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The elemental equation governing heat transfer in aerodynamic flows is the internal
energy equation. For a boundary layer flow, a double integration of the Reynolds-averaged
form of this equation provides an expression of the wall heat flux in terms of the
integrated effects, over the boundary layer, of various physical processes: turbulent dis-
sipation, mean dissipation, turbulent heat flux, etc. Recently available direct numerical
simulation data for a Mach 11 cold-wall turbulent boundary layer allows a comparison of
the exact contributions of these terms in the energy equation to the wall heat flux with
their counterparts modeled in the Reynolds-averaged Navier-Stokes (RANS) framework.
Various approximations involved in RANS, both closure models as well as approximations
involved in adapting incompressible RANS models to a compressible form, are assessed
through examination of the internal energy balance. There are a number of potentially
problematic assumptions and terms identified through this analysis. The effect of com-
pressibility corrections of the dilatational dissipation type is explored, as is the role of
the modeled turbulent dissipation, in the context of wall heat flux predictions. The results
indicate several potential avenues for RANS model improvement for hypersonic cold-wall
boundary-layer flows.
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I. INTRODUCTION

The characterization of turbulent boundary layers in hypersonic conditions has remained an
active research area in the study of aerodynamic flows. The practical significance of such efforts
is that accurate prediction of aerodynamic heating loads remains a challenging and important
topic in hypersonic vehicle design. This article addresses methods for predicting steady-state
heating when the boundary layer is fully turbulent and the wall temperature, Tw, is significantly
lower than the adiabatic recovery temperature, Tr (i.e., cold-wall conditions). Models based on the
Reynolds-averaged Navier-Stokes (RANS) equations continue to be widely used for design and
analysis under such conditions. As is well known, most RANS models were originally developed
for low-speed/incompressible flow, and then extended to compressible flow with typically modest
modifications. Such an approach is justified by the substantial amount of evidence from experi-
ments and direct numerical simulations that indicates that wall-bounded turbulence is essentially
incompressible in nature well into the hypersonic regime, with the effects of compressibility being
felt primarily through variations in mean density and temperature [1]. This approach has been
largely successful for relatively simple supersonic and hypersonic flow configurations involving
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attached flow in the presence of mild pressure gradients and with moderate heat transfer. However,
for hypersonic cold-wall flows, accurate prediction of wall heat flux for turbulent boundary layers
has been inconsistently achieved by many RANS models.

Various previous works have considered the validation of RANS models for prediction of aerody-
namic heating in hypersonic flow. MacLean et al. [2] compared RANS solutions to surface heat flux
measurements obtained from the HIFiRE-1 ground test campaign. The HIFiRE geometry consisted
of a conical forebody with cylindrical afterbody, and the validation assessment included data for
the forebody with fully turbulent boundary layer. Calculations at free stream Mach numbers of 6.6
and 7.2 were made, with cold-wall surface conditions. The one- and two-equation RANS models
that were tested tended to overpredict wall heat flux, while an algebraic model (Baldwin-Lomax)
gave the best results. The authors noted that they considered only cases for the HIFiRE trajectory
nominal conditions near Mach 7, but that they also measured other test articles at higher Mach
number conditions, and results showed some cases where the error in the predictions became worse
at higher speeds. Predictions of a k-ω turbulence model gave similar overpredictions compared to
measured wall heat flux on the HIFiRE-1 flight test at Mach 5.1 [3]. Gnoffo et al. [4] included
a Mach 11 cold-wall flat-plate case in their assessment of RANS models for hypersonic re-entry
flows. Popular one- and two-equation RANS models overpredicted the wall heat flux for this case
by as much as 35%, while algebraic models performed better; similar findings and assessment of
RANS solutions versus direct numerical simulation (DNS) for this flow were reported in Huang
et al. [5]. Aiken et al. [6] studied the performance of three RANS models for predicting mean
velocity profile, mean temperature profile, wall shear stress, and wall heat flux for a variety of
compressible turbulent boundary layers, including cold-wall boundary layers, up to Mach 14 (and
including the Mach 11 case mentioned above). They found that none of the models accurately
predicted wall shear stress or heat flux (in comparison to DNS) for the Mach 11 and Mach
14 cases, and that errors in these quantities increased with increasing Reynolds number. More
accurate heat flux predictions can be made by applying compressibility corrections to the two-
equation models, but often at the expense of worsening agreement with measured wall shear stress
[4,7] and/or temperature profile [6]. A number of papers have demonstrated good predictions of
hypersonic, cold-wall heat flux for simple flow configurations using algebraic turbulence models
[5,8–10]. However, algebraic models do not generalize to more complicated geometries and flow
topologies as readily as transport equation-based models, and thus the latter are often used for
vehicle design and analysis. The agreement of RANS models with experimental measurements
and DNS certainly depends upon the particular flow conditions and models considered. For ex-
ample, Huang et al. [11] showed decent agreement between several RANS models and DNS of
a Mach 8 turbulent boundary layer with wall-to-recovery temperature ratio of 0.48 at relatively
low Reynolds numbers. Nonetheless, to date, there has been little analysis available to explain the
uneven performance of this class of models on simple flat plate and conical flows. The present work
aims to address this gap by elucidating problematic turbulence modeling strategies and assump-
tions, so that these can be improved upon in future versions of turbulence models for hypersonic
flow.

Our approach is to examine RANS model formulations and their predictions of wall heat flux
using integral expressions relating terms in the internal energy equation to the wall heat flux. Similar
expressions were originally derived by Fukagata et al. [12] for decomposition of wall shear stress
into integral term contributions for incompressible plane channel, pipe, and boundary-layer flows.
This class of integral expressions is often referred to in the literature as a Fukagata-Iwamoto-Kasagi
(FIK) decomposition. Gomez et al. [13] extended the analysis of wall shear stress to compress-
ible plane channel and boundary-layer flows, identifying a “compressible” term associated with
temperature-dependent viscosity and a “compressible-turbulent interaction” term associated with
correlation of viscosity-strain fluctuations; see also Ref. [14] for further extensions and application
of this decomposition. Fukagata et al. [15] derived an expression for the contribution of the turbulent
heat flux to the wall heat flux for incompressible wall-bounded turbulence. Later, Ebadi et al. [16]
obtained exact integral expressions for the incompressible wall heat flux that contain no explicit
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FIG. 1. Comparisons of RANS model results with DNS and experimental data for Mach 11 flat-plate
turbulent boundary layer.

stream-wise gradient terms. Zhang and Xia [17] utilized the internal energy equation to derive
integral expressions for the wall heat flux for compressible isothermal-wall plane channel flow.
They found that the mean viscous dissipation gave the largest contribution to the wall heat flux for
Mach numbers of 0.5, 1.5, and 3.0, while turbulent dissipation was also found to be a significant
contributor; the contribution of the turbulent heat flux was modest and comparable to that of the
molecular heat flux. Wenzel et al. [18] utilized the momentum and total enthalpy boundary layer
equations to derive FIK-style integral relationships that were subsequently used to assess effects
of compressibility, pressure gradient, and heat transfer on subsonic to low-supersonic turbulent
boundary layers.

In the present work, we consider a turbulent flat-plate boundary layer at a nominal free stream
Mach number of 11, and with a cold wall (Tw/Tr = 0.20), for which DNS results [19], as well
as experimental measurements of wall shear stress and wall heat flux [4], are available. Figure 1
compares wall shear stress and wall heat flux distributions between experiment, DNS, and the
RANS results from the present work. For wall shear stress, reasonable agreement is observed
between experiment, DNS, and RANS, given the level of uncertainty in the measurements. The
RANS models give a rather broad range of predictions, with the lowest values given by the SST
model with Zeman compressibility correction, where wall shear appears to be underpredicted.
Notably, the slope of the RANS model predictions with increasing stream-wise distance is shallower
than that of the DNS distribution. For wall heat flux, some discrepancy between experiment
and DNS is observed. For larger values of stream-wise distance x (and, hence, larger Reynolds
number), the discrepancy appears as a bias, with DNS and experiment showing similar slopes of
the distribution. The RANS results without the compressibility correction give a shallower slope
for larger x and overpredict both the DNS and the experimental measurements. Relative to the
DNS, the wall heat flux is overpredicted by more than 10% for the largest Reynolds number,
with the prediction error increasing with increasing Reynolds number. For this canonical flow, it
is desirable to reduce this error and to employ models with correct Reynolds number dependence
of the wall heat flux. Failure of models to capture correct dependence of wall heat flux on
Reynolds number may lead to larger errors for predictions on flight vehicles, where Reynolds
number may exceed levels typically achieved in validation experiments conducted in wind tunnel
facilities.

The main contribution of this work is to utilize the internal energy equation to compare the
integrated wall heat flux budgets between RANS and DNS, and to explain how the RANS model
and resulting solutions lead to predictions of surface heat flux. The perspective and methods used
here are similar to those of Pond et al. [20], who used integral FIK relations for wall shear stress
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and heat flux to validate RANS models for prediction of reciprocating, nonisothermal channel flow.
The present analysis provides a connection, heretofore unavailable, between RANS model forms,
resulting solution fields, and the generated surface heat flux prediction for cold-wall hypersonic
turbulent boundary layers.

