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Hydrodynamic slip significantly alters chaotic advection
and scattering of small particles
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The motion of small spherical particles in unsteady fluid flow can be predicted using
the Boussinesq-Basset-Oseen equation, which is an integrodifferential equation balancing
the particle inertia with the unsteady hydrodynamic force on a particle. For rigid spherical
particles on whose surface the no-slip condition is obeyed, the Basset history force has been
shown to significantly alter the statistical behavior of ensembles of particles in unsteady
flows [Daitche and Tél, Phys. Rev. Lett. 107, 244501 (2011)]. Here, we determine the
effect of hydrodynamic slip at the surface of the particle on the statistical behavior of an
ensemble of spherical particles in a two-dimensional von Kármán flow in the wake of a
cylinder. We compute the dynamics of a large quantity of spherical particles (on the order
of a million) in this flow, and therefrom calculate escape rates, invariant manifold locations,
and the uncertainty dimension of scattering trajectories for two cases: no-slip spheres
and perfectly slipping spheres. We compare individual particle trajectories, locations of
invariant manifolds, and residence time distributions for the two cases. We find that the
presence of slip on a particle can lead to significant differences in escape rates, more initial
positions that lead to vortex trapping at long times, and a greater uncertainty in scattering
predictions. Thus, our paper shows that hydrodynamic slip significantly affects particle
trajectories in unsteady flows.

DOI: 10.1103/PhysRevFluids.7.084504

I. INTRODUCTION

The motion of small inertial particles in an unsteady fluid flow is relevant to cloud microphysics
[1], particle clustering in turbulence [2,3], bubbles in sound waves [4], micro-organism movement
[5], and pollutant transport [6]. Such particles often move in a viscous fluid at a small particle-
scale Reynolds number, Rep = aW/ν � 1, where a is the characteristic size of the particle (e.g.,
the radius for a spherical object), ν is the kinematic viscosity of the fluid, and W = |v − u| is a
characteristic relative speed with particle velocity, v, and local fluid velocity, u [7]. Although Rep

is small, unsteadiness from a time-dependent ambient flow and the disturbance flow induced by
the particle leads to inertial effects when RepSl = (a2/ν)/τ = O(1), where Sl = a/(W τ ) is the
Strouhal number and τ is a timescale that characterizes the unsteadiness of the ambient flow. That
is, unsteady effects can be important when the momentum diffusion timescale across the particle,
τν = a2/ν, is on the order of the unsteadiness timescale in the flow. For example, τν is around one
second for a sphere with radius of 1 mm in water. In this regime, the hydrodynamic force, FNS, due
to the disturbance flow around a spherical particle on whose surface the no-slip boundary condition
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is obeyed is given by [8]

FNS = −m f

2

(
dv

dt
− du

dt

)
− 6πaρ f ν(v − u) − 6a2ρ f

√
πν

d

dt

∫ t

t0

K (t − s)(v(s) − u(s))ds, (1)

where the memory kernel

K (t ) =
{ 1√

t
for t � 0

0 for t < 0.
(2)

Here, mp is the mass of the particle, m f is the mass of the fluid displaced by the particle, ρ f is the
fluid density, and

du
dt

= ∂u
∂t

+ v · ∇u (3)

and

du
dt

= ∂u
∂t

+ u · ∇u (4)

are the material derivatives along a particle path line and fluid streamline, respectively. The accel-
eration reaction, which is the first term on the right of Eq, (1), is the force on the particle due to
an inviscid pressure disturbance caused by the changing velocity of the particle. The Stokes drag,
the second term on the right, is the instantaneous force on the particle due to viscous effects. The
Basset force, the third term on the right, is a memory integral that relates the force on the particle at
the current time, t , to the past history of the particle velocity from an initial time, t0, and originates
from the unsteady diffusion of vorticity [9].

Hydrodynamic slip at the particle surface alters the hydrodynamic force on a particle. The force
on a perfectly slipping spherical particle (that is, where the particle surface cannot support a shear
stress) is [10,11]

FS = −m f

2

(
dv

dt
− du

dt

)
− 4πaρ f ν(v − u) − 8πaρ f ν

d

dt

∫ t

t0

G(t − s)(v(s) − u(s))ds, (5)

where the kernel

G(t ) =
{

e9tν/a2
erfc(

√
9tν/a2) for t � 0

0 for t < 0,
(6)

and erfc(·) is the complementary error function. The introduction of hydrodynamic slip nontrivially
alters the force. Specifically, while the Stokes drag is simply two-thirds the magnitude of the no-slip
case and the acceleration reaction is unchanged, the memory kernel, G(t ), has taken a new functional
form. This new memory kernel for a perfectly slipping sphere is bounded as t → 0, whereas the
no-slip memory kernel, K (t ), is (integrably) singular as t → 0. As t → ∞, both memory kernels
decay algebraically as t−1/2. This algebraic decay has important implications; for instance, it leads
to a long-time tail in the velocity autocorrelation function of a particle undergoing Brownian motion
[12].

