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Anisotropic particles focusing effect in complex flows
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Finite-size effects can lead neutrally buoyant particles to exhibit different dynamics than
tracer particles, and can alter their transport properties in fluid flows. Here we investigate
the effect of the particle’s shape on their dispersion in two-dimensional complex flows.
Combining numerical simulations with laboratory experiments, we show that particles with
isotropic and anisotropic shapes exhibit different Lagrangian coherent structures, resulting
in distinct dispersion phenomena within a given flow field. Experiments with rod-shaped
particles show a focusing effect in the vicinity of vortex cores. We present a simple model
that describes the dynamics of neutrally buoyant ellipsoidal particles in two-dimensional
flow and show that particle aspect ratio and orientation-dependent forces can generate
clustering phenomena in vortices.
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I. INTRODUCTION

The dispersion of a tracer in a fluid flow is influenced by the Lagrangian motion of fluid elements.
Even in laminar regimes, the irregular chaotic behavior of a fluid flow can lead to effective stirring
that rapidly redistributes tracers throughout the domain. In this context, small finite-size objects can
behave considerably different from infinitesimal fluid particles, and lead to altered clustering and
dispersion phenomena. Ranging from pollutant transport [1] and plankton population evolution on
the surface of the ocean [2], to interstellar dust dynamics [3,4], quantifying the impact of finite-size
effects is therefor essential to describe material transport in natural and industrial processes.

However, depending on their size and buoyancy properties, inertial particles can exhibit a variety
of dynamics, resulting in markedly different trajectories [5–8]. The shape of a particle can also
affect its response to fluid flow [9–12]. For instance, in cloud formation the anisotropic shapes
of ice particles influence their transport [10,13] and aggregation [14,15] in turbulent atmospheric
flows. Fiber transport in cellular flows, on the other hand, have been shown to exhibit hydrodynamic
dispersion phenomena controlled by the buckling properties of the material [16,17]. Under marine
conditions, preferential alignment of elongated microorganisms in the local flow direction can affect
light backscattering and change global carbon fixation rates within phytoplankton blooms [18]. In
recent studies, predictive models suggested that the irregular shape of microplastic contaminants
could also have an impact on their long-term transport properties on the ocean surface [19–21].

In this paper, we investigate the effect of anisotropic shape on the particles dynamics and long-
term behavior in chaotic flows. We experimentally show that when advected in two-dimensional
(2D) cellular flows for an extended period of time, finite-size particles’ trajectories with an el-
lipsoidal shape start diverging from the spherical ones. The ellipsoidal particles exhibit a strong
clustering in the vicinity of vortices with an aggregation rate that depends on the particle’s aspect
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ratio. We present a simple model that combines finite-size effects with an orientation-dependent
dynamics, and perform in parallel, numerical simulations under identical conditions to the
experiments. Our results suggest that neutrally buoyant ellipsoidal particles present stronger inertial
effects, and are attracted to the coherent regions of the flow at a higher rate than spherical particles.

II. FINITE-SIZE ANISOTROPIC PARTICLES DYNAMICS

A. Isotropic inertial particles

Inertial effects arise when the advected particle and fluid flow accelerations become different;
namely, the particle is responding to changes in the underlying flow field over a finite time and
additional forces are generated. For instance when the particle density is different from the carrying
fluid density, even for a small difference, these effects can accumulate over time and eventually
lead to a drastic deviation between the fluid flow and particle trajectory. Experiments conducted
in three-dimensional turbulent flows [7,22–25], and in two-dimensional chaotic flows [6,26], have
shown that the particle’s behavior can be partly quantified by the particle’s Stokes number St:

St = 2

9

ρp

ρ f

( a

L

)2
Re, (1)

where ρp is the particle density, ρ f the fluid density, a the particle radius, L the flow characteristic
length scale, and Re = UL/ν is the flow Reynolds number with ν the fluid kinematic viscosity
and U the characteristic flow velocity. Assuming a � L, the dynamics of small but finite-size
inertial particles can be described with a simplified Maxey-Riley equation [27], neglecting the Faxén
correction and memory terms [5,26,28–30]. After rescaling space by L, and time by T = L/U , the
momentum equation becomes [29]
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The particle’s velocity v depends on three forces in the right-hand side of the equation: the first
term corresponds to advection and added mass, where u is the flow velocity, the second term is
the Stokes drag force, and the third term is the buoyancy force, where the density ratio is given
by R = 2ρ f /(ρ f + 2ρp), and g = −g ez is gravity. Note that d./dt = ∂.