In Sec. II, we present the exact averaged internal energy equation as well as implied forms of
this equation solved by some common RANS models. In Sec. III, we derive the double-integrated
internal energy equation, which provides a decomposition of the wall heat flux for a spatially de-
veloping compressible turbulent boundary layer. Section IV describes the RANS models evaluated
later in this paper. Section V describes the DNS data set and examines the heat flux budget given by
the DNS solution. Section VI presents comparisons between the DNS and RANS models using the
integral relations from Sec. III. The implications of the results for turbulence modeling strategies
are discussed in Sec. VII, with conclusions given in Sec. VIII.

II. INTERNAL ENERGY EQUATIONS

A. Evolution equation for internal energy

In this section, we present various forms of the internal energy equation for compressible flow
of a single-species, nonreacting gas. Total energy is conserved, as expressed in the following
equation:

∂

∂t

(
ρe + ρ

uiui

2

)
+ ∂

∂x j

(
ρu jh + ρu j

uiui

2

)
= ∂

∂x j
(u jti j ) − ∂q j

∂x j
. (1)

Here, ρ is the density, e is the specific internal energy, ui is the velocity vector, h = e + p/ρ is the
enthalpy with pressure p, and qj = −κ ∂T

∂x j
is the molecular heat flux vector, with temperature T and

thermal conductivity κ . The viscous stress tensor is ti j = 2μSi j − 2
3μ∂uk

∂xk
δi j where Si j = 1

2 ( ∂ui
∂x j

+
∂u j

∂xi
) and μ is the molecular viscosity.
The evolution equation for kinetic energy per unit volume is obtained by taking the dot product

of the velocity and the momentum equation, resulting in

∂

∂t

(
ρ

uiui

2

)
+ ∂

∂x j

(
ρu j

uiui

2

)
= − ∂

∂x j
(u j p) + p

∂u j

∂x j
+ ∂

∂x j
(uiti j ) − ti j

∂ui

∂x j
. (2)

Taking the difference between (1) and (2) gives the following equation governing the evolution of
internal energy:

∂

∂t
(ρe) + ∂

∂x j
(ρu je) = −∂q j

∂x j
− p

∂u j

∂x j
+ ti j

∂ui

∂x j
. (3)

Note that the definition of enthalpy has been used to combine the pressure flux term in (2), ∂
∂x j

(u j p),
with the convective flux of enthalpy in (1), ∂

∂x j
(ρu jh), to arrive at the form (3). This point is relevant

to modeling considerations discussed in Sec. II C. The left-hand side of (3) is equivalent (after
application of mass conservation) to the density times the material derivative of e. The terms on the
right-hand side are the divergence of the molecular heat flux, the work due to volumetric expansion
or compression, and viscous dissipation, respectively.

B. Exact averaged internal energy equation

For engineering calculations, averaged equations of motion are often used to find solutions
for averaged quantities of interest. To this end, we introduce the Favre decomposition for the
temperature, internal energy, and velocity fields and the Reynolds decomposition for the pressure
and viscous stress. The Favre decomposition of a variable f is f = { f } + f ′′, where { f } is the
density-weighted time or ensemble average of f and f ′′ is the fluctuation about { f }. The Reynolds

084604-4



INTERNAL ENERGY BALANCE AND AERODYNAMIC …

decomposition is f = 〈 f 〉 + f ′, where 〈 f 〉 is the time or ensemble average of f and f ′ is the
fluctuation about 〈 f 〉. Taking the Reynolds average of (3) and assuming statistical stationarity of
the flow so that the time derivative term is removed lead to

∂

∂x j
(〈ρ〉{u j}{e})︸ ︷︷ ︸

Mean Convection

+ ∂

∂x j
〈ρu′′

j e
′′〉︸ ︷︷ ︸

Turbulent Heat
Transfer

= − ∂〈q j〉
∂x j︸ ︷︷ ︸

Molecular Heat
Transfer

−〈p〉∂{u j}
∂x j

− 〈p〉∂〈u′′
j 〉

∂x j︸ ︷︷ ︸
Mean Pressure Dilatation

−
〈

p′ ∂u′′
j

∂x j

〉
︸ ︷︷ ︸
Turbulent
Pressure

Dilatation

+ 〈ti j〉∂{ui}
∂x j

+ 〈ti j〉∂〈u′′
i 〉

∂x j︸ ︷︷ ︸
Mean Dissipation

+
〈
t ′
i j

∂u′′
i

∂x j

〉
︸ ︷︷ ︸

Turbulent
Dissipation

. (4)

If the Reynolds decomposition is used for velocity in the pressure-dilatation and dissipation terms,
a more succinct form of (4) results:

∂

∂x j
(〈ρ〉{u j}{e})︸ ︷︷ ︸

Mean Convection

+ ∂

∂x j
〈ρu′′

j e
′′〉︸ ︷︷ ︸

Turbulent Heat
Transfer

= − ∂〈q j〉
∂x j︸ ︷︷ ︸

Molecular
Heat

Transfer

−〈p〉∂〈u j〉
∂x j︸ ︷︷ ︸

Mean
Pressure

Dilatation

−
〈

p′ ∂u′
j

∂x j

〉
︸ ︷︷ ︸

Turbulent
Pressure

Dilatation

+〈ti j〉∂〈ui〉
∂x j︸ ︷︷ ︸

Mean
Dissipation

+
〈
t ′
i j

∂u′
i

∂x j

〉
︸ ︷︷ ︸

Turbulent
Dissipation

.

(5)

In (5), the mean pressure dilatation and mean dissipation contain only Reynolds-averaged terms,
and the property 〈 f ′g′′〉 = 〈 f ′g′〉 has been used in the turbulent pressure dilatation and turbulent
dissipation terms. The form (4) is consistent with the usual approach in RANS modeling where the
Favre-averaged velocity is employed for all terms, highlighting the extra terms involving derivatives
of 〈u′′

i 〉 which appear in this context. In (4) and (5), and in the remainder of the paper, we use the
abbreviated terminology “turbulent dissipation” to mean “rate of dissipation of turbulence kinetic
energy.”

C. Approximate averaged energy equations

In this section, we derive the averaged internal energy equation using typical RANS modeling
assumptions. Most compressible RANS model implementations solve the conservative form of the
governing equations. Therefore, we begin our derivation with the averaged form of the total energy
equation (1), again assuming time stationarity:

∂

∂x j

(
〈ρ〉{u j}

[
{h} + {ui}{ui}

2
+ {u′′

i u′′
i }

2

])
+ ∂

∂x j
(〈ρ〉{u′′

j h
′′})

= −∂〈q j〉
∂x j

+ ∂

∂x j

(
〈ti ju

′′
i 〉 − 〈ρ〉

{
u′′

j

u′′
i u′′

i

2

})
+ ∂

∂x j
({ui}〈ti j〉 − {ui}〈ρ〉{u′′

i u′′
j }). (6)

To derive an equation for Favre-averaged internal energy from (6), we must subtract an equation for
the mean component of the Favre-averaged kinetic energy and an equation for the turbulence kinetic
energy. The former is derived from the Favre-averaged momentum equation, and can be written as

∂

∂x j

(
〈ρ〉{u j} {ui}{ui}

2

)
= − ∂

∂x j
(〈p〉{u j}) + 〈p〉∂{u j}

∂x j
+ ∂

∂x j
({ui}〈ti j〉)

− 〈ti j〉∂{ui}
∂x j

− ∂

∂x j
(〈ρ〉{ui}{u′′

i u′′
j }) + 〈ρ〉{u′′

i u′′
j }

∂{ui}
∂x j

. (7)
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Subtracting (7) from (6) gives

∂

∂x j

(
〈ρ〉{u j}

[
{h} + {u′′

i u′′
i }

2

])
+ ∂

∂x j
(〈ρ〉{u′′

j h
′′})

= −∂〈q j〉
∂x j

+ ∂

∂x j

(
〈ti ju

′′
i 〉 − 〈ρ〉

{
u′′

j

u′′
i u′′

i

2

})
+ ∂

∂x j
(〈p〉{u j})

− 〈p〉∂{u j}
∂x j

+ 〈ti j〉∂{ui}
∂x j

− 〈ρ〉{u′′
i u′′

j }
∂{ui}
∂x j

. (8)

Equation (8) is exact, as no assumptions or modeling approximations have yet been applied. The
exact equation for turbulence kinetic energy, k = {u′′

i u′′
i }

2 , is

∂

∂x j
(〈ρ〉{u j}k) = − 〈ρ〉{u′′

i u′′
j }

∂{ui}
∂x j

−
〈
t ′
i j

∂u′′
i

∂x j

〉
− 〈ti j〉∂〈u′′

i 〉
∂x j

+ ∂

∂x j

(
〈ti ju

′′
i 〉 − 〈ρ〉

{
u′′

j

u′′
i u′′

i

2

})
− ∂〈p′u′′

j 〉
∂x j

− 〈u′′
i 〉

∂〈p〉
∂xi

+
〈

p′ ∂u′′
i

∂xi

〉
. (9)

Subtracting (9) from (8) leads to the averaged internal energy equation (4). To reach the form (4),
the following identity [21] is used:

〈ρ〉{u′′
j h

′′} = 〈ρ〉{u′′
j e

′′} + 〈p′u′′
j 〉 + 〈p〉〈u′′

j 〉. (10)