The memory kernel K (t ) only applies to rigid spherical particles on whose surface the no-slip
condition is satisfied. That is, Premlata and Wei [13] showed that the memory kernel for a rigid
sphere with any nonzero slip length will maintain the same functional form as Eq. (6); however,
the characteristic momentum diffusion time is now a function of the ratio of the slip length to
particle radius. Kabarowski and Khair [14] calculated the time-dependent velocity of a perfectly
slipping sphere and showed that the high frequency, or short time, dynamics are most sensitive to
slip. Indeed, Mo et al. [15] suggested that measurement of the short-time Brownian motion of single
spheres could be used to infer slip length. Galindo and Gerbeth [16] derived the equivalent memory
kernel for a spherical viscous drop in the Fourier time domain, which, in the large drop viscosity
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to fluid viscosity ratio limit, exhibits the behavior of the no-slip memory kernel, K (t ), and in the
inviscid bubble limit, a perfect slip memory kernel, G(t ). This is unlike a rigid sphere with finite
slip that, as mentioned above, has a memory kernel of the same functional form as the perfect slip
memory kernel. We emphasize, then, that Eq. (1) pertains only to a rigid, no-slip spherical particle;
for a drop, bubble, partially or perfectly slipping sphere, there is a different kernel associated with
the unsteady force on the particle. While the works described above have shown how this difference
in the unsteady force affects the motion of a single particle, analysis of the collective motion of
many particles is lacking. It is the purpose of the present paper to address this gap in knowledge, for
the specific case of perfectly slipping spheres.

Ensemble dynamics of many particles at low Reynolds number are important in chaotic advec-
tion, where a laminar flow exhibits chaos, thereby enhancing mixing [17]. This effect has been
exploited in microfluidics, where a microchannel is constructed into a square wave to promote
mixing [18]. Open flow chaotic systems, such as flows in the wake of obstacles, are of interest
in continuous flow reactor modeling [19]. For no-slip spheres in open chaotic flows, the Basset
force has been shown to significantly influence the statistical behavior of ensembles of particles that
remain in the wake of the cylinder for times on the order of ten vortex shedding periods or larger [8].
Not only do particle trajectories deviate due to inclusion of the Basset force, which is expected due
to the sensitivity to initial conditions, but also the statistical properties of an ensemble of particles
including escape rates, location of attractors, and residence time distributions. A natural question
to ask, then, is how such statistical properties are affected by the difference in unsteady force on a
particle owing to hydrodynamic slip.

In this paper, we show that hydrodynamic slip significantly alters the statistical behavior of
spherical particles in an open chaotic flow. We compute the trajectories of perfectly slipping spheres
advected in the two-dimensional wake of a cylinder. We calculate collective behavior of the particles
to provide a statistical representation of their dynamics and compare to no-slip spheres and fluid
elements (i.e., passive tracers). We demonstrate that the presence of slip increases escape rates
for particles more dense than the surrounding fluid and decreases escape rates for particles less
dense than the surrounding fluid. Using residence time distributions, it is shown that the time that a
particle remains trapped in the wake of the cylinder can be orders of magnitude different between
slip and no-slip spheres given the same initial condition. We calculate the finite time Lyapunov
exponent (FTLE) field to trace the unstable (attracting) manifold and the stable (repelling) manifold
to compare the unsteady dynamics of a no-slip and slip particle. In Sec. II, we provide a problem
formulation along with a description of the method used for trajectory computation. In Sec. III, we
compare the differences of no-slip and slipping spheres in chaotic advection. In Sec. IV, we compute
chaotic scattering behavior for no-slip and slipping spheres. In Sec. V, a conclusion is offered.

II. PROBLEM FORMULATION

The motion of a small rigid sphere to which fluid perfectly adheres (i.e., the no-slip condition is
obeyed) in an unsteady flow is governed by the Basset-Boussinesq-Oseen (BBO) equation [9]:

mp
dv

dt
= m f

du
dt

+ FNS. (7)

The left-hand side of Eq. (7) is the particle inertia. The first term on the right-hand side is the
hydrodynamic force from the undisturbed flow, which is sometimes referred to as the pressure
gradient term. This term originates from the acceleration of the undisturbed flow and is the only
hydrodynamic force component acting on a fluid element. The second term on the right-hand side
is the hydrodynamic force due to the disturbance flow generated by the particle. Here, we take FNS

to be given by Eq. (1), which is contingent on the disturbance flow at the particle scale obeying
the unsteady Stokes equations. As discussed by Maxey and Riley (MR) [7], this requires Res � 1,
Rep = aW/ν � 1, and RepSl = (a2/τν) = O(1). Here, Res = (a2s/ν) is a shear Reynolds number,
where s = U/L is the characteristic shear rate of the undisturbed flow, in which L is the length scale
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of the undisturbed flow and U is the characteristic magnitude of the undisturbed velocity field u.
Additionally, we do not consider Faxen’s corrections to FNS, arising from spatial variations in the
undisturbed flow, which requires a/L � 1. If such corrections were included, then Eq. (7) would be
termed the MR equation [7,20], rather than the BBO equation. Buoyancy effects are also omitted,
which is valid in the present two-dimensional flow scenario. Inclusion of the Basset force makes
Eq. (7) an integrodifferential equation.