∂t + (v · ∇). and D./Dt =
∂.
∂t + (u · ∇). are different here [26].

When the particles are neutrally buoyant, such that ρp = ρ f , R = 2/3, and Eq. (2) reduces to [29]

dv
dt

= Du
Dt

− 2

3
St−1(v − u). (3)

This shows that particles with finite St number can still exhibit a dynamics with a finite relaxation
time due to the flow interactions with the particle’s surface [5–7,26]. Note that Eq. (3) converges
toward the fluid elements motion when St → 0 for infinitesimal particles.

B. Anisotropic particles’ angular dynamics

In comparison with spherical particles, anisotropic particles can exhibit additional torques and
forces due to the coupling between their rotational and translational behavior. The motion of small,
neutrally buoyant ellipsoidal particles in laminar flow has been first studied by Jeffery in 1922 [31].
His theoretical work on the torque experienced by noninertial ellipsoidal particles combined with
more recent numerical simulations with orientation-dependent relaxation times [9,21,32], suggest
that the dynamics of even very small objects, i.e., St � 1, could be affected by their anisotropic
shape. Experiments in turbulent flow have also indicated that the turbulent kinetic energy of a
suspension is altered accordingly with the suspended particles’ shape [33]. Finally, numerical
models with small inertial effects coupled with orientation-dependent forces, showed that the
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transport of anisotropic particles under a wave can also lead to distinct behaviors over long periods
of time [21].

Neutrally buoyant ellipsoidal particles experience a torque that tends to align their principal axis
parallel to the surrounding fluid principal axis of distortion. For noninertial particles, the particle’s
velocity is identical to the surrounding fluid v = u at all times. In this situation, there is no resultant
force and the torque acting on the particle vanishes at first order [31]. The particle angular velocity
θ̇ is then simply expressed as a function of the flow vorticity ω and strain rate: [30,34,35]

θ̇ = ω

2
+ 1

2

(
1 − γ 2

1 + γ 2

)[
sin 2θ

(
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− ∂uy
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(
∂uy
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+ ∂ux
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)]
, (4)

where γ = a2/a1 is the particle aspect ratio, with a1 and a2 the semiminor and semimajor axes,
respectively, and ux and uy are the horizontal and vertical components of the flow velocity in the
fixed frame. The particle’s orientational dynamics is described using three coordinate systems: a
fixed frame x = (x, y, z), a particle frame x̂ = (x̂, ŷ, ẑ), and a comoving frame ˆ̂x = ( ˆ̂x, ˆ̂y, ˆ̂z), see
Fig. C.1 in the Supplemental Material for a schematic [30]. In this configuration, θ corresponds to
the angle between the particle’s major axis and x or ˆ̂x.

C. Anisotropic inertial particles

To describe the combined effects of finite-size and anisotropic shape with a minimal model, we
present here an equation of motion that couples the particle’s orientation with the drag force only.
In order to consider a finite-size particle, we need to take into account inertial forces that will tend
to separate the particle’s trajectory from the fluid trajectory, such that now v �= u. The dynamics
of anisotropic particles is not well approximated by Eq. (3) anymore, and needs to be modified to
account for the orientation-specific dynamics [36,37]. For instance, the added mass and drag force
terms can become dependent to the particle’s instantaneous orientation [9,21,32]. Here, we use a
linear momentum equation with a the hydrodynamic drag force term coupled with the ellipsoidal
particle’s orientation [38–41]