RANS models that solve an equation for k apply various assumptions and closures to (9), which
can impact the internal energy equation that is effectively satisified by solutions to the full system
of RANS conservation equations. These effects become evident by applying these approximate
treatments to (9) and then subtracting the resulting equation from (8). In many two-equation model
formulations, the last three terms appearing in (9)—pressure diffusion, pressure work, and turbulent
pressure dilatation, respectively—are ignored. Additionally, the dissipation term 〈ti j〉 ∂〈u′′

i 〉
∂x j

is either
ignored or is included in the definition of turbulent dissipation [22]. With these modeling approxi-
mations, the resulting averaged internal energy equation is

∂

∂x j
(〈ρ〉{u j}{e}) + ∂

∂x j
(〈ρ〉{u′′

j e
′′} + 〈p′u′′

j 〉 + 〈p〉〈u′′
j 〉)

= −∂〈q j〉
∂x j

− 〈p〉∂{u j}
∂x j

+ 〈ti j〉∂{u j}
∂x j

+
〈
t ′
i j

∂u′′
i

∂x j

〉
. (11)

The molecular heat flux, turbulent dissipation, mean pressure dilatation, and mean dissipation terms
in (11) all have counterparts in the exact averaged internal energy equation (4). The turbulent
pressure-dilatation term is missing because it was neglected in the k equation. Likewise, the term
〈ti j〉 ∂〈u′′

i 〉
∂x j

is missing because it, too, was neglected in the k equation. Surprisingly, a spurious
turbulent energy flux appears in (11), resulting from neglect of the pressure diffusion and pressure
work terms. The total turbulent energy flux term in (11) is actually the turbulent enthalpy flux [by
(10)], and can be written

∂

∂x j
(〈ρ〉{u′′

j e
′′} + 〈p′u′′

j 〉 + 〈p〉〈u′′
j 〉) = ∂

∂x j
(〈ρ〉{u′′

j e
′′} + 〈p′u′′

j 〉) + 〈p〉∂u′′
j

∂x j
+ 〈u′′

j 〉
∂〈p〉
∂x j

. (12)

Equation (12) shows that the neglect of the pressure diffusion term leads to its inclusion as a spurious
part of the turbulent energy flux. The third term on the right-hand side of (12), when combined with
the term 〈p〉 ∂{u j }

∂x j
in (11), gives the mean pressure-dilatation term from the exact equation (4). The

last term in (12) is an additional spurious contribution due to neglect of the pressure work term.
Thus, neglect of the pressure diffusion and pressure work terms have had an undesirable effect
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on the effective internal energy balance, with potential implications for how the model represents
turbulent transfer of heat.

A common modification applied to turbulence models is to neglect the turbulence kinetic
energy in the total energy. The rationale for this approximation is that, for many flows k � {h},
and the turbulence kinetic energy has a negligible effect on the total energy balance. With this
approximation, and assuming stationary flow, such that the time derivative term is zero, the total
energy equation is

∂

∂x j

[
〈ρ〉{u j}

(
{h} + {ui}{ui}

2

)]
+ ∂

∂x j
[〈ρ〉({h′′u′′

j } + {ui}{u′′
i u′′

j })] = ∂

∂x j
(〈ti j〉{ui} − 〈q j〉). (13)

Subtracting (7) from (13) and rearranging terms as before leads to the following effective internal
energy equation:

∂

∂x j
(〈ρ〉{u j}{e}) + ∂

∂x j
(〈ρ〉{u′′

j e
′′} + 〈p′u′′

j 〉 + 〈p〉〈u′′
j 〉)

= −∂〈q j〉
∂x j

− 〈p〉∂{u j}
∂x j

+ 〈ti j〉∂{u j}
∂x j

− 〈ρ〉{u′′
i u′′

j }
∂{ui}
∂x j

. (14)

The same deficiencies appear in (14) as in (11), namely, the absence of a turbulent pressure-
dilatation term and the appearance of spurious contributions to the turbulent energy flux. In addition,
the turbulent dissipation is missing from (14); in its place appears a production term (the fourth
term on the right-hand side). Van Driest similarly neglected k in his energy analysis for turbulent
boundary layers and derived similar production terms in a mean energy equation, which he deemed
“apparent dissipation” [23]. In some regions of turbulence, where production is approximately
balanced by dissipation, this form of the internal energy equation may be adequate. However, in
other regions of the flow, in particular where the magnitude of turbulent dissipation is significant
relative to other terms in the energy balance, this formulation could lead to inaccuracies.

We conclude this section by noting that for turbulence models that do not solve an equation for
k, the total energy equation typically solved is (13) and the resulting implied internal energy
equation will also resemble (14).

III. INTEGRAL EXPRESSIONS FOR WALL HEAT FLUX CONTRIBUTIONS

For convenience, we adopt symbols for some of the terms appearing in the internal energy
equations. We denote the mean viscous dissipation per unit volume using either Reynolds- or
Favre-averaged velocity, as

�RA ≡ 〈ti j〉∂〈ui〉
∂x j

, �FA ≡ 〈ti j〉∂{ui}
∂x j

. (15)

This term represents the generation of heat by mean aerodynamic friction. The turbulent dissipation
rate per unit volume is the heat generated by the dissipation of mechanical turbulent energy at the
smallest scales of the turbulent energy cascade:

φ = 〈ρ〉ε ≡
〈
t ′
i j

∂u′
i

∂x j

〉
=

〈
t ′
i j

∂u′′
i

∂x j

〉
. (16)

The mean pressure-dilatation terms represent the work done by mean compression or expansion of
the flow:


RA ≡ 〈p〉∂〈ui〉
∂xi

, 
FA ≡ 〈p〉∂{ui}
∂xi

. (17)
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The turbulent pressure-dilatation correlation, representing the work done by correlated fluctuations
of pressure and dilatation, is

π ≡
〈

p′ ∂u′
i

∂xi

〉
=

〈
p′ ∂u′′

i

∂xi

〉
. (18)

Consider an analysis of the compressible turbulent boundary layer on a flat plate, with stream-
wise coordinate x1 = x, wall-normal coordinate x2 = y, and span-wise coordinate x3 = z. In
particular, we wish to derive an equation relating the wall heat flux to quantities in the boundary
layer. We first rewrite (4) as

∂

∂x j
(〈ρ〉{e}{uj}) + ∂

∂x j
〈ρu′′

j e
′′〉 + ∂〈q j〉

∂x j
+ 
RA + π − �RA − φ = IR. (19)

The term IR represents any imbalance of the stationary terms. For an exact solution, IR = 0, but in
practice, IR may be nonzero due to numerical errors for a RANS or DNS solution, and/or statistical
averaging errors for a DNS solution. Following Zhang and Xia [17], we integrate (19) from 0 to y,
giving∫ y

0

∂〈ρ〉{u}{e}
∂x

dy′ + 〈ρ〉{v}{e} +
∫ y

0

∂〈ρu′′e′′〉
∂x

dy′ + 〈ρv′′e′′〉 +
∫ y

0

∂〈qx〉
∂x

dy′

+ 〈qy〉 − 〈qw〉 +
∫ y

0

RAdy′ +

∫ y

0
πdy′ −

∫ y

0
�RAdy′ −

∫ y

0
φdy′ =

∫ y

0
IRdy′, (20)

where we have introduced Cartesian velocity components (u, v,w) = (ux, uy, uz ). Equation (20)
represents an energy balance over a one-dimensional “volume,” includes the mean wall heat flux
〈qw〉 = 〈qy|y=0〉, and is valid for any location y. Integrating (20) from 0 to a height, h, above the
wall, and applying integration by parts to some terms, gives an expression for the wall heat flux in
terms of integrals of the various terms:

〈qw〉 = 1

h

[∫ h

0
(h − y)

∂

∂x
(〈ρ〉{u}{e})dy +

∫ h

0
〈ρ〉{v}{e} dy +

∫ h

0
(h − y)

∂

∂x
(〈ρu′′e′′〉)dy

+
∫ h

0
〈ρv′′e′′〉 dy +

∫ h

0
(h − y)

∂〈qx〉
∂x

dy +
∫ h

0
〈qy〉 dy +

∫ h

0
(h − y) 
RA dy

+
∫ h

0
(h − y) π dy +

∫ h

0
(y − h) �RA dy +

∫ h

0
(y − h) φ dy +

∫ h

0
(y − h) IR dy

]
. (21)

Equation (21) gives the integrated contribution of each physical process to the wall heat flux. The
flux terms, such as molecular heat flux, are simply integrals of the flux, while the “source term”
contributions, such as the viscous dissipation, have integrands that are weighted by the distance from
the upper integration limit. The integral terms on the right-hand side of (21), in order of appearance,
are subsequently referred to as mean stream-wise convection (ICx ), mean wall-normal convection
(ICy ), stream-wise turbulent heat transfer (ITx ), wall-normal turbulent heat transfer (ITy ), stream-wise
molecular heat transfer (Iqx ), wall-normal molecular heat transfer (Iqy ), mean pressure dilatation
(I
), turbulent pressure dilatation (Iπ ), mean dissipation (I�), and turbulent dissipation (Iφ).

