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Sedimenting elastic filaments in turbulent flows
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We investigate the gravitational settling of a long, model elastic filament in homoge-
neous isotropic turbulence. We show that the flow produces a strongly fluctuating settling
velocity whose mean is moderately enhanced over the still-fluid terminal velocity and
whose variance has a power-law dependence on the filament’s weight but is surprisingly
unaffected by its elasticity. In contrast, the tumbling of the filament is shown to be closely
coupled to its stretching and manifests as a Poisson process with a tumbling time that
increases as a power law with the elastic relaxation time of the filament. Apart from
elasticity, inertia, and gravitational acceleration, we have also considered the effect of
bending stiffness and found that stiff filaments settle slower but tumble faster than fully
flexible filaments.
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I. INTRODUCTION

Sediments in turbulent flows, commonplace in nature and industry, raise the question of how
objects settle under gravity while being buffeted by a turbulent carrier flow. Even for the simplest
case of tiny rigid spherical particles, the interaction of these forces is intricate and leads to an en-
hancement of the settling velocity over its value in a still fluid [1–7]. Recent work has extended our
understanding to spheroidal particles, with additional rotational degrees of freedom, and addressed
the issue of how they orient themselves while settling [8,9]. A common feature of these prior studies
is that they are limited to rigid particles whose sizes, regardless of their anisotropy, are much smaller
than the dissipative Kolmogorov scale η of the flow. These constraints are certainly meaningful for a
wide variety of applications, such as understanding the initiation of rain in warm clouds [10–14] and
the radiative properties of cold clouds [15–18], which involve, respectively, turbulent suspensions
of spherical water droplets and nonspherical ice crystals.

However, sediments that are both deformable and larger than the Kolmogorov scale are just as
ubiquitous. One important example is the sedimentation of long deformable filaments, wherein flow-
induced deformation modifies the net drag force experienced by the filament [19], thus coupling the
dynamics of conformation to settling. This problem has been recently addressed for low Reynolds
number, nonturbulent flows [20,21]. However, understanding the gravitational settling of filaments
when the carrier flow is turbulent remains an important open problem, encountered in diverse
settings such as fiber suspensions in industry [22], sedimentation of passive marine pollutants such
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as plastic debris from fishing gear [23–25], as well as the dynamics of filamentary microorganisms
in the field of marine ecology [26–28].

In this paper, we address this issue through a combination of scaling analysis and detailed
numerical simulations on a model elastic filament in a homogeneous and isotropic turbulent flow. In
particular, we show that the turbulent flow produces strong fluctuations in the settling velocity, while
moderately enhancing its mean value over the terminal velocity in a still-fluid. We theoretically
derive how the normalized variance of the settling velocity scales with the elasticity and inertia
(mass) of the filament, as well as with the relative strengths of the accelerations due to gravity and
turbulence. Our estimates are then verified through detailed numerical simulations. Furthermore,
applying ideas from the persistence problem of nonequilibrium statistical physics, we uncover a
close connection between the two internal motions of tumbling and stretching, which accompany
the unsteady yet inevitable descent of the filament.

A simple model of a long filament, which retains enough internal structure to exhibit both
elasticity and inertia, is a chain of heavy inertial particles connected through elastic springs. Such
chains are a macroscopic adaptation of the bead-spring model commonly used to study polymers
[29]—a connection suggested by experiments on flexible fibers in turbulent flows [30,31]. These
chains provide a useful framework to understand the intricate interplay between elasticity and
turbulent mixing [32–34] and provide insights which complement those obtained from other models
with uniformly distributed mass [35,36], which are optimal for relatively more rigid fibers and
well suited to studies of buckling, flapping, or as probes for two-point Eulerian statistics of the
carrier flow. Here, we use the bead-spring chain model, which allows for a natural inclusion of
elasticity, stiffness, and inertia to address issues of gravitational settling. In this context, the most
striking feature of these filamentary chains is the manner in which they preferentially sample the
geometry of a turbulent flow: In the absence of inertia and gravity, elastic chains preferentially
sample the vortical regions of the flow, in both two and three dimensions (2D and 3D), though for
different reasons [32,34]. This prediction, for the case of rigid chains in 3D, was recently confirmed
experimentally [37]. The introduction of inertia (without gravity) counteracts this tendency due
to centrifugal expulsion from vortices and decorrelation from the flow, resulting in rather distinct
dynamics [33]. Here, we account for gravitational acceleration and investigate the settling dynamics
of these elastoinertial chains. We mostly focus on the fully flexible limit, though we do show that
our key results hold for stiff chains as well.