F = −6πasμ
ˆ̂K(v − u), (5)

where as = a1γ
1/3 is the radius of the equivalent sphere with the same volume as the ellipsoid, μ is

the dynamic viscosity of the fluid and ˆ̂K represents the resistance tensor of an ellipsoidal particle in
the comoving frame [9,40]; see Supplemental Material for more details [30]. The resistance tensor

K̂ is initially determined in the particle frame, and relates to ˆ̂K in the comoving frame through the
particle’s rotation matrix A, such that

ˆ̂K = A−1K̂A. (6)

In the case of a prolate ellipsoidal particle, e.g., invariant by rotation along its major axis, the
resistance tensor reduces to a diagonal matrix, and for a two-dimensional flow, we have

K̂ = 8
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Substituting the drag force term applying to finite-size spheres in Eq. (3), and noting ˆ̂K =
8/3γ −1/3 ˆ̂k, we obtain

dv
dt

= Du
Dt

− 16

9
(γ St)−1 ˆ̂k(v − u), (7)
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FIG. 1. (a) Experimental setup of the rotor flow. One rotor attached to a traverse are, respectively, ensuring
the rotation and translation of the rod. A mirror at 45 degrees is reflecting the recorded image of the interface
from the bottom of the tank. The particles are positioned at a fixed height in a glycerol and salt density
stratification. (b) Experimental flow velocity field determined from PIV measurements in the steady regime
with a rotor speed at 200 rpm and a fixed transversal position. The color code corresponds to the norm of the
flow velocity. (c) Corresponding FTLE field computed for a time window t = [0; 60] τ where τ = 0.3 s is the
rotor period.

such that now, the equation of motion becomes coupled to the orientation of the particle given by
Eq. (4). The drag force term’s prefactor is proportional to (γ St)−1, indicating that the relaxation time
of the particle will now also depend on its aspect ratio; i.e., the more elongated the particle the longer
the response time. Similarly to Eq. (3), drag forces can introduce perturbations and also deviate
elongated particles from fluid particle trajectories. Note that although the particles are passive, these
perturbations allow the particles to cross flow streamlines and explore larger portions of the flow
field, akin to active self-propelled particles [26,42,42–44]. However, the dynamics exhibited by
motile and inertial particles differ as they experience distinct forces. While prolate particles that
can swim possess an intrinsic velocity aligned with the particle’s long axis at all times, passive
particles, on the other hand, exhibit a distinct velocity from the fluid only when inertial forces are
non-negligible. These forces depend on both the particle’s orientation and the local flow geometry,
such that, as opposed to motile particles with a fixed velocity, inertial particles intrinsic velocity can
vary over time and point in different directions relative to the particle’s major axis.

III. MATERIALS AND METHODS

The experimental setup consists of a rectangular container of dimensions L × W × h = 100 ×
400 × 200 mm. To circumvent any surface tension effect [45], the particles are trapped at the
interface between two miscible fluids of different density. The tank is filled with two stratified
layers of pure glycerol with density ρ1 = 1.26 ± 0.001 g.cm−3 and a solution of glycerol and salt
with ρ2 = 1.30 ± 0.01 g.cm−3, as represented in Fig. 1(a). To prevent viscous instabilities at the
interface, the viscosity of the layers are matched by adding 4% water to the glycerol and salt
solution. The particles have a density ρp = 1.28 ± 0.005 and are stabilized by buoyancy forces
on a quasi-two-dimensional plane, see Supplemental Material for pictures [30]. The bottom of the
tank is filled with a 1 cm layer of low-viscosity fluorinated oil to reduce friction on the lower wall,
and a layer of vegetable oil is added on top to prevent water absorption by the glycerol over time.
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The particles motion is recorded with a 45 degree tilted mirror at the bottom the setup, and particle
tracking velocimetry (PTV) is performed from digitized images with a 14 bit LaVision camera.