As discussed in Sec. I, various integral expressions relating wall quantities to interior terms have
been derived in the literature for wall-bounded turbulent flow. Such expressions are not unique; for
example, as discussed in Wenzel et al. [18], an infinite sequence of integral expressions for the
wall shear stress or wall heat flux can be generated by applying n-fold integration, with any choice
of positive integer n. Here, we chose twofold integration, since a single integration [giving (20)]
does not result in integrated contributions by the flux terms over the region of interest. A double
integration, given by (21) is the simplest expression that results in terms that describe an average
contribution of each term over the integration volume. By choosing to integrate the internal energy
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equation and by maintaining each term in its original form from the governing differential equation,
each term represents a distinct physical process. However, integration over a region of space, as
well as the presence of a weighting by (h − y) in some of the terms, does complicate a physical
interpretation of the decomposition. We emphasize that we are primarily interested in studying the
effects of various closure modeling strategies on predicted wall heat flux and, in the present form,
terms that require modeling are preserved and easily identified.

Other energy equations can be integrated to give an expression for wall heat flux, such as the total
enthalpy equation, and this is useful for certain purposes such as evaluation of the strong Reynolds
analogy [18]. However, total enthalpy or total energy equations such as (6) are conservation laws
that describe a flux balance of the sum of internal and kinetic energy over a volume, wherein terms
that describe energy exchanges among the components of the total energy, such as generation of
heat by mean and turbulent dissipation, are masked. The internal energy equation used here serves
as the elemental equation for the study of heat transfer within the flow, containing explicit terms
for the generation and transfer of internal energy and the resulting loss (or gain) of heat through the
wall flux. In the modeling context, this choice of internal energy over enthalpy also helps eliminate
ambiguous terms arising in RANS models, such as moments with the unsteady pressure, and for
high-speed shear flows with thermal nonequilibrium, the internal energy has proven to be the natural
variable when characterizing the internal state of molecules. A similar choice of internal energy was
made by Bowersox and coworkers when deriving the algebraic energy flux model [24,25].

We note that the upper integration limit in (21), which we will choose later as h = δ, where
δ is the boundary layer thickness, is arbitrary. The integral terms do not all reach an asymptotic
state with increasing wall distance by h = δ. Note also that some of the terms asymptote to zero
as h → ∞, while other terms asymptote to a nonzero constant for h → ∞. Thus, the expression is
not useful for decomposition of the wall heat flux into a discrete set of physical processes over the
full domain (h → ∞), as was accomplished in Renard and Deck [26] for boundary layer wall shear
stress. However, the utility of the expression is maintained even though it depends on the choice
of integration volume. The important factor in the analysis is choosing a physically meaningful
integration volume. In our case, setting the integration limit to be the boundary layer edge allows us
to assess the net contribution of each term in the averaged internal energy equation to the wall heat
flux, averaged over the turbulence-containing region. Furthermore, we confirmed that the qualitative
behavior of the relative contributions does not change as the upper integration bound is extended
beyond the boundary layer thickness, as shown in Appendix A.

IV. RANS MODELS

We consider several commonly used RANS models for external aerodynamics applications:
the algebraic Baldwin-Lomax model (BL) [27], the one-equation Spalart-Allmaras model (SA)
[28,29], and the two-equation Menter shear stress transport (SST) model (SST-V2003) [30]. Two
modifications to the SST-V2003 model are also considered in this paper: neglect of the turbulence
kinetic energy in the total energy equation and application of the Zeman compressibility correction.
Both of these modifications are described below. The SST and SA model solutions were obtained
using the Sandia Parallel Aerodynamics and Reentry Code (SPARC) [31], while the BL model
solutions were obtained using the NASA CFL3D code [32].

We first describe commonly shared features of the three models. All three models are applied to
the Favre-averaged Navier-Stokes equations. In addition to the averaged total energy equation (6),
the following averaged mass and momentum equations are solved:

∂

∂x j
(〈ρ〉{u j}) = 0, (22)

∂

∂x j
(〈ρ〉{ui}{u j}) + ∂〈p〉

∂xi
= ∂

∂x j

(〈ti j〉 − 〈ρ〉{u′′
i u′′

j }
)
. (23)
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The models compute the Reynolds stress tensor according to the following Boussinesq relation-
ship:

τi j = −〈ρ〉{u′′
i u′′

j } = 2μT

(
{Si j} − 1

3

∂{uk}
∂xk

δi j

)
− 2

3
rm〈ρ〉kδi j, (24)

where rm = 1 for the SST-V2003 model and rm = 0 for the BL and SA models. The models differ
in their calculation of the eddy viscosity, μT . Each model uses a gradient transport closure for the
turbulent heat flux:

〈ρ〉{u′′
j h

′′} = −μT Cp

PrT

∂{T }
∂x j

. (25)

The turbulent Prandtl number, PrT , is set to a constant value of 0.9. The mean viscous stress tensor
is evaluated according to

〈ti j〉 ≈ 2μ({T }){Si j} − 2

3
μ({T })

∂{uk}
∂xk

δi j, (26)

while the molecular heat flux is evaluated as

〈q j〉 ≈ −μ({T })Cp

Pr

∂{T }
∂x j

, (27)

with constant Prandtl number, Pr, equal to 0.71. Note that (26) and (27) are approximate, since
Favre-averaged velocity and temperature have been substituted for their Reynolds-averaged counter-
parts, and correlations between transport coefficient fluctuations and velocity/temperature gradient
fluctuations have been ignored [33]. The former approximation is a result of using Favre-averaged
variables in the nonconvective terms, while the latter is typically considered valid but may require
further scrutiny for hypersonic flows.

A. SST-V2003 model

The SST-V2003 model is a two-equation model, solving two additional transport equations for
the Favre-averaged turbulence kinetic energy and the specific dissipation rate:

∂

∂x j
(〈ρ〉{u j}k) = P − β∗〈ρ〉ωk + ∂

∂x j

[
(μ({T }) + σkμT )

∂k

∂x j

]
, (28)

∂

∂x j
(〈ρ〉{u j}ω) = γ 〈ρ〉

μT
P − β〈ρ〉ω2 + ∂

∂x j

[
(μ({T }) + σωμT )

∂ω

∂x j

]

+ 2(1 − F1)
〈ρ〉σω2

ω

∂k

∂x j

∂ω

∂x j
. (29)

The turbulence kinetic energy production is approximated as

P = μT �2 − 2

3
〈ρ〉kδi j

∂{ui}
∂x j

, (30)

with � equal to the mean vorticity magnitude. Usage of the vorticity magnitude in the production
term is the reason for the letter “V” appearing in the moniker “SST-V2003.” A production limiter is
used such that P is replaced by min(P, 10β∗〈ρ〉ωk) in both (28) and (29). The molecular diffusion
and turbulent transport terms in (9) have been modeled as

〈ti ju
′′
i 〉 − 〈ρ〉

{
u′′

j

u′′
i u′′

i

2

}
= (μ({T }) + σkμT )

∂k

∂x j
. (31)
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These terms are modeled in the same way in the total energy equation (6). The eddy viscosity is
calculated from

μT = 〈ρ〉a1k

max(a1ω, SF2)
, (32)

where S is the strain invariant
√

2Si jSi j . Model constants and blending functions for the SST-V2003
model are given in Appendix B.

B. SST-V2003 with Zeman compressibility correction

RANS models have sometimes been modified with compressibility corrections based on mod-
eling of dilatational dissipation. Rumsey [10] found that the correction by Zeman for boundary
layer flows [34] performed better for cold-wall hypersonic turbulent boundary layers compared with
other corrections designed for free shear layers. The Zeman compressibility correction modifies the
constants in the k and ω destruction terms in (28) and (29) as follows:

β∗
c = β∗[1 + ξ ∗F (MT )], βc = β − β∗ξ ∗F (MT ),

F (MT ) =
[

1 − exp

(
−

(MT − MT 0

�

)2)]
H(MT − MT 0). (33)

Here, MT = √
2k/c is the turbulence Mach number, with c = √

γgR{T } the local speed of sound
(with gas constant R and ratio of specific heats γg), and with ξ ∗ = 0.75, MT 0 = 0.2, and � = 0.66.
H(·) is the Heaviside function.

C. SST-V2003-nok model

The SST-V2003-nok model is identical to the SST-V2003 model except that the turbulence
kinetic energy is neglected in the definition of total energy, and the total energy equation that is
solved is Eq. (13).