We now substitute Eq. (1) into Eq. (7) and introduce a characteristic unsteadiness time scale, τ ,
characteristic length scale, a, and thereby nondimensionalize Eq. (7), yielding

dv

dt
= γ

du
dt

− 3γ

RepSl
(v − u) − 3γ

√
1

π

1

RepSl

d

dt

∫ t

t0

K (t − s)(v(s) − u(s))ds, (8)

where K (t − s) = 1/
√

t − s, and

γ = 3m f

m f + 2mp
(9)

is the dimensionless density ratio with an inviscid bubble pertaining to γ = 3, a neutrally buoyant
particle as γ = 1, and particles more dense than the fluid have γ < 1. The dimensionless group in
Eq. (8) is

RepSl = a2/ν

τ
, (10)

which represents the ratio of the momentum diffusion time and the unsteadiness time.
In contrast, the equation of motion of a perfectly slipping spherical particle is [21]

mp
dv

dt
= m f

du
dt

+ FS. (11)

The dimensionless form of (11) after substitution of (5) is

dv

dt
= γ

du
dt

− 2
γ

RepSl
(v − u) − 4

γ

RepSl

d

dt

∫ t

t0

G(t − s)(v(s) − u(s))ds, (12)

where

G(t − s) = e9(t−s)/RepSlerfc(
√

9(t − s)/RepSl). (13)

To quantify the effect of slip on the ensemble dynamics of particles, we will compute the trajectories
of O(106) particles in a chaotic flow. A two-dimensional von Kármán flow in the wake of a cylinder
will be adopted, since an analytical approximation is available for the stream function of the flow.
Jung et al. [19] obtained this stream function, also known as a JTZ flow, and it has been shown to
capture the correct qualitative behavior of experiments. Specifically, Sommerer et al. [22] performed
experiments of a moving cylinder through a cross-streamline stripe of dye and found the initial
exponential rate of escape of fluid elements to match that predicted by the JTZ stream function.
However, at long times the escape rate did not match with the JTZ-based prediction of an algebraic
decay. This could be due to the simplified expression in the JTZ stream function for the fluid
boundary layer at the cylinder surface. The JTZ stream function is defined as

ψ (x, y, t ) = f (x, y)g(x, y, t ), (14)

where the origin is at the center of the cylinder of unit radius, x is in the direction of the flow, and y
is perpendicular to x. Here,

f (x, y) = 1 − exp[−((x2 + y2)1/2 − 1)1/2], (15)

which describes the boundary layer at the cylinder surface and tends to unity as distance from the
cylinder increases. The second factor, g(x, y, t ), contains information on the behavior of the two

084504-4



HYDRODYNAMIC SLIP SIGNIFICANTLY ALTERS …

vortices in the wake of the cylinder and is given by

g(x, y, t ) = −wH1(t )g1(x, y, t ) + wH2(t )g2(x, y, t ) + 14ys(x, y), (16)

where w is the vortex strength, H1(t ) = sin2(πt ), H2 = cos2(πt ), and

g1(x, y, t ) = exp[−0.35(x − x1(t ))2 + 4(y − 0.3)2], (17)

g2(x, y, t ) = exp[−0.35(x − x2(t ))2 + 4(y − 0.3)2], (18)

where x1(t ) and x2(t ) are the x positions of the vortices that change with time as

x1(t ) = 1 + 2 frac(t ), (19)

x2(t ) = 1 + 2 frac(t − 1/2), (20)

where frac(z) is the fractional part/decimal part of z, that is, the excess decimals after the integer.
The last term, s(x, y), is given by

s(x, y) = 1 − exp
(− 1

4 (x − 1)2 − y2
)
, (21)

and describes the flow near the rear of the cylinder as it pertains to vortices being shed. The
unsteadiness timescale is taken to be the period of vortex shedding, and the dimensionless vortex
strength is selected as w = 192/π for our computations. Figure 1 provides two snapshots in time of
the flow. In Fig. 1(a), t = 0.45, a first vortex has shed from the cylinder surface, and by t = 0.75, in
Fig. 1(b), a second vortex is being shed from the opposite side of the cylinder.

