatness of the velocity increments versus the time shift for Reλ = 70 to 9000 from orange to black and
evolution of the flatness of the acceleration with the Reynolds number and comparison with the linear law in
the inset.

Finally, in Fig. 13 we show the second and third moments of the power P = aiui. It is observed
that the increases of both moments with the Reynolds number are in close agreement with the power
law supported by the DNS results of Ref. [28], 〈P2〉/〈ε〉2 ∼ Re4/3

λ and −〈P3〉/〈ε〉3 ∼ Re2
λ. Clearly,

the third-order moment is negative, meaning that the time irreversibility of the dynamics of a fluid
particle in a turbulent flow is correctly reproduced by the proposed stochastic model. The skewness
of the power, S = 〈P3〉/〈P2〉3/2, seems to converge to −0.5 as the Reynolds number increases, as
reported in Ref. [28].

IV. DISCUSSION AND FINAL REMARKS

In this paper, we have analyzed the behavior of the acceleration statistics conditioned on both
local dissipation rate and local kinetic energy, which to our knowledge have not been considered
before. We have reported that the doubly conditional variance is proportional to the acceleration
variance conditional on the dissipation rate solely, with the proportionality factor depending ex-
ponentially on the kinetic energy: 〈a2|ε, K〉 = A exp(αK/〈K〉) 〈a2|ε〉. For large enough Reynolds
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FIG. 13. Evolution of 〈P2〉/〈ε〉2 (continuous black line) and −〈P3〉/〈ε〉3 (dashed black line) with the
Reynolds number, and comparison with the power laws Re4/3

λ and Re2
λ.

number we show that A = (1 − 2α/3)3/2 and we proposed that the α coefficient is independent of
the Reynolds number and its value α = 1/3 was obtained from the DNS.

This expression shows a direct effect of the kinetic energy, a large-scale quantity, on the
Lagrangian acceleration. Furthermore since the argument of the exponential depends on K/〈K〉,
not on a local Reynolds number, it suggests a kinematic effect for the acceleration which may be
due to the nonlocality of the pressure. More specifically, these effects can be due to the interaction
of vorticity and strain [29]. In case of persistent large-scale strain, intense vorticity tube would be
generated and align with the principal direction of the strain [88]. It was shown that such vortical
structure can produce significant acceleration in the direction of the vorticity [52,89]. Anyway,
although the proper physical mechanism leading to the exponential dependence of the acceleration
on the kinetic energy deserve further studies it is an additional effect to the influence of the large
scales on the acceleration through the intermittency of the dissipation rate. To study this later effect,
we subsequently have proposed to account for the Reynolds number dependence of the acceleration
variance conditional on the dissipation rate within the intermediate asymptotic framework [65]
leading to: 〈a2|ε〉 = a2

ηB(ε/〈ε〉)3/2+β for ε � 〈ε〉 with B and β depending logarithmically on the
Reynolds number as the signature of the intermittency and the persistence of viscous effects.
Further, we advance an expression for the conditional acceleration variance valid for the whole
range of fluctuations of ε by accounting for the dominant effect of the large-scale structures in low
dissipative regions [see Eq. (16)]. From this finding we determine the evolution of the unconditional
acceleration variance with the Reynolds number [Eq. (20)] and show that it is in good agreement
with DNS, which gives another empirical validation of the incomplete similarities assumption used
to obtain these results.

Eventually, for large Reynolds numbers, we propose to express the doubly conditional variance
as 〈a2|ε, K〉 = Ca2

η exp(αK/〈K〉 + γ ln ε〈ε〉), γ = 3/2 + β, which can be viewed as the results
of a multiplicative process for the acceleration. Such process can be interpreted as a momentum
fluctuation cascade that includes kinematic effects by eddies all along the turbulence spectrum.