We use 3D-printing ABS filament of 1.75 mm diameter with variable length to create anisotropic
particles of the desired aspect ratio. To minimize particle-particle interactions, a small number of
particles (32) is initially uniformly deposited and spread across the domain. For each particle’s
aspect ratio, five independent realizations were prepared manually by randomly redistributing the
initial positions of the particles at the glycerol–glycerol-and-salt interface. Because of the stable
stratification configuration and the high viscosity of the glycerol, the interface remained well defined
for several consecutive realizations of the experiment. The stratification is then renewed by changing
the fluid mixture in the tank, and different particles are deposited at the interface.

The flow is created by stirring the fluid with a rotor attached to a longitudinal translation stage;
see Ref. [46] for a similar experimental system description. The rotation is controlled with a Lexium
NEMA 34 motion control motor with a 2 cm diameter Plexiglas rod, and the translation of the rotor
with a Parker lead-screw traverse attached on top of the tank. The resulting flow is quasi-two-
dimensional in the stratified fluid layer, and similar to the rotor-oscillator flow topology described
by Hackborn [30,47–49]. In the steady regime, when the position of the rotor is fixed, the rotation
of the rod close to the wall creates a hyperbolic stagnation point in the center and two Moffatt
eddies [50] on each side of the rotor. Particle image velocimetry (PIV) is performed by seeding
the upper glycerol layer with 30 μm diameter hollow glass beads. A YAG laser 532 nm is used to
illuminate a sheet in the horizontal plane and visualize the flow near the plane containing the inertial
particles. A typical flow velocity snapshot is displayed in Fig. 1(b). The inner region in the direct
proximity of the rotor exhibits the highest velocities ‖u‖ � 10 mm.s−1, and rapidly decays within
a rod radius away from the rotating boundary. The two corotating Moffatt eddies are also visible,
with an average flow speed in the outer region of u � 4 ± 1 mm.s−1 in their vicinity.

We perform in parallel numerical simulations solving the governing Eqs. (3), (4), and (7) under
identical conditions with the experiments. The size and the aspect ratio of the particles are set
by choosing identical Stokes number and γ with the experimental particles. The particles initial
positions are on a grid that matches our PIV field coverage, the initial orientation of the anisotropic
particles θ0 are randomly chosen and the initial velocity is set slightly smaller than the fluid velocity
at the particle’s location v(t = 0) = 0.9u.

IV. NUMERICAL RESULTS

A. Focusing effect in the steady double gyre flow

We first numerically investigate the effect of particle size and shape on their trajectories over
a large range of Stokes number 10−4 � St � 10−1, and aspect ratio 1 � γ � 10. We consider a
double gyre flow with periodic boundary conditions defined by the stream function

ψ (x, y, t ) = A sin[(π f (x, t )] sin(πy), (8)

where A sets the flow amplitude, f (x, t ) = x + B(x2 − 2) sin ωt , and B sets the oscillation ampli-
tude. In the steady regime B = 0, and the stream function reduces to ψ (x, y) = A sin(πx) sin(πy),
leading to a simple periodic array of counterrotating vortices.

The resulting spatial distributions of neutrally buoyant particles with St = 5 × 10−4 and different
shapes around a single vortex are shown in Figs. 2(a) and 2(b). The stream function amplitude is
set to A = 100, such that all the particles converge rapidly to a steady spatial distribution after a
short transient regime and ellipsoidal particles orientation aligns with the local flow streamlines.
Figures 2(c) and 2(d) show the corresponding radial component of the drag forces during the early
transient dynamics. For both types of particles, a negative radial component is displayed near the
center of the vortex, and indicates attractive forces toward this region of the flow. Drag forces are
systematically larger for the ellipsoidal particles, leading to stronger deviations on average than for
spherical particles. As can be seen in Fig. 2(e), even for the largest simulated Stokes number St =
10−2, spherical particles’ velocity rapidly relaxes toward the fluid flow velocity while elongated
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FIG. 2. Numerical particles positions in the steady regime for t > 500 in the steady vortex flow with A =
100 and ω = 2π/10, for particles with St = 5 × 10−4 and initially at rest, (a) spheres and (b) ellipsoids with
γ = 5. Corresponding radial component of the drag force experienced by the particles in the transient regime.
For comparison, each of the color plots are normalized by the respective drag force prefactor St−1 and (γ St)−1