D. SA model

The SA model involves one additional transport equation. We used the SA-neg-noft2 model [29].
This form of the model involves a change when the working variable becomes negative; otherwise,
its behavior is expected to be very close to the standard model. The “noft2” designation means that
the trip term is ignored by setting ft2 = 0 in the standard form of the model; this is sometimes
referred to as the “fully turbulent” form of the SA model. The equation for the working variable is

∂

∂x j
(〈ρ〉{u j}ν̃) = 〈ρ〉cb1S̃ν̃ − 〈ρ〉cw1 fw

( ν̃

d

)2

+ 1

σ

[
∂

∂x j

(
(μ({T }) + 〈ρ〉ν̃)

∂ν̃

∂x j

)
+ 〈ρ〉cb2

∂ν̃

∂xi

∂ν̃

∂xi

]

− 1

σ

(
μ({T })

〈ρ〉 + ν̃

)
∂〈ρ〉
∂xi

∂ν̃

∂xi
, (34)

where

S̃ = � + ν̃

κ2d2
fv2, χ = 〈ρ〉ν̃

μ({T })
, fv2 = 1 − χ

1 + χ fv1
, fv1 = χ3

χ3 + c3
v1

. (35)

The eddy viscosity is calculated from

μT = 〈ρ〉ν̃ fv1. (36)

Modeling constants and other functions for the SA model not defined above (including fw) are given
in Appendix B. Turbulence kinetic energy does not appear explicitly in the SA model, so that the
form of the total energy equation is (13).
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E. BL model

The Baldwin-Lomax model is an algebraic model; that is, the eddy viscosity is specified as
an algebraic function of the local mean flow-field state. The eddy viscosity is computed from a
two-layer model, where

μT =
{
μTinner, y � ycrossover

μTouter, y > ycrossover
. (37)

The boundary between the two layers, ycrossover, is the value of the wall-normal coordinate y where
μTinner first exceeds μTouter . The inner eddy viscosity is

μTinner = 〈ρ〉l2
m|�|, (38)

where

lm = kly
(
1 − e

−y∗
A+

)
, y∗ =

√〈ρ〉τw

μ({T })
y, (39)

|�| = √
2�i j�i j, �i j = 1

2

(
∂{ui}
∂x j

− ∂{u j}
∂xi

)
. (40)

The quantity y∗, using local scaling, has been used rather than the original y+; this has been found to
improve calculations of compressible boundary layers with appreciable mean temperature gradients
[9]. The outer eddy viscosity is

μTouter = 〈ρ〉 K CCP FWAKE FKLEB(y). (41)

The model constants and functions required in (39) and (41) are given in Appendix B.

V. DNS SOLUTIONS

The DNS simulates an experiment for a nominally Mach 11.1 turbulent boundary layer on a
cold-wall flat plate with Tw/Tr = 0.2 and Reynolds number up to Reτ = 1193 that was performed
at the Calspan–University of Buffalo Research Center (CUBRC) [4,35]. The CUBRC configuration
has previously been used for verification and validation of RANS models and is denoted as
CUBRC run 7. In the DNS, the high-speed turbulent boundary layer is simulated by solving
the conservative-variables formulation of the full three-dimensional compressible Navier-Stokes
equations. The working fluid is assumed to be a perfect gas, and the usual constitutive relations
for a Newtonian fluid are used. Sutherland’s law is used to compute the temperature-dependent
viscosity. A seventh-order weighted essentially nonoscillatory scheme (WENO) is used for the
spatial discretization of inviscid fluxes for the DNS case. To reduce the numerical dissipation,
the current scheme is optimized by means of limiters [36,37], compared to the original WENO
introduced by Ref. [38]. The viscous fluxes are discretized using a fourth-order central difference
scheme, and the time marching is a third-order low-storage Runge-Kutta scheme [39]. The validity
of the numerical methodology for simulating supersonic and hypersonic turbulent boundary layers
has been shown in multiple previous studies, including [19,37,40–44], among others. The inflow
boundary condition of the DNS is prescribed by means of a recycling-rescaling method [42], and the
simulation covered a long streamwise domain (greater than 300δi, with δi the inflow boundary-layer
thickness) to guarantee the settlement of turbulence statistics into a fully developed equilibrium state
of the turbulent boundary layer. The details of the DNS methodology, including numerical methods
and boundary conditions, have been documented in a previous paper [19].

The DNS database has been used to compute contributions of each integral term in (21) with
h = δ, and these are tabulated for two different values of Reτ in Table I. A positive sign on the
contribution to the wall heat flux coefficient Bq = qw/(ρwCpTwuτ ), with Cp being the specific heat
at constant pressure and uτ being the friction velocity, indicates net transfer of heat into the fluid
domain (away from the wall), while a negative sign indicates a net transfer out of the domain (toward
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TABLE I. Average contribution, across the boundary layer, of terms in the internal energy equation to wall
heat flux (DNS results).

Bq Contribution to wall heat flux (%)

Mechanism Reτ = 774 Reτ = 1172 Reτ = 774 Reτ = 1172
Mach 3 channel,
Reτ = 456 [17]

Wall-normal molecular heat transfer (Iqy ) 8.49 × 10−4 5.69 × 10−4 0.18 0.13 5.34

Stream-wise molecular heat transfer (Iqx ) 1.52 × 10−4 1.31 × 10−4 0.03 0.03

Wall-normal turbulent heat transfer (ITy ) 6.02 × 10−2 5.81 × 10−2 12.61 13.23 4.39

Stream-wise turbulent heat transfer (ITx ) 9.48 × 10−4 −4.42 × 10−4 0.20 0.10

Wall-normal mean convection (ICy ) 5.52 × 10−2 4.93 × 10−2 11.56 11.23

Stream-wise mean convection (ICx ) −2.33 × 10−2 −2.25 × 10−2 4.88 5.12

Mean pressure dilatation (I
) 4.01 × 10−2 3.73 × 10−2 8.40 8.48

Turbulent pressure dilatation (Iπ ) −2.88 × 10−3 −1.84 × 10−3 0.60 0.42 1.46

Turbulent dissipation (Iφ ) −1.22 × 10−1 −1.23 × 10−1 25.55 27.95 88.4∗

Mean dissipation (I�) −1.65 × 10−1 −1.43 × 10−1 34.51 32.54 ∗(Iφ + I� )

Residual −7.10 × 10−3 −3.38 × 10−3 1.49 0.77

Total −0.1627 −0.1484 100 100 100

Direct wall heat flux −0.1628 −0.1484

the wall). A percentage is calculated for each net contribution using the ratio of the absolute value
of the contribution to the sum of the absolute values of all contributions. The relative contributions
differ significantly from those computed for compressible channel flow at Mach 1.5 and Mach 3.0
[17]. For comparison purposes, the fractional contributions for the Mach 3.0 channel DNS at Reτ =
456 from Ref. [17] are included in the right-most column of Table I. The wall-normal turbulent
heat flux contribution is larger than for channel flow, and, unlike for the channel flow, opposes
the dissipation contributions. The mean convection contributions and mean pressure dilatation are
non-negligible, while for channel flow they are identically zero. The turbulent pressure dilatation
has a somewhat smaller effect (less than 1% ) for the present flow than for the channel results at
lower Mach number, consistent with the trend showed in Ref. [17] of decreasing relative importance
of this term with increasing Mach number. The mean and turbulent dissipation contributions are
the largest, while both components of the molecular heat flux contribution are small. Some of the
contributions to Bq change significantly between the two Reynolds numbers considered; however,
changes in the percentage contribution are modest for all the terms. The residual contribution is less
than 2% for both Reynolds numbers, and the Bq calculated from the integral balance agrees with the
direct calculation of the mean molecular wall heat flux using the DNS solution to three digits.

Figure 2 shows the integral contributions to wall heat flux as a function of the integration limit,
h, up to the height of the boundary layer. Components with negligible net contribution for h = δ are
omitted from the plots, except for the wall-normal molecular heating contribution (Iqy ). Note that
very close to the wall, the wall-normal molecular heat transfer contribution (Iqy ) is dominant and be-

comes the sole contribution at the wall, y = 0 (l’Hospital’s rule gives limh→0
1
h

∫ h
0 〈qy〉dy = 〈qy(0)〉);

its net effect diminishes rapidly as integration height increases, however. The net contribution of
the mean dissipation over the boundary layer approximately equals the wall heat flux itself for
both Reynolds numbers, with the net effect of the sum of all other contributions close to zero.
Wall-normal turbulent heat transfer (ITy ), mean pressure dilatation (I
), turbulent dissipation (Iφ),
and mean dissipation (I�) dominate the contributions for y/δ � 0.3, with the two mean convection
components (ICx , ICy ) becoming significant at larger distances from the wall. The effect of increasing
the upper integration bound beyond the boundary layer thickness is discussed in Appendix A.

For later comparison to RANS model behavior, it is useful to present the wall-normal turbulent
heat flux and mean pressure-dilatation terms as they appear in RANS models which use Favre-
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FIG. 2. Integrated contributions of terms in the internal energy equation to the nondimensional wall heat
flux from the DNS. The physical mechanism acronyms are defined in Table I.

averaged variables. Figure 3 shows these profiles using the DNS data, where the mean pressure

dilatation is evaluated using the Favre-averaged dilatation ∂{u j}
∂x j

, and the contribution 〈p〉 ∂〈u′′
j 〉

∂x j
is

included in the turbulent heat flux. The turbulent heat flux contribution (ITy ) is also included in the

figure for comparison. At both Reynolds numbers, the contribution IT̂y
≡ ITy + 〈p〉 ∂〈u′′

j 〉
∂x j

is about 40%
larger than the contribution from ITy alone. The mean pressure-dilatation contribution calculated

from the Favre-averaged velocity, I
̂ ≡ 〈p〉 ∂{u j }
∂x j

is about 60% lower than that calculated from the
Reynolds-averaged velocity (cf. Fig. 2).