Based on these results we propose a 3D stochastic model for the dynamics of a fluid particle that
reproduce the essential features of the Lagrangian dynamics observed from DNS and experiments.
To obtain such model, (i) we have assumed, inline with the Kolmogorov universality hypothesis,
that the dynamics can be described as a set of stochastic differential equation dai = Midt + Di jdWj ;
dui = aidt , with Mi and Di j depending on the velocity and acceleration along with Reynolds number
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dependent parameters. (ii) We used the doubly conditional acceleration variance obtained in this
paper, to model the instantaneous relation of the dynamics between acceleration (or force), kinetic
energy, and energy dissipation. This amounts to consider that the remaining degree of freedom
can be discarded in procedure similar to an adiabatic elimination [90] as discussed by Ref. [70].
(iii) We introduce a nondiagonal diffusion tensor along with a maximum winding hypothesis to
ensure its physical realizability. (iv) We consider that the dissipation rate along the trajectory is
given by the non-Markovian log-normal process proposed recently by Ref. [81], giving logarithmic
correlation consistently with the turbulent cascade picture. The model is closed by using the relation
dK/dt = P = aiui. For the model, it implies dependence of K on ε through the dependence of a2

on ε. This can be interpreted as feedback of the small scales on the large scales. Additionaly, the
influence of the large scales on the small scales is accounted for in the model through the intermittent
cascade model for the dissipation rate. With these four hypotheses, we obtain the model given by
Eqs. (31), (32), (54), and (55), which reads

dai =
[

α

2〈K〉
(

ai

(
cuP + K

τε

)
− (cu − 1)a2ui

)
− ai

(
ln

(
a2

a2
η

)
+ �̂∗

)
1

2τε

− σ 2
∗

τc

a2
T

a2
ai

]
dt

+
√

σ 2∗
τc

[√
a2

T δi j +
√

a2
Nεi jkbk

]
dWj . (56)

We show that the proposed model predicts Lagrangian dynamics presenting non-Gausssianity, long-
range correlations, anomalous scaling, and time irreversibility. Moreover, statistics obtained from
the stochastic model are in good agreement with the DNS.

In Eq. (56) the term proportional to α, which follows directly from the exponential dependence
of the conditional acceleration on the kinetic energy, involves the coupling between velocity and
acceleration and leads to the exponential relaxation of the velocity correlation for large time lag
along with one-time Gaussian distribution for the velocity. Introducing a rotational part in the
diffusion tensor naturally leads to decomposition of the acceleration vector into its tangential part
and its normal components. Since the normal part is associated with the curvature of the trajectory,
the rotational part of the diffusion leads to the emergence of a timescale separation between the
correlation of the norm and the components of the acceleration. The term associated with the
non-Markovianity of the dissipation along with the rotational part produce irreversible dynamics,
as seen by the skewness of the exchanged power and ensures a scale separation between velocity
and acceleration. These three points can be easily checked, by taking α = 0 or cR = 0 in Eq. (41) or
by using for � the Markovian log-normal dissipation model proposed by Ref. [40] rather than the
non-Markovian one of Ref. [81].

It is worth noting that from the conditional acceleration statistics obtained from DNS of the
Navier-Stokes equation, it is possible to establish, in a fairly natural way, that is to say without using
any other hypothesis than the cascade picture, a link between the refined Kolmogorov assumption
and the dynamics of fluid particles. It would be interesting to analyze further the stochastic
equation to demonstrate the irreversibility of the dynamics, the emergence of anomalous scaling
or to study the geometry of the particle trajectory e.g. its curvature and torsion, as well as to further
test the conditional statistics between the acceleration and the velocity. Also interesting could be
the improvement of the modeling of the high frequency part of the spectrum. Indeed, the dissipative
part of the spectrum is not well reproduced by the model of Ref. [81] which intends to model the
dissipation rate in the inertial range.