in Eq. (3) and Eq. (7), (c) spheres and (d) ellipsoids with γ = 5. (e) Particle velocity vx and fluid velocity ux

difference versus time at the particle’s position for a spherical (orange) and ellipsoidal (purple) particle selected
at the same initial position and with St = 10−2. (f) Particles spatial distribution around the vortex center in the
steady regime for three different St number, for spherical particles (orange circles), and ellipsoids with γ = 5
(purple triangles). The radial density profile is azimuthally averaged and normalized by the total number of
particles N0. (g) Radial position of density profile maximum rp as a function of St.

particles velocity does not converge to the flow velocity. Anisotropic particles systematically present
a stronger focusing effect, converging toward smaller orbit radii than the spherical particles at equal
St number. To illustrate this effect, we repeat the same simulation and vary the St number by two
orders of magnitude. Figure 2(f) shows the resulting radial distribution of particles in the steady
regime. As the St number increases, the particles spatial distribution becomes more peaked and
moves closer to the vortex center. As can be seen in Fig. 2(g), the distance of the particle density
peak to the vortex center rp decreases faster for ellipsoidal particles as a function of the St number
before becoming similar for both types of particles when St � 3 × 10−3. Even at small St number
St ≈ 10−4, when inertial effects are expected to be negligible for spherical particles, anisotropic
particles exhibit a more complex dynamics with a stronger attraction to vortex cores.

B. Particles dispersion in time-varying flows

We now use the full time-dependent double gyre flow, and set e = 0.25. In time varying flows,
attractive and repulsive structures are only defined over a finite time period. In this context,
Lagrangian coherent structures (LCS) provide a useful framework to understand the transport of
material in complex, unsteady flow fields [1]. To identify these regions, we first compute the
finite time Lyapunov exponent (FTLE) field corresponding to our flow and the inertial particles
trajectories for a given time period [8,30,51,52]. Regions with a low FTLE value are indicative
of attractive properties; i.e., initially neighboring particles remain close to each other over a given
time window, while regions with a high value correspond to repulsive regions of the flow, where the
spatial separation over the same time window between neighboring fluid particles is maximum [53].
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FIG. 3. Inertial particles positions and corresponding backward FTLE fields in simulations for spherical
particles, left column, and ellipsoidal particles with γ = 5, right column, after t = 20 time steps in a double
gyre flow with A = 100, e = 0.25, and ω = 2πA. (a)–(d) St = 10−3 and particles initial velocity v0 = 0.9u,
(e)–(h) St = 5 × 10−4 and v0 = 0.

Figure 3 displays spatial distributions and corresponding FTLE fields for inertial particles with
two different initial velocity and St number. In all configurations, after t = 2/A, where A is the
gyre rotation frequency, the ellipsoidal particles distribution systematically present a more inho-
mogeneous spacial density variation than the spherical ones. At St = 5 × 10−4, the corresponding
spherical particles FTLE field is similar to the flow FTLE field, see Supplemental Material [30].
The ellipsoidal particles FTLE fields are altered and exhibit additional structures located in regions
with stronger shear. This suggests that in time-varying flows, ellipsoidal particles more complex
dynamics can lead to a departure from passive transport even at very small St numbers.

V. EXPERIMENTAL RESULTS

A. Focusing effect in the rotor flow

To test our findings, we perform a series of experiments and compare the resulting trajectories
with our model by computing the numerical particles dynamics in the same, experimentally mea-
sured, flow field. The flow has the geometry of a rotor-oscillator flow in the steady regime, and a
snapshot of the experimental velocity field with the corresponding FTLE field is shown in Figs. 1(b)
and 1(c). We impose a constant rotor speed of 200 rpm for all three different particle aspect ratio
γ = 1, 2, and 5. In this configuration, the Reynolds number typically ranges between 0.1 � Re � 10
in the flow central region, away from the direct vicinity of the rotor indicated by the gray disk in
Figs. 1 and 4. This leads to relatively small particle Stokes number St ≈ 10−4–10−3, such that, in
the absence of anisotropic effects, we expect the particles with γ = 1 to behave closer to tracer
particles in our experiments.