Recall that in Sec. II we showed how neglect of the pressure diffusion and pressure work terms
in the RANS turbulence kinetic energy equation led to their appearance as spurious terms in the
internal energy balance; see Eq. (11). We assessed the potential effect of these spurious contributions
by calculating their integrated effects over the boundary layer from the DNS solutions and found
that these terms would make negligible contributions to the wall flux (less than 0.2% change to
the magnitude of 〈qw〉), thus validating their neglect for the present flow. We note, however, that
pressure diffusion can take on non-negligible magnitudes in other high-speed flows, such as in shock
wave-boundary layer interaction [45]. The missing contribution to the mean dissipation involving

FIG. 3. Integrated contributions of heat flux and mean pressure dilatation terms to the wall heat flux from
DNS. The terms are modified to match the form seen in RANS solutions using Favre-averaged variables.
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the turbulent mass flux that arises from usage of Favre-averaged velocity in RANS, 〈ti j〉 ∂〈u′′
i 〉

∂x j
, was

found to modify the wall heat flux by only about 1%.
For high Mach number, cold-wall boundary layers the dissipation of turbulence kinetic energy

can have non-negligible components due to compressibility effects. The dissipation in a compress-
ible medium can be decomposed into three components [46],

φ = φ1 + φ2 + φ3, (42)

where

φ1 = 〈μ〉
〈
∂u′

i

∂xk

(
∂u′

i

∂xk
+ ∂u′

k

∂xi

)〉
− 2

3
〈μ〉

〈
∂u′

i

∂xk

∂u′
l

∂xl

〉
δik, (43)

φ2 =
〈
μ′ ∂u′

i

∂xk

(
∂u′

i

∂xk
+ ∂u′

k

∂xi

)〉
− 2

3

〈
μ′ ∂u′

i

∂xk

∂u′
l

∂xl

〉
δik, (44)

φ3 =
〈
μ′ ∂u′

i

∂xk

〉(
∂〈ui〉
∂xk

+ ∂〈uk〉
∂xi

)
− 2

3

〈
μ′ ∂u′

i

∂xk

〉
∂〈ul〉
∂xl

δik . (45)

The component φ1 can be further divided into solenoidal, dilatational, and inhomogeneous contri-
butions,

φ1 = φs + φd + φI , (46)

φs = 2〈μ〉〈ω′
i jω

′
i j〉; with ω′

i j =
(

∂u′
i

∂x j
− ∂u′

j

∂xi

)/
2, (47)

φd = 4

3
〈μ〉

〈
∂u′

l

∂xl

∂u′
k

∂xk

〉
, (48)

φI = 2〈μ〉
(

∂2
〈
u′

iu
′
j

〉
∂xi∂x j

− 2
∂

∂xi

〈
u′

i

∂u′
j

∂x j

〉)
. (49)

A typical RANS model that includes a transport equation for φ = 〈ρ〉ε formally models the
solenoidal component of dissipation, while the other components are neglected, with the possible
exception of the dilatational component, which is sometimes explicitly modeled. The contribution
of the turbulent dissipation to the wall heat flux can be separated into distinct contributions from
each of the components in (42)–(49). Figure 4(a) shows that the nonsolenoidal components of
dissipation contribute a small but noticeable amount to the wall heat flux, comprising about 6%
of the total turbulent dissipation contribution. Figure 4(b) shows the contributions to the wall heat
flux of the individual nonsolenoidal components. Despite φ3 reaching the largest peak value of
these components, consistent with previous DNS results for compressible channel flow [46], it is
φ2 that has the largest average contribution to the wall heat flux over the boundary layer. The direct
influence of dilatational dissipation on wall heat flux is small, and the effect of the inhomogeneous
component is negligible.

VI. RANS MODEL ASSESSMENT FOR WALL HEAT FLUX PREDICTIONS

RANS solutions for the nominally Mach 11 boundary layer were computed on three grids,
labeled coarse, medium, and fine. The number of grid cells in the streamwise direction, Nx, doubled
for each grid refinement, varying from 362 to 1442. The number of grid cells in the wall-normal
direction was Ny = 140 for the coarse grid, Ny = 200 for the medium grid, and Ny = 336 for
the fine grid. The grids were extruded in the wall-normal direction, with initial wall-normal grid
spacing varying from �y1 = 3 × 10−6 m on the coarse grid to �y1 = 7.5 × 10−7 m on the fine
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FIG. 4. Integrated contributions of the various components of turbulent dissipation to the wall heat flux
from DNS, Reτ = 1172.

grid; cell growth rate was limited to 1.07 in the wall-normal direction for each grid. Solution
accuracy was assessed by examining the grid convergence of the wall heat flux at the stream-wise
location corresponding to the DNS friction Reynolds numbers of Reτ = 774 and Reτ = 1172, as
calculated on the fine grid. For all variants of the SST model, the wall heat flux varied by less than
0.6% between the medium and fine mesh for Reτ = 774, and by less than 0.5% for Reτ = 1172.
Calculated grid convergence index (GCI) [47] for the SST models was less than 1.1% for both
locations. For the SA model, the wall heat flux varied by 0.02% between the medium and fine
mesh for Reτ = 774 and by less than 0.01% for Reτ = 1172. GCI could not be estimated for
the SA solutions due to nonmonotonic convergence behavior with grid refinement. For the BL
solutions, the wall heat flux for Reτ = 774 varied between the medium and fine mesh by 0.3% and
by 0.2% for Reτ = 1172, with GCI less than 1.1% at both locations. Solutions for all models were
relaxed to steady state, with nonlinear residual values decreasing at least 11 orders of magnitude
for SA solutions, 13 orders of magnitude for SST solutions, and nine orders of magnitude for
Baldwin-Lomax solutions. Iterative convergence errors were determined to be negligible.

Mean velocity and temperature profiles for the RANS solutions on the fine grid are compared
to DNS in Fig. 5. The mean velocity used for the comparisons is the transformed velocity from
the total-stress transformation for compressible boundary layers [48]. This transformed velocity

is defined by U +
tot(y

∗) = ∫
S+

totdy∗, where S+
tot = S+

eq

1+S+
eq −S+

T L
, with S+

eq = μw

μ
∂U +
∂y∗ and S+

TL = μ

μw

∂U +
∂y+ ,

and the semilocal coordinate is y∗ = y
√

ρτw

μ
. Variables with a + superscript are nondimensionalized

by the usual inner viscous scales. The total stress transformation has been shown to successfully
collapse the inner layers of various compressible boundary layer velocity profiles to the canonical
incompressible form. The present DNS profile is also successfully transformed, albeit with some
ambiguity remaining in whether the transformed profile truly demonstrates the presence of a
logarithmic layer [19]. The BL model agrees best with the DNS for prediction of mean velocity
profile, while the other models deviate significantly from the DNS. The mean temperature profiles
demonstrate similar levels of deviation from the DNS. The SA model undepredicts the mean
temperature over much of the profile, the BL model overpredicts mean temperature, and the SST
model variants give the best overall agreement with the DNS for mean temperature.

The integral contributions to heat flux for the RANS solutions were computed by postprocessing
the cell-centered solution fields generated by the CFD codes. Gradients were computed using
second-order finite difference formulas, while integrations were computed by taking the cell-center
solution value as piece-wise constant, consistent with the cell-centered finite volume scheme used
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FIG. 5. Comparison of RANS model solutions for mean velocity and temperature to DNS.

in the CFD code. The magnitude of the postprocessing numerical errors is examined by calculating
the integral contributions for the various terms on the several grid levels and assessing convergence.
Figure 6 shows the most important integral contributions as calculated on the three grids for the
SST-V2003 model at Reτ = 774. At h = δ, the relative errors between the medium and fine grid
solutions are less than 2% for the I�, Iφ , ITy , and ICx contributions. The relative error for the ICy

contribution is 4.6%, while the relative error for the I
̂ contribution is largest at 26.7%. However,
the absolute error in the contribution to Bq for both of these latter two terms is less than 0.004,
which is only about 2% of the net wall heat flux value. The residual Bq contribution (not shown in
the figure) decreased from −0.062 on the coarse mesh to −0.0048 on the fine mesh. All subsequent
solutions presented in this paper were obtained on the fine mesh.

Figures 7 through 9 show contributions of the turbulent heat flux, mean dissipation, and turbulent
dissipation to wall heat flux as a function of integration height for the RANS solutions, for
Reτ = 1172. The mean pressure dilatation and mean convection contributions from the RANS
solutions for all the models agree well with the DNS, and are not plotted. Figure 7 shows that

FIG. 6. Grid sensitivity of integral wall heat flux contributions for the SST-V2003 model, Reτ = 774. —
fine grid; – – – medium grid; — – — coarse grid. The physical mechanism acronyms are defined in Table I.
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FIG. 7. Integrated contributions of the wall-normal turbulent heat flux term (IT̂y
) in the internal energy

equation to the nondimensional wall heat flux, Reτ = 1172.

the wall-normal turbulent heat flux contribution from the RANS solutions is larger than that from
the DNS for the SST-V2003, SST-V2003-nok, and SA models. For these models at h = δ, it is
approximately 20–25% larger than the DNS. The error in the turbulent heat flux contribution
is much smaller for the SST-V2003-Zeman and BL models. The contributions from the mean
dissipation (Fig. 8) and turbulent (or apparent) dissipation (Fig. 9) integrals are different for each
model. Neglecting the turbulent kinetic energy in the SST-V2003-nok model had a minimal effect
on all the contributions; in this case, the apparent dissipation provided a similar contribution as
the turbulent dissipation. However, the compressibility correction in the SST-V2003-Zeman model
had an effect on all three contributions. The magnitude of the negative contribution from mean
dissipation is markedly decreased, with a smaller decrease in the magnitude of the turbulent
dissipation contribution. These decreases in the magnitude of the dissipation contributions are
partially offset by the decrease in the positive turbulent heat flux contribution noted earlier. The
net effect of these changes is that the compressibility correction gives a smaller negative wall heat

0 0.2 0.4 0.6 0.8 1
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FIG. 8. Integrated contributions of the mean dissipation term (I�) in the internal energy equation to the
nondimensional wall heat flux, Reτ = 1172.
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FIG. 9. Integrated contributions of the turbulent dissipation or apparent dissipation (Iφ) term in the internal
energy equation to the non-dimensional wall heat flux, Reτ = 1172.

flux by 13.0% at Reτ = 774 and by 12.5% at Reτ = 1172. Figure 8 shows that the SA model has the
largest negative contribution from mean dissipation of the models considered, and the magnitude
of its apparent dissipation contribution is smaller than that of the SST-V2003-nok model. Overall,
the BL model’s contributions for these three terms agree the best with the DNS, suggesting that
the historically good performance of this model for attached hypersonic boundary layers is not due
to cancellation of errors, but rather because the energy balance generated by the model is relatively
accurate, at least for a zero-pressure gradient, compressible boundary layer. The differences between
RANS and DNS contributions to Bq for an integration height h = δ and Reτ = 1172 are given in
Table II.