We compute particle motion in this flow field using a second-order Adams-Bashforth predictor-
corrector scheme as well as a second-order Newton-Cotes integration method for G(t ) and a-second
order method for K (t ) described by Daitche [23]. For the no-slip case, we begin by defining w =
v − u and rewrite Eq. (8) as

dw

dt
= (γ − 1)

du
dt

− 3γ

RepSl
w − γw · ∇u − 3γ

√
1

π

1

RepSl

d

dt

∫ t

t0

K (t − s)wds. (22)

The position of a particle evolves according to

dr
dt

= v = w + u, (23)

where r is the position vector of the particle relative to the origin at the center of the cylinder. We
now split Eq. (22) into two parts, A and B, namely,

A = (γ − 1)
du
dt

− 3γ

RepSl
w − γw · ∇u, (24)

B = −3γ

√
1

π

1

RepSl

d

dt

∫ t

t0

K (t − s)wds, (25)

where B contains the history integral, which is calculated to second order using the coefficients βn
j

defined on p. 6 of Ref. [23]. The time-stepping scheme for particle position at time tn+1 = tn + h,
where h is the step size, is

r(tn+1) = r(tn) + h

2
[3(w(tn) + u(tn)) − (w(tn−1) + u(tn−1))], (26)

and relative velocity is stepped according to

(
1 + ζβn+1

0

)
w(tn+1) = w(tn) + h

2
(3A(tn) − A(tn−1)) − ζ�n

j=0

(
βn+1

j+1 w(tn− j ) − βn
j w(tn− j )

)
, (27)
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FIG. 1. Streamline plot of the JTZ flow in the wake of a cylinder with streamlines in increments of 3 of
the stream function. Snapshots are taken at (a) t = 0.45 and (b) t = 0.75, illustrating the shedding of vortices
from the cylinder surface. The single vortex shed in (a) is squashed by the second vortex shed in (b).

where ζ = 3γ
√

h/(πRepSl). The second-order method has been shown to be accurate for long
computation times [O(104) time steps] with a time step h = 0.01 (see Fig. 3 in Ref. [23]). This
method allows for accurate trajectory computation given the integrably singular no-slip memory
kernel K (t ). In contrast, the perfect slip memory kernel G(t ) is finite as t → 0 and trajectories can
be computed accurately in this case with simpler methods such as the second-order Newton-Cotes
scheme.

III. CHAOTIC ADVECTION

A. Individual trajectories and escape rates

We first calculate the trajectories of both a no-slip sphere and perfectly slipping sphere (Fig. 2).
Here, we compute starting from the same upstream initial position (x = −1, y = −1.2), den-
sity ratio γ = 0.6, and initial time t0 = 0.2; however, the hydrodynamic forces acting on these
spheres are different due to the presence/absence of slip. The initial time was chosen to match
the no-slip trajectory computed by Daitche and Tél [24], and our computation of this trajectory
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FIG. 2. Trajectories of a no-slip sphere and perfectly slipping sphere from the initial position (−1, −1.2),
density ratio γ = 0.6, and initial time t0 = 0.2, where red: no-slip, blue: perfect slip, and green: fluid element.
Arrows indicated the magnitude and direction of the history force for each case: the magnitude of the history
force is smaller in the perfect slip case throughout the entire trajectory.

compares favorably to theirs. We observe that the trajectories of the perfectly slipping sphere
and no-slip sphere deviate downstream: at x ≈ 7, they are almost one cylinder radius apart. This
difference is due to the cumulative effect of small differences in the instantaneous force acting
on the particle, adding up to produce a large effect downstream. As the path lines of the particles
begin to diverge, the history of the particle velocity changes. Thus, not only is the memory kernel
weighting past velocity differently, the past velocities can also significantly differ.

Statistics of ensemble dynamics are needed to further describe the differences between the slip
and no-slip cases. In Fig. 3(b), we compute N = 1.6 × 106 particles in the wake of the cylinder for
γ = 0.6 and RepSl = 0.09 over the interval x = (0.6, 4) and y = (−2, 2) and calculate the rate at
which no-slip and slipping spheres escape. An escaped particle is defined as a particle that passes
x = 5 or moves within 0.014 radii of the cylinder surface. The second condition is used to only
include particles which escape downstream at intermediate times where the number of unescaped
particles, N (t ), decays exponentially as shown in Fig. 3(b). The number of unescaped particles at
longer times decay according to a power law or may get stuck on the cylinder surface and never
escape [19]. We define an escape rate through N (t ) ∼ exp(−κt ), where κ is the escape rate. The
computation in Fig. 3(b) yields κ = 1.08 for a no-slip sphere and κ = 1.32 for a perfectly slipping
sphere. The inverse of escape rate is the average chaotic lifetime of a particle. That is, a particle with

FIG. 3. (a) Escape rates of a no-slip sphere and a perfectly slipping sphere during intermediate times
between t = 3 and t = 25 of the flow versus RepSl and (b) the number of unescaped particles N (t ) versus
t for a computation for no-slip and perfectly slipping spheres at RepSl = 0.09 and γ = 0.6.
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FIG. 4. Comparison of trajectories of a no-slip sphere (top, red) versus perfectly slipping sphere (bottom,
blue). Initial particle positions are (−.5, 1.2), RepSl = 0.045, t0 = 0 and γ = 0.6. The arrows indicate the
direction and magnitude of the history force along the trajectory: the magnitude of the history force is smaller
in the perfect slip case throughout the entire trajectory.

a slow escape rate (small κ) remains in the chaotic wake of the cylinder longer than a particle with
a fast escape rate (large κ).