II. THE ELASTOINERTIAL CHAIN: A MINIMAL MODEL FOR FILAMENTS

We model a filament of mass M as a chain of Nb spherical beads. Considering ρ to be the mass
density of the filament, we distribute the mass uniformly over the beads, each of radius a � η,
so 4

3πa3ρNb = M. The beads are then characterized by a Stokesian relaxation time τp = 2ρa2

9ρ f ν
,

where ρ f and ν are the density and kinematic viscosity of the carrier fluid. Each bead, positioned
instantaneously at x j , is connected to its nearest neighbors through (phantom) elastic links with
which we associate a relaxation timescale τE (yielding an effective elastic timescale τE Nb(Nb + 1)/6
for the filament [32,38]), thus rendering our elastoinertial chains extensible (and fully flexible). The
dynamics of these model filaments are then completely determined by the coupled equations of
motion for the interbead separation vectors r j = x j+1 − x j and the center-of-mass xc:

τpr̈ j = [u(x j+1, t ) − u(x j, t ) − ṙ j] + A[ξ j+1(t ) − ξ j (t )]

+ 1

4τE
( f j−1r j−1 − 2 f jr j + f j+1r j+1), (1)

τpẍc =
(

1

Nb

Nb∑
j=1

u(x j, t ) − ẋc

)
+ A

Nb

Nb∑
j=1

ξ j (t ) − τpgẑ. (2)
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Here, we use the FENE (finitely extensible nonlinear elastic) interaction f j = (1 − |r2
j |/r2

m)−1, with
a prescribed maximum interbead length rm, to model the springs. ξ j (t ) are independent white noises
which, unlike in the case of polymers, do not represent Brownian forces but rather are introduced
as a means to set the equilibrium length r0 for each segment of our filament (in the absence of

flow). The noise amplitude is chosen accordingly as A2 = r2
0

6τE
. The entire chain then has equilibrium

and maximum end-to-end extensions of R0 = r0
√

Nb − 1 and Rm = rm(Nb − 1), respectively. We
note that the precise method of enforcing the equilibrium length is not crucial to our study; in
previous work, we omitted the noise and instead set the equilibrium length by using a spring force
of f j (r j − r0), without affecting the qualitative dynamics of the chains in flow [34].

We choose a coordinate system such that the acceleration due to gravity g acts along the negative
z axis. Finally, the timescales τp and τE , as well as the acceleration due to gravity g, allow us to define
nondimensional numbers in terms of analogous (small-scale) quantities of the carrier turbulent flow,
namely, the Kolomogorov time τη ≡ √

ν/ε and acceleration aη ≡ (ε3/ν)1/4, where ε is the mean
energy dissipation rate of the flow. The dynamics of our filaments are thus completely determined by
the Stokes number St ≡ τp/τη (a measure of the inertia), the Froude number Fr ≡ aη/g (a measure
of the force of gravity), and the Weissenberg number Wi ≡ Nb(Nb+1)τE

6τη
(a measure of elasticity).

Here, we have used the mapping proposed by Ref. [38] to estimate the effective relaxation time of
the entire chain from τE (which corresponds to individual links).

Note that this model neglects the feedback of the chains onto the flow. Because we consider the
extremely dilute limit of a single chain (we simulate many chains only to obtain good statistics), the
motion of the chain does not affect the global flow. However, the chain will certainly modify the
local flow field. This, in turn, would result in one portion of the chain influencing other portions via
the disturbed flow. This effect can be accounted for within the bead-spring framework by including
interbead hydrodynamic interactions (HIs), as has been done in polymer models [39,40]. However,
the effect of HI on chain dynamics is minimal when the chain is stretched out by the flow. We
therefore ignore HI for simplicity. Similarly, we also ignore excluded volume (EV) interactions.
Bending stiffness is also disregarded for now, although we study its effect later in Sec. VI. Thus,
our chain represents a minimal model of a filament, adopted to more clearly reveal the fundamental
interplay between elasticity, inertia, and gravitational and turbulent acceleration.

It is also important to point out that other models of filament dynamics, particularly in the context
of turbulent transport, are available [30,31,35,36]. However, studies for low Reynolds number flow
[20] show that the bead-spring approach to filaments still remains an important framework [41–44]
because of the limitations of models based on slender-body theory [45,46].