To simplify the construction of the model, we have not taken into account the nonlocal effects of
the largest structures of the flow, arguing that their effect vanish as the Reynolds number increases
[term with a2

0 in Eq. (16)]. Based on the relation (16) it is possible to account for the large scale in the
stochastic modeling. However, since this term is dependent on the Reynolds number, it is likely that
it also depends on the flow configuration and boundary conditions. The proposed stochastic model
could be further generalized to address shear flows [52] and improve Reynolds-averaged simulations
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[91,92]. This model could be used among other things to improve the calculation of the dynamics of
a dispersed phase with the large eddy simulation (LES) approach [54,57,93]. Finally, let us mention
that an interesting extension could be the coupling of the proposed model with stochastic model for
the evolution of the velocity gradients as proposed in Refs. [77,78,94,95].
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APPENDIX A: ESTIMATION OF cε

To evaluate the cε factor appearing in Eq. (1), we use the following relation between the
conditional averages3:

〈a2|ε〉 =
∫

dK〈a2|ε, K〉P(K|ε). (A1)

Substituting relation (1) in Eq. (A1), we find, assuming that cε is independent of K ,

〈a2|ε〉/a2
η = cε

∫
dK exp(αK/〈K〉)P(K|ε). (A2)

If the kinetic energy is statistically independent of the dissipation rate [i.e., P(K|ε) = P(K )] the
integral in the previous relation takes a constant value and cε is proportional to 〈a2|ε〉. However, such
an assumption is only approximate at moderate Reynolds numbers as shown from our DNS. Indeed,
it is seen in Fig. 14 that the average of K conditioned on ε has a weak logarithmic dependence on ε.
Note that the average dissipation rate conditional on the kinetic energy can be found in Ref. [96]. We
also present in Fig. 14 the probability density of the kinetic energy conditioned on the dissipation
rate. In this figure, the PDF is normalized by its mean value 〈K|ε〉. It is notable that for large values
of the dissipation rate, the conditional PDF takes a self-similar form:

P(K/〈K|ε〉|ε) = PG(K/〈K|ε〉). (A3)

Thus, by combining the previous relations, one can write

〈a2|ε〉/a2
η = cε

∫
dK∗ exp(α∗K∗)PG(K∗), (A4)

where we have introduced K∗ = K/〈K|ε〉 and α∗(ε) = α 〈K|ε〉/〈K〉. In addition, we see in Fig. 14
that the self-similar form of the distribution of K∗ knowing ε is well approximated by the following
distribution obtained from the Maxwell distribution (i.e., assuming that the three components of the
velocity are Gaussian and independent):

PG(x) = 3√
π

√
3

2
x exp

(
−3

2
x

)
. (A5)

3This relation is simply obtained from the relation between the joint PDF and the conditional PDF:
P(a2, ε, K ) = P(a2|ε, K )P(ε, K ) = P(a2|ε, K )P(K|ε)P(ε) and the relation between the joint probability den-
sity of a2, ε, K and a2, ε: P(a2, ε) = ∫ dKP(a2, ε, K ).
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FIG. 14. (Left) Average of the kinetic energy conditioned on the local dissipation rate from our DNS
for Reλ = 50, 90, 150, 230, and 380 in continuous lines from orange to black, respectively, and compari-
son with the relation 〈K|ε〉/〈K〉 = 0.4 ln(ε/〈ε〉). (Right) Probability density function of the kinetic energy
conditioned on the dissipation rate, normalized by its average 〈K|ε〉, from our DNS at Reλ = 380 for
ε/〈ε〉 = 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 50 ± 30% from orange to black. Comparison with the marginal
PDF of the kinetic energy in dashed line and with the PDF (A5) in dotted line.

Note that the average of this distribution is indeed unity:
∫

xPG(x)dx = 1. With this expression for
PG the integral of Eq. (A4) can be computed as

A−1
ε =

∫
dK∗ exp(α∗K∗)PG(K∗) =

(
1 − 2

3
α∗
)−3/2

. (A6)

Thus, according to Eq. (A2), we have for cε

cε = Aε 〈a2|ε〉/a2
η. (A7)

The dependence of Aε with ε explains the deviation of the power-law behavior between 〈a2|ε, K〉
and 〈a2|ε〉 observed in Fig. 2(b) for ε � 〈ε〉.