The particles are initially distributed uniformly across the experimental domain with no pref-
erential alignment across the quasi-two-dimensional plane defined by the two-layer stratification,
as described in the Method section of the Supplemental Material [30]. The particles remain in
the same plane for the entire duration of the experiments, and the principal axis of the elongated
particles does not display off-plane motions except near the rotor wall. Immediately after the flow
is started, particles with γ > 1 change their orientation and exhibit a preferential alignment of
their principal axis with the local flow direction, as shown in the Supplemental movie 1 [30]. This
suggests that the orientational behavior has a negligible response time to the changes in the flow
field, in good agreement with equation (4), and previously reported findings for flows at higher
Reynolds number [10,35].

After a time t � 4000 τ , where τ = 0.3 s corresponds to the rotor rotation time period, the
particles spatial distribution approaches a stationary regime, which strongly depends on their aspect
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FIG. 4. (a)–(c) experimental particles final positions at t = 12000 τ , (d)–(f) particles positions over a time
window t = [5000; 9200] τ in the corresponding experiments, (g)–(i) numerical particles positions advected in
the experimental flow field shown in Fig. 1(b) for the entire duration of the simulation equivalent to t = 6700 τ .
Spherical (orange) and ellipsoidal (purple) particles, color intensity indicates time.

ratio, as shown in Figs. 4(a)–4(c) and the Supplemental movies 2–4 [30]. The final position of the
particles with aspect ratio γ = 1 do not exhibit any preferential concentration, and remain uniformly
spread across the domain, while particles with γ = 2 and γ = 5 display a migration from the outer
regions of the flow into the vortex cores and their vicinity. Remarkably, for γ = 5, all the particles
are focused in the central region. Note that for γ = 2 and γ = 5, some particles can be attracted to
the secondary vortices located near the lateral edges of the tank not covered in our field of views in
Figs. 1 and 4.

In order to quantify this behavior, we determine the individual particle’s trajectories using particle
tracking velocimetry (PTV), and monitor their spatial distribution over time. Figures 4(d)–4(f) dis-
play all the particles’ positions as a function of time for the entire duration of the experiment shown
in Figs. 4(a)–4(c), respectively. As can be seen in Figs. 4(e) and 4(f), some of the elongated particles’
final trajectories form closed orbits inside the vortices. While for γ = 2, the particles remain more
evenly distributed outside the vortices, particles with γ = 5 exhibit a strong concentration in the
direct vicinity of the vortices.

Figure 5 displays the measured particle density variation between 0 � t � 12000 τ in the central
region of the flow delimited by the white dashed lines in Fig. 4(c). During a first transient regime,
the spatial density of the elongated particles increases linearly over time and exhibit an aspect-ratio-
dependent migration rate, with the largest rate for γ = 5. After t = t∗, the migration slows down
and the density of particles in the central region of the flow converges toward a constant density
over time. Interestingly, while both the migration rate and the final particle concentration depend
on γ , the saturation time scale t∗ � 4000 τ seems similar for particles with aspect ratio γ > 1.
Particles with γ = 1 present a negligible focusing effect, and their spatial distribution remains nearly
unchanged over time.