III. SIMULATIONS

In our direct numerical simulations of the turbulent carrier flow, we use a de-aliased pseu-
dospectral algorithm and spatially discretize the 3D incompressible Navier-Stokes equations on
a 2π periodic cubic box with N3 = 5123 collocation points. We use a second-order slaved Adams-
Bashforth scheme for time integration [48]. The flow is driven to a statistically stationary state by
using a constant energy injection scheme. We choose the coefficient of viscosity ν = 10−3 to obtain
a Taylor-scale Reynolds number Reλ ≈ 200. Filaments are introduced into the flow only after it
attains stationarity. The fluid velocity u(x, t ), which is available on the regular periodic grid, is
interpolated, using trilinear interpolation, to obtain the velocity u(x j+1, t ) at the positions of the
beads of each filamentary chain.

To evolve the chains, we use a second-order Runge-Kutta scheme for the deterministic terms
of Eqs. (1) and (2), while the noise is treated using the Euler-Maruyama method [49]. (Such a
combination of integration schemes has been used previously to study the Lagrangian dynamics of
polymers in a turbulent flow [50].) Let us denote the time rate of change of the separation vectors
r j by v j = dr j/dt ( j = 1, 2, ..Nb − 1). Dropping the subscript j for ease of notation, Eq. (1) can be
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written as

dr
dt

= v,
dv
dt

= 1

τp
[fspring + fnoise + fdrag],

where the various forcing terms are denoted by f with suitable subscripts. To evolve these
equations from t to t + 	t , we begin by generating the random force fnoise, and evaluating the
deterministic force fspring + fdrag using the known values of v and r at time t . We then take a half
step,

vh = v(t ) + 1

τp

[√
	t

2
fnoise + 	t

2
(fspring + fdrag)

]
,

rh = r(t ) + 	t

2
vh,

where vh and rh are the values of the corresponding variables at the midpoint t + 	t/2. These mid-
point values are used to update the deterministic force, yielding fh

spring + fh
drag, where the calculation

of the drag force requires updating the positions of the beads, followed by interpolating the fluid
velocity at the beads. The additive noise fnoise remains unchanged over the interval 	t . We then take
a full step to advance v and r to t + 	t :

v(t + 	t ) = v(t ) + 1

τp

[√
	t fnoise + 	t

(
fh
spring + fh

drag

)]
,

r(t + 	t ) = r(t ) + vh	t .

Equation (2) for the center of mass is integrated in a similar fashion. The equations for the
filaments are solved simultaneously with the Navier-Stokes equations. The time steps used for the
flow 	t f and for the chains 	tc are the same, except for the simulations with bending stiffness,
described below in Sec, VI, where 	tc/	t f has to be decreased down to 1/70 for the stiffest chain.

We evolve an ensemble of 104 filaments, each with an equilibrium end-to-end extension of R0 =
15.6η, a maximum length Rm = 270η, and Nb = 10 beads (we have checked that our results remain
qualitatively unchanged if we use a fewer number of beads, Nb = 5), and consider 0.1 � St � 8.0,
0.5 � Wi � 40, and 0.5 � Fr � 2.0. A visualization of a few chains settling through the turbulent
flow is presented in Fig. 1 where we identify the vortex tubes using the Q criterion [47].

IV. FLUCTUATING SETTLING VELOCITY

We begin our study by examining the fluctuating settling velocities vz ≡ ẋc · ẑ of the filaments.
Let us first consider the mean value 〈vz〉, where the angular brackets denote an average over
the ensemble of chains and over time in the statistically stationary state. From Eq. (2), denoting
az ≡ ẍc · ẑ as the vertical acceleration in the z direction, the assumption of a mean settling velocity
implies, by definition, that 〈az〉 = 0. Furthermore, since the noises are independent and of zero
mean, we obtain 〈vz〉 = 〈ūz〉 − τpg, where τpg is the terminal settling velocity in a still fluid, and
ūz ≡ 1

Nb

∑Nb
j=1 uz(x j, t ) is the average z component of the fluid velocity field sampled by the filament.

If an object uniformly samples the flow, as tracer particles do, then 〈ūz〉 = 0. However, this is
typically not the case for nontracers: Heavy inertial particles (with St > 0) are known to exhibit
an enhanced mean settling velocity. The magnitude of this effect, which may be quantified through
	V = −(〈vz〉/τpg + 1) = −〈ūz〉/τpg, varies nonmonotonically with St as explained in Ref. [7].