The integral analysis can also be used to display the net contribution of each term over the
boundary layer as a function of Reynolds number, as in Fig. 10. Here, the contribution of the
wall-normal turbulent heat flux to the wall heat flux for the RANS models is compared to DNS.
The DNS contribution shows a slight decrease with Reτ , which is replicated by the SA and BL
models, while the SST model variants show a small increase with Reτ . The BL model gives the
best agreement with the DNS over this range of Reynolds numbers. In Fig. 11, the contributions of
the mean and turbulent (or apparent) dissipation for the RANS models are compared to DNS. Each
model captures the general trend of increasing mean dissipation contribution with Reτ displayed
by the DNS, although the DNS values are increasing more rapidly than the RANS models over
the range of Reτ considered, with the BL model coming closest to matching the slope of the

TABLE II. Difference between RANS Bq contribution and the DNS value, Reτ = 1172.

Mechanism SST-V2003 SST-V2003-nok SST-V2003-Zeman SA BL

Wall-normal turbulent heat transfer (IT̂y
) +0.0160 +0.0187 +0.0020 +0.0224 +0.0030

Wall-normal mean convection (ICy ) −0.0058 −0.0049 −0.0103 −0.0016 −0.0061
Stream-wise mean convection (ICx ) +0.0087 +0.0084 +0.0106 +0.0094 +0.0093
Mean pressure dilatation (I
̂) −0.0006 −0.0003 −0.0021 +0.0013 −0.0015
Turbulent dissipation (Iφ) −0.0376 −0.0416 −0.0253 −0.0171 −0.0175
Mean dissipation (I�) +0.0057 +0.0075 +0.0313 −0.0298 +0.0094
Total −0.0129 −0.0116 +0.0072 −0.0126 +0.0019
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FIG. 10. Contribution of wall-normal turbulent heat flux (IT̂y
) to wall heat flux vs friction Reynolds number.

DNS data. The SST-V2003 and BL models are closest to the DNS values over the range of
Reynolds numbers considered. Also, neglect of k in the energy equation for the SST-V2003-nok
model has little effect on the mean dissipation contribution. The Zeman compressibility correction
diminishes the mean contribution across all Reτ . The turbulent dissipation (or apparent dissipation
for the SST-V2003-nok, SA, and BL models) for all models show the same trend of more negative
contribution to the wall heat flux as Reτ increases, although the BL gives a much shallower slope.
This is in contrast with the DNS turbulent dissipation contribution, which stays nearly constant for
the three points analyzed. This result points to the turbulent dissipation contribution as a possible
source of deviation between DNS and RANS models for wall heat flux dependence on Reynolds
number, particularly for the one- and two-equation models.

The mean dissipation contribution for the SST-V2003 model with and without compressibility
correction is examined in more detail in Fig. 12, where the integrand for the mean dissipation
contribution to wall heat flux coefficient is plotted in the near-wall region. The DNS results show
that as Reynolds number increases, the magnitude of the contribution to the heat flux coefficient
increases for y/δ < 0.1, while it decreases for y/δ > 0.1. This trend is more or less captured by
both RANS models. The mean dissipation is somewhat overpredicted very near the wall by the

FIG. 11. Contribution of mean dissipation (I�) and turbulent or apparent dissipation (Iφ) to wall heat flux
vs friction Reynolds number.
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FIG. 12. Integrand for the mean dissipation contribution to wall heat flux (h = δ).

SST-V2003 model, particularly for Reτ = 1172. This is consistent with the overprediction of wall

shear stress at higher Reynolds numbers seen in Fig. 1, noting that �|y=0 ≈ μw( ∂U
∂y )2|y=0 = τ 2

w

μ
.

This error is partially compensated by the underprediction of the mean dissipation contribution
further from the wall. The Zeman compressibility correction reduces the magnitude of the mean
dissipation contribution to below the DNS value for all y. In this case, the compressibility correction
overcorrects the contribution of the mean dissipation, which was very nearly correct for the original
uncorrected model due to cancellation of errors just noted.

Figure 13 shows profiles of the turbulent dissipation φ, nondimensionalized using inner scales.
The qualitative behavior of the RANS solutions and the DNS profiles is quite different, since the
DNS profiles reach a peak at the wall, while the RANS turbulent dissipation is zero at the wall. This
is an inherent behavior of the k-ω family of models without near-wall corrections. However, both the
DNS and RANS profiles collapse for different Reynolds numbers using the inner scales for nondi-
mensionalization. The Zeman compressibility correction is seen to increase the nondimensional
dissipation over part of the boundary layer, due to its addition of a modeled dilational dissipation
component. Figure 14 shows the integrands for the turbulent dissipation contribution to the wall heat
flux coefficient. The DNS integrands exhibit modest changes going from Reτ = 774 to Reτ = 1172.
Below y/δ ≈ 0.05, the integrand increases in magnitude while beyond y/δ the magnitude decreases;
the sum of the two effects result in the overall flat contribution with Reynolds number noted in
Fig. 11(b). The RANS solutions, on the other hand, show a marked increase in magnitude of the
integrand for y/δ < 0.05 with increasing Reynolds number. This is primarily due to the turbulent

FIG. 13. Profiles of turbulent dissipation, nondimensionalized with inner scales (yτ = μw

ρwuτ
).
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FIG. 14. Integrand for the turbulent dissipation contribution to wall heat flux (h = δ).

dissipation scaling with the wall shear stress. The heat transfer coefficient is calculated using a mixed
scaling with uτ providing one velocity scale and

√
CPTw another; this second scale is constant in the

present flow. In the RANS solutions, the wall shear stress, and thus friction velocity, decrease at a
slower rate with increasing Reynolds number than does the DNS. Therefore, the magnitude of the
turbulent dissipation, which scales with u4

τ , is also decreasing more slowly than for the DNS. We
conclude from these results that the issue with turbulent dissipation contribution to wall heat flux
for the SST models is twofold: the inaccurate representation of the turbulent dissipation profile very
close to the wall and the overprediction of wall shear stress with increasing Reynolds number.

VII. DISCUSSION

A few remarks are now provided on the utility and the limitations of the method developed in the
previous sections for assessment of RANS models for aero-heating predictions in hypersonic flow.
The present analysis provides information on how RANS models generate wall heat flux predictions,
in particular, the role of different terms in the governing internal energy equation. This has been
made possible by the recent availability of DNS solutions for hypersonic, cold-wall boundary layers.
The conclusions drawn herein are specific to this particular flow, of course, although we expect many
of them to generalize to other high Mach number, cold-wall attached boundary layers at other flow
conditions. The performance of various RANS models in predicting the net contribution of terms
in the internal energy balance has been assessed. Note, however, that the analysis does not directly
lead to a remedy for any particular observed discrepancy in the model’s predictions; for that, further
analysis and sensitivity studies are required. The RANS solutions involve coupled mean momentum,
temperature, and modeled fields, such that a “fix” to one of the terms can obviously effect one or
more of the other involved terms. Nonetheless, the present analysis can be used to guide efforts to
improve models and to assess the results of the attempted improvements. The analysis also leads
to improved understanding of physical mechanisms involving the wall heat flux. For example, the
decomposition of the contribution of the turbulent dissipation into various terms showed that the
component of nonsolenoidal dissipation that resulted in the biggest impact to wall heat flux (φ2)
was different from the component that reached the highest peak magnitude in the boundary layer
relative to the other components (φ3).

The inspection of model mechanics through the lens of the integrated internal energy equa-
tion provides a means of understanding the precise impact of modeling assumptions on resulting
wall heat flux predictions. For example, it was shown how neglecting to include the turbulence
kinetic energy in the total energy equation leads to replacement of the turbulent dissipation with
an apparent turbulent dissipation that is the negative of the modeled turbulence kinetic energy
production term. The analysis also reveals the turbulent internal energy flux that is being modeled
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in RANS, which includes a contribution from the term 〈p〉 ∂〈u′′
j 〉

∂x j
. Terms that have previously been

shown to be “small” for compressible, turbulent boundary layers, such as the pressure diffusion flux
and pressure work, have been shown to be negligible in their effect on the wall heat flux, a perhaps
useful distinction.