In Fig. 3(a), our results for the escape rate of fluid elements and no-slip spheres match that
of Daitche and Tél [8] for RepSl < 0.3, with 0.3 being the largest value they studied: note, our
computation range extends to RepSl = 0.6. We observe that for all particles, as RepSl → 0, the
escape rates approach the escape rate of a fluid element, which makes sense as memory effects
should be negligible in this limit. However, at different RepSl, the escape rate for a no-slip versus
perfect slip particle can vary significantly. For 0.05 < RepSl < 0.2 and γ = 0.6, the escape rate can
differ by over 50% due to the presence of slip, with the slipping spheres having a larger escape rate.
Thus, the exponential sensitivity of N (t ) on escape rate leads to two-thirds more time needed for
half of the particles to escape in the no-slip case than the perfect slip case. For 0.3 < RepSl < 0.5
and γ = 0.6, the escape rates are similar. As we increase RepSl, it is difficult to predict a priori
whether a no-slip or perfect slip sphere will escape more quickly, due to the chaotic nature of
particle trajectories within the wake flow. For instance, for particles of γ = 3 and RepSl < 0.25,
the escape rate of the perfectly slipping sphere is lower than that of a no-slip sphere. In addition,
we found two conditions (RepSl = 0.255 and RepSl = 0.27), where the escape rate of the perfectly
slipping particles is zero during the time interval computed. Again, as RepSl increases, this slow
escape behavior for the perfect slip case is no longer observed. For example, when RepSl = 0.6
and γ = 3, the perfect slip escape rate κ = 0.87 is larger than the no-slip escape rate κ = 0.33. We
set the upper bound of computations as RepSl = 0.6 due to the computational cost involved.

The behavior of the escape rate with changing RepSl can be understood from the trajectory
of individual particles. In Fig. 4, trajectories for the no-slip and perfectly slipping sphere cases
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FIG. 5. Comparison of trajectories for a no-slip sphere (top) versus a perfectly slipping sphere (bottom).
Initial particle positions are (−.5, −1.11), RepSl = 0.045, t0 = 0, and γ = 3. The arrows indicate the direction
and magnitude of the history force along a trajectory. Arrow magnitude of no-slip sphere is reduced by one
fifth for illustration.

are shown along with the directions of the history force for γ = 0.6 and RepSl = 0.045. At these
conditions, the history force tends to counteract an outward centrifugal force, thus preventing the
particle from escaping. Since the magnitude of the history kernel [K (t )] is larger for a no-slip sphere
versus a perfectly slipping sphere (G(t )) at fixed t , one might think the no-slip sphere should escape
more slowly from the vortex. Indeed, this is case for the conditions in Fig. 4. However, the no-slip
sphere does not escape more slowly for all RepSl. While the perfect slip case may have a smaller
magnitude of the history kernel, the history of motion, specifically the particle acceleration, can be
drastically different given the same initial position. That is, a perfect slip sphere may have more
trajectories that enter the vortex where the no-slip sphere does not. In this case, the perfect slip
sphere will enter the vortex and escape downstream at a later time than a no-slip sphere exiting
downstream after evading the vortex.

For particles less dense than the surrounding fluid, the history force counteracts the inward
centrifugal force of the vortex on the particle. In Fig. 5, trajectories for a no-slip sphere and perfectly
slipping sphere with γ = 3 are shown. The no-slip case history force is much larger than the perfect
slip case. Note, for the clarity of illustration, the magnitude of the arrows in the no-slip case in
Fig. 5 have been reduced by one-fifth scale than the perfect slip case. Just as for γ = 0.6, for
γ = 3 whether the escape rate of the no-slip or perfect slip case is larger changes over the range of
RepSl computed. Again, the no-slip history kernel is larger in magnitude but small differences in
the history of motion of the particles can lead to large differences in escape rates. In addition, the
two initial conditions in Fig. 5 both result in the no-slip sphere and perfectly slipping sphere being
trapped in the vortex; however, the exit y position for the no-slip case is less than zero while the y
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FIG. 6. Residence time distribution of a no-slip sphere (a), a sphere with slip (b), and the absolute difference
in residence time between a no-slip sphere and sphere with slip. For this calculation, γ = 3 and RepSl = 0.09.

position of the perfectly slipping sphere is approximately 1.5. Given the same initial conditions,
there is no guarantee the escape rate or escape position downstream of a no-slip and perfectly
slipping sphere will be similar, which is expected given the chaotic nature of trajectories. To capture
these differences, we create a residence time distribution for each case next.