Now, as instantiated by our model, a filament can be thought of as a string of elastically linked,
inertial particles. So, how does this internal linking impact the mean settling velocity of filaments?
Figure 2(a) answers this question by presenting simulation results of 	V as a function of St
for filaments with Fr = 2 (results for Fr = 1 and 0.5 are qualitatively similar but with reduced
magnitudes of 	V ) and various values of Wi, as well as for free inertial particles [whose dynamics
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FIG. 1. Representative snapshot of a few elastic filaments (red curves) sedimenting through a turbulent
flow. The intense vortex tubes (green contours) of the flow are visualized via isosurfaces of the Q field
(3〈Q2〉−1/2) [47]. The parameters of the filaments are Wi = 20, St = 2, and Fr = 1.

are given by Eq. (2) with A = 0 and Nb = 1]. Comparing the results for particles and filaments, we
see that the elastic links reduce the level of enhancement, but only up to moderate values of St. At
large St, the results for chains approach that for free particles.

Let us first consider the case of small to moderate St, for which the enhanced settling velocity
of particles is due to a preferential sampling of the downward-flowing regions of the flow (i.e.,
on average, the z component of the fluid velocity sampled by the particles is negative, 〈ūz〉 < 0,
and not zero as it would be for tracers) [7]. When these same particles are linked together to form
long chains, they can no longer remain inside these regions of the flow. The chains in our work
have inertial-scale lengths that increase with Wi as the chains are stretched out by the flow, as
depicted in Fig. 2(b), which shows the probability distribution function (PDF) of the end-to-end
extension R ≡ |∑Nb−1

j=1 r j |. At Wi = 0.5, the chains are mostly at the equilibrium extension, while
at Wi = 40 they are broadly distributed with several near the maximum length. Despite this variation
in extension, the value of 	V barely changes with Wi. This tells us that even the equilibrium size of
approximately 15η is too large for the chains to preferentially sample the down-welling zones of the
flow. Further increase in the extension with Wi, thus, has no additional effect on the mean settling
velocity.

Turning to the case of large St, we note that both particles and chains decorrelate from the
underlying flow when St � 1. So, preferential sampling is no longer important, and the particles
or chains experience the flow as a short-correlated noise [7]. Moreover, at large St, the effect
of elasticity weakens relative to that of inertia, so the chains begin to settle, on average, like a
collections of free beads. Thus, we see in Fig. 2(a) that 	V for the chains approaches the result
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FIG. 2. (a) Plot of the relative enhancement in the mean settling velocity 	V , over the still fluid value, as
a function of St, for free, inertial, point particles, and for filaments with different values of Wi. (b) Probability
distribution function of the end-to-end extension of the filament for the same values of Wi as in (a). The
equilibrium and maximum lengths for all filaments are R0 = 15.6η (dashed black line) and Rm = 270η (dashed
blue line) respectively. In both panels, Fr = 2.

for free particles as St increases, with the values for larger Wi chains (weaker elastic forces) being
closer to the free particle limit.

Next, let us examine how the settling velocity fluctuates about its mean value. The PDF of
vz, illustrated in the inset of Fig. 3, shows that the turbulent flow can produce strong temporal
fluctuations—much greater than 	V —which become increasingly large and slightly non-Gaussian
(the black lines are Gaussian fits) as St/Fr increases (the relevance of this ratio becomes clear
below). The magnitude of these fluctuations is best quantified through the normalized variance

σ ≡ 〈v2
z 〉

〈vz〉2 − 1 of the distribution. To obtain a theoretical estimate for this variance, we use Eq. (2) to

calculate the second moment of the settling velocity 〈v2
z 〉. Noting that

∑Nb
j=1

∑Nb
k=1〈ξ j,z(t )ξk,z(t ′)〉 =

Cδ j,kδ(t − t ′), where the subscript z denotes the z components of the noise and C is a constant
(which absorbs the Nb factor) with the dimension of inverse time, we obtain 〈v2

z 〉 = 〈ū2
z 〉 + τ 2

p g2 +
τ 2

p 〈a2
z 〉 + CA2, which on using 	V < 1 leads to the nondimensional, normalized variance:

σ ≈
[〈

ū2
z

〉 + CA2

(aητη )2
+ St2

〈
a2

z

〉
a2

η

](
St

Fr

)−2

. (3)