It is notable that the integral Aε converges only if α∗ < 3/2. This observation suggests that the
dependence of 〈K|ε〉/〈K〉 on ε should decrease as the Reynolds number increases to allow α∗
to remains lower than 3/2 even for the most intense fluctuations of ε/〈ε〉, and thus ensuring the
convergence of the integral. Therefore, the larger the Reynolds number, the weaker the dependence
of 〈K|ε〉/〈K〉 on ε. This is consistent, with the statistical independence between the local values of
the kinetic energy and of the dissipation at large Reynolds numbers, in line with scale separation of
the turbulent cascade. Accordingly, we simply propose to write

cε ≈ A 〈a2|ε〉/a2
η, (A8)

where A = (1 − 2
3α)3/2, which is equal to A = 7

√
7/27 ≈ 0.686, for α = 1/3, neglecting the small

logarithmic dependence in ε/〈ε〉.

APPENDIX B: ANALYTICAL ESTIMATION OF THE ACCELERATION VARIANCE

Using expression (16) for the conditional acceleration variance, we write the acceleration vari-
ance as

〈a2〉
a2

η

= B
∫ ∞

0
(Z + ε∗)γ P(ε∗)dε∗, (B1)
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where we introduced γ = 3/2 + β, Z = ( 1
B

a2
0

a2
η
)1/γ and ε∗ = ε/〈ε〉 for simplicity. We can expand the

term within the integral using the generalized binomial series:

(Z + ε∗)γ =
{∑∞

k=0 Cγ ,kZγ−kεk
∗ for ε∗ < Z,∑∞

k=0 Cγ ,kZkε
γ−k
∗ for ε∗ > Z,

(B2)

with Cγ ,k = (γk ) = 1
k!

∏k−1
i=0 (γ − i) the generalized binomial coefficient. In particular, we have

Cγ ,0 = 1 and Cγ ,1 = γ . Splitting the integral in Eq. (B1) enables us to write

〈a2〉
a2

η

= B
∞∑

k=0

Cγ ,k

[
Zγ−k

∫ Z

0
εk
∗P(ε∗)dε∗ + Zk

∫ ∞

Z
εγ−k
∗ P(ε∗)dε∗

]
. (B3)

The two integrals are partial moments of the normalized dissipation rate. Considering that ε∗ follows
the log-normal distribution with parameters μ and σ 2, with the change of variable x = (ln ε∗ −
μ)/

√
σ 2, we can express the partial moments of order n as∫ ∞

Z
εn
∗P(ε∗)dε∗ = exp(nμ + n2σ 2/2)

∫ ∞

(ln Z−μ)/
√

σ 2
exp(−(x − n

√
σ 2)2/2)dx = 〈εn

∗〉�(Z, n),

(B4)

with �(Z, n) = 1
2 − 1

2 er f ( ln Z−μ√
2σ 2

− n
√

σ 2√
2

). Note that since 〈ε∗〉 = 1, we have μ = −σ 2/2 which

gives for the regular moments 〈εn
∗〉 = exp(σ 2n(n − 1)/2) and �(Z, n) = 1

2 − 1
2 er f [ ln Z+σ 2(n−1/2)√

2σ 2
].

As well, we have for the other partial moments∫ Z

0
εn
∗P(ε∗)dε∗ = 〈εn

∗〉[1 − �(Z, n)]. (B5)

For the acceleration variance, we obtain eventually the following analytical series expansion

〈a2〉
a2

η

= B
∞∑

k=0

Cγ ,k{Zγ−k〈εk
∗〉[1 − �(Z, k)] + Zk〈εγ−k

∗ 〉�(Z, γ − k)}. (B6)

This expression is observed to converge very rapidly to the numerical evaluation of the integral
(B1), as there is just minute differences when considering only the first three elements of the sum.