B. Comparison with the numerical model

We perform in parallel numerical simulations using the experimentally measured flow field
shown in Fig. 1(b). The particles St number and aspect ratio are now chosen identical to the
experimental particles. The flow field is first nondimensionalized as described in Supplemental
Material [30]. We set x∗ = x/L with L = 100 mm corresponding to the width of the tank, and
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FIG. 5. Spatial particle density variation as a function of time in the central region of the flow indicated
by the white dashed lines in Fig. 4(c). Lines with shaded region indicate experimental average value and
corresponding error. Circles, numerical average value with St = 5 × 10−4 in the experimentally measured flow
field. Blue: γ = 1, orange: γ = 2, and green: γ = 5. Dashed lines: linear fit of the experimental data in the
transient regime for t < t∗.

u∗ = u/U , where U = L/T is the characteristic flow velocity. To estimate U from the experiments,
we select the velocity that gives the best match between the numerical and experimental particles’
velocities located in identical regions of the flow. The best agreement with the experimental particles
velocities is obtained for U = 5 ± 2 mm.s−1, in good agreement with the largest flow structures
average velocity in Fig. 1(b).

The resulting numerical trajectories are shown in Figs. 4(g)–4(i), and qualitatively agree with the
experimental trajectories’ spatial features. They display a similar convergence toward the vicinity
of the vortices for γ > 1, although a larger asymmetry between the left and right attractive regions
within the vortices is visible, and only the right vortex traps the most elongated particles on a
distinct inner orbit. The migration rate of the numerical particles are shown in Fig. 5, and display
a similar trend with the experimental data in the transient regime. After t � 3000 τ , the predicted
aggregation rates start differing from the experimental curves and lead to a less contrasted particle
spatial distribution as a function of γ .

Comparing the shape of high particle concentration regions in our experiments and simulations
with the rotor-flow FTLE field shown in Fig. 1(c), we can identify which flow structures attract
the most the elongated particles. The flow FTLE field displays several ridges: two minima within
the vortex cores corresponding to the two ellipsoidal regions where elongated particles are trapped
in the experiments, and a third structure formed by the minima encircling the two vortices. Both
experimental and numerical particles with the largest aspect ratio γ = 5 are specifically attracted to
this third region and display the large closed orbit visible in Figs. 4(f) and 4(i).

VI. DISCUSSION

In our experiments, the observed migration toward vortices for elongated particles with a small
Stokes number 10−4 � St � 10−3, suggests that even weak deviations from passive trajectories
can build up over time, leading to distinct spatial organization over long time periods. These
perturbations are not sufficient to significantly alter particles trajectories with an aspect ratio γ = 1,
and particles with γ = 2 exhibit a considerably weaker focusing effect than those with γ = 5. A
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direct comparison of these observations with our numerical simulations shows that our minimal
model qualitatively captures this behavior, although the particles focusing effect exhibits a smaller
dependence to the particle aspect ratio γ than in the experiments. This difference could be attributed
to second-order orientation-dependent terms, such as the added mass [9,21,32,36,37], that were
neglected here.

These results suggest that anisotropic particles respond to the flow with a larger lag. In addition
to the orientation-dependent nature of the drag forces in Eq. (7), St′ = γ St could be interpreted as
an effective Stokes number that is proportional to γ . For weak inertial effects St � 1, the difference
between St and St′ on the particles trajectories becomes only visible at large time scales, when small
deviations have accumulated over longer time periods.

This effect could potentially enhance the migration rate of irregularly shaped objects such as
microplastic in the ocean toward gyres of marine debris [20,21], and influence the garbage patches’
formation dynamics [19,54]. On the opposite length and time scales, in biology this interplay
between the shape of the particle and the flow field geometry could influence the selective capture
of microorganisms by larger animals. For instance, flows created by the beating of cilia can generate
a local flow that attract only microorganisms of an optimal size [55]. Identical mechanisms could
potentially select for an optimum shape, such as the aspect ratio of a given bacteria.

In conclusion, even neutrally buoyant particles with small particle Stokes number St � 10−4

exhibit trajectories that deviate from the fluid flow when they possess an anisotropic shape. Both
experimental and numerical particles exhibit a migration toward regions in the vicinity of vortices.
The orientational dependence of the drag force term in our minimal model describes qualitatively the
particle’s dynamics, suggesting that this mechanism could be the dominant effect for the separation
of isotropic and anisotropic particle trajectories in cellular flows. In addition, the effect of additional
orientation-dependent terms and experiments with unsteady flows should be investigated in future
work.
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