This result is further simplified by the observation, from our simulations, that 〈ū2
z 〉 ≈ (3/2)E ,

where E is the mean kinetic energy of the flow. This leads to 〈ū2
z 〉

(aητη )2 ∼ √
Re, where Re is the large

scale Reynolds number. Furthermore, we anticipate that, for finite Fr, St2 〈a2
z 〉

a2
η

� √
Re for all St,

because for St � 1, 〈a2
z 〉 ∼ a2

η (chains follow the flow), while for St � 1, 〈a2
z 〉 � a2

η (chains fall
with their terminal velocity), and in both cases this term becomes negligibly small. Indeed, we have

found from our numerical data that the term St2 〈a2
z 〉

a2
η

is at least one order of magnitude smaller than
〈ū2

z 〉
(aητη )2 for all Wi and the ranges of St and Fr that we consider. Finally, the additive contribution of

the noise, CA2 ∝ 1/Wi, may also be neglected as it is small compared to the variance induced by
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FIG. 3. Log-log plot of the normalized variance σ as a function of St/Fr; the different symbols correspond
to different values of Wi (see legend) with the thick, black dashed line showing (St/Fr)−2. Inset: Representative
plots of the PDFs (from which σ is extracted) of the settling speed vz rescaled by the corresponding τpg for
Wi = 40 and different values of St/Fr; the black lines are Gaussian fits.

the turbulent flow. Moreover, as mentioned earlier, the noise has no physical significance other than
serving as a means to maintain the equilibrium length r0 in a still fluid.

It follows, therefore, that to leading order σ ∼ (St/Fr)−2; the variance only depends on a single
settling parameterSv = St/Fr, which is the ratio of the still-fluid terminal settling velocity τpg to
the Kolmogorov-scale velocity of the turbulent flow uη = aητη [51].

Motivated by this scaling result, we plot the value of σ obtained from our simulations, carried
out by varying Wi, St, and Fr independently over a range of values, against St/Fr in Fig. 3. We
see that the leading order behavior of the variance matches the scaling prediction σ ∼ (St/Fr)−2

(dotted line) to a good approximation (see Fig. 3), over a wide range of Wi. Clearly, the extent
of elasticity and therefore the stretching of the filament does not appreciably impact the settling
velocity statistics.

V. TUMBLING: A POISSON PROCESS

So far, we have only considered the settling of the filament as a whole. However, unlike for
instance spherical particles, these filaments have additional internal degrees of freedom which raise
new questions, of which perhaps the most interesting is to understand how the filaments tumble
as they descend through the turbulent flow. It is useful to recall that the tumbling of individual
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FIG. 4. (a) Representative time trace of snapshots of the end-to-end vectors R of two filaments with
Wi = 10 (red) and 40 (blue) at different times (increasing downward) as they sediment (St = 2, Fr = 0.5);
the vectors are projected on a 2D plane to illustrate the change in orientation θ with respect to the direction of
gravity −ẑ. The filaments have been shown in intervals of 3.5τη and the ones in bolder colors at 68τη. Plots of
(b) cos θ and (c) � (see text) of the same filaments as a function of nondimensional (with τη) time: � = 1(0)
corresponds to an up (down) state of our filaments.

polymers—small elastic chains unaffected by inertia or gravity—has been studied in the context of
simple shear flows [52,53].

To study tumbling quantitatively, we consider the dynamics of the end-to-end vector R ≡∑Nb−1
j=1 r j . In Fig. 4(a), we show typical time traces of the end-to-end vector projected on a two-

dimensional plane for two sedimenting filaments with different Wi (and St = 2, Fr = 0.5). Clearly,
the filaments undergo complicated rotational dynamics accompanied by tumbling events. This
behavior is quantified through the cosine of the angle made by R with the z axis via R · ẑ = R cos θ ,
where R = |R|. In Fig. 4(b), we show plots of the time series of cos θ for the two filaments shown
in Fig. 4(a). This time series illustrates the seemingly continuous changes in the orientation of the
settling filaments with a suggestion that filaments tumble more frequently as the Wi decreases. Such
observations naturally lead us to (i) suitably define the state � of the filament as being either “up”
or “down” and (ii) to characterize the transitions between these two states.

We define the up and down states as � = 1 for cos θ � 0 and � = 0 for cos θ < 0, respectively.
The apparently random switching between the two states, clearly illustrated in Fig. 4(c), is quantified
by calculating the PDFs P+(τ ) (P−(τ )) of the residence time τ over which the filaments remain up
(down). These distributions yield the probability of a filament in an up (or down) state to continue
to remain in the same state for a duration of τ . We recall that questions of this sort—the so-called
persistence problems—have a special importance in areas of non-equilibrium statistical physics
[54–57] and, more recently, have been adapted to understand the geometrical aspects of turbulent
flows [58–60].