For Z and k small, we have �(Z, k) = O(1), which allow us to simplify the relation for the
acceleration variance:

〈a2〉
a2

η

= B
∞∑

k=0

Cγ ,kZk〈εγ−k
∗ 〉. (B7)

The successive terms of the series correspond to corrections of low-Reynolds number effects of
increasingly high order, since Z ∼ Re−1/γ

λ . At leading order we have

〈a2〉
a2

η

= B〈εγ
∗ 〉, (B8)

while the first-order correction gives

〈a2〉
a2

η

= B(〈εγ
∗ 〉 + γ Z〈εγ−1

∗ 〉). (B9)
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FIG. 15. PDF of the acceleration conditional on the dissipation and the kinetic energy P(ai|ε, K ) for various
values of ε and K : K/〈K〉 = 0.1, 1, 2.5, and 5 ± 30% from orange to black, respectively, and ε/〈ε〉 = 0.05,
0.3, 1, 5, and 10 ± 30% shifted, respectively, by one decade upward. Comparison with the acceleration PDF
conditioned only by the dissipation in gray dashed line, and with the unconditional PDF in dotted gray line.
Each PDF is normalized by its standard deviation. Data from our DNS at Reλ = 380.

With σ 2 = 3/8 ln Reλ/Rc as proposed by Ref. [12], the leading order expression (B8) gives Eq. (19),
and the first-order expression reads

〈a2〉
a2

η

= B

(
Reλ

Rc

)3/16γ (γ−1)
[

1 + γ

(
1

B

a2
0

a2
η

)1/γ(Reλ

Rc

)−3/8(γ−1)
]
. (B10)

This later expression is seen in Fig. 9 to give a very good approximation of Eq. (16).

APPENDIX C: CONDITIONAL PDF OF THE ACCELERATION

We complete the statistical description of the conditional acceleration by showing, in Fig. 15,
its probability density function (PDF). In this figure, we compare the PDF of the acceleration
conditional on the dissipation and the kinetic energy, with the PDF conditioned only by the
dissipation and with the unconditional PDF obtained from our DNS at Reλ = 380. All the PDFs
are normalized by their respective standard deviation. It is observed that the conditional PDFs
present much less developed tails than the unconditional PDF. Moreover, the doubly conditional
PDFs overlap with the simply conditional PDF, showing that conditioning by the velocity does not
alter the shape of the PDF. As well the shape is observed to be invariant for all values of ε, supporting
the idea of a canonical distribution presented in Ref. [97].

APPENDIX D: MODELING OF THE DISSIPATION RATE

1. Dissipation as multiplicative cascade process

The image of the energy cascade is naturally associated with multiplicative processes [49,71–
75]. Such model proposes to express the locally space-averaged dissipation over a volume of size
� = Lλn, with L the large scale of the flow and λ < 1, as

εn = ε0
ε1

ε0
· · · εn

εn−1
= ε0

n∏
i=1

ξi. (D1)
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Assuming that ξi = εi/εi−1 are independent positive random numbers with identical distribution
across scales we write

ln
εn

ε0
=

n∑
i=1

ln ξi. (D2)

Therefore, according to the central limit theorem the term on the right must present a normal
distribution with parameters μ = nμξ and σ 2 = nσ 2

ξ . The parameters μξ and σ 2
ξ appear as fun-

damental unknowns, but can nevertheless be related with the relation μξ = −σ 2
ξ /2 obtained from

the moments of a log-normal variable to guarantee that the average energy flux is conserved
throughout the cascade. Setting � = η (i.e. n = ln(η/L)/ ln λ ∼ ln Reλ) we obtain a model for
the local dissipation rate. The log-normal distribution for ε has been confirmed, for example, by
DNS of Ref. [12]. Moreover, for the variance of the logarithm of the local dissipation rate is
then σ 2 = σξ

ln λ
ln η/L = A + B ln Reλ as predicted by Kolmogorov and Oboukhov [35,69]. Such

evolution for σ 2 has been also confirmed by the DNS of Ref. [12] showing that σ 2 ≈ 3/8 ln Reλ/10.
Such multiplicative process also implies a logarithmic evolution of the spatial correlation of the

dissipation rate as explained by Mandelbrot [98]. We consider the dissipation rate at two points A
and B, εA

n and εB
n , both defined on the same scale n. The points A and B are separated by a distance