B. Residence time distributions

To create a residence time distribution, we calculate the time it takes a particle to escape, for
up to 100 periods of vortex shedding, where an escaped particle is defined as a particle that
passes the downstream x = 5 position. We discard the previous condition excluding trajectories
within 0.014 cylinder radii of the cylinder surface to include behavior for long-time escaping
particles. The difference in residence time between a no-slip and perfect slip sphere can be O(100)
[Fig. 6(c)]. A slipping sphere has significantly more initial conditions that remain in the wake of
the cylinder for longer than 100 periods of vortex shedding than the no-slip sphere [Figs. 6(a) and
6(b)]. Qualitatively, this signals that the cylinder surface is stickier in the case of particles with a
slipping surface, as particles with long residence times will spend a long time near rear surface of
the cylinder. Furthermore, initial conditions of no-slip spheres with long residence times are near
the rear stagnation point of the cylinder, while the perfectly slipping case has initial conditions
remaining in the cylinder wake for over 100 periods of vortex shedding that begin over one cylinder
radius from the cylinder.

This open flow system also exhibits transient chaos, whereby the difference between two trajec-
tories with infinitesimally small perturbations in initial position grows exponentially in time up to a
point where particles escape downstream. We now quantify this transient chaos for a no-slip sphere
and perfectly slipping sphere. Using the same parameters as in Fig. 6, we identify initial conditions
where the particle remains in the wake of the cylinder for longer than 15 vortex periods. These initial
conditions trace the stable manifold, or repelling material line, as shown in Fig. 7. This material line
is repelling as there is no particle flux through the line and particles initially on opposite sides of
this material line are repelled away from each other. Figure 7 shows the evolution of the repelling
material lines for no-slip and perfect slip particles at four times after a vortex is shed from the top
of the cylinder. This shows that slip can significantly change which initial positions remain for long
times in the wake of the cylinder. While both no-slip and slip particles that start near the cylinder
surface have large residence times, there are significant differences in the loop formed off the top
right of the cylinder in Fig. 8(a). The no-slip material line encloses a smaller area in the loop than
the slip case. As time increases, particles trapped in the loop are pulled toward the cylinder surface
as they are unable to pass through the repelling material line. Since the area in this loop is smaller
for the no-slip case, fewer particles are trapped near the cylinder surface and the escape rate for the
slipping sphere is larger than the no-slip sphere at RepSl = 0.09 as also shown in Fig. 3.
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FIG. 7. Stable manifold, or repelling material line, for no-slip spheres are shown in red and perfectly
slipping spheres are in blue. Each snapshot of the stable manifold taken as a vortex is shed from the top of
the cylinder. For this calculation, γ = 3 and RepSl = 0.09.

Central to chaotic systems analysis is the Lyapunov exponent, defined by [25]

δt = δ0eλt , (28)

FIG. 8. Unstable manifold, or attracting material line, for no-slip spheres in red and perfectly slipping
spheres in blue. The ambient flow streamlines are shown in grey. Each snapshot of the unstable manifold is
taken after a vortex is shed from the top of the cylinder. For this calculation, γ = 3 and RepSl = 0.09.
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where λ is the largest Lyapunov exponent, δ0 is a small initial distance between two trajectories,
and δt is the distance between two trajectories at time, t . For chaotic systems λ > 0 and the distance
between the trajectories grows exponentially with larger λ, implying greater separation between
the trajectories and therefore a more unstable initial position. However, due to the time-dependent
nature of the flow in the wake of a cylinder, a single value for the Lyapunov exponent does not apply
to all locations at all times. Instead, we calculate a FTLE field, where regions of high Lyapunov
exponent ridges are the unstable manifold, or attracting material line [26]. These regions evolve in
space and time due to the unsteady flow. The Lyapunov exponent is calculated at 90 000 grid points
for x = (−1, 4) and y = (−2, 2) with the finite time t = (t0, t0 + 10) for trajectory computation.
Here, we specify the initial time, t0, as the FTLE field is time dependent. The ridge locations are
approximated using a logarithmic scale on a contour plot so only large Lyapunov exponents (λ > 1)
are shown. The unstable manifold is shown in Fig. 8, where the attracting material lines for the
no-slip and slip cases are shown after vortex is shed from the top of the cylinder. The material lines
for both the no-slip and slip case do not coincide with the fluid streamlines or each other. That is, a
no-slip sphere moves along a different trajectory when it enters a vortex than does a slip sphere due
to differences in the position of these attracting material lines. This is illustrated in Fig. 5, where both
the no-slip and slipping sphere enter the vortex; however, the slipping sphere revolves around the
center of the vortex for one period less than the no-slip sphere. Therefore, no-slip and slip spheres
will have different trajectories downstream due to the location differences in the attracting material
lines.