In Fig. 5(a), we show semilog plots of P+(τ ) for filaments with St = 2.0, Fr = 0.5, but different
degrees of elasticity. We have confirmed, by varying the range of angles θ which define an up
or down state, that the precise definition of these states does not affect the results qualitatively;
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FIG. 5. (a) Probability distribution functions P+(τ ) of the residence time in the up (� = 1) state for
filaments with St = 2.0, Fr = 0.5, and different values of Wi. Inset: Log-log plot of the characteristic timescale
τ+
∗ versus Wi for different values of St and Fr; the thick black line indicates a scaling of Wi4/5. (b) Conditioned

probability distribution functions of time spent in the up (� = 1) state, for filaments with relatively small
(〈R〉+ < �1; dashed lines) and large (〈R〉+ > �2; solid lines) time-averaged lengths. The values of the thresholds
for the two cases are �1 = 9η, �2 = 20η for Wi = 1, and �1 = 40η, �2 = 65η for Wi = 10. In both cases,
St = Fr = 1.0. Inset: Plot of normalized 〈R2〉, versus Wi for different values of St and Fr.

furthermore, P+(τ ) = P−(τ ) because the problem is symmetric to the transformation r j → −r j

which reverses the end-to-end vector. These distributions clearly show an exponential fall-off:
P+(τ ) ∼ exp(−τ/τ+

∗ ), which indicates that tumbling manifests as a Poisson process (which also
characterizes, for example, the escape of particles from vortices [60] and the turbulent entrainment
of coarse grains [61]). The characteristic timescale τ+

∗ (= τ−
∗ ) has a weak dependence on St and Fr,

but increases systematically with Wi (see Ref. [53] for single polymers in a shear flow), as seen in
the inset of Fig. 5(a).

Why do more extensible filaments require longer times to tumble? The answer lies in the
connection between the dynamic length of a filament and its tumbling. We expect a highly stretched,
long filament that spans multiple flow eddies to have a lower probability of experiencing the
sequence of coordinated drag forces required to cause a transition in its orientation. To test this
hypothesis, we calculate the average end-to-end length of a filament over each interval of time
spent in the up state 〈R〉+. When a transition occurs, we record 〈R〉+ along with the persistence
time τ , which then allows us to obtain the PDF of τ conditioned on the time-averaged length of
the filament. Figure 5(b) shows these conditioned PDFs for relatively short (dashed line) and long
(solid line) filaments, defined as those with 〈R〉+ < �1 and 〈R〉+ > �2 (�1 < �2), where the values
of the thresholds depend on Wi and are given in the figure caption (small variations in these values
do not affect our conclusions). Two values of Wi are considered, and in both cases we see that when
filaments are more stretched they do indeed take a longer time to tumble. Now, as Wi increases, the
filaments become more extensible and the distribution of R broadens. This is demonstrated by the
inset of Fig. 5(b), which presents the variation of 〈R2〉 with Wi. As a result, a larger Wi filament is
much more likely to be in a highly stretched state, which explains its tendency to persist in a given
orientation for a longer time before tumbling. The consequent increase of τ+

∗ with Wi, shown in
the inset of Fig. 5(a), appears to follow a power law (the fitted dashed line has an exponent of 4/5)
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for small to moderate Wi, but then begins to level off at large Wi, as the filament approaches its
maximum length.

Interestingly the tumbling time τ+
∗ is seen to be almost independent of Fr. In fact, we have

checked, by running additional simulations, that neutrally buoyant chains (Fr = ∞) exhibit the same
power-law dependence of τ+

∗ on Wi as that seen in the inset of Fig. 5(a). This result is closely related
to a recent experimental observation made by Oehmke et al. [37] for rigid, inextensible, neutrally
bouyant fibers in isotropic turbulence. They find that the variance of the tumbling rate decreases
with the (fixed) length L of the fiber as a power law, L−4/3, which can be derived by assuming that
the tumbling rate is determined by the inverse of the turnover time of an inertial range eddy of scale
L [37]. In our case of extensible fibers, the situation is more complex, as we have a dynamically
varying filament length, with a broad distribution that widens with Wi [cf. Fig. 2(b) and the inset of
Fig. 5(b)].