L > r > η from each other and we note k = ln(r/L)/ ln λ, then 0 < k < n. Clearly, the greater the
distance between the two points, the larger the scale of their common root in the cascade:

εA
n = εAB

0
εAB

1

εAB
0

· · · εAB
k

εAB
k−1

εA
k+1

εA
k

· · · εA
n

εA
n−1

, (D3)

εB
n = εAB

0
εAB

1

εAB
0

· · · εAB
k

εAB
k−1

εB
k+1

εB
k

· · · εB
n

εB
n−1

. (D4)

In the two previous equations, we have distinguished by the exponents A and B the variables which
are specific to points A and B and by AB those which are common. This can be expressed as

ln
εA

n

ε0
=

k∑
i=1

ln ξAB
i +

n∑
i=k+1

ln ξA
i , (D5)

ln
εB

n

ε0
=

k∑
i=1

ln ξAB
i +

n∑
i=k+1

ln ξB
i . (D6)

The correlation between ln εA
n and ln εB

n is defined as

Rln ε(r) =
〈(

ln
εA

n

ε0
− μ

)(
ln

εB
n

ε0
− μ

)〉
=
〈

ln
εA

n

ε∗
ln

εB
n

ε∗

〉
, (D7)

where we noted ε∗ = ε0eμ. Introducing similarly ξ∗ = eμχ and ξ ′ = ξ/ξ∗ we express the correlation
as

Rln ε =
〈

n∑
i=1

(
ln ξA

i − μξ

) n∑
j=1

(
ln ξB

i − μξ

)〉 =
〈

n∑
i=1

ln ξ ′ A
i

n∑
j=1

ln ξ ′ B
j

〉

=
〈(

k∑
i=1

ln ξ ′ AB
i +

n∑
i=k+1

ln ξ ′ A
i

)⎛⎝ k∑
j=1

ln ξ ′ AB
j +

n∑
j=k+1

ln ξ ′ B
j

⎞
⎠〉

=
k∑

i=1

k∑
j=1

〈
ln ξ ′ AB

i ln ξ ′ AB
j

〉+ k∑
i=1

n∑
j=k+1

〈
ln ξ ′ AB

i ln ξ ′ AB
j

〉
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+
n∑

i=k+1

k∑
j=1

〈
ln ξ ′ A

i ln ξ ′ AB
j

〉+ n∑
i=k+1

n∑
j=k+1

〈
ln ξ ′ AB

i ln ξ ′ B
j

〉

=
k∑

i=1

k∑
j=1

δi jσ
2
ξ = kσ 2

ξ . (D8)

To obtain this result we used the hypothesis that within the same branch the events at a given scale
are independent of those at another scale, 〈ln ξ ′ AB

i ln ξ ′ AB
j 〉 = δi jσ

2
ξ , as well as vanishing correlation

between branches A and B: 〈ln ξ ′ A
i ln ξ ′ B

j 〉 = 0. This gives a logarithmic evolution of the correlation
coefficient ρln ε = Rln ε/σ

2, in the range η < r < L:

ρln ε =
〈

ln εA
n

ε∗
ln εB

n
ε∗

〉
〈

ln2 εn
ε∗

〉 = k

n
= ln L/r

ln L/η
= 1 − ln r/η

ln L/η
. (D9)

Although not trivial, this result can be transposed for the temporal correlation along particle path
[99–102]. The logarithmic behavior of the correlation is confirmed by DNS, as it can be seen in
Ref. [82] where the evolution of the Lagrangian correlation of the logarithm of the dissipation is
presented.

2. Stochastic modeling of the dissipation

It has been proposed to model the dissipation rate as stochastic multiplicative process. Such
process can be generically expressed as

dε = ε�dt + ε�dW, (D10)

with dW the increment of the Wiener process (〈dW = 0 and 〈dW 2〉 = dt) and where � and � are
to be determined.