The three terms for which differences between RANS and DNS contributions to the wall heat
flux resulted in potentially large errors in overall heat flux for the present flow were the wall normal
turbulent heat flux, the mean dissipation, and the turbulent dissipation. The qualitative behavior
of the turbulent heat flux contribution to wall heat flux was reasonable for the models considered,
suggesting that the typical gradient diffusion closure used in all the models in this study is adequate.
Quantitative differences in the contribution of this term to the wall heat flux may be down to
specific differences in the eddy viscosity and mean temperature profiles generated by the different
models, rather than a deficiency in the model form—although the constant turbulent Prandtl number
assumption is known to be violated in boundary layers.

The magnitudes of the mean and turbulent dissipation contributions to wall heat flux appear to be
the primary issues with the RANS models considered here. The mean dissipation depends primarily
on generation of an accurate mean shear profile; none of the models considered here matched the
DNS in this regard. However, with some fortuitous cancellation of error in the near-wall region, the
SST-V2003 model accurately predicts the overall mean dissipation contribution well. In general,
attempts to better approximate the mean velocity profile in the buffer region may lead to improved
accuracy for this term.

Most models belonging to the k − ω family do not generate an accurate profile for turbulent
dissipation close to the wall. This has not been a major issue, partly since it has not hampered
predictive accuracy for quantities of interest such as skin friction and wall heating for lower speed
flows, and partly since the modeled dissipation has traditionally been viewed as a quantity needed
to supply a turbulence length scale for calculation of the eddy viscosity, rather than rigorously rep-
resenting the small scale dissipation rate. This issue, however, was seen to cause an overshoot in the
turbulent dissipation profile close to the wall and corresponding overprediction of the contribution
of this term to the wall heat flux. We experimented with a low-Reynolds-number form of the SST
model, described by Langtry and Sjolander [49]. This model is based on the low-Reynolds-number
form described by Wilcox [22], which aims to allow both prediction of boundary layer transition
as well as giving more correct asymptotic behavior of k and φ approaching a solid surface. We
were able to obtain solutions with the low-Reynolds-number model which better approximated the
near-wall behavior of turbulent dissipation; however, the improvement to wall heat flux predictions
was only slight, due to persistent overprediction of the turbulent dissipation further from the wall.
The widely used k-ε family of models, with associated low-Reynolds-number treatments, provide
another path toward improvement of the near-wall turbulent dissipation behavior. Indeed, Prasad
et al. [50] showed improved agreement of the Launder-Sharma k-ε model with DNS and experiment,
relative to a k-ω model, for the present Mach 11 turbulent boundary layer case. However, k-ε models
are known to have issues with capturing an accurate mean velocity profile in the logarithmic region
of high Mach number boundary layers, which can adversely affect wall shear stress predictions [51].

While improving the modeling of turbulent dissipation may prove to be useful for heating
predictions, another important issue is the improvement of the wall shear stress prediction. The
overprediction of wall shear stress impacts both the mean dissipation and the turbulent dissipation,
as discussed in Sec. VI. Since, for the RANS models, the wall shear stress appears to diminish more
slowly with increasing Reτ than the DNS, this likely also leads to incorrect variation of the wall heat
flux with Reτ . Figure 15 shows that the DNS Reynolds analogy factor, defined as 2Ch/Cf , where
Ch = −qw/[ρ∞U∞Cp(Tr − Tw )] is the Stanton number and Cf = 2τw/(ρU 2

∞) is the skin friction
coefficient, varied slightly between 1.19 and 1.16 for this flow. The RANS models all predict a
nearly constant factor of 1.19, demonstrating that the models are reproducing the correlation of
mean wall heat flux with mean wall shear stress. Improvements to wall shear stress prediction for
hypersonic, cold-wall boundary layers may involve sensitizing the closure to mean density gradients
[51], accounting for density fluctuation correlations in the model for Reynolds stress, or both.
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FIG. 15. Comparison of RANS model predictions of Reynolds analogy factor to DNS.

VIII. CONCLUSIONS

In this paper, we have demonstrated the following:
(1) The Reynolds-averaged internal energy equation and implied forms of this equation gener-

ated by various RANS modeling strategies provide a useful framework for analysis of RANS model
aero-heating predictions.

(2) Integral relationships relating net effects of various terms in the averaged energy equation to
the mean wall heat flux allow for identification of contributions of physical mechanisms and
associated models to the wall heat flux, and provide a means to validate individual components
of RANS models for prediction of wall heat flux, provided a suitable DNS database exists.

(3) Non-negligible contributions to the wall heat flux in a Mach 11 cold-wall turbulent bound-
ary layer come from mean stream-wise and wall-normal convection, mean pressure dilatation,
wall-normal turbulent heat flux, turbulent dissipation, and mean dissipation. Stream-wise and
wall-normal molecular heat flux, stream-wise turbulent heat flux, and turbulent pressure dilatation
are negligible contributors to wall heat flux for this flow.

(4) Neglect of turbulence kinetic energy in the RANS total energy equation implies that turbulent
dissipation is approximated by the negative of turbulence kinetic energy production in the internal
energy equation.

(5) The RANS models investigated herein give good predictions for the mean convection and
mean pressure-dilatation contributions to wall heat flux, while they provide various levels of agree-
ment on the remaining non-negligible components. The mean and turbulent dissipation components
provide the most significant deviations from DNS, in general. The Zeman compressibility correction
to the SST-V2003 model lowers the prediction of turbulent heat flux but does not improve overall
agreement with the mean and turbulent dissipation components. The Baldwin-Lomax model gives
the best agreement overall with the DNS; the relative success of the Baldwin-Lomax model is due
to a more accurate internal energy balance generated by this model, at least for a zero-pressure
gradient, cold-wall hypersonic turbulent boundary layer, rather than due to a fortuitous cancellation
of errors.

(6) Inaccurate predictions of the turbulent dissipation contribution to wall heat flux for the
models considered is due to both inaccurate near-wall turbulent dissipation profiles, as well as
overprediction of the wall shear stress which results in overprediction of the turbulent dissipation
magnitude.

084604-24



INTERNAL ENERGY BALANCE AND AERODYNAMIC …

0 0.5 1 1.5
-0.2

-0.1

0

0.1

FIG. 16. Integrated contributions of terms in the internal energy equation to the nondimensional wall heat
flux: DNS at Reτ = 774.
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APPENDIX A: EFFECT OF UPPER INTEGRATION BOUND

Figure 16 shows the integrated contributions of terms in the internal energy equation with
maximum upper integration bound increased to h = 1.5δ. The qualitative behavior of the relative
contributions does not change as the upper integration bound is extended beyond the boundary layer
thickness [compare to Fig. 2(a)]. The mean and turbulent dissipation contributions are reaching
asymptotic values. The wall-normal mean convection contribution continues to increase, since the
mean wall-normal convective flux maintains a near constant value for an extended region outside
of the boundary layer. This increase in wall-normal mean convection contribution is balanced by
decreases in the stream-wise mean convection and wall-normal turbulent heat flux contributions.

APPENDIX B: TURBULENCE MODEL FORMS

1. SST-V2003 model functions and constants

The function F2 appearing in the eddy viscosity formula (32) is

F2 = tanh
(
arg2

2

)
, arg2 = max

(
2

√
k

β∗ωd
,

500μ({T })

〈ρ〉d2ω

)
. (B1)
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Each of the model constants is computed by blending an inner constant with subscript 1 with an
outer constant with subscript 2:

C = F1C1 + (1 − F1)C2. (B2)

The blending function F1 is

F1 = tanh
(
arg4

1

)
, arg1 = min

[
max

( √
k

β∗ωd
,

500μ({T })

〈ρ〉d2ω

)
,

4〈ρ〉σω2k

CDkωd2

]
, (B3)

where

CDkω = max

(
2〈ρ〉σω2

1

ω

∂k

∂x j

∂ω

∂x j
, 10−10

)
. (B4)

The model constants are

γ1 = 5
9 , γ2 = 0.44,

σk1 = 0.85, σω1 = 0.5, β1 = 0.075,

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828,

β∗ = 0.09, κ = 0.41, a1 = 0.31.

2. SA model functions and constants

The function fw in (34) is

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r), r = min
( ν̃

S̃κ2d2
, 10

)
. (B5)

The model constants are

cb1 = 0.1355, cb2 = 0.622, σ = 2

3
, κ = 0.41,

cw1 = cb1

κ2
+ 1 + cb2

σ
, cw2 = 0.3, cw3 = 2, cv1 = 7.1.

3. BL model functions and constants

The function FWAKE is

FWAKE = min

(
yMAXFMAX, CWKyMAX

u2
dif

FMAX

)
, (B6)

where FMAX and yMAX are the maximum and argument of the maximum of the function

F (y) = y|�|(1 − e
−y∗
A+

)
(B7)

and

udi f = max(
√

{ui}{ui}) (B8)

with the maxima taken over each y profile. The function FKLEB(y) is

FKLEB(y) =
(

1 + 5.5

[
y CKLEB

yMAX

]6)−1

. (B9)

The model constants are

kl = 0.4, A+ = 26, K = 0.0168, CCP = 1.6,

CWK = 1.0, CKLEB = 0.3.
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