VI. STIFF CHAINS

How valid are our results when the filaments are stiff? Chains with bending stiffness have an
energy cost associated with bending, which manifests as an additional force on the beads of the
chain. The bending energy is defined using the angles (via the dot product) between successive link
vectors, such that a relatively inflexible filament has a larger bending cost and so is more likely to
remain in a rodlike configuration. If S is the measure of bending stiffness, then the resulting force
acting on the jth bead is given as [62]

f B
j = S

r0

[
α j−2

r j−1
r̂ j−2 −

(
α j−2

r j−1
r̂ j−2 · r̂ j−1 + α j−1

r j
+ α j−1

r j−1
r̂ j−1 · r̂ j

)
r̂ j−1 (4)

+
(

α j−1

r j
r̂ j−1 · r̂ j + α j−1

r j−1
+ α j

r j
r̂ j · r̂ j+1

)
r̂ j − α j

r j
r̂ j+1

]
, (5)

with

α j =
{

0 if j � 0 or j = Nb

1 otherwise. (6)

The characteristic time associated with the bending force is τB = ζ r3
0/S, where ζ is the Stokes

drag on the beads and r0 is the equilibrium length of the elastic links. Similar to the Weissenberg
number, we define a dimensionless measure of bending stiffness as the bending Weissenberg number
WiB = τB/τη. The filaments become inflexible for small WiB, while the limit of fully flexible
filaments is attained for large WiB.

The equation of motion for the links [Eq. (1)] now includes the additional term 1
ζ

( f B
j+1 − f B

j )
on the right-hand side to account for bending stiffness. However, because these bending forces are
internal to the filaments, they do not affect the motion of the center of mass explicitly and so its
equation of motion remains identical to that of fully flexible filaments [Eq. (2)].

We now simulate these filaments in a turbulent flow using the techniques described in Sec. III;
however, these additional simulations were performed on a smaller N3 = 2563 grid and conse-
quently with a smaller Taylor-scale based Reynolds number Reλ ≈ 111. Furthermore, we use
a wide range of the bending Weissenber number 1.6 × 10−3 < WiB < 1.6 × 103, along with
0.16 < St < 12.72, 0.8 < Wi < 64 and 0.5 < Fr < 2.

To see how the addition of bending stiffness straightens out the chains, let us examine the angle
between successive link vectors, averaged over all hinges of the chain, defined as

φ ≡ 1

Nb − 2

Nb−2∑
j=1

cos−1(t̂ j · t̂ j+1), where t̂ j = r j/|r j |. (7)

A perfectly straight chain would have φ = 0.
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FIG. 6. (a) Probability distribution function (PDF) of the mean angle between successive links of a chain
φ, for different extents of bending stiffness (WiB) and for Wi = 8. (b) Same as panel (a) but for Wi = 64.
(c) PDF of the ratio of the end-to-end extension to the contour length of the chain (R/Rc), for Wi = 8 and 64,
and for two contrasting values of WiB. (d) PDF of the end-to-end extension (left axis) and the contour length
(right axis), normalized by the Kolmogorov length, for Wi = 8 and two contrasting values of WiB. All plots
correspond to Fr = 1.0.

Figure 6(a) presents the PDF of φ for Wi = 8 and four different values of the nondimensional
bending timescale WiB, ranging in magnitude from 103 (indistinguishable from a fully flexible
chain) to 10−3. The distribution is clearly seen to shift toward smaller angles, indicating that
the chain straightens out as the bending stiffness is increased (WiB is decreased). This effect is
more dramatic at higher Wi as seen in Fig. 6(b). Both these plots correspond to Fr = 1.0, and are
representative of the results for other values of Fr as well.

Next, consider the ratio of the end-to-end extension R to the contour length of the chain Rc ≡∑Nb−1
j=1 |r j |, which should be unity for a perfectly straight chain. PDFs of R/Rc are presented in

Fig. 6(c). Here, the two different colors correspond to results for a highly flexible chain and a stiff
chain. A comparison shows, surprisingly, that the shift in the peak of the PDF toward unity is very
mild. This is true for both Wi = 8 and 64. The reason for this is revealed by Fig. 6(d), which shows
the effect of WiB on the PDFs of R and Rc separately. We see that stiffer chains are more easily
stretched by the flow so Rc increases substantially with decreasing WiB, even as R increases. Thus,
although the ratio R/Rc would approach unity in the rigid-rod limit, it is not an effective measure of
the straightness of a moderately stiff extensible filament; of course, this ratio would work well for
an inextensible filament.