Considering that ε follows a log-normal distribution with parameter σ 2 and μ = −σ 2/2, we
define the standard normal variable χ (Gaussian random variable with zero mean and unit variance)
as

ε

〈ε〉 = exp(σχ − σ 2/2). (D11)

A stochastic process for χ has to be given to obtain the stochastic process for ε, via the Ito
transformation.

Pope and Chen [40] proposed to obtain χ from an Orstein-Uhnlebbeck process with a character-
istic time τε:

dχ = − χ

τε

dt +
√

2

τε

dW. (D12)

According to the Ito formula, this gives for � and �

� = −(ln ε/〈ε〉 − σ 2/2)/τε, (D13)

� =
√

2σ 2/τε. (D14)

This process gives as expected log-normal distribution for ε (normal distribution for χ ) as
well as an exponential decrease of the correlation of ln ε with a characteristic time τε. This
exponential behavior is not consistent with the multiplicative cascade model as discuss above. It
rather corresponds to a direct energy transfer from large to small scales.
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FIG. 16. Correlation of χ for various values of τε/τc.

To ensure a logarithmic decorrelation of the dissipation, Chevillard [81] proposed to adapt the
Gaussian multiplicative chaos introduced by Mandelbrot [98]. This leads to a multifractal model in
which the increment of the Wiener process in Eq. (D12) is replaced by a fractional Gaussian noise:

dχ = − χ

τε

dt + 1

�
dW 0

τc
, (D15)

where dW 0
τc

is formally a fractional Gaussian noise with a 0 Hurst exponent, regularized at a
timescale τc, and � is a normalization factor ensuring unit variance for χ . The value of � is
dependent on the specific regularization of dW 0

τc
. As explained in Ref. [81] this process can be

reexpressed as

dχ (t ) =
(

− χ

τε

+ �

�

)
dt + 1√

�2τc

dW, (D16)

with dW the increments of a standard Wiener process and � corresponds to a convolution of the
Wiener increments:

� = −1

2

∫ t

−∞
(t − s + τc)−3/2dW (s), (D17)

where dW (s) is the increments of the same realization of the Wiener process as in Eq. (D16).
In Eq. (D17), the regularization time τc prevent the divergence of the kernel when s → t . The
normalization factor � is estimated as � = 〈X 2〉 where X obey the stochastic Eq. (D16) in which
� has been set to 1.

The stochastic process (D16) gives a logarithmic correlation for χ : 〈χ (t )χ (t − s)〉 ∼ ln τε

s for
τc 	 s 	 τε, as illustrated in the Fig. 16.

With the Ito transformation, we obtain the process for ε from (D16). This gives for � and �:

� =
(

− ln
ε

〈ε〉 + σ 2

2�2

(
τε

τc
− �2

)
+ σ

�
�τε

)/
τε, (D18)

� =
√

σ 2

�2τc
. (D19)
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FIG. 17. One realization of the integral (D17) as a function of the lower bound of the integral for dt =
τc/100. Comparison between the direct calculation of the history integral (D17) (black line) and the optimized
calculation with Ns = 12 (red crosses).

3. Efficient calculation of the stochastic convolution �

To obtain a stationary process the lower bound of the integration is set to −∞. For the numerical
computation of this integral, the lower limit has to be truncated. We present in Fig. 17 one realization
of the evolution of the integral �(t, τ ) = − 1

2

∫ t
t−τ

(t − s + τc)−3/2dW (s) when the lower bound
varies. We see that for values larger than τε the integral converges to a value (which remains
random). In addition, the convergence threshold does not seem to depend on the time step used.
So in practice � will be calculated with a lower-bound set to t − 5τε.