IV. CHAOTIC SCATTERING

While our previous analysis has focused on the behavior of particles in the wake of the cylinder,
we now analyze scattering of particles whose initial position are upstream of the cylinder. Here, we
fix the initial position of all trajectories to (x = −3, y = 0.005). This is upstream from the cylinder
and offset from the x axis to avoid particles sticking to the front of the cylinder. Again, a stuck
particle is one that attaches to the surface of the cylinder and does not exit downstream. This particle
sticking is due to the JTZ stream-function approximation of the actual fluid flow. We begin by using
a method to analyze scattering trajectories developed by Bleher et al. [27]. Let our output variable be
the residence time, Dt , given by the time it takes for a particle to escape downstream until x = 5. Our
input variable is the initial time, t0, for when a particle is released upstream of the cylinder. Results
for a no-slip sphere, with γ = 3, are shown in Fig. 9. In this figure, the residence time increases as
we zoom in on singular regions of residence time versus initial time plot. Two types of trajectories
occur: regular path lines and scattering path lines. Regular path lines are particles deflected by the
cylinder and exit downstream without entering the vortex behind the cylinder. Regular path lines
have lower residence times and regions in Fig. 9 that are smooth contain these path lines. Scattering
path lines are path lines where the particle follows close to the cylinder surface before passing
through the rear stagnation point of the cylinder. These particles remain trapped near the rear of the
cylinder for long times. Regions in Fig. 9 with large variances in residence time for small changes
in t0 are evidence of chaotic scattering path lines. For the no-slip case, the residence time increases
significantly from Figs. 9(a) to 9(b) due to singularities in the residence time being magnified,
which appear due to particles being trapped at the rear stagnation point of the cylinder [19]. As we
approach these singularities, the residence times increase as the particle gets closer and closer to the
rear stagnation point of the cylinder. While scattering trajectories typically deviate from a baseline
residence time of regular particle trajectories, in Fig. 9(b), this baseline itself seems to increase
for initial times around 0.045. This is due to the path line approaching very close to the upstream
cylinder surface, thereby increasing the time to reach the wake of the cylinder, i.e., this is not due to
chaotic scattering in the wake.

We complete the same analysis for the perfect slip case with γ = 3, shown in Fig. 10. Again,
we see regular path-line sections and scattering path-line sections as in the no-slip case. However,
the residence time is larger in the perfect slip case, as evidenced by having many more initial times
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FIG. 9. No-slip sphere residence time, Dt , versus the initial time, t0, that a particle is released over a period
of vortex shedding in plot (a). Subsequent plots (b)–(d) show small scale variance in residence time as the
interval of initial time shrinks, which indicates chaotic scattering.

leading to residence times larger than 200 vortex periods. In addition, Fig. 10(d) shows significant
variation for initial times differing by only 10−6. To quantify this difference, we estimate the
uncertainty dimension using a method adapted from Refs. [27,28]. Here, we have selected a domain
of initial times, t0 = 0 to t0 = 0.1 since scattering seems to occur soon after a vortex is shed from the
cylinder surface, either at t0 = 0 (shed from top) or t0 = 0.5 (shed from bottom) [see Fig. 10(a)].
Next, we estimate an uncertainty probability, f (ε), by computing a trajectory started at t0 and a
trajectory perturbed an amount ε in time, i.e., started at t0 + ε. If the trajectories remain on the same
side of the x axis, they are not uncertain. If the trajectories end up on opposite sides of the x axis, they
are uncertain. This is computed for N = 10 000 randomly selected trajectories and the uncertainty
probability is f (ε) = N0/N , where N0 is the number of uncertain trajectory pairs. For small ε,
the scaling of the uncertainty probability is f (ε) = εα , and the uncertainty dimension Ds = 3 − α

for this three-dimensional system (two spatial dimensions and one dimension in time). Figure 11
shows the uncertainty probability for both a no-slip and perfect slip sphere over a range of ε. The
uncertainty dimension for a no-slip sphere is 2.74 while the uncertainty dimension for the perfect
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FIG. 10. Slipping sphere residence time, Dt , versus initial time, t0, over one period of vortex shedding in
plot (a). Subsequent plots (b)–(d) show small scale variance in residence time as interval of initial time shrinks.

slip sphere is 2.84. This indicates a higher degree of uncertainty for the perfect slip case. Figure 11
can also be interpreted by viewing the x axis as a measurement error and the y axis as the fraction of
instances a prediction is incorrect due to this error. As expected, as the measurement error decreases,
predictions become more accurate. This is seen by f (ε) decreasing with decreasing ε. However, the
rate at which f (ε) decreases indicates the uncertainty of the system. So, the uncertainty dimension
for the perfect slip sphere is larger than the no-slip sphere since the slope of the perfect slip line
in Fig. 11 is smaller than that of the no-slip line. That is, as our measurement error decreases, our
prediction accuracy improves less in the perfect slip case than the no-slip case.

V. CONCLUSION

Calculations for the motion of small spherical particles, with and without surface hydrodynamic
slip, in unsteady 2D von Kármán flow at the wake of a circular cylinder flow were performed.
For RepSl < 1, the escape rate of a perfectly slipping sphere can be 50% larger than the no-slip
sphere for particles more dense than the surrounding fluid. Residence time distributions for initial
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FIG. 11. Log-log plot of uncertainty probability versus perturbation (ε) for no-slip (red line of best fit and
red dots) and perfectly slipping sphere (blue line of best fit and blue dots).

conditions in the wake of the cylinder also show qualitative differences of which initial conditions
lead to long time trajectories in each case. The perfectly slipping sphere has significantly more initial
conditions that remain in the wake of the cylinder for longer than 15 vortex shedding periods. This
is also evident in the stable manifold and unstable manifold, which qualitatively differ in location
for no-slip and slip cases.