How does the settling statistics of stiff, relatively straight chains compare with that of full-flexible
ones? Figure 7(a) shows a log-log plot of the normalized variance σ versus the settling parameter
Sv = St/Fr for a wide range of WiB. Clearly, the addition of the bending stiffness does not alter
the scaling form σ ∼ (St/Fr)−2 (indicated by the thick black line), obtained earlier for fully flexible
filaments. This is not surprising because the theoretical derivation of the scaling for σ , to leading
order, is insensitive to WiB. Furthermore, in the inset of Fig. 7(a) we show a plot of the settling

084502-11



SINGH, PICARDO, AND RAY

FIG. 7. (a) Log-log plot of the normalized variance σ versus the settling parameter St/Fr for different
values of WiB; the thick black line is a guide to the eye indicating a scaling form of (St/Fr)−2. In the inset, we
show a representative plot of 	V vs St for Fr = 2.0 and Wi = 16.0 and different values of WiB. (b) Semilog
plots of P+(τ ) for filaments with Fr = 1.0, St = 1.26, and Wi = 16.0 and different values of WiB; in the inset,
we plot the same distributions for stiff (WiB = 1.6) filaments with the same Stokes and Froude numbers but
varying Wi.

velocity 	V , for different values of WiB, which shows the same nonmonotonic behavior with St as
seen in Fig. 2 for fully flexible chains. However, as WiB is decreased, the degree of enhancement
of the settling velocity reduces from the value for fully flexible chains. So, stiffness acts along
with elasticity to constrain the motion of the filament and prevent it from preferentially sampling
downward moving regions of the flow.

Next, consider the effect of bending stiffness on tumbling. Two counteracting effects come to
mind. One the one hand, stiff chains have greater end-to-end extensions [Fig. 6(d)], and as more
extended chains take longer to tumble [Fig. 5(b)], we may expect stiff chains to tumbler slower
than flexible ones. On the other hand, it is easier for the fluctuating drag to flip a stiff chain that
is constrained to remain relatively straight, as compared to a fully flexible chain. Our data shows
that the second effect wins out. Figure 7(b) presents representative plots of the distribution P+(τ )
of residence times τ for which filaments persist in the up orientation, for different values of WiB,
with Fr = 1.0, St = 1.26, and Wi = 16.0 (the inset shows how, for a given WiB = 1.6, Fr = 1.0
and St = 1.26, these exponential distributions vary with changing Wi). The characteristic tumbling
time is seen to be lesser for smaller WiB, clearly demonstrating that stiffer chains tumble faster.

Overall, the results presented here for stiff chains confirm that the central conclusions drawn
from studying fully flexible filaments are unchanged even with the inclusion of bending stiffness.
We note that this is consistent with a recent study [34] that showed that the qualitative aspects of
the preferential sampling of 3D turbulent flows by filaments are unchanged when bending stiffness
is included to make such chains more inflexible.

VII. CONCLUDING REMARKS

To summarize, we have analyzed two complementary aspects of the dynamics of long and
heavy, elastic filaments in a turbulent flow: the fluctuating settling velocity, and the transitions
in vertical orientation associated with tumbling. For a given turbulent flow, we have found, rather
surprisingly, that to leading order the weight of the filament only impacts its settling velocity [via the
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St dependence of 	V and the (St/Fr)−2 scaling of σ ] while the elasticity and consequent stretching
of the filament only affects its tumbling. Furthermore, we perform additional simulations for chains
with a bending energy and have found that our central results remain qualitatively unchanged,
although stiff filaments settle slower but tumble faster than fully-flexible ones.

The influence of stiffness on tumbling is actually subtle. As pointed out in the previous section,
there are (at least) two competing effects at play. While in our simulations it is true that the one
which allows a faster flipping dominates, the possibility of stiffer chains tumbling slower is not
entirely inconceivable, especially for lower Reynolds number flows wherein the fluid drag acts
more coherently across the filament. We indeed find some evidence of this in simulations at lower
Reynolds numbers. However, this issue requires a further focused investigation, in a simpler system
shorn of the complexities of the present problem.

In our simulations, we have neglected EV and HIs between different portions of the filament,
i.e., between different beads of the chain. While these interactions are unimportant at large values
of Wi when the chain is strongly stretched out by the flow, they will be significant for filaments with
Wi � 1. It is left as a task for future work to include HI and EV forces and study the behavior of
weakly stretched filaments in more detail. Including these intrafilament interactions would also be
important for studying the scaling relationships of the settling and tumbling characteristics of the
filament as a function of its length (by systematically increasing the number of beads).

The Poisson distribution of tumbling times brings to mind the Poissonian back-and-forth motion
of filamentary, motile microorganisms. Such a tumblinglike motion is thought to be an efficient
strategy for foraging [26,27], but given that the Reynolds number of oceanic turbulence [28] is
similar to that in our paper, it is tempting to consider in future work whether the tumbling of
marine filamentary microorganisms are a consequence of active strategy or physical inevitability.
Admittedly, these microorganisms are motile and much smaller than our filaments; nevertheless,
our results should motivate work on longer marine organisms and their journey as they settle in the
ocean.
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