To obtain these calculations, the integral (D17) giving the value of � at time tn = n dt has been
discretized as proposed by Ref. [81],

�n = −1

2

Nhist∑
m=0

(sm + τc)−3/2 dWn−m, (D20)

with sm = tn − tn−m = m dt , Nhist = 5τε/dt , and dWn−m the increment of the Wiener process at time
(n − m)dt .

This direct calculation requires a lot of memory to keep the last Nhist instants and requires a very
large number of operations, of the order of Nt × Nhist where Nt is the number of time steps of the
simulation. Thus, this direct method is difficult to use in practice when τε/τη ∼ Reλ becomes large.

For this reason, Ref. [81] proposed to speed up significantly the calculation using the fast
Fourier transforms (FFT). The integral at time n dt is then computed as �n = −1/2zn where
zn = FFT −1(Zk ) is given by the inverse Fourier transform of Zk . Zk = Xk Yk is the convolution
in spectral space between xn and yn [Xk = FFT (xn) and Yk = FFT (yn)], where xn and yn are the
sequences dWn and (sn + τc)−3/2 padded with zeros such that they have N > Nhist + Nt points. This
algorithm is indeed much faster. Nevertheless, the memory occupation becomes more important
since all the values of the sequence dWn must be known simultaneously to calculate the Fourier
transform, which limits the possibility of using this algorithm for large Reynolds numbers.

Such limitation can be overcome by using the approach proposed in Ref. [82] based on the
inverse Laplace transform of the convolution kernel. In this approach � is estimated as a weighted
sum of correlated Orstein-Uhlenbeck processes with characteristic time ranging from τc to τε.

Despite its efficiency, neither this technique, nor the one based on FFT, can be used to determine
the �̂ that appears in the vectorial stochastic model for the acceleration, or as noted by Ref. [78]
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FIG. 18. Diagram illustrating the coarse-graining of the integral (D17) and the nonuniform update of the list.

for velocity gradients. Indeed, in such cases it is not the increments of the components of the
Wiener process which are convoluted but a projection of them as shown in Eq. (48). The issue
is that the projection cannot by computed a priori, because it requires knowing ai and ui, as seen in
Eq. (49).

For these reasons we propose a new algorithm which is fast, using a limited amount of memory
and which only requires knowing the dWn sequentially. This algorithm is derived from the one
introduced for nonstochastic integrals in Ref. [58]. As we go back in the past, we can afford to
remember with less precision the noise entering this integral, since the kernel decreases with the
lag. We will thus proceed by progressive “coarse graining” and group together the oldest dWn, by
introducing an increasingly extended local average. We then decompose the sum of Eq. (D20) into
subsums comprising an increasing number of terms:

−2�n =
Nhist∑
m=0

(sm + τc)−3/2 dWn−m

=
me1∑

m=ms1

(sm + τc)−3/2 dWn−m + · · · +
meN∑

m=msN

(sm + τc)−3/2 dWn−m

=
N∑

j=1

me j∑
m=ms j

(sm + τc)−3/2 dWn−m

≈
N∑

j=1

(s j + τc)−3/2 dW j, (D21)

where we introduced s j = (me j + ms j )dt/2 and dW j =∑me j
m=ms j

dWn−m such that (s j +
τc)−3/2 dW j ≈∑me j

m=ms j
(sm + τc)−3/2 dWn−m. The bounds me j and ms j are progressively spaced as

j increases leading to an increasingly coarse splitting of the integral. This approximation of the
integral can be carried out very efficiently by using a nonhomogeneous list updating for dW . The
first elements of the list are updated every time steps and the older ones less and less regularly, as
described in the diagram of Fig. 18. In detail, we update the first Ns elements of the list at each time
step, the following Ns every two time steps, and the elements between iNs and (i + 1)Ns are only
updated every 2i iterations. Thus, with n × Ns elements in the list we can estimate the integral going
up to

∑n
i=0 Ns 2idt = 2Ns(2n − 1)dt in the past. This gives a considerable saving in computation

time and memory with good accuracy as it is illustrated in Fig. 17. For all the calculation presented
in this paper we have used Ns = 12.
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