Chaotic scattering of no-slip and perfect slip spheres was analyzed by computing the residence
time of a particle initially upstream of the cylinder for many different initial times. Both the no-slip
and perfect slip spheres show large variations in residence time for small changes in initial time, and
thus both show evidence of chaotic scattering. The uncertainty dimension is calculated to provide a
quantitative measure of uncertainty given a measurement error. Here, the perfect slip sphere has a
higher uncertainty dimension than the no-slip sphere, indicating prediction accuracy increasing less
for the perfect slip sphere as measurement accuracy increases.

While most work on particle motion in unsteady flows has assumed rigid no-slip spheres, we have
shown that a change in hydrodynamic surface condition can lead to large differences in the motion
of both individual particles (downstream exit positions, trajectories, and scattering behavior) and
ensemble behavior (escape rates, material line locations, and residence time distributions). This is
relevant for many instances beyond the perfectly slipping particle that we have considered, including
bubbles, drops, and slipping spheres with a finite slip length.

Here, we analyzed the two limiting cases (no-slip and perfect slip, i.e., an infinite slip length) of
the surface boundary condition on a particle. However, other particles could have finite slip at the
particle surface or, as in the case of drops, have mobile fluid-fluid interfaces. In the finite slip length
case, the memory kernel is of the same functional form as the perfect slip case but includes factors
that are a function of the magnitude of the slip length. Legendre et al. [29] numerically calculated
an approximation of the history force for a drop. For all viscosity ratios of drop viscosity to fluid
viscosity, the kernel is integrably singular as t → t0 so numerical methods need to be developed
similar to that of Daitche [23]. Our analysis also has been for the model problem of an open chaotic
flow in the wake of the cylinder. There are other flow systems already analyzed for the no-slip case
that could be used to compare to the drop and (finite or perfect) slip cases. For example, Candelier
et al. [30] analyze, using experiments and theory, the rigid body rotation behavior of no-slip particles
dropped into a rotating cylindrical tank filled with a fluid. They show that the no-slip history force
is important in prediction of the rate at which a particle, more dense than the surrounding fluid, is
ejected from the center of the flow for a particle. This sensitive dependence on history force could
lead to differences in ejection behavior given differences in hydrodynamic surface condition.

Finally, we revisit our assumption that the flow at the particle-scale obeys the unsteady Stokes
equations, which requires Res = (a2s/ν) � 1, Rep = aW/ν � 1, and RepSl = (a2/τν) = O(1).
Specifically, the unsteadiness time scale τ for the JTZ flow is on the order of the time period
of vortex shedding from the rear of the cylinder. This timescale is of order L/U , as discussed
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by Ref. [19]. Hence, Res ∼ RepSl, which implies that inertial lift forces would be comparable
to the history force on a particle in this flow. Thus, our assumption of an unsteady Stokes flow
at the particle scale is questionable. However, this same assumption was made in Refs. [8,24] to
compute the trajectory of a no-slip sphere in the JTZ flow. Thus, the comparison of our results
for perfect-slip spheres to that of Refs. [8,24] for no-slip spheres is consistent, since those studies
also neglect inertial lift. This comparison serves to demonstrate that hydrodynamic slip significantly
alters chaotic advection and scattering of small particles, due to the difference in the history force
between the perfect-slip and no-slip cases, which is the main conclusion of our paper.

Extending our computations to include the effects of inertial lift would be very challenging.
Technically, it would require that Eqs. (1) and (5) for the hydrodynamic force on a no-slip and
perfect-slip sphere, respectively, be augmented with appropriate expressions for the inertial force
(lift and drag) due to the local velocity gradient in the flow. Such expressions would first have to
take into account the time-dependence of the relative velocity, v − u, between the particle and fluid.
(Note, this relative velocity is termed a slip velocity in the literature on inertial lift, but this is not
to be confused with the hydrodynamic slip that we consider.) Second, the time-dependence in the
local velocity gradient must be accounted for. That is, we require an expression for the inertial force
on a spherical particle with a time-dependent slip velocity in a time-dependent velocity gradient at
Res � 1 and Rep � 1. To our knowledge, such an expression does not exist. Indeed, an expression
for the time-dependent inertial force on a (no-slip) particle with a time-dependent slip velocity
in a steady velocity gradient was only recently derived in Ref. [31], under the restrictions that
Res � 1, Rep � 1,

√
Res/Rep � 1, and SlRes � 1. The first three restrictions are the same as

imposed by Saffman [32] in his seminal work on the steady inertial lift force on a sphere steadily
translating along the streamlines of steady simple shear flow. The last restriction means unsteady
and convective inertial effects matter only at large distances, of order 1/

√
Res, from the particle.

We view the consideration of how inertial lift forces affect the particle trajectories that we have
presented to be an important direction for future work.
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